JP3542234B2 - Method for coating metal material with titanium oxide - Google Patents

Method for coating metal material with titanium oxide Download PDF

Info

Publication number
JP3542234B2
JP3542234B2 JP17121796A JP17121796A JP3542234B2 JP 3542234 B2 JP3542234 B2 JP 3542234B2 JP 17121796 A JP17121796 A JP 17121796A JP 17121796 A JP17121796 A JP 17121796A JP 3542234 B2 JP3542234 B2 JP 3542234B2
Authority
JP
Japan
Prior art keywords
metal material
film
titanium oxide
colloid
titanium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP17121796A
Other languages
Japanese (ja)
Other versions
JPH1018082A (en
Inventor
和彦 森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nihon Parkerizing Co Ltd
Original Assignee
Nihon Parkerizing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nihon Parkerizing Co Ltd filed Critical Nihon Parkerizing Co Ltd
Priority to JP17121796A priority Critical patent/JP3542234B2/en
Publication of JPH1018082A publication Critical patent/JPH1018082A/en
Application granted granted Critical
Publication of JP3542234B2 publication Critical patent/JP3542234B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【0001】
【発明の属する技術分野】
本発明は、金属材料の酸化チタン被覆方法に関するものである。さらに詳しく述べるならば、本発明は、ステンレススチール、アルミニウム、銅、および鉄、などの金属材料の表面上に、アノード電解処理により光触媒機能を有する酸化チタン皮膜を形成する方法に関するものである。
【0002】
【従来の技術】
酸化チタンは、固体材料の表面に高い光触媒効果を付与させることが可能である。このため、金属、ガラス、セラミックなどの素材の表面に光触媒効果を有する酸化チタン皮膜を形成させることにより、付着汚れの分解、大気および水質の浄化、防錆、並びに細菌および藻類の繁殖防止、などの各種用途に有用な金属材料が得られることが知られている。
【0003】
このため、より良好な酸化チタン皮膜を素材表面に形成することを目的とする各種の酸化チタン被覆方法が、これまでに提案されてきた。
【0004】
各種材料表面を酸化チタンにより被覆する方法のうち、チタンのアルコキシドを加水分解し、その生成物を塗布する方法として知られているゾル−ゲル法が最も一般的である。またこれに類する方法としては、例えば特開平4−83537号公報に示されているように、チタンアルコキシドにアミド、グリコールを添加し、その生成物を塗料として利用する方法や、特開昭7−100378号公報に示されているように、チタンアルコキシドにアルコールアミン類を添加し、その生成物を塗布する方法が知られている。
【0005】
また、この他には特開平6−293519号公報に記載されているように、水熱処理により結晶化させた酸化チタン微粒子を分散剤を使用して分散させ、この分散液を塗布する方法や、結晶性酸化チタン粒子に、水ガラス、コロイダルシリカ、弗素系樹脂などのバインダーを混和し、この混和液を塗布する方法が知られている。
【0006】
しかし、上記のゾル−ゲル法を用いた場合、塗料の粘度や塗布条件によって形成される皮膜の厚さが変化し易いこと、および皮膜の性能を高めるために皮膜の厚さを厚くすると、乾燥の際に、皮膜の収縮が大きいため皮膜が基体表面から剥離したり、或は密着性が低下すること、などのために、1μm以上の厚さを有する皮膜を形成することが困難であり、このため得られる皮膜の光触媒性能にも限界がある。
【0007】
また、結晶成長させた酸化チタン粒子をバインダーと混合し、この混合液を塗布する方法では、得られる皮膜中の酸化チタン含有率が低いため、光触媒能が充分に発揮されないという問題がある。
【0008】
【発明が解決しようとする課題】
本発明は、金属材料表面を光触媒性を有する酸化チタンセラミックにより金属材料表面を被覆する場合に、従来のゾル−ゲル法などでは困難とされていた1μm以上の厚さを有し、かつ金属材料表面に対する密着性の良い酸化チタン被覆層を形成することにより、皮膜の光触媒性をさらに改善し得る金属材料の酸化チタン被覆方法を提供しようとするものである。また同時に、本発明はアノード電解法を用いることにより、皮膜の厚さの制御が容易で、複雑な形状を有する物品に対しても、均一な厚さの皮膜を形成することを可能とする、金属材料の酸化チタン被覆方法を提供しようとするものである。
【0009】
【課題を解決するための手段】
本発明者は、上記の技術的課題を解決するための手段について鋭意検討した結果、皮膜成分である酸化チタンを、チタン酸およびペルオキソチタン酸から選ばれた少なくとも1種のコロイド陰イオンを含み、かつ低い電気電導度を有するコロイド溶液中に、ステンレス鋼等の金属材料を浸漬し、この金属材料を陽極体として前記コロイド溶液に通電することによって、陽極体金属材料表面に、前記チタン化合物を含み、緻密で密着性の良い皮膜を形成し、さらにこの皮膜を乾燥し、250℃以上で焼成することにより、1μm以上の厚さを有し、かつ、良好な密着性と光触媒性および透明性を有する二酸化チタン皮膜が得られることを新たに見出した。
【0010】
また、さらに本発明者は、チタン酸およびペルオキソチタン酸から選ばれた少なくとも1種のコロイド陰イオンを含み、さらにアナターゼ型およびルチル型の酸化チタンから選ばれる少なくとも1種の粒子を含み、且つ2mS/cm未満の電気電導度を有するコロイド溶液中に、金属材料を浸漬し、この金属材料を陽極体として前記コロイド溶液に通電すると、得られた酸化チタン含有皮膜がより優れた光触媒性を示し、この場合、200℃未満の温度における乾燥でも十分な効果が得られることを見出した。
【0011】
即ち、本発明に係る金属材料の酸化チタン被覆方法(1)は、チタン酸およびペルオキソチタン酸から選ばれた少なくとも1種のコロイド陰イオンを、0.3〜200g/リットルの合計濃度で含み、且つ2mS/cm未満の電気電導度を有するコロイド溶液中に、金属材料を浸漬し、この金属材料を陽極体として前記コロイド溶液に通電して、前記金属材料の表面上に、前記チタン化合物を含有する皮膜を形成し、この皮膜を乾燥または焼成することを特徴とするものである。
【0012】
また、本発明の金属材料の酸化チタン被覆方法(2)は、チタン酸およびペルオキソチタン酸から選ばれた少なくとも1種のコロイド陰イオンを0.5〜100g/リットルの合計濃度で含み、さらに、アナターゼ型およびルチル型酸化チタンから選ばれた少なくとも1種の粒子を0.3〜200g/リットルの合計濃度で含み、且つ2mS/cm未満の電気電導度を有するコロイド溶液中に、金属材料を浸漬し、この金属材料を陽極体として前記コロイド溶液に通電して、前記金属材料の表面上に、前記チタン化合物および酸化チタンを含有する皮膜を形成し、この皮膜を乾燥または焼成することを特徴とするものである。本発明でいうチタン酸とは、オルトチタン酸およびメタチタン酸も包含するものである。
【0013】
【発明の実施の形態】
本発明方法に使用することができる金属材料は、例えばステンレススチール、銅、チタン、鉄、アルミニウム、亜鉛めっき鋼、およびすずめっき鋼を含む材料などである。これらの中でもステンレススチール、銅、および亜鉛めっき鋼材料などのように耐食性の高い金属材料を用いることがより好ましい。
【0014】
本発明の酸化チタン被覆方法は、電解液として特定の組成を有するコロイド溶液を使用し、この液中に浸漬された被処理金属材料を陽極体として、このコロイド溶液に通電してアノード電解が行われる。陰極体としてはステンレススチール、カーボン、白金めっきチタン等を使用することができるが、これらの中でも、性能、および経済性を考慮すればステンレススチール、アルミニウム、またはチタンを用いることがより好ましい。
【0015】
本発明方法(1)において、電解液中には、チタン酸、およびペルオキソチタン酸から選ばれた少なくとも1種のコロイド陰イオンが含まれることが必要である。これらの化合物のコロイド粒子は負の電荷を有していることが必要であるが、その電荷の量には特に限定がない。チタン酸およびペルオキソチタン酸のコロイド粒子が負の電荷を有していることはゼータ電位(界面動電位)計などによって確認することができる。
【0016】
これらチタン化合物のコロイド陰イオンの1次粒子径は、10nm未満であることが、得られる皮膜の密着性の点から好ましく、10〜100nmであることがより好ましい。本発明方法(1),(2)に用いられるコロイド溶液中に、コロイド陰イオンの1次粒子が凝集して形成された2次粒子が多量に含まれることは好ましくないが、2次粒子の含有量が少量である限り、その粒径が100nmより大きな数値となっていても、得られる皮膜の密着性に及ぼす影響は小さい。
【0017】
コロイド陰イオンを形成するチタン酸(水和酸化チタン)は、例えば、塩化チタン、硫酸チタンなどの酸性チタン塩水溶液を好ましくは60〜80℃で加熱処理し、水酸化アルカリなどで中和して生じた沈澱を濾過、洗浄し、水または希酸中に再分散したり、透析やイオン交換によって脱イオン処理することにより得られる。
【0018】
一方コロイド陰イオンを形成するペルオキソチタン酸も前記と同様に塩化チタン、硫酸チタンなどの酸性チタン塩水溶液を原料とし、水酸化アルカリで中和して濾過し、得られたチタン酸を過酸化水素水に溶解する方法などによって得ることができる。
【0019】
チタン酸、およびペルオキソチタン酸の中では、ペルオキソチタン酸がより安定なコロイド陰イオンを形成するため、これを用いてより緻密で密着性の良い酸化チタン皮膜を得る事ができる。
【0020】
本発明方法(1)において、電着液中におけるコロイド陰イオンの合計濃度は、0.3〜200g/リットルであることが必要であり、好ましい濃度の範囲は3〜60g/リットルである。また、この濃度が0.3g/リットル未満では皮膜の形成が困難になり、またそれが200g/リットルを超えると、得られるコロイド溶液の粘性が増加して持ち出し損失が多くなり、不経済なため好ましくない。
【0021】
また、本発明方法(1)および(2)において、コロイド溶液(電解液)の電気電導度は2mS/cm未満であることが必要であり、好ましい電気電導度は0.6mS/cm未満であり、最も好ましい電気電導度の範囲は0.003〜0.3mS/cmである。電気電導度が2mS/cmを超えると、陽極金属材料表面からの金属イオンの溶出量が多くなり、得られる酸化チタン皮膜の密着性が低下したり皮膜の光触媒性を低下させるため好ましくない。
【0022】
本発明方法(1)および(2)において、コロイド溶液(電解液)中に、チタン化合物コロイド成分以外にCl- などの夾雑イオンを多く含むことは得られる皮膜の性質を低下させることになるため好ましくない。
【0023】
本発明方法(1)および(2)において、コロイド溶液(電解液)のpH値は、液中のイオン濃度が低いため、通常は4〜10の弱酸〜弱アルカリ性の範囲内にあるが、特にこの範囲に限定されるものではない。電気電導度が0.1mS/cm未満の場合には、コロイド溶液のpH値はより中性に近い値になる。
【0024】
本発明方法(1)および(2)において、電解電圧は、3〜250Vであることが好ましく、8〜80Vがより好ましい。電解電圧が3V未満では成膜速度が遅く、皮膜の密着性も低下することがあるため好ましくない。
【0025】
本発明方法(1)および(2)において、好適な通電時間は電圧により変動するが数秒〜180秒であることが好ましく、3〜60秒がより好ましい。コロイド溶液の温度は25〜45℃であることが好ましい。
【0026】
本発明方法(1)および(2)において、通電が終了した後、金属材料上に形成された皮膜を、水洗したのち乾燥、焼成することが好ましいが、コロイド溶液(電解液)の電気電導度が低い場合、(例えば0.6mS/cm以下)、水洗を省略して直ちに乾燥・焼成してもよい。乾燥を120℃未満で行ったのち、250〜500℃で焼成することがより好ましい。
【0027】
次に、本発明方法(2)においては、コロイド溶液(電解液)がチタン酸およびペルオキソチタン酸から選ばれた少なくとも1種のコロイド陰イオンを含み、さらに酸化チタン粒子を含むことが必要である。この酸化チタン粒子は、アナターゼまたはルチル型の結晶性粒子であることが必要で、このうちアナターゼ型が好ましく、次いでルチル型が好ましい。酸化チタン粒子の粒子径は0.01〜0.5μmであることが好ましい。酸化チタン粒子の粒子径が0.01μm未満では、得られる皮膜を低温で乾燥した場合、その光触媒性が不十分となることがあるため好ましくなく、またそれが0.5μmを超えると粒子がコロイド溶液(電解液)中で沈降しやすくなることがあるため好ましくない。
【0028】
アナターゼまたはルチル型酸化チタン粒子は、前述と同様に、塩化チタン、硫酸チタンなどの酸性チタン塩水溶液を原料とし、これを60〜90℃程度に数十分程度保持して酸化チタン結晶粒子を成長させ、これをミクロフィルター等で濾別して水洗し、水中に再分散させることによって得られる。
【0029】
また、酸化チタン粒子は負電荷を有することが、その分散安定性を高くするために好ましく、この目的のために、酸化チタン粒子含有コロイド溶液中に、ノニオン、アニオン、または両性界面活性剤や、縮合りん酸塩などの分散剤を少量添加することは許容される。
【0030】
本発明方法(2)においては、コロイド溶液中のチタン酸コロイド陰イオン及び/又はペルオキソチタン酸コロイド陰イオンの合計濃度が0.5〜100g/リットルであり、かつアナターゼ及び/又はルチル型酸化チタン粒子の合計濃度が0.3〜200g/リットルであることが必要である。チタン酸コロイド陰イオン及び/又はペルオキソチタン酸コロイド陰イオンの合計濃度が0.5g/リットル未満では得られる皮膜の密着性が低下するため好ましくなく、またそれが100g/リットル以上では得られるコロイド溶液の粘性が増加し、持ち出し損失量が多くなるため好ましくない。また、酸化チタン粒子の合計濃度が0.3g/リットル未満では、その添加効果が不十分であり、またそれが200g/リットルを超えると持ち出し損失量が大きくなり不経済なため好ましくない。
【0031】
本発明方法(2)において、コロイド溶液(電解液)の電気電導度は本発明方法(1)と同様に2mS/cm未満であることが必要であり、その好ましい範囲も本発明方法(1)のそれと同様である。
【0032】
本発明方法(2)における電解条件、コロイド溶液温度も本発明方法(1)と同様であるが、乾燥後の焼成は必ずしも必要でなく、200℃未満の温度における乾燥により実用的に十分な密着性および光触媒性を有する皮膜を得ることが可能である。
【0033】
本発明方法(1)および(2)において、乾燥、または焼成後の皮膜は主として二酸化チタンからなり、特にアナターゼ型二酸化チタンを主成分とするが、電解、焼成条件によっては、アナターゼ型酸化チタンの他、ルチル型酸化チタン、無定型酸化チタンも含まれることがある。
【0034】
【作用】
本発明方法(1)および(2)は、金属表面に酸化チタン皮膜層を形成するため、電解液として、チタン酸およびペルオキソチタン酸から選ばれた少なくとも1種のコロイド陰イオンを含むコロイド溶液を使用している。前記の方法等により作製されたこれらのコロイドは、粒子が負電荷を帯びる性質を持ち、この負電荷によってコロイド陰イオンとなった粒子がクーロン力によって相互に反発し、コロイド粒子が凝集沈降することなく電解液中に分散して安定な状態を保っている。
【0035】
金属材料をこのコロイド溶液中に浸漬し、この金属材料を陽極として分極させ、コロイド溶液に通電すると金属表面近傍の負荷電コロイド粒子が金属表面に電荷を奪われて析出がはじまる。また、電解液中のコロイド陰イオンも電気泳動により陽極表面に到達し、電荷を奪われて析出する。また、この際金属表面から溶出する微量の金属イオンも、コロイド陰イオンの電荷を中和してゲル化析出を促進する作用を示す。金属表面に析出した粒子は、当初ゆるやかな網目状結合組織を形成し、この段階ではまだ完全には負電荷を失っていないため、電場の効果で電気浸透が起き、しだいに内部の水が皮膜外部に追い出され、粒子間の結合がより強固になり、それとともに皮膜の組織も緻密で高密度なものとなる。
【0036】
このように金属材料表面に生成した皮膜は、1μm以上の厚さを有しているにもかかわらず、その含水率が低いため、乾燥、焼成の際の体積収縮が少なく、金属材料表面との密着性に優れ、皮膜組織欠陥が少なく、光触媒効果も優れている。このような良質の酸化チタン皮膜は、ゾル−ゲル法をはじめとする従来方法では未だ得る事ができなかったものである。
【0037】
酸化チタン、チタン酸、およびペルオキソチタン酸の中ではペルオキソチタン酸がより安定なコロイド陰イオンを形成するため、より緻密で密着性の良い皮膜を得ることができる。析出したペルオキソチタン酸は、加熱乾燥、または200〜600℃で焼成することにより2酸化チタンとなる。
【0038】
本発明方法(2)においては、チタン酸コロイド陰イオンおよびペルオキソチタン酸コロイド陰イオンのうちの少なくとも1種と、これよりも粒子径が大で、光触媒活性の高いアナターゼまたはルチル酸酸化チタン粒子を混合分散したコロイド溶液(電解液)を使用している。このため、電解液中の酸化チタン粒子にチタン酸やペルオキソチタン酸のコロイド陰イオンが吸着してこれに負電荷を付与し、分散を安定化させる。
【0039】
また、本発明方法(2)において、前記コロイド溶液を電解液として使用し、被処理金属材料を陽極としてアノード電解することにより、コロイド陰イオンおよびコロイド陰イオンの吸着した酸化チタン粒子は、ともに被処理金属表面に泳動して共析し、複合皮膜を形成する。こうして形成された皮膜は、優れた密着性と良好な光触媒性を兼ね備えており、高温の焼成を施さなくとも優れた酸化チタン光触媒皮膜として実用可能である。
【0040】
また、本発明方法(1)および(2)において、コロイド溶液(電解液)の電気電導度も重要なファクターであり、電気電導度が高過ぎる場合、電解時に過剰の電流が流れるため、陽極を構成する金属材料表面から金属イオンが多量に溶出して皮膜中に入り込み、皮膜の特性を劣化させたり、陽極表面からの酸素ガスの発生により、皮膜にピンホールが生じたりする。このため電気電導度は2mS/cm未満でなければならない。また、コロイド溶液の電気電導度が低い方が電解電圧を高くできるため、それによってより密度の高い酸化チタン皮膜を形成することができる。
【0041】
また、本発明方法(1)および(2)によれば、用いられた電解電圧、および電解時間に応じて析出量が決まるため、均一な厚さの皮膜を正確に得ることも可能となる。
【0042】
【実施例】
本発明の金属材料の酸化チタン被覆方法を、下記実施例により具体的に説明する。
【0043】
実施例1〜8および比較例1〜4
金属材料板の作製
(前処理)
100mm×50mmの大きさの、ステンレススチール(SUS304)板、鋼板(SPCC)、銅板、チタン板、アルミニウム板(5052)、又は亜鉛めっき鋼板を使用し、その電解処理前に、アルカリ性水系脱脂剤(FC−W1120:日本パーカライジング(株)製)の20g/リットル濃度の水溶液で60℃×3分間脱脂を施し、水洗した。
【0044】
(電解液)
実施例および比較例の各々に使用された電解液の組成および電解条件を表1に示す。実施例および比較例に使用されたチタン酸コロイド陰イオン、ペルオキソチタン酸コロイド陰イオンは下記方法により調製して電解液に添加した。また、酸化チタン粒子は、日本アエロジル社製、二酸化チタンP−25(アナターゼ:70%、ルチル型30%の混合物:平均粒子径0.02μm)を使用した。
【0045】
コロイド陰イオンの調製
チタン酸コロイド陰イオン:
チタン酸(水和酸化チタン)コロイド陰イオンは、硫酸チタン水溶液(30%)を水で希釈し、70℃の温度で10分間加熱処理し、10%水酸化ナトリウムで中和して、生じた沈澱を濾紙で濾過し、洗浄したものを水に再分散して20%溶液として調製された。この液を水で希釈し、サブミクロン粒子分析装置((株)日科機製)でコロイドの平均粒子径を測定したところ、その1次粒子径は0.01μmであった。
【0046】
ペルオキソチタン酸コロイド陰イオン:
ペルオキソチタン酸コロイド陰イオンは、硫酸チタン水溶液(30%)を水で希釈し、10%水酸化ナトリウムで中和して生じた沈澱を濾過、洗浄し、得られたチタン酸を過酸化水素水に溶解して20%溶液として調製された。この液を水で希釈し、サブミクロン粒子分析装置((株)日科機製)でコロイドの平均粒子径を測定したところ、その1次粒子径は0.01μm未満であった。
【0047】
(電解処理)
前処理した金属材料板を30℃に保持した電解液中に浸漬し、これを陽極体とし、ステンレススチール板を陰極体として、極間距離10cmでコロイド溶液に通電して電解処理を行った。下記の条件で電解処理し、脱イオン水によりすゝぎ洗いしたのち120℃で5分間乾燥した。実施例1〜5、比較例2〜4においては、乾燥後にさらに400℃で5分間焼成を行った。
【0048】
(電解条件)
実施例1、実施例3、および比較例1:電流密度 2.0A/dm2
実施例2、実施例5、および比較例2:電流密度 1.2A/dm2
実施例4、実施例7、および比較例3:電流密度 3.5A/dm2
実施例6、実施例8、および比較例4:電流密度 7A/dm2
【0049】
皮膜の評価
作製された酸化チタン被覆金属材料板の皮膜の厚さを測定し、また皮膜の密着性および光触媒性について試験し、下記のように評価した。
皮膜密着性:
JIS K 5400碁盤目試験法によりカッターナイフで皮膜に1mm角の碁盤目のカットをいれたのち、その上にセロハン粘着テープ((株)ニチバン製)を貼付け、引き剥がして剥離面積を測定し、その測定値から下記の基準により判定した。

Figure 0003542234
【0050】
光触媒性:
金属材料板上の皮膜の表面に、試験油としてトリステアリン酸を塗布し、UVライト(15W)で紫外線を72時間照射し、塗布油の分解量(g/m2 )を紫外線照射前後の重量差から算出した。
皮膜の厚さおよび性能試験結果を表2に示す。
【0051】
【表1】
Figure 0003542234
【0052】
【表2】
Figure 0003542234
【0053】
表1および表2から明らかなように、本発明の方法による実施例1〜8においては、十分な厚さを有する酸化チタン皮膜が得られ、その密着性および光触媒性はともに優れていた。
これに対し、本発明範囲外の処理条件による比較例1〜4において、比較例1,2では十分な厚さの皮膜が得られないため、その光触媒性は不十分であり、また比較3,4では、皮膜の密着性が不十分であった。
【0054】
【発明の効果】
本発明の方法により、密着性および光触媒性が良好で、十分な厚さを有する酸化チタン皮膜を金属材料上に形成することができる。
光触媒性に優れている酸化チタン皮膜は、汚れの付着防止、抗菌、防錆、並びに大気および水質浄化等の用途に利用し得るものであることから、本発明方法の産業上の利用価値はきわめて高いものである。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a method for coating a metal material with titanium oxide. More specifically, the present invention relates to a method for forming a titanium oxide film having a photocatalytic function on a surface of a metal material such as stainless steel, aluminum, copper, and iron by an anodic electrolytic treatment.
[0002]
[Prior art]
Titanium oxide can give a high photocatalytic effect to the surface of a solid material. For this reason, by forming a titanium oxide film having a photocatalytic effect on the surface of materials such as metals, glass, and ceramics, decomposition of adhered dirt, purification of air and water, rust prevention, and prevention of propagation of bacteria and algae, etc. It is known that a metal material useful for various uses can be obtained.
[0003]
For this reason, various titanium oxide coating methods aiming at forming a better titanium oxide film on the material surface have been proposed.
[0004]
Among the methods of coating the surface of various materials with titanium oxide, the sol-gel method, which is known as a method of hydrolyzing an alkoxide of titanium and applying the product, is most common. Examples of similar methods include a method in which an amide and a glycol are added to a titanium alkoxide and the product is used as a coating, as disclosed in JP-A-4-83537. As described in JP 100378, a method is known in which an alcoholamine is added to a titanium alkoxide and the product is applied.
[0005]
In addition, as described in JP-A-6-293519, a method of dispersing titanium oxide fine particles crystallized by hydrothermal treatment using a dispersant and applying the dispersion, A method is known in which a binder such as water glass, colloidal silica, or a fluorine-based resin is mixed with crystalline titanium oxide particles, and the mixed solution is applied.
[0006]
However, when the above-mentioned sol-gel method is used, the thickness of the formed film tends to change depending on the viscosity of the paint and the application conditions. In this case, it is difficult to form a film having a thickness of 1 μm or more because the film is greatly shrinked, and the film is peeled off from the substrate surface or the adhesion is reduced. For this reason, the photocatalytic performance of the obtained film is limited.
[0007]
Further, in the method in which the titanium oxide particles after crystal growth are mixed with a binder and the mixed solution is applied, there is a problem that the photocatalytic ability is not sufficiently exhibited because the content of titanium oxide in the obtained film is low.
[0008]
[Problems to be solved by the invention]
The present invention relates to a method for coating a metal material surface with a titanium oxide ceramic having photocatalytic properties, wherein the metal material surface has a thickness of 1 μm or more, which has been difficult by a conventional sol-gel method or the like, and An object of the present invention is to provide a method for coating a metal material with titanium oxide, which can further improve the photocatalytic property of the film by forming a titanium oxide coating layer having good adhesion to the surface. At the same time, the present invention uses an anodic electrolysis method, so that the thickness of the film can be easily controlled, and even for an article having a complicated shape, it is possible to form a film having a uniform thickness. An object of the present invention is to provide a method for coating a metal material with titanium oxide.
[0009]
[Means for Solving the Problems]
The present inventor has conducted intensive studies on means for solving the above technical problems, and as a result, the film component titanium oxide contains at least one type of colloid anion selected from titanic acid and peroxotitanic acid, And, in a colloid solution having a low electrical conductivity, a metal material such as stainless steel is immersed, and the metal material is passed through the colloid solution as an anode body, the anode body metal material surface contains the titanium compound. By forming a dense and good-adhesion film, further drying this film and baking it at 250 ° C. or more, it has a thickness of 1 μm or more, and has good adhesion, photocatalytic property and transparency. It has been newly found that a titanium dioxide film having the same can be obtained.
[0010]
Further, the present inventor further includes at least one type of colloid anion selected from titanic acid and peroxotitanic acid, further includes at least one type of particle selected from anatase type and rutile type titanium oxide, and 2 mS When a metal material is immersed in a colloid solution having an electric conductivity of less than / cm, and the metal material is used as an anode body and the colloid solution is energized, the obtained titanium oxide-containing film shows more excellent photocatalytic properties, In this case, it has been found that a sufficient effect can be obtained even by drying at a temperature lower than 200 ° C.
[0011]
That is, the method for coating a metal material with titanium oxide according to the present invention (1) includes at least one type of colloid anion selected from titanic acid and peroxotitanic acid at a total concentration of 0.3 to 200 g / liter, A metal material is immersed in a colloid solution having an electric conductivity of less than 2 mS / cm, and the metal material is used as an anode body to supply electricity to the colloid solution to contain the titanium compound on the surface of the metal material. This is characterized in that a film is formed, and the film is dried or fired.
[0012]
The method (2) for coating a metal material with titanium oxide according to the present invention comprises at least one type of colloid anion selected from titanic acid and peroxotitanic acid in a total concentration of 0.5 to 100 g / liter, A metal material is immersed in a colloid solution containing at least one particle selected from anatase type and rutile type titanium oxide at a total concentration of 0.3 to 200 g / liter and having an electric conductivity of less than 2 mS / cm. Then, a current containing the titanium compound and titanium oxide is formed on the surface of the metal material by applying a current to the colloid solution using the metal material as an anode body, and the film is dried or fired. Is what you do. The titanic acid in the present invention includes orthotitanic acid and metatitanic acid.
[0013]
BEST MODE FOR CARRYING OUT THE INVENTION
Metallic materials that can be used in the method of the present invention include, for example, materials including stainless steel, copper, titanium, iron, aluminum, galvanized steel, and tin-plated steel. Among them, it is more preferable to use a metal material having high corrosion resistance, such as stainless steel, copper, and galvanized steel material.
[0014]
In the titanium oxide coating method of the present invention, a colloid solution having a specific composition is used as an electrolytic solution, and a metal material to be treated immersed in the solution is used as an anode body, and the colloid solution is energized to perform anodic electrolysis. Is As the cathode body, stainless steel, carbon, platinum-plated titanium, or the like can be used. Among them, stainless steel, aluminum, or titanium is more preferably used in consideration of performance and economy.
[0015]
In the method (1) of the present invention, it is necessary that the electrolytic solution contains at least one colloid anion selected from titanic acid and peroxotitanic acid. The colloid particles of these compounds need to have a negative charge, but the amount of the charge is not particularly limited. Whether the colloidal particles of titanic acid and peroxotitanic acid have a negative charge can be confirmed by a zeta potential (electrokinetic potential) meter or the like.
[0016]
The primary particle diameter of the colloid anion of these titanium compounds is preferably less than 10 nm from the viewpoint of the adhesion of the obtained film, and more preferably 10 to 100 nm. It is not preferable that the colloid solution used in the methods (1) and (2) of the present invention contain a large amount of secondary particles formed by aggregating primary particles of colloid anions. As long as the content is small, even if the particle size is larger than 100 nm, the effect on the adhesion of the obtained film is small.
[0017]
Titanic acid (hydrated titanium oxide) that forms a colloidal anion is obtained by, for example, heat-treating an aqueous solution of an acidic titanium salt such as titanium chloride or titanium sulfate at preferably 60 to 80 ° C., and neutralizing with an alkali hydroxide or the like. The resulting precipitate is obtained by filtration, washing, redispersion in water or dilute acid, or deionization by dialysis or ion exchange.
[0018]
On the other hand, peroxotitanic acid, which forms colloidal anions, is also prepared using an aqueous solution of an acidic titanium salt such as titanium chloride or titanium sulfate as described above, neutralized with an alkali hydroxide, and filtered. It can be obtained by a method of dissolving in water.
[0019]
Among titanic acid and peroxotitanic acid, peroxotitanic acid forms a more stable colloid anion, so that a denser and better-adhesive titanium oxide film can be obtained by using this.
[0020]
In the method (1) of the present invention, the total concentration of the colloid anions in the electrodeposition solution needs to be 0.3 to 200 g / liter, and the preferred concentration range is 3 to 60 g / liter. On the other hand, if the concentration is less than 0.3 g / liter, it becomes difficult to form a film, and if it exceeds 200 g / liter, the viscosity of the obtained colloidal solution increases and the loss of taking out increases, which is uneconomical. Not preferred.
[0021]
In the methods (1) and (2) of the present invention, the electric conductivity of the colloid solution (electrolyte solution) needs to be less than 2 mS / cm, and the preferable electric conductivity is less than 0.6 mS / cm. The most preferred range of electric conductivity is 0.003 to 0.3 mS / cm. If the electrical conductivity exceeds 2 mS / cm, the amount of metal ions eluted from the surface of the anode metal material increases, which is not preferable because the adhesion of the obtained titanium oxide film is reduced or the photocatalytic property of the film is reduced.
[0022]
In the present invention the method (1) and (2), in a colloidal solution (electrolyte solution), Cl besides titanium compound colloid component - for that will contain many impurities ions, such as reducing the properties of the resulting film Not preferred.
[0023]
In the methods (1) and (2) of the present invention, the pH value of the colloid solution (electrolyte solution) is usually in the range of weak acid to weak alkali of 4 to 10 due to low ion concentration in the solution. It is not limited to this range. When the electric conductivity is less than 0.1 mS / cm, the pH value of the colloid solution becomes closer to neutral.
[0024]
In the methods (1) and (2) of the present invention, the electrolysis voltage is preferably from 3 to 250 V, more preferably from 8 to 80 V. If the electrolysis voltage is less than 3 V, the film forming speed is low, and the adhesion of the film may be undesirably reduced.
[0025]
In the methods (1) and (2) of the present invention, the suitable energization time varies depending on the voltage, but is preferably several seconds to 180 seconds, more preferably 3 to 60 seconds. The temperature of the colloid solution is preferably 25 to 45 ° C.
[0026]
In the methods (1) and (2) of the present invention, it is preferable that after the energization is completed, the film formed on the metal material be washed with water, then dried and fired, but the electric conductivity of the colloid solution (electrolyte solution) is preferred. When is low (for example, 0.6 mS / cm or less), drying and baking may be performed immediately without washing with water. After drying at less than 120 ° C., it is more preferable to bake at 250 to 500 ° C.
[0027]
Next, in the method (2) of the present invention, it is necessary that the colloid solution (electrolyte solution) contains at least one kind of colloid anion selected from titanic acid and peroxotitanic acid, and further contains titanium oxide particles. . The titanium oxide particles need to be anatase or rutile type crystalline particles, of which anatase type is preferable, and then rutile type is preferable. The particle diameter of the titanium oxide particles is preferably from 0.01 to 0.5 μm. If the particle diameter of the titanium oxide particles is less than 0.01 μm, the photocatalytic property may be insufficient when the resulting film is dried at a low temperature, which is not preferable. This is not preferable because it may easily precipitate in a solution (electrolytic solution).
[0028]
Anatase or rutile-type titanium oxide particles are produced from an aqueous solution of an acidic titanium salt such as titanium chloride or titanium sulfate, and maintained at about 60 to 90 ° C. for about several tens minutes to grow titanium oxide crystal particles, as described above. It is obtained by filtering, washing with water and redispersing in water.
[0029]
Further, it is preferable that the titanium oxide particles have a negative charge, in order to enhance the dispersion stability thereof.For this purpose, in the titanium oxide particle-containing colloid solution, a nonionic, anionic, or amphoteric surfactant, It is acceptable to add a small amount of a dispersant such as a condensed phosphate.
[0030]
In the method (2) of the present invention, the total concentration of the colloid titanate anion and / or the peroxotitanate colloid anion in the colloid solution is 0.5 to 100 g / l, and the anatase and / or rutile type titanium oxide is used. It is necessary that the total concentration of the particles is between 0.3 and 200 g / l. When the total concentration of the colloid titanate anion and / or the peroxotitanate colloid anion is less than 0.5 g / l, the adhesion of the resulting film is undesirably reduced. Is unfavorable because the viscosity of the rubber increases and the amount of loss taken out increases. If the total concentration of the titanium oxide particles is less than 0.3 g / l, the effect of adding the particles is insufficient, and if it exceeds 200 g / l, the loss of carry-out increases and it is uneconomical.
[0031]
In the method (2) of the present invention, the electric conductivity of the colloid solution (electrolyte solution) needs to be less than 2 mS / cm similarly to the method (1) of the present invention, and the preferable range is also the method (1) of the present invention. It is similar to that of
[0032]
The electrolysis conditions and the colloid solution temperature in the method (2) of the present invention are the same as those in the method (1) of the present invention. However, calcination after drying is not always necessary. It is possible to obtain a film having properties and photocatalytic properties.
[0033]
In the methods (1) and (2) of the present invention, the film after drying or calcination is mainly composed of titanium dioxide, and particularly contains anatase type titanium dioxide as a main component. In addition, rutile-type titanium oxide and amorphous titanium oxide may be included.
[0034]
[Action]
In the methods (1) and (2) of the present invention, in order to form a titanium oxide film layer on a metal surface, a colloid solution containing at least one colloid anion selected from titanic acid and peroxotitanic acid is used as an electrolytic solution. I'm using These colloids produced by the above method have the property that the particles have a negative charge, and the particles that have become colloid anions due to this negative charge repel each other due to Coulomb force, and the colloid particles are aggregated and settled. Without dispersing in the electrolyte to maintain a stable state.
[0035]
When a metal material is immersed in the colloid solution, the metal material is polarized as an anode, and when the colloid solution is energized, negatively charged colloidal particles near the metal surface are deprived of charge on the metal surface and precipitation starts. In addition, the colloid anions in the electrolytic solution also reach the anode surface by electrophoresis, lose charge, and precipitate. At this time, a small amount of metal ions eluted from the metal surface also has the effect of neutralizing the charge of the colloid anion and promoting gelation and precipitation. The particles deposited on the metal surface initially form a loose network-like connective structure.At this stage, since the negative charge has not yet been completely lost, electro-osmosis occurs due to the effect of the electric field, and the water inside the film gradually increases. It is driven out and the bonds between the particles become stronger, and the structure of the film becomes denser and denser.
[0036]
In spite of having a thickness of 1 μm or more, the film formed on the surface of the metal material has a low water content, so that the volume shrinkage during drying and firing is small, and the film formed on the surface of the metal material has a small thickness. Excellent adhesion, few defects in film structure, and excellent photocatalytic effect. Such high-quality titanium oxide films have not been obtained by conventional methods such as the sol-gel method.
[0037]
Among titanium oxide, titanic acid and peroxotitanic acid, peroxotitanic acid forms a more stable colloid anion, so that a denser and more adherent film can be obtained. The precipitated peroxotitanic acid becomes titanium dioxide by drying by heating or baking at 200 to 600 ° C.
[0038]
In the method (2) of the present invention, at least one of a colloid titanate anion and a colloid peroxotitanate anion and an anatase or rutile oxide titanium oxide particle having a larger particle diameter and a higher photocatalytic activity are used. A mixed and dispersed colloid solution (electrolyte solution) is used. For this reason, the colloidal anion of titanic acid or peroxotitanic acid is adsorbed on the titanium oxide particles in the electrolytic solution and gives a negative charge thereto, thereby stabilizing the dispersion.
[0039]
In the method (2) of the present invention, the colloidal solution is used as an electrolytic solution, and anodic electrolysis is performed using the metal material to be treated as an anode. Electrophoretically migrates to the treated metal surface and forms a composite film. The film thus formed has both excellent adhesion and good photocatalytic properties, and can be practically used as an excellent titanium oxide photocatalytic film without firing at high temperatures.
[0040]
In the methods (1) and (2) of the present invention, the electric conductivity of the colloid solution (electrolyte solution) is also an important factor. If the electric conductivity is too high, an excessive current flows during electrolysis, so that the anode is not used. A large amount of metal ions are eluted from the surface of the metal material constituting the film and enter the film, thereby deteriorating the characteristics of the film or generating pinholes in the film due to the generation of oxygen gas from the anode surface. For this reason, the electrical conductivity must be less than 2 mS / cm. In addition, since the lower the electric conductivity of the colloid solution, the higher the electrolysis voltage, the higher the density of the titanium oxide film can be formed.
[0041]
In addition, according to the methods (1) and (2) of the present invention, the amount of deposition is determined according to the used electrolysis voltage and electrolysis time, so that a film having a uniform thickness can be accurately obtained.
[0042]
【Example】
The method for coating a metal material with titanium oxide according to the present invention will be specifically described with reference to the following examples.
[0043]
Examples 1 to 8 and Comparative Examples 1 to 4
Production of metal material plate (pretreatment)
A stainless steel (SUS304) plate, a steel plate (SPCC), a copper plate, a titanium plate, an aluminum plate (5052), or a galvanized steel plate having a size of 100 mm × 50 mm is used, and an alkaline aqueous degreasing agent ( FC-W1120 (manufactured by Nippon Parkerizing Co., Ltd.) was degreased with a 20 g / liter aqueous solution at 60 ° C. for 3 minutes and washed with water.
[0044]
(Electrolyte)
Table 1 shows the composition of the electrolytic solution and the electrolytic conditions used in each of the examples and comparative examples. The colloid titanate anions and peroxotitanate colloid anions used in Examples and Comparative Examples were prepared by the following method and added to the electrolyte. The titanium oxide particles used were titanium dioxide P-25 (mixture of anatase: 70%, rutile type: 30%, average particle size: 0.02 μm) manufactured by Nippon Aerosil Co., Ltd.
[0045]
Preparation of colloidal anionic <br/> titanate colloidal anions:
Titanic acid (hydrated titanium oxide) colloid anion was produced by diluting an aqueous solution of titanium sulfate (30%) with water, heat-treating it at 70 ° C. for 10 minutes, and neutralizing it with 10% sodium hydroxide. The precipitate was filtered through filter paper and the washed one was redispersed in water to prepare a 20% solution. This liquid was diluted with water, and the average particle diameter of the colloid was measured with a submicron particle analyzer (manufactured by Nikkaki Co., Ltd.). As a result, the primary particle diameter was 0.01 μm.
[0046]
Peroxotitanate colloid anion:
The peroxotitanate colloid anion is obtained by diluting an aqueous solution of titanium sulfate (30%) with water, neutralizing with 10% sodium hydroxide, filtering and washing the resulting precipitate, and removing the resulting titanic acid with aqueous hydrogen peroxide. And prepared as a 20% solution. This liquid was diluted with water, and the average particle diameter of the colloid was measured with a submicron particle analyzer (manufactured by Nikkaki Co., Ltd.). The primary particle diameter was less than 0.01 μm.
[0047]
(Electrolytic treatment)
The pretreated metal material plate was immersed in an electrolytic solution maintained at 30 ° C., and this was used as an anode body, and a stainless steel plate was used as a cathode body. The cells were electrolytically treated under the following conditions, rinsed with deionized water, and then dried at 120 ° C. for 5 minutes. In Examples 1 to 5 and Comparative Examples 2 to 4, firing was further performed at 400 ° C. for 5 minutes after drying.
[0048]
(Electrolysis conditions)
Example 1, Example 3, and Comparative Example 1: Current density 2.0 A / dm 2 ,
Example 2, Example 5, and Comparative Example 2: current density 1.2 A / dm 2 ,
Example 4, Example 7, and Comparative Example 3: current density 3.5 A / dm 2 ,
Example 6, Example 8, and Comparative Example 4: Current density 7 A / dm 2 ,
[0049]
Evaluation of Film The thickness of the film of the prepared titanium oxide-coated metal material plate was measured, and the adhesion and the photocatalytic property of the film were tested and evaluated as follows.
Film adhesion:
According to JIS K 5400 cross cut test method, a 1 mm square cut was made on the film with a cutter knife, then a cellophane adhesive tape (manufactured by Nichiban Co., Ltd.) was adhered on top of the cut, and the peeled area was measured. Judgment was made from the measured values according to the following criteria.
Figure 0003542234
[0050]
Photocatalytic:
On the surface of the film on the metal material plate, the tristearate was applied as test oils, ultraviolet rays are irradiated for 72 hours with UV light (15W), the weight of before and after the ultraviolet irradiation amount of degradation of the coating oil (g / m 2) Calculated from the difference.
Table 2 shows the film thickness and the performance test results.
[0051]
[Table 1]
Figure 0003542234
[0052]
[Table 2]
Figure 0003542234
[0053]
As is clear from Tables 1 and 2, in Examples 1 to 8 according to the method of the present invention, a titanium oxide film having a sufficient thickness was obtained, and both the adhesion and the photocatalytic property were excellent.
On the other hand, in Comparative Examples 1 to 4 under processing conditions outside the scope of the present invention, in Comparative Examples 1 and 2, a film having a sufficient thickness was not obtained, and thus the photocatalytic properties were insufficient. In No. 4, the adhesion of the film was insufficient.
[0054]
【The invention's effect】
According to the method of the present invention, a titanium oxide film having good adhesion and photocatalytic property and having a sufficient thickness can be formed on a metal material.
Since the titanium oxide film having excellent photocatalytic properties can be used for applications such as adhesion prevention of dirt, antibacterial action, rust prevention, and air and water purification, the industrial utility value of the method of the present invention is extremely high. It is expensive.

Claims (2)

チタン酸およびペルオキソチタン酸から選ばれた少なくとも1種のコロイド陰イオンを、0.3〜200g/リットルの合計濃度で含み、且つ2mS/cm未満の電気電導度を有するコロイド溶液に、金属材料を浸漬し、この金属材料を陽極体として前記コロイド溶液に通電して前記金属材料の表面上に、前記チタン化合物含有皮膜を形成し、この皮膜を乾燥または焼成することを特徴とする金属材料の酸化チタン被覆方法。A metal material is added to a colloid solution containing at least one colloid anion selected from titanic acid and peroxotitanic acid at a total concentration of 0.3 to 200 g / liter and having an electric conductivity of less than 2 mS / cm. Dipping, applying the metal material as an anode body to the colloid solution to form the titanium compound-containing film on the surface of the metal material, and drying or firing the film to oxidize the metal material. Titanium coating method. チタン酸およびペルオキソチタン酸から選ばれた少なくとも1種のコロイド陰イオンを0.5〜100g/リットルの合計濃度で含み、さらに、アナターゼおよびルチル型酸化チタンから選ばれた少なくとも1種の粒子を0.3〜200g/リットルの合計濃度で含み、且つ2mS/cm未満の電気電導度を有するコロイド溶液中に、金属材料を浸漬し、この金属材料を陽極体として前記コロイド溶液に通電して、前記金属材料の表面上に、前記チタン化合物及び酸化チタンを含有する皮膜を形成し、この皮膜を乾燥又は焼成することを特徴とする金属材料の酸化チタン被覆方法。It contains at least one colloid anion selected from titanic acid and peroxotitanic acid at a total concentration of 0.5 to 100 g / liter, and further contains at least one particle selected from anatase and rutile-type titanium oxide. A metal material is immersed in a colloid solution containing a total concentration of 3 to 200 g / liter and having an electric conductivity of less than 2 mS / cm, and the metal material is passed through the colloid solution as an anode body. A method for coating a metal material with titanium oxide, comprising: forming a film containing the titanium compound and titanium oxide on a surface of the metal material; and drying or firing the film.
JP17121796A 1996-07-01 1996-07-01 Method for coating metal material with titanium oxide Expired - Fee Related JP3542234B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17121796A JP3542234B2 (en) 1996-07-01 1996-07-01 Method for coating metal material with titanium oxide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17121796A JP3542234B2 (en) 1996-07-01 1996-07-01 Method for coating metal material with titanium oxide

Publications (2)

Publication Number Publication Date
JPH1018082A JPH1018082A (en) 1998-01-20
JP3542234B2 true JP3542234B2 (en) 2004-07-14

Family

ID=15919219

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17121796A Expired - Fee Related JP3542234B2 (en) 1996-07-01 1996-07-01 Method for coating metal material with titanium oxide

Country Status (1)

Country Link
JP (1) JP3542234B2 (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10237352A (en) * 1997-02-24 1998-09-08 Tao:Kk Polyfunctional coating agent
JP3080162B2 (en) * 1998-01-27 2000-08-21 日本パーカライジング株式会社 Titanium oxide sol and method for producing the same
US7820300B2 (en) * 2001-10-02 2010-10-26 Henkel Ag & Co. Kgaa Article of manufacture and process for anodically coating an aluminum substrate with ceramic oxides prior to organic or inorganic coating
US7452454B2 (en) 2001-10-02 2008-11-18 Henkel Kgaa Anodized coating over aluminum and aluminum alloy coated substrates
US7569132B2 (en) 2001-10-02 2009-08-04 Henkel Kgaa Process for anodically coating an aluminum substrate with ceramic oxides prior to polytetrafluoroethylene or silicone coating
JP4852696B2 (en) * 2005-04-18 2012-01-11 国立大学法人東京工業大学 Titanium oxide thin film, photocatalytic material including titanium oxide thin film, method for producing the same, photocatalytic water purification device, and water purification method utilizing photocatalytic reaction
CN100417749C (en) * 2005-09-27 2008-09-10 清华大学 Titanium dioxide nano material film and preparation method thereof
US20090223811A1 (en) * 2006-05-12 2009-09-10 Tanah Process Ltd. Process for producing conductive substance with ion adsorbed thereon, method of regulating ion concentration, and ion supply source
KR101054351B1 (en) * 2008-09-03 2011-08-04 주식회사 씨플러스 Wastewater Treatment System
US9701177B2 (en) 2009-04-02 2017-07-11 Henkel Ag & Co. Kgaa Ceramic coated automotive heat exchanger components

Also Published As

Publication number Publication date
JPH1018082A (en) 1998-01-20

Similar Documents

Publication Publication Date Title
Zhitomirsky Cathodic electrodeposition of ceramic and organoceramic materials. Fundamental aspects
KR100485955B1 (en) Titanium dioxide ceramic paint and methods of producing same
JP5693819B2 (en) Corrosion Inhibitor Pigment Containing Corrosion Inhibitor Nano Leather Bar
JP3542234B2 (en) Method for coating metal material with titanium oxide
KR100609393B1 (en) Coating material composition having photocatalytic activity
CN106987875A (en) A kind of preparation method of super-hydrophobic superoleophobic material
CN101469439A (en) Preparation of magnesium alloy surface high corrosion resistance differential arc oxidation compound film
DE102011053509A1 (en) Process for coating surfaces and use of articles coated by this process
Saji Electrophoretic‐deposited superhydrophobic coatings
CN104388923A (en) Making method of graphene modified titanium oxide metal anticorrosion coating
WO2001023483A1 (en) Photocatalytic coating composition and product having thin photocatalytic film
JP3573574B2 (en) Method for producing metal material coated with titanium oxide
Tang et al. Electrocoagulation coupled with conductive ceramic membrane filtration for wastewater treatment: Toward membrane modification, characterization, and application
JP3238349B2 (en) Titanium oxide ceramic paint excellent in hydrophilicity, photocatalytic property and translucency and method for producing the same
JP3251167B2 (en) Titanium oxide-based ceramic paint and method for producing the same
Grosso et al. Electrophoretic deposition of luminescent materials
WO2012124717A1 (en) Metal wire having abrasive grains bonded thereto and method for manufacturing metal wire having abrasive grains bonded thereto
JP2005171029A (en) Coating composition, method of forming film having optical catalytic function, and optical catalytic member
Peiró et al. Electrochemically assisted deposition of titanium dioxide on aluminium cathodes
CN102677124A (en) Preparation method of photocatalytic film with energy storage function
CN102219395A (en) Method for preparing ultra-hydrophilic zinc oxide/titanium oxide film by using layer-by-layer self-assembling method
JP2008506627A (en) Titanium oxide with rutile structure
CN109183131B (en) SiO (silicon dioxide)2Preparation method of base composite super-hydrophobic metal surface
JP3385243B2 (en) Method for producing titanium oxide sol
Farrokhi-Rad Effect of Tris and acetic acid on the stability of titania nanoparticles in different alcohols and their electrophoretic deposition process

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040202

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040302

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040330

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090409

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090409

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100409

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110409

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120409

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130409

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140409

Year of fee payment: 10

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees