JP3541504B2 - Manufacturing method of high tensile strength hot rolled steel sheet with excellent precision punching workability - Google Patents

Manufacturing method of high tensile strength hot rolled steel sheet with excellent precision punching workability Download PDF

Info

Publication number
JP3541504B2
JP3541504B2 JP18277495A JP18277495A JP3541504B2 JP 3541504 B2 JP3541504 B2 JP 3541504B2 JP 18277495 A JP18277495 A JP 18277495A JP 18277495 A JP18277495 A JP 18277495A JP 3541504 B2 JP3541504 B2 JP 3541504B2
Authority
JP
Japan
Prior art keywords
mass
less
precision punching
steel sheet
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP18277495A
Other languages
Japanese (ja)
Other versions
JPH0931593A (en
Inventor
正彦 森田
進 岡田
伸隆 黒澤
俊之 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP18277495A priority Critical patent/JP3541504B2/en
Publication of JPH0931593A publication Critical patent/JPH0931593A/en
Application granted granted Critical
Publication of JP3541504B2 publication Critical patent/JP3541504B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Heat Treatment Of Steel (AREA)

Description

【0001】
【産業上の利用分野】
この発明は機械部品もしくは自動車用部品を精密打ち抜き加工によって製造する用途に好適な高張力熱延鋼板の製造方法に関する。
【0002】
【従来の技術】
ギアーなどの複雑な形状でかつ高寸法制度と耐摩耗性の必要な機械用部品もしくは自動車用部品を製造する手段として、一つはたとえば特公昭62−2008号公報(精密打抜加工に適した中,高炭素熱延鋼帯の製造方法)のように高焼入性能の高炭素鋼板を球状化処理によって軟質化した素材を用い、切削加工などによって成形仕上げしたのち、次工程で高周波焼入れなどの硬化処理を施す方法、もう一つは成形の容易な軟鋼板を素材とし精密打ち抜き加工によって成形仕上げしたのち、浸炭・窒化−焼入れ処理などによって所望の硬さを得る方法などが採られている。しかし、これらの方法による場合、いずれも後工程における硬化処理を施さなければならず、製造効率および製造コストの点で大きな難点を有していた。
【0003】
このような問題を解決する上で、精密打ち抜き加工のままで打ち抜き面が上記の硬化処理に匹敵する高い硬度に仕上がる方法が採用できるならば好都合である。このための一つの方策として、素材に高張力鋼板を用いて素地の硬度を高めておき、これに精密打ち抜き加工を利用して加工面を加工硬化によりさらに高める方法が考えられる。この手段が達成できれば加工後の硬化処理を省略できるので、その経済的メリットは大きい。
【0004】
しかし、この方策における問題点は素材として従来技術による高張力鋼板を用いても、以下の理由によってその目的が達成できないという課題が残されていた。すなわち、精密打ち抜き加工は高い加工精度と加工面の平滑度を得る目的から、工具間のクリアランスが素材板厚の1%以下となるような極めて小さい条件で加工される。その際の素材が受ける変形様式は静水圧応力状態下におけるせん断変形であり、その加工性は鋼板の延性、とくに局部延性によって左右される。
【0005】
この厳しいせん断変形に耐える局部延性を確保するためには、素材として軟鋼板が有利であり、そのため従来の精密打ち抜き加工用途ではほとんど軟鋼板が用いられてきた。しかし、この発明が狙いとする精密打ち抜き加工後の硬化処理を省略する目的のためには、後述するように素材として少なくとも490MPa級以上の強度水準の鋼板を用いることが必要である。しかしながら、従来技術における490MPa級以上の高張力鋼板は、軟鋼板に比べると大幅に局部延性が低下してしまうので、次の二つの点から精密打ち抜き加工性に問題が生じる。
【0006】
その第一は打ち抜き加工面に平滑度の悪い破断面が発生し、所定の加工面精度が得られないことである。この破断面が発生するのは、素材の局部延性不足により加工中にせん断変形による加工が維持できなくなり、単軸引張り変形による破断に遷移してしまうためである。
【0007】
第二は精密打ち抜き加工のままで焼入処理等に匹敵する高い硬度を得ようとするならば、加工面における加工硬化量を著しく高めなければならないが、このような著しい加工硬化は静水圧応力状態下でのせん断変形によって発現するのであって、静水圧応力状態から外れた単軸引張り変形下では、加工硬化量が低い水準で飽和してしまうことである。
【0008】
すなわち、この発明の目的である加工面の高精度と高硬度とを同時に達成させるためには、精密打ち抜き加工を施した際に、破断面の発生が起こらず全加工面がせん断面に仕上がることがなによりも重要であり、この要件を確保するためには局部延性の極めて優れた高張力鋼板が必要となる。
【0009】
この観点から従来技術における490MPa級以上の高張力鋼板を概観してみると、ミクロ組織は通常、フェライト・パーライト、フェライト・ベイナイトあるいはフェライト・マルテンサイトなどの複合組織で構成されており、高強度鋼になるほど組織中の低温変態相比率を高めるか、もしくはより低温で生成した硬質の変態相とするかが一般的に採用される方法である。しかし、このような低温変態相とフェライト相の間には強度および変形能において大きな差があり、加工中にフェライト相と低温変態相との界面に応力集中が生じ、変形ボイドが誘発されるので局部延性を高めることができない。この他微量のNbやTiを添加し、これらの炭化物の析出強化を強化因子の一つとして利用したHSLA鋼と呼ばれる高張力鋼板がある。しかし、これらのミクロ組織も基本的にはフェライト・パーライト組織もしくはフェライト・ベイナイト組織であり、その主体的強化因子は組織強化であって、析出強化はこれを補完する目的で利用するものである。したがって、変形能におよぼす組織的問題は上記と同じ課題を抱えている。
【0010】
このように従来技術の高張力鋼板は低温変態相による強化を主体的に利用するものであるので、強度確保の観点から490MPa級以上の高張力鋼板ではフェライト相分率をたとえば軟鋼板のように95%以上の実質的にフェライト単相組織とすることができず、そのフェライト分率は通常80%以下の範囲である。そのため、精密打ち抜き加工における破断面の発生は避け難く、さらに強度水準が高くなるほどこの欠点は顕在化するのである。
【0011】
また、硬質な低温変態相を含む鋼板を精密打ち抜き加工すると、せん断面にもストレッチ状の傷跡が入ってその平滑度を害したり、加工工具の寿命に悪影響を与えたりする。これらはいずれも高張力鋼板を用いて精密打ち抜き加工する用途では、大きな欠点につながる。
【0012】
以上のように従来技術の高張力鋼板では精密打ち抜き加工性に大きな欠点が残されており、この欠点を解消するための技術はなんら開示がないのが実状である。
【0013】
【発明が解決しようとする課題】
この発明は以上の背景に基づき、従来の490MPa級以上の高張力鋼板では困難であった精密打ち抜き加工における高い仕上げ面精度と、後工程での硬化処理などを省略することが可能な高い加工硬化特性とを同時に有する精密打ち抜き加工性に優れる高張力鋼板の有利な製造方法を提案することを目的とする。
【0014】
【課題を解決するための手段】
この発明における骨子の第1は、鋼板のミクロ組織を軟鋼板と同等にフェライト分率95%以上の実質的にフェライト単相組織とし、しかもこのようなフェライト単相組織を保ちつつ、引張り強さを490MPa以上に高強度化させる点である。この発明で採用する強化機構は微細なTiC もしくはNbC をフェライト相に析出せしめた析出強化を主体とし、補完的に置換型固溶強化成分を利用する。そして、パーライト、ベイナイトあるいはマルテンサイトなどの硬質低温変態相は可及的に排除することを眼目とする。以上の手段によってミクロ組織的均質性を高め、局部的に変形が集中する箇所を少なくするので、精密打ち抜き性と加工硬化特性とを著しく高めることができる。
【0015】
さらに、この発明の骨子の第2は酸化物系、硫化物系、窒化物系などの非金属介在物を極力低減することによって、応力集中箇所を排除し局部延性に対する悪影響、ならびにせん断面のストレッチ状傷および加工工具の寿命への悪影響をなくすことである。
【0016】
この発明は以上の2点を骨子とする手段によって、高強度でありながら、精密打ち抜き加工性に優れ、かつ加工面の硬度を著しく高めることのできる高張力鋼板の製造方法を完成したものである。
【0017】
すなわち、この発明の要旨は以下のとおりである。
(1) C:0.10mass%以下、
Mn:1.5 mass%以下および
Al:0.20mass%以下
を含有するとともに、TiおよびNbのうちの1種または2種を
Timass%+Nbmass%/2 :0.05〜0.50mass%
の範囲で含有し、さらに
S:0.005 mass%以下、
N:0.005 mass%以下および
O:0.004 mass%以下
で、かつSmass%、Nmass%およびOmass%の合計が0.0100mass%以下を満たして含み、残部は鉄および不可避的不純物の組成からなる鋼に溶製した溶湯を鋳造後、そのままもしくは再加熱して 1000 ℃以上の温度で熱間圧延を開始し、 950 ℃以上の温度域での合計圧下率が 80 %以上、仕上げ圧延温度が 800 ℃以上とする圧延を終了したのち、仕上げ圧延温度から 600 ℃までの温度域を2〜 40 ℃/sの範囲の冷却速度で冷却後、そのまま室温まで放冷する、または 600 ℃未満の温度でコイルに巻取ることを特徴とする精密打ち抜き加工性に優れる高張力熱延鋼板の製造方法である(第1発明)。
【0018】
(2) C:0.10mass%以下、
Si:2.0 mass%以下、
Mn:1.5 mass%以下および
Al:0.20mass%以下
を含有するとともに、TiおよびNbのうちの1種または2種を
Timass%+Nbmass%/2 :0.05〜0.50mass%
の範囲で含有し、さらに
S:0.005 mass%以下、
N:0.005 mass%以下および
O:0.004 mass%以下
で、かつSmass%、Nmass%およびOmass%の合計が0.0100mass%以下を満たして含み、残部は鉄および不可避的不純物の組成からなる鋼に溶製した溶湯を鋳造後、そのままもしくは再加熱して 1000 ℃以上の温度で熱間圧延を開始し、 950 ℃以上の温度域での合計圧下率が 80 %以上、仕上げ圧延温度が 800 ℃以上とする圧延を終了したのち、仕上げ圧延温度から 600 ℃までの温度域を2〜 40 ℃/sの範囲の冷却速度で冷却後、そのまま室温まで放冷する、または 600 ℃未満の温度でコイルに巻取ることを特徴とする精密打ち抜き加工性に優れる高張力熱延鋼板の製造方法である(第2発明)。
【0020】
【作用】
この発明の構成要件の数値限定理由について述べる。
まず、成分組成の限定理由について記す。
【0021】
C:0.10mass%以下
Cは、TiC あるいはNbC として析出強化させるために必要な成分である。しかし、その含有量が0.10mass%を超えると低温変態相が増加し、この発明の骨子であるフェライト相分率95%以上を確保することができず、精密打ち抜き加工時に破断面が発生し易くなる。したがって、その含有量の上限を0.10mass%とするが、析出強化の発現のためには0.0015mass%以上含有させることが好ましい。
【0022】
Si:2.0 mass%以下(第2発明
Siは、固溶強化成分としてフェライトの強化を行う上で有効な成分であり、フェライト単相組織を維持しつつ高強度化が図れるので、精密打ち抜き加工性改善と高強度化とを両立させることができる。しかし、一方においてAr3 変態点を上昇させる作用を通じて、TiC あるいはNbC の高温析出を促進し、析出粒子が粗大化するので析出強化能が低下する。このため 2.0mass%を超えて含有させても強度上昇効果が緩和するか、もしくは減退する。したがって、その含有量の上限は 2.0mass%とすることがよく、上記効果を発現させるためには 0.005mass%以上含有させることが好ましい。
【0023】
なお、Siは、表面性状の観点からは赤スケール疵と呼ばれる表面欠陥を発生させる有害な成分であり、含有量が 0.1mass%を超えると赤スケール疵が発生しやすくなる。したがって特に優れる表面性状が要求される場合、Siは含有させないが(第1発明)、不可避的に混入するSi量を 0.1mass%まで許容してもよい。
【0024】
Mn: 1.5mass%以下
Mnは、置換型固溶強化成分としての作用と Ar3変態点を低下させる作用とを通じ、TiC あるいはNbC を微細化させる効果によって、フェライト相の強化に寄与する成分である。しかし、 1.5mass%を超えて含有させると Ar3変態点が低下し過ぎてTiC あるいはNbC の析出を著しく抑制する方向に作用し、余剰のCが低温変態相を形成するようになり、精密打ち抜き加工性を劣化させる。したがって、その含有量の上限を 1.5%mass%とするが、フェライト相の強化のためには0.05mass%以上含有させることが望ましい。
【0025】
Al:0.20mass%以下
Alは、脱酸剤として鋼中の酸化物系介在物を低減する成分である。酸化物系介在物は鋼の清浄度を悪くし局部延性を劣化させて精密打ち抜き時に破断面を発生しやすくし、また、せん断面にストレッチ状傷を誘発する。したがってAlは脱酸効果を通じてこれらの悪影響を防止する上で有用であるが、 0.2mass%を超えて添加してもその効果は飽和する。したがって、その含有量の上限を 0.2mass%とするが上記効果の発現のため望ましくは0.002mass %以上含有させることが好ましい。
【0026】
Ti+Nb/2 :0.05〜0.50mass%
Ti, Nbは、微細なTiC あるいはNbC としてフェライト相に析出させ、フェライト相を強化させること、ならびにCを上記析出物として固定することによって、余剰のCが減少して低温変態相の生成が抑制され、フェライト単相組織化を促進するので、この発明においては必須の成分である。このような作用に対するTiとNbの効果は原子重量比で比べた場合はほとんど同じであり、このような効果を得るためにはTiおよびNbの1種または2種のTi+Nb/2で計算される合計量にて0.05mass%以上必要である。一方、0.50mass%超えて含有させてもその効果は飽和する。したがって、それらの含有量の合計は0.05mass%以上、0.50mass%以下とする。
【0027】
S: 0.005mass%以下
Sは、MnS などの圧延方向に展伸する硫化物系介在物となり、局部延性を劣化させて精密打ち抜き時の特に圧延方向の加工面に破断面を発生しやすくする。この弊害を回避するためにその含有量の上限を 0.005mass%とする。
【0028】
N:0.005 mass%以下
Nは、TiやNbと粗大な窒化物を形成し、精密打ち抜き性に対して酸化物系介在物と同様な悪影響をおよぼすので、この作用を阻止するためにその含有量の上限を0.0050mass%にする。
【0029】
O:0.004 mass%以下
Oは、含有量が増加すると酸化物系介在物の総量が増加するので、精密打ち抜き加工性が悪くなる。したがって、その含有量は0.0040mass%以下とする。
【0030】
S+N+O:0.0100mass%以下
S, NおよびOは、上記したようにそれぞれ硫化物系、窒化物系および酸化物系の非金属介在物を形成する。すでに述べたように、このような非金属介在物が鋼板中に存在すると、局部的な変形集中箇所となるため精密打ち抜き加工に際して破断面を誘起しやすく、精密打ち抜き加工性を劣化させることになる。発明者らはこの観点から、上記非金属介在物の悪影響を排除させるために必要な条件について検討を行った。この検討にはS,NおよびO量が種々異なり、これら以外の成分組成をこの発明範囲とした鋼を、この発明に適合する熱延条件により引張り強さを590MPa級に調整した4.0mm 厚の熱延鋼板を用い、S,NおよびO量と精密打ち抜き加工性の関係について調査した。精密打ち抜き加工性の評価は加工面におけるせん断面比率(後述の実施例の条件と同じ方法)により行った。検討結果を図1に示す。
図1はS+N+O量と精密打ち抜き加工におけるせん断面比率との関係を示すグラフである。
【0031】
この図より明らかなように、S+N+O量の低減とともにせん断面比率が向上し、S+N+O量が0.0100mass%以下の条件になるとせん断面比率が100 %に達することがわかる。以上の効果は言うまでもなくこれらの成分量に起因する非金属介在物の総量が低減したことによるものである。したがって、この発明は以上の知見に基づき、S,NおよびOの合計含有量を0.0100mass%以下にする。
【0032】
次にこの発明の構成要件であるミクロ組織中のフェライト相分率を95%以上とすることおよび局部伸びを10%以上とすることの限定理由について、検討結果をもとに詳述する。
【0033】
発明者らはすでに述べた考え方、すなわち、精密打ち抜き加工性を左右する材料因子の第一は局部伸び特性であるとの認識に立ち、局部伸びとミクロ組織の関係ならびに、これらと精密打ち抜き加工による加工面のせん断面比率との関係について調査した。この検討にはSi量を 0.5mass%、Mn量を 0.6mass%と一定とし、C量を 0.002〜0.15mass%、Ti量を 0.001mass%以下〜 0.5mass%の範囲で変化させ、その他の成分組成はこの発明範囲の成分に調整した鋼を、この発明に適合する熱延条件で圧延した4.0mm 厚の熱延鋼板を用い、フェライト分率、局部伸びおよび精密打ち抜き加工後のせん断面比率などの測定(後述の実施例と同じ方法)を行った。
【0034】
これらの検討から、フェライト分率、局部伸び、せん断面比率についての相互の関係を整理した結果を図2に示す。図2は鋼板のミクロ組織中のフェライト分率と引張り試験での局部伸び(L.El) とが精密打ち抜き加工におけるせん断面比率におよぼす影響を示すグラフである。
【0035】
図2より明らかなように、せん断面比率が100 %となる良好な精密打ち抜き加工性を示す範囲は、フェライト分率が95%以上でかつ局部伸びが10%以上を満足する条件であることがわかる。
【0036】
上記の範囲でせん断面比率が高くなっていることは、図2からわかるようにフェライト分率と局部伸びとの間には正の相関があり、基本的にはフェライト分率の上昇に伴う局部伸びの向上がせん断変形能の改善につながったことをあらわしている。しかしながら、ただ単に局部伸びを所定値以上とすることだけではせん断面比率をもっとも好ましい範囲に収めることができないことも明らかである。
【0037】
このことは引張り試験によって測定される局部伸び特性が精密打ち抜き加工性時の変形能を正確にあらわすものではなく、フェライト分率の条件と併せて観察することによって、初めてその良否を正しく評価できることを示している。この場合のフェライト分率のもつ意義は応力集中箇所となる低温変態相などのミクロ組織的サイズにおける不均質性の少なさをあらわす指標と考えられ、この指標を取り込むことが精密打ち抜き加工性の評価に重要な意義をもっている。したがって、この発明は図1および図2からの知見に基づき、精密打ち抜き加工性を最適にする条件として局部伸びが10%以上でかつフェライト分率を95%以上とすることを定める。
【0038】
次に引張り強さを490MPa以上に規定する理由について述べる。この要件は精密打ち抜き加工面の硬度を所定値以上とする目的のために定めるものである。すなわち、この発明の鋼板は耐摩耗性の必要な機械部品等に精密打ち抜き加工したのち、次工程での硬化処理を省略可能なほどに高い硬度を発現させることを狙いの一つとしている。耐摩耗性用途において求められる表面硬度は、その用途により多様であるものの少なくともビッカース硬度240 以上であるのが一般的である。そこで発明者らは精密打ち抜き加工面の硬度をビッカース硬度 240以上とすることを目標に置き、このための必要条件について検討した結果、熱延鋼板の引張り強さを490MPa以上とすること、加工面に破断面を混入させないこと、すなわち、せん断面比率を100 %とすることによって達成させ得ることをつきとめた。前者は素地の硬度を高めることを通じて、後者はより高い加工硬化量を発現させる効果を通じて精密打ち抜き加工後の表面硬度を高める作用をもつ。これの知見に基づいてこの発明では加工面のままで良好な耐摩耗性を得るための要件として鋼板の引張り強さを490MPa以上とすることを定める。
【0039】
次に熱延条件について述べる。上記したようにこの発明では精密打ち抜き加工性の観点からミクロ組織を最適化することを骨子としている。この課題のためにフェライト分率を実質的にフェライト単相組織とすることがなによりも重要である。また、この他に精密打ち抜き加工性に影響するミクロ組織因子として組織異方性の問題があり、この異方性が増大すると、圧延直角方向の延性低下によって精密打ち抜き性が悪化してしまう。以上の観点から熱延条件を最適化することが重要であり、この発明では以下の規定を行うことが肝要である。
【0040】
950 ℃以上の温度領域での合計圧下率;この因子は熱延γ組織の再結晶微細化挙動を通じて、フェライト分率と組織異方性に影響を与える。この圧下率が80%未満の条件ではγ粒の再結晶微細化が不十分となり、仕上げ圧延直後に生じるγ→α変態が遅滞し、フェライト単相組織が得難くなること、および組織異方性が増大することなどによって、良好な精密打ち抜き加工性をもつ最終組織が得られ難くなる。したがって、その圧下率の下限を80%とすることが好ましい。
【0041】
仕上げ圧延温度;この温度が低下し過ぎると、熱延γ組織が未再結晶粒となり、組織異方性が増大する。このような現象は仕上げ圧延温度が800 ℃未満となると著しくなることから、これによる精密打ち抜き加工性への弊害を回避するため、その下限を 800℃とすることがよい。
【0042】
仕上げ圧延温度〜 600℃間での冷却速度;仕上げ圧延温度〜 600℃間の温度領域はγ→α変態が進行する領域であり、この発明ではその温度域でにフェライト単相組織化とフェライト粒内へのTiC もしくはNbC の析出を完了させることを狙いとしており、その温度域での冷却速度は上記現象の促進に大きな影響を及ぼす。すなわち、冷却速度が40℃/sを超えて大きくなり過ぎると、γ→α変態時間が不足してフェライト単相組織化とTiC ,NbC の析出が不十分となり、高強度化と精密打ち抜き性が阻害されるので避けねばならない。一方、2℃/sよりも小さくなり過ぎるとフェライト単相組織化は進行するが、フェライト粒内に析出したTiC もしくはNbC が粗大化してしまい、析出強化量が不足して所定の高強度が得られない。したがって、その温度域での冷却速度を2〜40℃/sの範囲とすることが望ましい。
【0043】
【実施例】
表1および表2に示す成分組成の鋼を溶製し、表3、表4および表5に示す熱延条件で圧延し、4.0mm 厚の熱延鋼帯とした。
【0044】
【表1】

Figure 0003541504
【0045】
【表2】
Figure 0003541504
【0046】
【表3】
Figure 0003541504
【0047】
【表4】
Figure 0003541504
【0048】
【表5】
Figure 0003541504
【0049】
これらの熱延鋼帯の表面性状、引張り特性、フェライト分率、ならびに精密打ち抜き加工後のせん断面比率と加工面の表面硬度等の調査結果を表3、表4および表5に併記した。
ここで、フェライト分率は光学顕微鏡組織から画像解析装置を用いて測定し、局部伸びはJIS5号引張り試験片による引張り特性から測定した。また、せん断面比率はクリアランスを0.2 %とした条件で20mmΦの円盤を精密打ち抜き加工した時の打ち抜き加工面を観察して、せん断面と破断面とを区分し、加工面における単位面積当りに換算したせん断面比率を画像解析装置により測定した。
【0050】
これらの表1〜表5から次のことがわかる。成分組成あるいは熱延条件がこの発明範囲外の比較例においては、いずれの事例においてもせん断面比率もしくは加工面硬度のいずれかが劣り、この発明の目標とする精密打ち抜き特性が得られない。これらに対して、この発明範囲の成分組成ならびに熱延条件を採用した適合例においては、フェライト分率95%以上、引張り強さ(TS)が490MPa以上、局部伸び(L,El)10%以上のこの発明要件を満足し、精密打ち抜き加工後のせん断面比率はいずれも100 %であり、加工面の硬度は(Hv)240 以上とこの発明の目標とする特性を得ることができている。
【0051】
また、Si量が0.1mass %以下のこの発明の適合例は全て赤スケール疵が見られず、表面性状に優れる鋼帯が得られている。
【0052】
以上のこの発明の適合例から明らかなように、この発明要件を満たせば精密打ち抜き加工における優れる加工精度と後工程での硬化処理を省略できる機能とを同時に有する鋼板を得ることができることがわかる。
【0053】
【発明の効果】
この発明は、C,Mn, Al, Ti, Nb, S,NおよびOなどの含有量または上記に加えてSi含有量を規制し、そのミクロ組織が実質的にフェライト単相組織を有する引張り強さ:490MPa以上、局部伸び:10%以上の高張力熱延鋼板の熱間圧延条件を特定する製造方法であって、
この発明になる鋼板を用いれば、従来困難であった高張力鋼板の精密打ち抜き加工が可能となり、その後の工程における浸炭・窒化処理もしくは高周波焼入れ処理などを省略できるなど、その効果は多大である。
【図面の簡単な説明】
【図1】S+N+O量と精密打ち抜き加工におけるせん断面比率との関係を示すグラフである。
【図2】鋼板のミクロ組織中のフェライト分率と引張り試験での局部伸びとが精密打ち抜き加工におけるせん断面比率におよぼす影響を示す図グラフである。[0001]
[Industrial applications]
This invention relates to a method of manufacturing a suitable high tensile hot-rolled steel plate for applications produced by precision stamping machine parts or automotive parts.
[0002]
[Prior art]
As means for manufacturing parts for machines or automobiles having complicated shapes such as gears and high dimensional accuracy and abrasion resistance, one method is disclosed in, for example, Japanese Patent Publication No. 62-2008 (suitable for precision punching). Medium and high carbon hot rolled steel strip manufacturing method), using a material that has been softened by spheroidizing a high carbon steel sheet with high quenching performance, forming and finishing by cutting, etc., and then induction hardening in the next process The other method is to use a mild steel plate that is easy to form as a raw material, form it by precision punching, and then obtain the desired hardness by carburizing, nitriding and quenching. . However, all of these methods require a hardening treatment in a post-process, and have a great difficulty in manufacturing efficiency and manufacturing cost.
[0003]
In order to solve such a problem, it is advantageous if a method can be adopted in which the punched surface can be finished to a high hardness comparable to the above-described hardening treatment while maintaining the precision punching process. As one measure for this, a method is considered in which the hardness of the base material is increased by using a high-tensile steel plate as a material, and the work surface is further increased by work hardening using precision punching. If this means can be achieved, the hardening treatment after processing can be omitted, and the economic merit is great.
[0004]
However, the problem with this measure is that even if a high-tensile steel plate according to the prior art is used as a material, the problem remains that the object cannot be achieved for the following reasons. That is, precision punching is performed under extremely small conditions such that the clearance between the tools is 1% or less of the material plate thickness in order to obtain high processing accuracy and smoothness of the processed surface. The deformation mode of the material at that time is shear deformation under hydrostatic stress, and its workability is affected by ductility, particularly local ductility of the steel sheet.
[0005]
In order to secure the local ductility to withstand such severe shear deformation, mild steel sheet is advantageous as a raw material. Therefore, mild steel sheet has been almost used in conventional precision punching applications. However, for the purpose of omitting the hardening treatment after precision punching, which is the aim of the present invention, it is necessary to use a steel sheet having a strength level of at least 490 MPa class as a material as described later. However, a high-tensile steel sheet of 490 MPa class or higher in the prior art has a significantly reduced local ductility as compared with a mild steel sheet. Therefore, there are problems in precision punching workability from the following two points.
[0006]
The first is that a fractured surface with poor smoothness occurs on the punched surface, and a predetermined accuracy of the processed surface cannot be obtained. The fracture surface is generated because the work due to shear deformation cannot be maintained during the processing due to insufficient local ductility of the material, and transition to a fracture due to uniaxial tensile deformation occurs.
[0007]
Second, if it is desired to obtain a high hardness comparable to quenching treatment etc. with precision punching, the amount of work hardening on the work surface must be significantly increased, but such remarkable work hardening is caused by hydrostatic stress. This is caused by shear deformation under the condition, and under uniaxial tensile deformation out of the hydrostatic stress state, the work hardening amount is saturated at a low level.
[0008]
In other words, in order to simultaneously achieve the high precision and high hardness of the processed surface, which is the object of the present invention, when performing precision punching, a fracture surface does not occur and the entire processed surface is finished to a shear surface. This is more important than anything else, and in order to ensure this requirement, a high-tensile steel sheet with extremely excellent local ductility is required.
[0009]
From this point of view, an overview of the high-strength steel sheet of 490 MPa class or higher in the prior art is found, and the microstructure is usually composed of a composite structure such as ferrite-pearlite, ferrite bainite, or ferrite-martensite. It is a commonly employed method to increase the ratio of the low-temperature transformation phase in the structure as it becomes, or to use a hard transformation phase generated at a lower temperature. However, there is a large difference in strength and deformability between such a low-temperature transformation phase and the ferrite phase, and stress concentration occurs at the interface between the ferrite phase and the low-temperature transformation phase during processing, and deformation voids are induced. Local ductility cannot be increased. In addition, there is a high-strength steel sheet called an HSLA steel in which a trace amount of Nb or Ti is added and precipitation strengthening of these carbides is used as one of the strengthening factors. However, these microstructures are also basically a ferrite-pearlite structure or a ferrite-bainite structure, and the main strengthening factor is the structure strengthening, and the precipitation strengthening is used for complementing this. Therefore, the organizational problem on deformability has the same problem as described above.
[0010]
As described above, since the high-strength steel sheet of the prior art mainly uses strengthening by the low-temperature transformation phase, the high-strength steel sheet of 490 MPa class or higher has a ferrite phase fraction of, for example, mild steel sheet from the viewpoint of securing strength. A ferrite single phase structure of 95% or more cannot be substantially formed, and the ferrite fraction is usually in the range of 80% or less. For this reason, the occurrence of a fractured surface in precision punching is inevitable, and the higher the strength level, the more apparent this defect.
[0011]
Further, when a steel sheet containing a hard low-temperature transformation phase is precision-punched, a stretch-like scar is also formed on a sheared surface to impair the smoothness or adversely affect the life of a working tool. All of these lead to major drawbacks in applications where precision punching is performed using high-tensile steel sheets.
[0012]
As described above, the high-strength steel sheet of the related art still has a large defect in precision punching workability, and there is no disclosure of any technique for solving this defect.
[0013]
[Problems to be solved by the invention]
Based on the above background, the present invention has high finish surface precision in precision punching, which was difficult with conventional high-strength steel sheets of 490 MPa class or higher, and high work hardening that can omit hardening treatment etc. in subsequent processes. It is an object of the present invention to propose an advantageous method for producing a high-strength steel sheet having excellent properties and precision punching workability while having the same properties.
[0014]
[Means for Solving the Problems]
The first feature of the present invention is that the microstructure of the steel sheet is substantially a ferrite single phase structure having a ferrite fraction of 95% or more as in the case of mild steel sheet, and the tensile strength is maintained while maintaining such a ferrite single phase structure. Is to increase the strength to 490 MPa or more. The strengthening mechanism employed in the present invention is mainly composed of precipitation strengthening in which fine TiC or NbC is precipitated in a ferrite phase, and uses a substitutional solid solution strengthening component complementarily. And it aims at eliminating as much as possible a hard low-temperature transformation phase such as pearlite, bainite or martensite. By the above means, the microstructural homogeneity is increased and the portion where the deformation is locally concentrated is reduced, so that the precision punching property and the work hardening property can be remarkably improved.
[0015]
Further, the second aspect of the present invention is to reduce non-metallic inclusions such as oxides, sulfides, and nitrides as much as possible, thereby eliminating stress concentration points and adversely affecting local ductility, as well as stretching of shear surfaces. The goal is to eliminate scratches and adverse effects on tool life.
[0016]
The present invention, more than by means of the gist of the two points, yet high strength, excellent in fine blanking workability, and a process for producing a high tensile steel plate hardness of the processing surface can be enhanced significantly been completed It is.
[0017]
That is, the gist of the inventions are as follows.
(1) C: 0.10 mass% or less,
Mn: 1.5 mass% or less and
Al: contains not more than 0.20 mass% and one or two of Ti and Nb
Timass% + Nbmass% / 2: 0.05 ~ 0.50mass%
And S: 0.005 mass% or less,
N: 0.005 mass% or less and O: at 0.004 mass% or less, and Smass%, the sum of Nmass% and Omass% comprises meet the following 0.0100Mass%, balance steel ing the composition of iron and unavoidable impurities After casting the molten metal , hot rolling is started at a temperature of 1000 ° C or more by directly heating or reheating , and the total rolling reduction in the temperature range of 950 ° C or more is 80 % or more, and the finish rolling temperature is 800 ° C or more. After finishing the rolling, the temperature range from the finish rolling temperature to 600 ° C is cooled at a cooling rate in the range of 2 to 40 ° C / s and then left to cool to room temperature, or the coil is cooled at a temperature lower than 600 ° C. This is a method for producing a high-tensile hot-rolled steel sheet excellent in precision punching workability characterized by winding (first invention).
[0018]
(2) C: 0.10 mass% or less,
Si: 2.0 mass% or less,
Mn: 1.5 mass% or less and
Al: contains not more than 0.20 mass% and one or two of Ti and Nb
Timass% + Nbmass% / 2: 0.05 ~ 0.50mass%
And S: 0.005 mass% or less,
N: 0.005 mass% or less and O: at 0.004 mass% or less, and Smass%, the sum of Nmass% and Omass% comprises meet the following 0.0100Mass%, balance steel ing the composition of iron and unavoidable impurities After casting the molten metal , hot rolling is started at a temperature of 1000 ° C or more by directly heating or reheating , and the total rolling reduction in the temperature range of 950 ° C or more is 80 % or more, and the finish rolling temperature is 800 ° C or more. After finishing the rolling, the temperature range from the finish rolling temperature to 600 ° C is cooled at a cooling rate in the range of 2 to 40 ° C / s and then left to cool to room temperature, or the coil is cooled at a temperature lower than 600 ° C. This is a method for producing a high-tensile hot-rolled steel sheet excellent in precision punching workability, characterized by winding (second invention).
[0020]
[Action]
The reasons for limiting the constituent elements of the present invention to numerical values will be described.
First, the reasons for limiting the component composition will be described.
[0021]
C: 0.10 mass% or less C is a component necessary for precipitation strengthening as TiC or NbC. However, when the content exceeds 0.10 mass%, the low-temperature transformation phase increases, and the ferrite phase fraction of 95% or more, which is the gist of the present invention, cannot be secured, and a fracture surface is likely to occur during precision punching. Become. Therefore, the upper limit of the content is set to 0.10 mass%, but it is preferable to contain the content of 0.0015 mass% or more in order to exhibit precipitation strengthening.
[0022]
Si: 2.0 mass% or less ( second invention )
Si is an effective component for strengthening ferrite as a solid solution strengthening component.Since high strength can be achieved while maintaining a ferrite single phase structure, it is necessary to achieve both improved precision punching workability and high strength. Can be. However, on the other hand, through the action of raising the Ar 3 transformation point, high temperature precipitation of TiC or NbC is promoted, and the precipitation particles are coarsened, so that the precipitation strengthening ability is reduced. Therefore, even if the content exceeds 2.0 mass%, the strength increasing effect is reduced or reduced. Therefore, the upper limit of the content is preferably 2.0 mass%, and in order to exhibit the above-mentioned effect, it is preferable to contain 0.005 mass% or more.
[0023]
Note that Si is a harmful component that generates surface defects called red scale flaws from the viewpoint of surface properties. When the content exceeds 0.1 mass%, red scale flaws are easily generated. Therefore, when particularly excellent surface properties are required, Si is not contained ( first invention ), but the amount of Si inevitably mixed may be allowed up to 0.1 mass%.
[0024]
Mn: 1.5 mass% or less
Mn is a component that contributes to the strengthening of the ferrite phase by the effect of miniaturizing TiC or NbC through the effect as a substitution type solid solution strengthening component and the effect of lowering the Ar 3 transformation point. However, when the content exceeds 1.5 mass%, the Ar 3 transformation point becomes too low and acts to remarkably suppress the precipitation of TiC or NbC, and excess C forms a low-temperature transformation phase, so that precision punching is performed. Deteriorate workability. Therefore, the upper limit of the content is set to 1.5% by mass, but it is desirable to contain 0.05% by mass or more for strengthening the ferrite phase.
[0025]
Al: 0.20 mass% or less
Al is a component that reduces oxide-based inclusions in steel as a deoxidizing agent. Oxide-based inclusions deteriorate the cleanliness of the steel, degrade the local ductility, easily cause a fracture surface during precision punching, and induce stretch-like scratches on the shear surface. Therefore, Al is useful for preventing these adverse effects through the deoxidizing effect, but its effect is saturated even if it is added in excess of 0.2 mass%. Therefore, the upper limit of the content is set to 0.2 mass%, but it is preferable to contain the content of 0.002 mass% or more in order to exhibit the above effect.
[0026]
Ti + Nb / 2: 0.05 to 0.50 mass%
Ti and Nb are precipitated in the ferrite phase as fine TiC or NbC to strengthen the ferrite phase, and by fixing C as the above precipitates, excess C is reduced and the generation of a low-temperature transformation phase is suppressed. It is an essential component in the present invention because it promotes the formation of a ferrite single phase structure. The effect of Ti and Nb on such action is almost the same when compared by the atomic weight ratio, and to obtain such an effect, it is calculated by using one or two kinds of Ti and Nb + Ti + Nb / 2. A total amount of 0.05 mass% or more is required. On the other hand, if the content exceeds 0.50 mass%, the effect is saturated. Therefore, the total of their contents is 0.05 mass% or more and 0.50 mass% or less.
[0027]
S: 0.005 mass% or less S becomes sulfide-based inclusions, such as MnS, that extend in the rolling direction, degrades local ductility, and tends to generate a fracture surface during precision punching, particularly on a work surface in the rolling direction. To avoid this adverse effect, the upper limit of the content is set to 0.005 mass%.
[0028]
N: 0.005 mass% or less N forms a coarse nitride with Ti and Nb, and has the same adverse effect on precision punching properties as oxide-based inclusions. Is set to 0.0050 mass%.
[0029]
O: 0.004 mass% or less O increases the content of oxide-based inclusions as the content increases, so that precision punching workability deteriorates. Therefore, the content is set to 0.0040 mass% or less.
[0030]
S + N + O: 0.0100 mass% or less S, N and O form sulfide-based, nitride-based and oxide-based nonmetallic inclusions as described above. As described above, when such non-metallic inclusions are present in the steel sheet, they become local deformation concentrated portions, so that a fracture surface is easily induced during precision punching, which deteriorates precision punching workability. . From this viewpoint, the inventors have studied conditions necessary for eliminating the adverse effects of the nonmetallic inclusions. In this study, S, N, and O contents were variously varied, and a steel having a composition other than these in the range of the present invention was obtained by adjusting the tensile strength to a 590 MPa class under hot rolling conditions suitable for the present invention. Using a hot-rolled steel sheet, the relationship between the amounts of S, N and O and the precision punching workability was investigated. The precision punching workability was evaluated based on the shearing surface ratio on the working surface (the same method as the condition of an example described later). FIG. 1 shows the examination results.
FIG. 1 is a graph showing the relationship between the amount of S + N + O and the shear surface ratio in precision punching.
[0031]
As is apparent from this figure, the shear plane ratio increases with the decrease in the S + N + O amount, and the shear plane ratio reaches 100% when the S + N + O amount is 0.0100 mass% or less. Needless to say, the above effects are attributable to a reduction in the total amount of nonmetallic inclusions caused by the amounts of these components. Therefore, based on the above findings, the present invention sets the total content of S, N and O to 0.0100 mass% or less.
[0032]
Next, the reasons for limiting the ferrite phase fraction in the microstructure to 95% or more and the local elongation to 10% or more, which are constituent elements of the present invention, will be described in detail based on the examination results.
[0033]
The inventors have considered the above-mentioned idea, that is, the first of the material factors that influence the precision punching workability is the local elongation property, the relationship between local elongation and microstructure, and these and the precision punching process The relationship with the shear surface ratio of the machined surface was investigated. In this study, the amount of Si was fixed at 0.5 mass%, the amount of Mn was constant at 0.6 mass%, the amount of C was changed within the range of 0.002 to 0.15 mass%, and the amount of Ti was changed within the range of 0.001 mass% or less to 0.5 mass%. The composition was adjusted to a component within the range of the present invention, and a 4.0 mm thick hot-rolled steel sheet rolled under hot-rolling conditions compatible with the present invention was used.The ferrite fraction, local elongation, and shear surface ratio after precision punching were used. (The same method as in Examples described later) was performed.
[0034]
FIG. 2 shows the results of an examination of the mutual relationship among the ferrite fraction, the local elongation, and the shear surface ratio from these studies. FIG. 2 is a graph showing the effect of the ferrite fraction in the microstructure of the steel sheet and the local elongation (L.El) in a tensile test on the shear surface ratio in precision punching.
[0035]
As is clear from FIG. 2, the range of good precision punching workability where the shear surface ratio is 100% is that the ferrite fraction is 95% or more and the local elongation is 10% or more. Understand.
[0036]
As can be seen from FIG. 2, the increase in the shear surface ratio in the above range has a positive correlation between the ferrite fraction and the local elongation. This indicates that the improvement in elongation has led to the improvement in shear deformability. However, it is apparent that simply setting the local elongation to a predetermined value or more cannot make the shear surface ratio fall within the most preferable range.
[0037]
This means that the local elongation characteristics measured by the tensile test do not accurately represent the deformability during precision punching workability, and the quality can be correctly evaluated for the first time by observing it together with the ferrite fraction condition. Is shown. The significance of the ferrite fraction in this case is considered to be an index that indicates the degree of inhomogeneity in the microstructural size such as the low-temperature transformation phase, which is a stress concentration point, and incorporating this index is an evaluation of precision punching workability. It has significant significance. Therefore, the present invention determines that the local elongation is 10% or more and the ferrite fraction is 95% or more as conditions for optimizing precision punching workability based on the findings from FIGS.
[0038]
Next, the reason for setting the tensile strength to 490 MPa or more will be described. This requirement is set for the purpose of setting the hardness of the precision punched surface to a predetermined value or more. That is, it is an object of the steel sheet of the present invention to develop a high enough hardness that the hardening treatment in the next step can be omitted after precision punching of a mechanical part or the like that requires wear resistance. The surface hardness required for abrasion resistance applications varies depending on the application, but is generally at least Vickers hardness 240 or more. Therefore, the inventors set a goal of setting the hardness of the precision stamped surface to Vickers hardness of 240 or more, and examined the necessary conditions for this. As a result, the tensile strength of the hot-rolled steel sheet was set to 490 MPa or more, It has been found that no fracture surface is mixed into the steel, that is, it can be achieved by setting the shear surface ratio to 100%. The former has the effect of increasing the hardness of the substrate, and the latter has the effect of increasing the surface hardness after precision punching through the effect of expressing a higher amount of work hardening. Based on this knowledge, the present invention determines that the tensile strength of a steel sheet is 490 MPa or more as a requirement for obtaining good wear resistance with a processed surface.
[0039]
Next, the hot rolling conditions will be described. As described above, in the present invention, the point is to optimize the microstructure from the viewpoint of precision punching workability. For this problem, it is most important that the ferrite fraction be substantially a ferrite single phase structure. In addition, there is a problem of microstructural anisotropy as a microstructural factor affecting precision punching workability. When this anisotropy increases, precision punching deteriorates due to a decrease in ductility in a direction perpendicular to rolling. From the above viewpoint, it is important to optimize the hot rolling conditions, and in the present invention, it is important to perform the following rules.
[0040]
Total rolling reduction in the temperature range of 950 ° C or higher; this factor affects the ferrite fraction and microstructural anisotropy through recrystallization refinement behavior of hot-rolled γ-structure. If the rolling reduction is less than 80%, the recrystallization and refinement of γ grains become insufficient, and the γ → α transformation that occurs immediately after finish rolling is delayed, making it difficult to obtain a ferrite single phase structure. Increases, it becomes difficult to obtain a final structure having good precision punching workability. Therefore, the lower limit of the rolling reduction is preferably set to 80%.
[0041]
Finish rolling temperature: If this temperature is too low, the hot-rolled γ structure becomes unrecrystallized grains and the structure anisotropy increases. Since such a phenomenon becomes remarkable when the finish rolling temperature is lower than 800 ° C., the lower limit is preferably set to 800 ° C. in order to avoid adverse effects on precision punching workability.
[0042]
Cooling rate between finish rolling temperature and 600 ° C; temperature range between finish rolling temperature and 600 ° C is a region where γ → α transformation proceeds. In the present invention, ferrite single phase structure and ferrite grain The purpose is to complete the precipitation of TiC or NbC into the inside, and the cooling rate in that temperature range has a great effect on promoting the above phenomenon. In other words, if the cooling rate exceeds 40 ° C./s and becomes too large, the γ → α transformation time becomes insufficient and the ferrite single phase structure and the precipitation of TiC and NbC become insufficient. It must be avoided because it is hindered. On the other hand, when the temperature is lower than 2 ° C./s, the ferrite single-phase structure progresses, but the TiC or NbC precipitated in the ferrite grains becomes coarse and the amount of precipitation strengthening is insufficient to obtain a predetermined high strength. I can't. Therefore, it is desirable that the cooling rate in that temperature range be in the range of 2 to 40 ° C / s.
[0043]
【Example】
Steels having the component compositions shown in Tables 1 and 2 were melted and rolled under the hot rolling conditions shown in Tables 3, 4 and 5 to obtain 4.0 mm thick hot rolled steel strips.
[0044]
[Table 1]
Figure 0003541504
[0045]
[Table 2]
Figure 0003541504
[0046]
[Table 3]
Figure 0003541504
[0047]
[Table 4]
Figure 0003541504
[0048]
[Table 5]
Figure 0003541504
[0049]
Inspection results of the surface properties, tensile properties, ferrite fraction, shear surface ratio after precision punching and surface hardness of the machined surface of these hot-rolled steel strips are also shown in Tables 3, 4 and 5.
Here, the ferrite fraction was measured from the optical microscopic structure using an image analyzer, and the local elongation was measured from the tensile characteristics of a JIS No. 5 tensile test piece. In addition, the shearing surface ratio is determined by observing the punched surface when precision punching a 20 mmΦ disk under the condition that the clearance is 0.2%, dividing the sheared surface and the fractured surface, and converting it to the unit area on the processed surface. The shear plane ratio was measured by an image analyzer.
[0050]
The following can be seen from Tables 1 to 5. In Comparative Examples in which the component composition or the hot rolling conditions are out of the range of the present invention, in any case, either the shear surface ratio or the worked surface hardness is inferior, and the precision punching characteristics targeted by the present invention cannot be obtained. On the other hand, in the conforming examples employing the component composition and hot rolling conditions within the scope of the present invention, the ferrite fraction is 95% or more, the tensile strength (TS) is 490 MPa or more, and the local elongation (L, El) is 10% or more. The shearing surface ratio after precision punching is 100% in all cases, and the hardness of the machined surface is (Hv) 240 or more, which is the target characteristic of the present invention.
[0051]
Further, in all of the applicable examples of the present invention in which the Si content is 0.1 mass% or less, no red scale flaw is observed and a steel strip excellent in surface properties is obtained.
[0052]
As is apparent from the above examples of application of the present invention, it is understood that a steel sheet having both excellent processing accuracy in precision punching and a function of omitting a hardening treatment in a later step can be obtained if the requirements of the present invention are satisfied.
[0053]
【The invention's effect】
The present invention regulates the content of C, Mn, Al, Ti, Nb, S, N and O or the Si content in addition to the above, and has a tensile strength in which the microstructure substantially has a ferrite single phase structure. is: 490 MPa or more, local elongation: 10% or more of the hot rolling conditions of high-tensile hot-rolled steel sheet to a manufacturing method of identifying,
The use of the steel sheet according to the present invention enables the precision punching of a high-tensile steel sheet, which has been difficult in the past, and has a great effect, such as the elimination of carburizing / nitriding or induction hardening in subsequent steps.
[Brief description of the drawings]
FIG. 1 is a graph showing the relationship between the amount of S + N + O and the shear surface ratio in precision punching.
FIG. 2 is a graph showing the effect of the ferrite fraction in the microstructure of a steel sheet and the local elongation in a tensile test on the shear surface ratio in precision punching.

Claims (2)

C:0.10mass%以下、
Mn:1.5 mass%以下および
Al:0.20mass%以下
を含有するとともに、TiおよびNbのうちの1種または2種を
Timass%+Nbmass%/2 :0.05〜0.50mass%
の範囲で含有し、さらに
S:0.005 mass%以下、
N:0.005 mass%以下および
O:0.004 mass%以下
で、かつSmass%、Nmass%およびOmass%の合計が0.0100mass%以下を満たして含み、残部は鉄および不可避的不純物の組成からなる鋼に溶製した溶湯を鋳造後、そのままもしくは再加熱して1000℃以上の温度で熱間圧延を開始し、 950℃以上の温度域での合計圧下率が80%以上、仕上げ圧延温度が 800℃以上とする圧延を終了したのち、仕上げ圧延温度から 600℃までの温度域を2〜40℃/sの範囲の冷却速度で冷却後、そのまま室温まで放冷する、または 600℃未満の温度でコイルに巻取ることを特徴とする精密打ち抜き加工性に優れる高張力熱延鋼板の製造方法。
C: 0.10 mass% or less,
Mn: 1.5 mass% or less and
Al: contains not more than 0.20 mass% and one or two of Ti and Nb
Timass% + Nbmass% / 2: 0.05 ~ 0.50mass%
And S: 0.005 mass% or less,
N: 0.005 mass% or less and O: 0.004 mass% or less, and the sum of Smas%, Nmass% and Omass% satisfies 0.0100 mass% or less, with the balance being dissolved in steel composed of iron and unavoidable impurities. After casting the produced melt, it is heated or reheated as it is or re-heated, and hot rolling is started at a temperature of 1000 ° C or higher. After finishing rolling, the temperature range from the finish rolling temperature to 600 ° C is cooled at a cooling rate in the range of 2 to 40 ° C / s, and then left to cool to room temperature or wound around a coil at a temperature lower than 600 ° C. A method for producing a high-strength hot-rolled steel sheet which is excellent in precision punching workability.
C:0.10mass%以下、
Si:2.0 mass%以下、
Mn:1.5 mass%以下および
Al:0.20mass%以下
を含有するとともに、TiおよびNbのうちの1種または2種を
Timass%+Nbmass%/2 :0.05〜0.50mass%
の範囲で含有し、さらに
S:0.005 mass%以下、
N:0.005 mass%以下および
O:0.004 mass%以下
で、かつSmass%、Nmass%およびOmass%の合計が0.0100mass%以下を満たして含み、残部は鉄および不可避的不純物の組成からなる鋼に溶製した溶湯を鋳造後、そのままもしくは再加熱して1000℃以上の温度で熱間圧延を開始し、 950℃以上の温度域での合計圧下率が80%以上、仕上げ圧延温度が 800℃以上とする圧延を終了したのち、仕上げ圧延温度から 600℃までの温度域を2〜40℃/sの範囲の冷却速度で冷却後、そのまま室温まで放冷する、または 600℃未満の温度でコイルに巻取ることを特徴とする精密打ち抜き加工性に優れる高張力熱延鋼板の製造方法。
C: 0.10 mass% or less,
Si: 2.0 mass% or less,
Mn: 1.5 mass% or less and
Al: contains not more than 0.20 mass% and one or two of Ti and Nb
Timass% + Nbmass% / 2: 0.05 ~ 0.50mass%
And S: 0.005 mass% or less,
N: 0.005 mass% or less and O: 0.004 mass% or less, and the sum of Smas%, Nmass% and Omass% satisfies 0.0100 mass% or less, with the balance being dissolved in steel composed of iron and unavoidable impurities. After casting the produced melt, it is heated or reheated as it is or re-heated, and hot rolling is started at a temperature of 1000 ° C or higher. After finishing rolling, the temperature range from the finish rolling temperature to 600 ° C is cooled at a cooling rate in the range of 2 to 40 ° C / s, and then left to cool to room temperature or wound around a coil at a temperature lower than 600 ° C. A method for producing a high-strength hot-rolled steel sheet which is excellent in precision punching workability.
JP18277495A 1995-07-19 1995-07-19 Manufacturing method of high tensile strength hot rolled steel sheet with excellent precision punching workability Expired - Fee Related JP3541504B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18277495A JP3541504B2 (en) 1995-07-19 1995-07-19 Manufacturing method of high tensile strength hot rolled steel sheet with excellent precision punching workability

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18277495A JP3541504B2 (en) 1995-07-19 1995-07-19 Manufacturing method of high tensile strength hot rolled steel sheet with excellent precision punching workability

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2004030174A Division JP4001116B2 (en) 2004-02-06 2004-02-06 High-tensile hot-rolled steel sheet with excellent precision punchability and red scale resistance

Publications (2)

Publication Number Publication Date
JPH0931593A JPH0931593A (en) 1997-02-04
JP3541504B2 true JP3541504B2 (en) 2004-07-14

Family

ID=16124189

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18277495A Expired - Fee Related JP3541504B2 (en) 1995-07-19 1995-07-19 Manufacturing method of high tensile strength hot rolled steel sheet with excellent precision punching workability

Country Status (1)

Country Link
JP (1) JP3541504B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BRPI0924410B1 (en) * 2009-05-11 2018-07-17 Nippon Steel & Sumitomo Metal Corp hot rolled steel sheet having excellent drilling work capacity and fatigue properties, hot dip galvanized steel sheet, and production methods thereof

Also Published As

Publication number Publication date
JPH0931593A (en) 1997-02-04

Similar Documents

Publication Publication Date Title
JP4956146B2 (en) Case-hardened steel excellent in forgeability and prevention of grain coarsening, its manufacturing method, and carburized parts
CN110832098A (en) Hot-rolled steel sheet and method for producing same
JP6143355B2 (en) Hot-rolled steel sheet with excellent drawability and surface hardness after carburizing heat treatment
JP4464864B2 (en) Case-hardening steel with excellent grain coarsening resistance and cold workability that can be omitted for soft annealing.
WO2016148037A1 (en) Steel sheet for carburization having excellent cold workability and toughness after carburizing heat treatment
EP3034643A1 (en) Electric-resistance-welded steel pipe with excellent weld quality and method for producing same
JP4901623B2 (en) High-strength steel sheet with excellent punching hole expandability and manufacturing method thereof
JP6065121B2 (en) High carbon hot rolled steel sheet and manufacturing method thereof
JPWO2019151017A1 (en) High-strength cold-rolled steel sheet, high-strength plated steel sheet, and methods for producing them
WO2018061101A1 (en) Steel
WO2019151048A1 (en) High-carbon hot-rolled steel sheet and method for manufacturing same
CN113692456B (en) Ultrahigh-strength steel sheet having excellent shear workability and method for producing same
JP4001116B2 (en) High-tensile hot-rolled steel sheet with excellent precision punchability and red scale resistance
JP2006265704A (en) Steel for case hardening having excellent crystal grain coarsening resistance and cold workability and capable of obviating softening and method for producing the same
JP3774697B2 (en) Steel material for high strength induction hardening and method for manufacturing the same
JP2019011510A (en) Steel sheet for carburization excellent in cold workability and toughness after carburization heat treatment
JP3541504B2 (en) Manufacturing method of high tensile strength hot rolled steel sheet with excellent precision punching workability
JP2006265703A (en) Steel for case hardening having excellent crystal grain coarsening resistance and cold workability and method for producing the same
JP3489655B2 (en) High-strength, high-toughness free-cut non-heat treated steel
JP3428282B2 (en) Gear steel for induction hardening and method of manufacturing the same
JPH10237582A (en) Free cutting non-heat treated steel with high strength and high toughness
JPH11106866A (en) Case hardening steel excellent in preventability of coarse grain and its production
JP7335492B2 (en) Steel plates and steel pipes for line pipes
KR101115718B1 (en) High strength steel having excellent delayed fracture resistance and elongation and method for producing the same
KR101115716B1 (en) High strength steel having excellent delayed fracture resistance and low yield ratio and method for producing the same

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20031209

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040206

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040309

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040322

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080409

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090409

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100409

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100409

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110409

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110409

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120409

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130409

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130409

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140409

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees