JP3539854B2 - Resinoid grinding wheel - Google Patents

Resinoid grinding wheel Download PDF

Info

Publication number
JP3539854B2
JP3539854B2 JP34410197A JP34410197A JP3539854B2 JP 3539854 B2 JP3539854 B2 JP 3539854B2 JP 34410197 A JP34410197 A JP 34410197A JP 34410197 A JP34410197 A JP 34410197A JP 3539854 B2 JP3539854 B2 JP 3539854B2
Authority
JP
Japan
Prior art keywords
hollow body
resin
grinding wheel
organic hollow
binder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP34410197A
Other languages
Japanese (ja)
Other versions
JPH11156725A (en
Inventor
晃 永田
茂喜 中根
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Noritake Co Ltd
Original Assignee
Noritake Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Noritake Co Ltd filed Critical Noritake Co Ltd
Priority to JP34410197A priority Critical patent/JP3539854B2/en
Priority to EP98955931A priority patent/EP0963813A4/en
Priority to PCT/JP1998/005312 priority patent/WO1999028086A1/en
Publication of JPH11156725A publication Critical patent/JPH11156725A/en
Priority to US09/755,113 priority patent/US6440185B2/en
Application granted granted Critical
Publication of JP3539854B2 publication Critical patent/JP3539854B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24DTOOLS FOR GRINDING, BUFFING OR SHARPENING
    • B24D3/00Physical features of abrasive bodies, or sheets, e.g. abrasive surfaces of special nature; Abrasive bodies or sheets characterised by their constituents
    • B24D3/02Physical features of abrasive bodies, or sheets, e.g. abrasive surfaces of special nature; Abrasive bodies or sheets characterised by their constituents the constituent being used as bonding agent
    • B24D3/20Physical features of abrasive bodies, or sheets, e.g. abrasive surfaces of special nature; Abrasive bodies or sheets characterised by their constituents the constituent being used as bonding agent and being essentially organic
    • B24D3/28Resins or natural or synthetic macromolecular compounds
    • B24D3/32Resins or natural or synthetic macromolecular compounds for porous or cellular structure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24DTOOLS FOR GRINDING, BUFFING OR SHARPENING
    • B24D3/00Physical features of abrasive bodies, or sheets, e.g. abrasive surfaces of special nature; Abrasive bodies or sheets characterised by their constituents
    • B24D3/34Physical features of abrasive bodies, or sheets, e.g. abrasive surfaces of special nature; Abrasive bodies or sheets characterised by their constituents characterised by additives enhancing special physical properties, e.g. wear resistance, electric conductivity, self-cleaning properties
    • B24D3/342Physical features of abrasive bodies, or sheets, e.g. abrasive surfaces of special nature; Abrasive bodies or sheets characterised by their constituents characterised by additives enhancing special physical properties, e.g. wear resistance, electric conductivity, self-cleaning properties incorporated in the bonding agent
    • B24D3/344Physical features of abrasive bodies, or sheets, e.g. abrasive surfaces of special nature; Abrasive bodies or sheets characterised by their constituents characterised by additives enhancing special physical properties, e.g. wear resistance, electric conductivity, self-cleaning properties incorporated in the bonding agent the bonding agent being organic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24DTOOLS FOR GRINDING, BUFFING OR SHARPENING
    • B24D7/00Bonded abrasive wheels, or wheels with inserted abrasive blocks, designed for acting otherwise than only by their periphery, e.g. by the front face; Bushings or mountings therefor
    • B24D7/02Wheels in one piece

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Polishing Bodies And Polishing Tools (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、結合剤として樹脂を用いたレジノイド研削砥石に関する。即ち、研削砥石に於ける技術分野の中で、特にレジノイドボンド(樹脂質結合剤)が使用される砥石に関する。
【0002】
【従来の技術】
研削砥石に使用されるボンド(結合剤)は、一般的にビトリファイド(ガラス質)、レジノイド(樹脂質)、メタル(金属質)等があげられるが、その中でレジノイドボンド(樹脂質結合剤)に用いられる樹脂としては、その作業(用途)によってフェノール樹脂、エポキシ樹脂、ウレタン樹脂、メラミン樹脂、PVA(ポリビニルアルコール)樹脂、アクリル樹脂などが用いられている。
【0003】
レジノイドボンドが用いられる最大の理由は、研削作業中に砥粒に掛かる負荷を、ボンド自信が持っている低い弾性率によって軽減させることが出来るためであり、その事から、他のボンドに比べ比較的高い負荷が掛かる様な作業に広く用いられている。
【0004】
更に、それらのレジノイドボンドの中に於いても、特にエポキシ樹脂を結合剤としたものについては、比較的低い弾性率を持っている事から、特に研削取代の多い作業を中心に広く用いられている。
【0005】
【発明が解決しようとする課題】
しかし、従来のレジノイドボンド研削砥石は、研削抵抗の上昇や、最終的には研削焼けが発生するという問題点をなお有している。
【0006】
なお、かかる問題点を解決する手法として、過去には、非常に強度(硬度)の低い無機充填剤(例えばタルクやマイカなど)を混入したり、無機質の大きな球状の中空体であるバブル(アルミナバブルやガラスバルーンなど)を混入する事によって構造自体を粗組織に持って行く様な手法が検討されている。
【0007】
しかし、これらの手法は、レジノイド砥石を使用する本来の目的が損なわれてしまうという問題点がある。即ち、レジノイド砥石の本来の特性である低弾性率という特性が薄くなってしまったり、その無機充填剤自体が研削の邪魔をしてしまう等の問題点が新たに発生し、根本的な解決手段とはなっていないのが現状である。
【0008】
本発明は、上記従来技術の問題点を解決し、低弾性率及び良好な砥粒保持力というレジノイド砥石が本来有する特性を維持しつつ、研削抵抗が低く、研削焼けが発生せず研削面品位に優れた被削材を得ることのできるレジノイド研削砥石を提供することを目的とする。
【0009】
【課題を解決するための手段】
本発明によれば、砥粒と充填材を結合剤に分散して成り、前記充填材として研削面品位に優れた被削材を得るのに十分な径の有機質中空体を有効量含有し、前記結合剤として液状の樹脂を常温硬化させて成る硬化樹脂を含有し、前記硬化樹脂はエポキシ硬化樹脂、アクリル硬化樹脂及びウレタン硬化樹脂のうちの1種以上であり、前記有機質中空体は、外部に連通しない閉じた空隙を内部に有し、アクリル系樹脂及び塩化ビニリデン系樹脂のうちのいずれか1種又は2種以上の混合体から成り、前記有機質中空体の平均粒径は10〜500μmの範囲内にあり、前記有機質中空体の壁の厚さは0.05〜5μmであり、前記有機質中空体の容量Uと前記結合材の容量Bの容量比U/Bは5/100〜80/100の範囲内にあるレジノイド研削砥石により上記問題点を解決することができる。
【0010】
記有機質中空体の平均粒径は、10〜300μmの範囲内にすることができる。前記有機質中空体の壁の厚さは0.1μm以上5μm以下にすることができる。前記有機質中空体の真比重は0.01〜0.1にすることができる。
【0011】
前記有機質中空体の容量Uと前記結合材の容量Bの容量比U/Bは、20/100〜80/100の範囲内にすることができる。前記有機質中空体の空隙とは別に気孔を有し、前記気孔の容量Kと前記結合剤の容量Bの容量比K/Bは、5/100〜350/100の範囲内にすることができる。
【0012】
以下、本発明の概要を説明する。レジノイドボンドの砥石の製法には、主に粉末の結合剤原料を砥粒にコーティングし、それを所定の金型に装填した後にプレス成形する方法と、液体の樹脂と砥粒とをミキサーでブレンドした後に湿式状態で型に流し込む方法(鋳込製法)がある。その中でエポキシ樹脂を結合剤の原料とする砥石は、後者の製法に属するものが多く、従来、その砥石構造は図3の如く砥粒どうしの接触が少なく、結合剤中に砥粒が浮かんでいる様な状況となる。
【0013】
結合剤の樹脂原料として粉末の樹脂原料を用いて成形されたレジノイド砥石は砥粒と砥粒が部分的にボンドブリッジで結ばれているのに対し、液状の樹脂原料を用いて得られた図3に示すようなレジノイド砥石は、砥粒全体が結合剤で覆われている事により、砥粒と結合剤(硬化樹脂)の間に良好な濡れ(コーティング状態)が生じ、硬化樹脂と砥粒との化学的な接着力に加えて更に物理的な接合力(把握力)が加わり、より強固な保持力が得られる事から、結合剤自身の低弾性率と相俟ってより高負荷な研削が可能となっている。
【0014】
一方、被削材の研削では、砥石の構造は、その被削材の種類や研削条件に応じて、砥粒、結合剤、気孔の3成分の比率を変化させる事で対応するが、その中でも、研削によって発生する切粉の排除や砥粒間隔を広げる目的から気孔が重要な要素となる。
【0015】
粉末樹脂を用いて常温でプレス成形されて得られた砥石は、その充填密度の関係から自然発生的に生じる気孔がその役目を担うのに対して、液体樹脂を用いた鋳込製法の場合、泡の巻き込みによって発生する気孔のみでは製造後の砥石における気孔の量が少なく、一般的には、製造の際の液状樹脂原料の撹拌・鋳込段階で0.5〜3mm、場合によっては5mmを越える様なアルミナバブル(アルミナ球状中空体)或いは発泡スチロールを混入し、気孔創成が行われてきた。
【0016】
しかしながら、このような液状の樹脂(例えばエポキシ樹脂)を含有する砥石原材料を鋳込み成形する鋳込製法により得られる砥石構造は、図3の如く砥粒と砥粒の間が結合剤で埋められている場合が多い。このような従来の研削砥石は、研削中に結合剤が図4の如く砥粒切刃より突き出した状態になる事が多いため、これが研削抵抗の上昇や研削焼けの原因となる。即ち、結合剤自体の弾性率が低い事が逆に災いして、砥粒と砥粒の中間に存在する結合剤が砥石の研削面から突出し、研削の邪魔をする事によって研削抵抗の上昇や、最終的には研削焼けが発生するなどの問題が多く発生している。
【0017】
研削抵抗の上昇や研削焼けを軽減する目的から従来は結合剤中に無機のフィラー材(充填材)を混入するなどの事が行われてきたが、この場合、本来の樹脂質結合剤に期待する所の弾性率が上昇してしまったり、またそのフィラー材自体が研削の邪魔をしたりして根本的な解決は図られていなかった。
【0018】
そこで、本発明者は、図1の如く細かい有機質バブル(球状の有機質中空体)(真比重0.01〜0.1)を結合剤中に添加した所、その樹脂自体が持っている低い弾性率を損なう事なく(むしろ弾性率はさらに低くなり)、仮に研削面に結合剤が突出してきたとしても研削の邪魔をせず、研削面上でも図2の如く適度な後退性(被削材と接して研削を行う砥粒の先端部分(砥粒切刃)よりも結合剤の先端面が被削材から離隔(後退)して、結合剤は被削材に接触しにくい性質)を有して、従来の問題点であった研削抵抗の上昇も少なく、さらに高能率な研削が可能となったことを見出し本発明を完成するに至った。
【0019】
なお、本発明において数値範囲の記載は、両端値のみならず、その中に含まれる全ての任意の中間値を含むものとする。
【0020】
【発明の実施の形態】
〔レジノイド研削砥石〕
本発明のレジノイド研削砥石は、砥粒と充填材を結合剤に分散して含有し、前記充填材として、研削面品位に優れた被削材を得るのに十分な径の有機質中空体(好ましくは、被削材の研削焼けを防止するのに十分な径の有機質中空体)を有効量含有する。
【0021】
本発明のレジノイド研削砥石における砥粒の含有量は、研削砥石の用途等により適宜設定することができるが、砥粒の容量Tと結合材の全容量Bの容量比T/Bは、好ましくは1/100〜150/100(より好ましくは20/100〜80/100)の範囲内にする。本発明のレジノイド研削砥石における充填材(例えば、有機質中空体、無機質中空体等の各種充填材)の容量Jと前記結合材の容量Bの容量比J/Bは、好ましくは5/100〜400/100の範囲内にする。なお、発泡スチロール等のように加熱により収縮する気孔形成剤を用いて本発明のレジノイド研削砥石を製造した場合、前記気孔形成剤の収縮物が砥石の気孔に残存することがあるが、このような収縮物は充填材に含まれないものとする。
【0022】
結合剤としては、液状の樹脂を常温硬化させて成る硬化樹脂を含有する結合剤を用い、前記硬化樹脂は、エポキシ硬化樹脂、アクリル硬化樹脂及びウレタン硬化樹脂のうちの1種以上であり、より好ましくはエポキシ硬化樹脂を主成分(好ましくは硬化樹脂の全容量の50容量%以上、より好ましくは80容量%以上、さらに好ましくは90容量%以上、最も好ましくは100容量%)にすることができる。ここで、前記硬化樹脂(エポキシ硬化樹脂、アクリル硬化樹脂及びウレタン硬化樹脂等)には、硬化樹脂中に混入している樹脂以外のフィラー(製造原料の樹脂中に含まれている樹脂以外の、例えば、石英粉、炭酸カルシウム、タルクなどの各種粘土鉱物、アルミナ粉等の無機粉末フィラーであり、前記充填材以外のものである)も含まれるものとし、樹脂以外のフィラーの含有量は、樹脂以外のフィラーを含めた硬化樹脂の全容量の30%以下、好ましくは20%以下であり、樹脂以外のフィラーを実質的に含有しない場合もある。
【0023】
本発明のレジノイド研削砥石における本発明で特定する有機質中空体の混入量(含有量)については、結合剤(特に、結合剤の全てをエポキシ硬化樹脂とした場合)の全容量に対して5〜80容量%の範囲内であれば可能である。より好ましき量については、研削条件や被削材の材質によって適切な範囲がそれぞれ存在するので適宜設定する。製造する際に鋳込み工程を含む場合、結合剤(特に、結合剤の全てをエポキシ硬化樹脂とした場合)の全容量に対して80容量%を越える量を添加すると、混合物に含まれる粘度が上昇する事により良好な成形物が得られなくなる傾向がある。また、結合剤(特に、結合剤の全てをエポキシ硬化樹脂とした場合)の全容量に対して5容量%よりも少なくなるとその添加効果が薄くなり、本来の目的とした性能が得られない傾向がある。
【0024】
前記特定の有機質中空体の容量Uと前記結合材の容量Bの容量比U/Bは、5/100〜80/100(より好ましくは5/100〜50/100、さらに好ましくは20/100〜50/100)の範囲内にする。本発明のレジノイド研削砥石における気孔(有機質中空体における空隙を除く)の容量Kと前記結合材の容量Bの容量比K/Bは、好ましくは5/100〜350/100(より好ましくは20/100〜200/100)の範囲内にする。
【0025】
[充填材]
本発明のレジノイド研削砥石は、前記特定の有機質中空体と共にこれ以外の各種の充填材を含有することができる。
【0026】
〈有機質中空体〉
有機質中空体は、アクリル系樹脂及び塩化ビニリデン系樹脂のうちのいずれか1種又は2種以上の混合体から成る壁(殻)により形成される空隙(外部に連通しない閉じた空隙)を内部に少なくとも1(好ましくは1であり、2以上でもよい)有する中空体である。
【0027】
有機質中空体の材質は、好ましくは、アクリル系樹脂及びポリ塩化ビニリデン系樹脂のうちの1種又は2種以上の混合物である。
【0028】
アクリル系樹脂は、アクリル酸及びその誘導体を重合したものの総称であり、アクリル酸及びそのエステル、アクリルアミド、アクリロニトリル、メタクリル酸及びそのエステル等の重合体及び共重合体を包含する。好ましくは、メタアクリルニトリル共重合体樹脂を用いる。
【0029】
ポリ塩化ビニリデン系樹脂は、塩化ビニリデンを成分(好ましくは主成分)とする重合体の総称であり、例えば、ポリ塩化ビニリデン樹脂、塩化ビニリデン−塩化ビニル共重合体樹脂等がある。好ましくは、ポリ塩化ビニリデン樹脂を用いる。
【0030】
アクリル系樹脂とポリ塩化ビニリデン系樹脂の混合物としては、好ましくは、メタアクリルニトリル共重合体とポリ塩化ビニリデンの混合樹脂を含有する(より好ましくは100容量%含有する)樹脂混合物を用いる。メタアクリルニトリル共重合体100重量部に対して、好ましくは10〜1000重量部(より好ましくは30〜600重量部、さらに好ましくは50〜300重量部、特に好ましくは60〜150重量部)のポリ塩化ビニリデンを混合した混合樹脂を用いる。
【0031】
有機質中空体の壁(殻)の厚みは、0.05〜5μm(より好ましくは0.1〜0.5μm、さらに好ましくは0.1〜0.3μm)の範囲内である。壁(殻)の厚みが0.05μmよりも小さくなると、強度が弱い事から製造中(例えば製造原料の撹拌中)に割れやすい傾向があり、またその様な原料自体が世の中に供されていない場合が多い。逆に、壁(殻)の厚みが5μmよりも厚くなると、中部の気孔容量が小さくなって、有機質中空体の本来の添加目的である研削面からの結合剤の良好なボンド後退性が得られなくなる傾向がある。
【0032】
有機質中空体の平均粒子径は、10〜500μm(より好ましくは10〜300μm、さらに好ましくは10〜200μm、特に好ましくは50〜100μm)の範囲内にする。前記粒径が10μmよりも小さくなるとその効果が薄くなる傾向があり、また、500μmよりも大きくなるとボンド中に充填されたというよりはむしろ砥粒と砥粒の間隔を広げすぎてしまい、最終的には異常摩耗や研削寿命の低下に結び付く傾向がある。
【0033】
有機質中空体の真比重は、好ましくは0.01〜0.1(より好ましくは0.02〜0.05)にする。有機質中空体の空隙の径は、好ましくは10〜500μm(より好ましくは10〜300μm、さらに好ましくは10〜200μm、特に好ましくは50〜100μm)にする。
【0034】
有機質中空体の外形は、好ましくは球形(例えば、有機質バブル)、略球形、ラグビーボール形等であるが、例えば、直方体、立方体、円柱、角柱等の各種の立体形状にすることができる。また、有機質中空体の内部の空隙の形状は、好ましくは球形、略球形、ラグビーボール形等であるが、例えば、直方体、立方体、円柱、角柱等の各種の立体形状にすることができる。有機質中空体の内部の空隙の形状は、より好ましくは、当該有機質中空体の外形と同様の形状(例えば、有機質中空体の外形が球形の場合は、内部の空隙の形状も球形)にする。
【0035】
有機質中空体は、低沸点炭化水素をインサイト重合法により、塩化ビニリデン、アクリロニトリル等の共重合物の殻壁でマイクロカプセル化した熱膨張性微小球(例えば、粒径10〜30μmのカプセルの内部に液体のイソブタンあるいはイソペンタン等の膨張剤(カプセル重量に対して10〜15重量%)を含有する熱膨張性微小球)を加熱してカプセル内部の液体のイソブタンあるいはイソペンタン等の膨張剤を膨張させて得ることができる。
【0036】
有機質中空体は、市販のものを用いることができる。例えば、エクスパンセル(Expancel)社製のエクスパンセル(EXPANCEL)DEシリーズ(より詳細には、551DE、551DE20、551DE80、461DE、461DE20、091DE、091DE80等の乾燥した膨張済みのもの)、エクスパンセル(EXPANCEL)WEシリーズ(より詳細には、551WE、551WE20、551WE80等の湿潤した膨張済みのもの)、松本油脂製薬株式会社製のマツモトマイクロスフェアーFシリーズ(F−20、F−30、F−40、F−50、F−80ED、F−80S、F−82、F−85、F−100)等がある。
【0037】
〈有機質中空体以外の充填材〉
本発明のレジノイド研削砥石は、本発明の効果を損なわない範囲(結合剤の全容量に対して好ましくは10容量%以下、より好ましくは5容量%以下)で有機質中空体以外の充填材を含有することができる。有機質中空体以外の充填材としては、例えば、無機材料から成る中空体、あるいは有機材料、無機材料及びこれらの双方から成る複合材料のうちの1種以上から成る非中空体(内部に実質的な空隙を有さない中実粒子)がある。
【0038】
[結合剤]
本発明のレジノイド研削砥石は、好ましくは5〜80容量%(より好ましくは20〜60容量%)の結合剤を含有する。
【0039】
本発明のレジノイド研削砥石における結合剤としてのエポキシ硬化樹脂としては、2液混合型、1液型など液状のエポキシ樹脂から得られた硬化樹脂であれば全て使用可能であり、より好ましくは常温硬化の2液混合型のエポキシ樹脂を硬化させて成るエポキシ硬化樹脂であることが望ましい。
【0040】
[砥粒]
本発明のレジノイド研削砥石は、各種の砥粒を用いることができる。砥粒としては、Al2O3系砥粒、SiC系砥粒及びZrO2−Al2O3系砥粒等の一般砥粒と、立方晶窒化ホウ素(cBN)砥粒、ダイヤモンド砥粒等のような立方晶窒化ホウ素又はダイヤモンドと同等ないし同等以上の硬度を有する超砥粒がある。本発明のレジノイド研削砥石における砥粒としては、前記一般砥粒及び前記超砥粒のうちの1種以上を用いることができ、従って、前記一般砥粒のうちの1種以上と前記超砥粒のうちの1種以上を併用して用いることもできる。
【0041】
[気孔]
本発明のレジノイド研削砥石の気孔(有機質中空体における空隙を除く)としては、レジノイド研削砥石製造過程(例えば、鋳込み成形時)において自然に形成される粗大な(例えば、径2〜3mmないしこれ以上)気孔や、気孔形成剤(例えば発泡スチロール等)の添加により形成する径7mm未満(例えば、0.5〜1.0mmや0.5〜1.5mm)の気孔を含有することができる。
【0042】
[レジノイド研削砥石の製造方法]
本発明のレジノイド研削砥石は、液状の樹脂(エポキシ樹脂、アクリル樹脂及びウレタン樹脂の1種以上)を用いて製造することができる。以下、液状のエポキシ樹脂を用いて本発明のレジノイド研削砥石を製造する場合の一例を説明する。
【0043】
本発明のレジノイド研削砥石は、例えば、液状のエポキシ樹脂から成る主剤とその硬化剤の2液混合型のエポキシ樹脂を用いて製造することができる。即ち、液状のエポキシ樹脂主剤に有機質中空体を混合してこれらの混合物を得て、前記混合物に前記エポキシ樹脂の硬化剤を添加し、さらに砥粒(必要であれば砥粒及び気孔形成剤(例えば、径0.5〜2mm程度の発泡スチロール粒子等))を添加し混合して、得られた混合物を所定の型に鋳込む。その後、気孔形成剤を用いない場合は、常温で例えば12時間程度放置して硬化させて得られた鋳込み成形体を脱型し、本発明のレジノイド研削砥石として得ることができる。また、砥粒と共に前記発泡スチロール粒子等のような熱により収縮する気孔形成剤を添加した場合は、熱により収縮する気孔形成剤を分散して含む鋳込み成形体を脱型した後、150℃程度の温度でアフターキュアー(熱処理)を行い前記発泡スチロール粒子等のような熱収縮性の気孔形成剤を収縮させることにより、気孔を有する本発明のレジノイド研削砥石を得ることができる。
【0044】
前記鋳込み成形体において、砥粒の含有量は、研削砥石の用途等により適宜設定することができるが、気孔形成剤を用いない場合の砥粒の容量T’と結合材の全容量B’の容量比T’/B’は、好ましくは1/100〜150/100(より好ましくは10/100〜90/100)の範囲内にし、気孔形成剤を用いる場合の砥粒の容量T’と結合材の全容量B’の容量比T’/B’は、好ましくは1/100〜150/100(より好ましくは10/100〜90/100)の範囲内にする。
【0045】
前記鋳込み成形体において、製造過程における充填材(例えば、有機質中空体、気孔形成剤、無機質中空体等の各種充填材)の容量J’と前記結合材の容量B’の容量比J’/B’は、気孔形成剤を用いない場合、好ましくは1/100〜100/100(より好ましくは10/100〜90/100)の範囲内にし、気孔形成剤を用いる場合、好ましくは1/100〜400/100(より好ましくは10/100〜250/100)の範囲内にする。
【0046】
前記鋳込み成形体において、前記特定の有機質中空体の容量U’と前記結合材の容量B’の容量比U’/B’は、気孔形成剤を用いない場合、好ましくは5/100〜80/100(より好ましくは5/100〜50/100、さらに好ましくは20/100〜50/100)の範囲内にし、気孔形成剤を用いる場合、好ましくは5/100〜80/100(より好ましくは5/100〜50/100、さらに好ましくは20/100〜50/100)の範囲内にする。
【0047】
前記鋳込み成形体の全体の容積に対して、気孔(有機質中空体における空隙を除く気孔であり、鋳込み成形時に自然に形成される気孔)の容積は、気孔形成剤を用いない場合、好ましくは0〜40容積%(より好ましくは0〜15容積%)の範囲内にし、気孔形成剤を用いる場合、好ましくは0〜40容積%(より好ましくは0〜20容積%)の範囲内にする。
【0048】
前記鋳込み成形体において、気孔形成剤(例えば発泡スチロール等)の容量K2’と前記結合材の容量B’の容量比K2’/B’は、好ましくは5/100〜350/100(より好ましくは20/100〜200/100)の範囲内にする。
【0049】
レジノイド研削砥石の製造過程において加熱により収縮する気孔形成剤(例えば、発泡スチロール等)を用いて本発明のレジノイド研削砥石を製造した場合、製造後のレジノイド研削砥石において当該気孔形成剤により形成された気孔内部に、収縮した気孔形成剤の核が残存する。かかる核の寸法は極めて小さいので、研削の邪魔にはならない。
【0050】
本発明のレジノイド研削砥石の製造に使用できるエポキシ樹脂としては、2液混合型、1液型など液状のエポキシ樹脂であれば全て使用可能であるが、より好ましくは常温硬化の2液混合型のエポキシ樹脂であることが望ましい。この理由は、有機質中空体自体が持っている耐熱性との関係であり、有機質中空体自体の耐熱温度以下で硬化できれば、本発明のレジノイド研削砥石は例えばエポキシ樹脂で骨格が形成される為、エポキシ樹脂硬化後の養生(熱処理)は有機質中空体自体の耐熱温度を超えても問題は生じない。また、その研削作業によって砥粒間隔を広げる意味から、大きな気孔形成剤として発泡スチロールやそれに代わるものが入っている砥石に対しても同様な効果が得られる。
【0051】
2液混合型のエポキシ樹脂を用いて本発明のレジノイド研削砥石を製造する場合、エポキシ樹脂の硬化剤として、好ましくはアミン系、酸無水物系等のような中空体がおかされない程度の温度範囲で硬化可能な配合物(硬化剤系)を用いることができる。
【0052】
【実施例】
以下に本発明に関する実施例を示す。ここで砥石作成条件及びその組成については下記の通りである。
【0053】
〈砥石調合〉
砥粒として、粒度#150のAl2O3系砥粒を用いた。結合剤として、2液混合常温硬化型エポキシ樹脂(主剤が変性エポキシ樹脂であり、硬化剤が芳香族アミンである。)を用いた。尚、出来上がり後の砥石構造(砥粒率、ボンド率(結合剤率)、気孔率)が同じ物になるように、気孔形成剤として発泡スチロール(粒径1mm)をそれぞれ所定量添加した。尚、気孔率が50%を越えるような構造の砥石については、従来型製法では熟成変形が大きかったり、砥粒の沈降によって上下間に組織ムラが発生し、砥石を作ることができなかった。アフターキュアー後は、前記発泡スチロールを充填した部分は完全な気孔として存在する。実施例1〜6及び比較例1〜5における砥石調合を表1に示す。
【0054】
【表1】

Figure 0003539854
【0055】
[実施例1〜6及び比較例2〜4]
上記砥石調合(原材料及びその調合量)において、まず樹脂主剤に有機質バブル(有機質中空体)を混合しておき、その後硬化剤を添加し、さらに砥粒、発泡スチロールを投入混合した後、所定の型に鋳込む。その後常温で12時間硬化後、脱型し150℃の温度でアフターキュアーを行った。前記有機質バブルとしては、アクリル樹脂単体から成り、壁の厚さが0.1μmで、真比重が0.04であるものを用いた。
【0056】
[比較例1及び5]
比較例1については、主剤に有機質バブルを混合しない以外は上記実施例1と全て同じにした。また、比較例5については、有機質バブルの代わりに無機フィラー(タルク)10容量部を用いる以外は上記実施例1と全て同じにした。
【0057】
〈研削試験〉
研削試験砥石は、φ305mm(外径)×20mm(厚さ)×φ50.8mm(内径)の寸法のディスク状(ホイール状)であり、下記の研削条件で試験を行った。即ち、研削盤として横軸平面研削盤を用い、砥石周速度を1600m/minとした。被削材はSS41(生材)であり、被削材は120mm(長さ)×10mm(径)の柱状である。
【0058】
ここで、砥石の評価基準としては、加工時に掛かる消費動力(砥石の切味)と100pass(切込み量500μm)時点における砥石摩耗量及び加工物の面性状で比較を行った。研削試験結果を表2に示す。
【0059】
【表2】
Figure 0003539854
【0060】
【発明の効果】
請求項1〜のレジノイド研削砥石は、砥粒と充填材を結合剤に分散して成り、前記充填材として研削面品位に優れた被削材を得るのに十分な径の有機質中空体を有効量含有し、前記結合剤として液状の樹脂を常温硬化させて成る硬化樹脂を含有し、前記硬化樹脂はエポキシ硬化樹脂、アクリル硬化樹脂及びウレタン硬化樹脂のうちの1種以上であり、前記有機質中空体は、外部に連通しない閉じた空隙を内部に有し、アクリル系樹脂及び塩化ビニリデン系樹脂のうちのいずれか1種又は2種以上の混合体から成り、前記有機質中空体の平均粒径は10〜500μmの範囲内にあり、前記有機質中空体の壁の厚さは0.05〜5μmであり、前記有機質中空体の容量Uと前記結合材の容量Bの容量比U/Bは5/100〜80/100の範囲内にあるものであり、砥粒と前記特定の充填材である前記特定の有機質中空体を前記特定の結合剤に有効量分散して成るという構成を具備し、この構成が研削使用時にも保持されるので、低弾性率及び良好な砥粒保持力というレジノイド砥石が本来有する特性を維持しつつ、ボンド後退性(砥石の研削面における結合剤の後退性)が良く研削抵抗が低く、切味に優れ、研削焼けが発生しにくく、研削性能(砥石寿命)が飛躍的に向上し、さらに高負荷な研削が可能であるという基本的効果を奏することができる。
【0061】
請求項2〜のレジノイド研削砥石は、それぞれ、上記構成にさらに前記それぞれの請求項に記載の特定の構成を具備するので、上記基本的な効果が顕著である。
【図面の簡単な説明】
【図1】本発明のレジノイド研削砥石の表面の概略拡大図である。
【図2】被削材を研削する際の本発明のレジノイド研削砥石及び被削材の断面の概略拡大図である。
【図3】従来のレジノイド研削砥石の表面の概略拡大図である。
【図4】被削材を研削する際の従来のレジノイド研削砥石及び被削材の断面の概略拡大図である。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a resinoid grinding wheel using a resin as a binder. That is, in the technical field of the grinding wheel, the present invention particularly relates to a grinding wheel using a resinoid bond (resin-based binder).
[0002]
[Prior art]
The bond (binder) used for the grinding wheel is generally vitrified (glassy), resinoid (resinous), metal (metallic), etc. Among them, the resinoid bond (resinous binder) is included. As the resin used for, a phenol resin, an epoxy resin, a urethane resin, a melamine resin, a PVA (polyvinyl alcohol) resin, an acrylic resin, or the like is used depending on the operation (use).
[0003]
The main reason that resinoid bonds are used is that the load on the abrasive grains during grinding can be reduced by the low elastic modulus of the bond itself, so that compared to other bonds It is widely used for tasks that require a particularly high load.
[0004]
Furthermore, even among those resinoid bonds, those using an epoxy resin as a binder have a relatively low elastic modulus, so they are widely used especially for work with a large grinding allowance. I have.
[0005]
[Problems to be solved by the invention]
However, the conventional resinoid bonded grinding wheel still has the problem that the grinding resistance increases and the grinding burn eventually occurs.
[0006]
In the past, as a method of solving such a problem, an inorganic filler (for example, talc or mica) having a very low strength (hardness) has been mixed or a bubble (alumina) which is a spherical hollow body having a large inorganic material has been used. A method of bringing the structure itself into a coarse tissue by mixing a bubble or a glass balloon) is being studied.
[0007]
However, these methods have a problem that the original purpose of using the resinoid grindstone is impaired. In other words, there are new problems such as the characteristic of the low elastic modulus, which is the original characteristic of the resinoid grindstone, becoming thinner, and the inorganic filler itself hindering the grinding. It is not at the moment.
[0008]
The present invention solves the above-mentioned problems of the prior art, and maintains a low elasticity and a good abrasive holding power, which are inherent characteristics of a resinoid grindstone, has low grinding resistance, does not cause grinding burn, and has a high grinding surface quality. It is an object of the present invention to provide a resinoid grinding wheel capable of obtaining a work material excellent in quality.
[0009]
[Means for Solving the Problems]
According to the present invention, an abrasive and a filler are dispersed in a binder, containing an effective amount of an organic hollow body having a diameter sufficient to obtain a work material excellent in grinding surface quality as the filler, Liquid resin as the binder At normal temperature Contains cured resin that is cured The cured resin is one or more of an epoxy cured resin, an acrylic cured resin and a urethane cured resin, The organic hollow body is , Having a closed space inside that does not communicate with the outside, An acrylic resin and a mixture of two or more of vinylidene chloride-based resins, wherein the average particle diameter of the organic hollow body is in the range of 10 to 500 μm, and the wall of the organic hollow body is The thickness is 0.05 to 5 μm and the volume ratio U / B of the capacity U of the organic hollow body and the capacity B of the binder is in the range of 5/100 to 80/100. The point can be solved.
[0010]
Previous The average particle size of the organic hollow body can be in the range of 10 to 300 μm. . Previous The thickness of the wall of the organic hollow body can be 0.1 μm or more and 5 μm or less. The true specific gravity of the organic hollow body can be 0.01 to 0.1.
[0011]
The capacity ratio U / B of the capacity U of the organic hollow body and the capacity B of the binder can be in the range of 20/100 to 80/100. The organic hollow body has pores separately from the voids, and the volume ratio K / B of the volume K of the pores to the volume B of the binder may be in the range of 5/100 to 350/100.
[0012]
Hereinafter, the outline of the present invention will be described. Resinoid bond grindstones are manufactured mainly by coating powdery binder raw materials on abrasive grains, loading them into a given mold, and then press-molding them, or blending liquid resin and abrasive grains with a mixer. After that, there is a method of pouring into a mold in a wet state (casting method). Among these, most of the whetstones using epoxy resin as a binder material belong to the latter manufacturing method. Conventionally, the whetstone structure has little contact between the abrasive grains as shown in FIG. 3, and the abrasive grains float in the binder. It is like a situation.
[0013]
The resinoid whetstone molded using powdered resin raw material as the binder resin raw material is obtained by using liquid resin raw material, while abrasive grains are partially connected by bond bridges. The resinoid grindstone as shown in FIG. 3 has good abrasiveness (coating state) between the abrasive grains and the binder (cured resin) because the entire abrasive grains are covered with the binder, and the cured resin and the abrasive grains In addition to the chemical bonding force with the adhesive, the physical bonding force (gripping force) is further applied, and a stronger holding force is obtained. Grinding is possible.
[0014]
On the other hand, in the grinding of the work material, the structure of the grindstone corresponds by changing the ratio of the three components of the abrasive grains, the binder, and the pores according to the type of the work material and the grinding conditions. Pores are an important element for the purpose of removing chips generated by grinding and widening the gap between abrasive grains.
[0015]
The grindstone obtained by press molding at room temperature using powdered resin, while the pores that occur spontaneously from the relationship of the packing density plays its role, in the case of the casting method using liquid resin, With only the pores generated by the entrainment of bubbles, the amount of pores in the grinding wheel after production is small, and generally, 0.5 to 3 mm, and sometimes 5 mm, in the stage of stirring and pouring the liquid resin raw material at the time of production. Pores have been created by mixing an alumina bubble (alumina spherical hollow body) or styrofoam.
[0016]
However, as shown in FIG. 3, a grinding wheel structure obtained by a casting method in which a grinding wheel raw material containing such a liquid resin (for example, epoxy resin) is cast is filled with a binder between abrasive grains as shown in FIG. There are many cases. In such a conventional grinding wheel, the binder often protrudes from the abrasive cutting edge as shown in FIG. 4 during grinding, and this causes an increase in grinding resistance and grinding burn. In other words, the fact that the elastic modulus of the binder itself is low is a disaster, and the binder present between the abrasive grains and the abrasive grains protrudes from the grinding surface of the grindstone and hinders the grinding. However, many problems such as the occurrence of grinding burns have occurred.
[0017]
In the past, inorganic fillers (fillers) were mixed into binders for the purpose of increasing grinding resistance and reducing grinding burns, but in this case, the original resinous binder is expected. The fundamental solution has not been sought because the elastic modulus at the place where the heat is applied increases, and the filler material itself interferes with grinding.
[0018]
Therefore, the present inventor added fine organic bubbles (spherical organic hollow bodies) (true specific gravity of 0.01 to 0.1) to the binder as shown in FIG. 1 and impaired the low elastic modulus of the resin itself. (Rather, the modulus of elasticity is even lower). Even if the binder protrudes from the grinding surface, it does not hinder the grinding, and has a suitable retreating property on the grinding surface as shown in FIG. The tip surface of the binder is more separated (retracted) from the work material than the tip portion (abrasive cutting edge) of the abrasive grains, and the binder is less likely to contact the work material. The present inventors have found that the increase in the grinding resistance, which is a problem of the above, is small, and that the grinding can be performed with higher efficiency, thereby completing the present invention.
[0019]
In the present invention, the description of the numerical range includes not only both end values, but also all arbitrary intermediate values included therein.
[0020]
BEST MODE FOR CARRYING OUT THE INVENTION
[Resinoid grinding wheel]
The resinoid grinding wheel of the present invention contains abrasive grains and a filler dispersed in a binder, and as the filler, an organic hollow body (preferably an organic hollow body having a diameter sufficient to obtain a work material excellent in grinding surface quality) Contains an effective amount of an organic hollow body having a diameter sufficient to prevent grinding burn of the work material.
[0021]
The content of the abrasive grains in the resinoid grinding wheel of the present invention can be appropriately set depending on the use of the grinding wheel, etc., and the capacity ratio T / B of the volume T of the abrasive grains and the total volume B of the binder is preferably It is in the range of 1/100 to 150/100 (more preferably, 20/100 to 80/100). In the resinoid grinding wheel of the present invention, the capacity ratio J / B of the capacity J of the filler (for example, various fillers such as an organic hollow body and an inorganic hollow body) to the capacity B of the binder is preferably 5/100 to 400. / 100 range. When the resinoid grinding wheel of the present invention is manufactured using a pore-forming agent that shrinks by heating such as styrene foam, the shrinkage of the pore-forming agent may remain in the pores of the grindstone. Shrinkage shall not be included in the filler.
[0022]
As a binder, a liquid resin At normal temperature Using a binder containing a cured resin obtained by curing, the cured resin is , D Epoxy resin , One or more of a curable resin and a urethane resin, more preferably an epoxy resin as a main component (preferably at least 50% by volume of the total volume of the cured resin, more preferably at least 80% by volume, even more preferably 90% by volume or more, and most preferably 100% by volume). Here, the cured resin (epoxy cured resin) , Fillers other than the resin mixed in the cured resin (such as quartz resin, calcium carbonate, talc, etc.) Various clay minerals, inorganic powder fillers such as alumina powder, etc., other than the above fillers) are also included. The content of the filler other than the resin is the total volume of the cured resin including the filler other than the resin. 30% or less, preferably 20% or less, and there may be a case where fillers other than resin are not substantially contained.
[0023]
The amount (content) of the organic hollow body specified in the present invention in the resinoid grinding wheel of the present invention is 5 to 5% with respect to the total volume of the binder (particularly, when all of the binder is an epoxy cured resin). It is possible within the range of 80% by volume. The more preferable amount is appropriately set because there are appropriate ranges depending on the grinding conditions and the material of the work material. When a casting step is included in the production, adding more than 80% by volume to the total volume of the binder (particularly, when all of the binder is an epoxy cured resin) increases the viscosity contained in the mixture. This tends to make it impossible to obtain a good molded product. If the amount is less than 5% by volume based on the total volume of the binder (especially when all of the binder is an epoxy-cured resin), the effect of the addition becomes weak, and the intended performance tends not to be obtained. There is.
[0024]
The capacity ratio U / B of the capacity U of the specific organic hollow body and the capacity B of the binder is 5/100 to 80/100 (more preferably 5/100 to 50/100, and still more preferably 20/100 to 100). 50/100). In the resinoid grinding wheel of the present invention, the volume ratio K / B of the volume K of pores (excluding voids in the organic hollow body) and the volume B of the binder is preferably 5/100 to 350/100 (more preferably 20/100). 100-200 / 100).
[0025]
[Filling material]
The resinoid grinding wheel of the present invention can contain various other fillers together with the specific organic hollow body.
[0026]
<Organic hollow body>
The organic hollow body is Any one or a mixture of two or more of acrylic resins and vinylidene chloride resins Formed by a wall (shell) composed of (Outside At least 1 (preferably 1 and preferably 2 or more) inside the closed space not communicating with the portion. ) Yes Is a hollow body.
[0027]
The material of the organic hollow body is preferably one or a mixture of two or more of an acrylic resin and a polyvinylidene chloride resin.
[0028]
The acrylic resin is a general term for a polymer of acrylic acid and its derivatives, and includes polymers and copolymers of acrylic acid and its esters, acrylamide, acrylonitrile, methacrylic acid and its esters, and the like. Preferably, a methacrylonitrile copolymer resin is used.
[0029]
The polyvinylidene chloride-based resin is a general term for a polymer containing vinylidene chloride as a component (preferably as a main component), and includes, for example, a polyvinylidene chloride resin and a vinylidene chloride-vinyl chloride copolymer resin. Preferably, a polyvinylidene chloride resin is used.
[0030]
As the mixture of the acrylic resin and the polyvinylidene chloride resin, a resin mixture containing a mixed resin of a methacrylonitrile copolymer and polyvinylidene chloride (more preferably, containing 100% by volume) is preferably used. 10 to 1000 parts by weight (more preferably 30 to 600 parts by weight, more preferably 50 to 300 parts by weight, particularly preferably 60 to 150 parts by weight) of the poly (meth) acrylonitrile copolymer per 100 parts by weight. A mixed resin mixed with vinylidene chloride is used.
[0031]
The thickness of the wall (shell) of the organic hollow body is in the range of 0.05 to 5 μm (more preferably 0.1 to 0.5 μm, and still more preferably 0.1 to 0.3 μm). When the thickness of the wall (shell) is less than 0.05 μm, the strength tends to be weak, so that it tends to crack during production (for example, during stirring of the raw material), and such raw material itself is not provided to the world. Often. Conversely, when the thickness of the wall (shell) is more than 5 μm, the pore volume in the middle becomes small, and good bond retraction of the binder from the ground surface, which is the original purpose of adding the organic hollow body, is obtained. Tends to disappear.
[0032]
The average particle diameter of the organic hollow body is in the range of 10 to 500 µm (more preferably 10 to 300 µm, further preferably 10 to 200 µm, particularly preferably 50 to 100 µm). When the particle size is smaller than 10 μm, the effect tends to be reduced, and when the particle size is larger than 500 μm, the gap between the abrasive grains is excessively widened rather than filled in the bond. Tends to lead to abnormal wear and shortening of the grinding life.
[0033]
The true specific gravity of the organic hollow body is preferably 0.01 to 0.1 (more preferably 0.02 to 0.05). The diameter of the void in the organic hollow body is preferably 10 to 500 µm (more preferably 10 to 300 µm, further preferably 10 to 200 µm, particularly preferably 50 to 100 µm).
[0034]
The outer shape of the organic hollow body is preferably spherical (for example, organic bubble), substantially spherical, rugby ball shape, or the like. For example, various shapes such as a rectangular parallelepiped, a cube, a column, and a prism can be used. The shape of the void inside the organic hollow body is preferably a spherical shape, a substantially spherical shape, a rugby ball shape, or the like. For example, various voids such as a rectangular parallelepiped, a cube, a column, and a prism can be used. The shape of the void inside the organic hollow body is more preferably the same shape as the outer shape of the organic hollow body (for example, when the outer shape of the organic hollow body is spherical, the shape of the internal void is also spherical).
[0035]
The hollow organic material is formed of thermally expandable microspheres (for example, inside a capsule having a particle size of 10 to 30 μm) obtained by microencapsulating a low-boiling hydrocarbon with a shell wall of a copolymer such as vinylidene chloride or acrylonitrile by in-site polymerization. Is heated to expand the liquid expanding agent such as isobutane or isopentane inside the capsule by heating a liquid expanding agent such as isobutane or isopentane (10 to 15% by weight based on the weight of the capsule). Can be obtained.
[0036]
A commercially available organic hollow body can be used. For example, Expancel (EXPANCEL) DE series manufactured by Expancel (more specifically, dried and expanded ones such as 551DE, 551DE20, 551DE80, 461DE, 461DE20, 091DE, and 091DE80), Expancel Cell (EXPANCEL) WE series (more specifically, wet and expanded ones such as 551WE, 551WE20, 551WE80, etc.) and Matsumoto Microsphere F series (F-20, F-30, F-30, manufactured by Matsumoto Yushi Pharmaceutical Co., Ltd.) -40, F-50, F-80ED, F-80S, F-82, F-85, F-100).
[0037]
<Filling material other than organic hollow body>
The resinoid grinding wheel of the present invention contains a filler other than the organic hollow body in a range that does not impair the effects of the present invention (preferably 10% by volume or less, more preferably 5% by volume or less based on the total volume of the binder). can do. As the filler other than the organic hollow body, for example, a hollow body made of an inorganic material, or a non-hollow body made of one or more of an organic material, an inorganic material, and a composite material made of both of them (substantially inside) Solid particles without voids).
[0038]
[Binder]
The resinoid grinding wheel of the present invention preferably contains 5 to 80% by volume (more preferably 20 to 60% by volume) of a binder.
[0039]
As the epoxy curable resin as a binder in the resinoid grinding wheel of the present invention, any curable resin obtained from a liquid epoxy resin such as a two-part mixed type or a one-part type can be used, and more preferably room temperature curing. It is desirable to use an epoxy cured resin obtained by curing the two-component mixed type epoxy resin.
[0040]
[Abrasive]
Various abrasive grains can be used for the resinoid grinding wheel of the present invention. Examples of the abrasive grains include general abrasive grains such as Al2O3-based abrasive grains, SiC-based abrasive grains and ZrO2-Al2O3-based abrasive grains, and cubic boron nitride such as cubic boron nitride (cBN) abrasive grains and diamond abrasive grains. There are superabrasive grains having hardness equal to or higher than that of diamond. As the abrasive grains in the resinoid grinding wheel of the present invention, at least one of the general abrasive grains and the superabrasive grains can be used. Therefore, at least one of the general abrasive grains and the superabrasive grains can be used. One or more of the above may be used in combination.
[0041]
[Pore]
The pores (excluding voids in the organic hollow body) of the resinoid grinding wheel of the present invention may be coarse (eg, a diameter of 2 to 3 mm or more) which is naturally formed in the process of manufacturing the resinoid grinding wheel (for example, during casting). ) Pores and pores having a diameter of less than 7 mm (for example, 0.5 to 1.0 mm or 0.5 to 1.5 mm) formed by adding a pore forming agent (for example, styrene foam) can be contained.
[0042]
[Production method of resinoid grinding wheel]
The resinoid grinding wheel of the present invention is a liquid resin grinding wheel. (D Poxy resin , At least one of a krill resin and a urethane resin). Hereinafter, an example in which the resinoid grinding wheel of the present invention is manufactured using a liquid epoxy resin will be described.
[0043]
The resinoid grinding wheel of the present invention can be manufactured, for example, by using a two-component mixed type epoxy resin of a main agent composed of a liquid epoxy resin and a curing agent thereof. That is, an organic hollow body is mixed with a liquid epoxy resin base material to obtain a mixture thereof, a curing agent for the epoxy resin is added to the mixture, and abrasive particles (abrasive particles and a pore forming agent (if necessary) For example, styrene foam particles having a diameter of about 0.5 to 2 mm)) are added and mixed, and the resulting mixture is cast into a predetermined mold. After that, when the pore-forming agent is not used, the cast molded body obtained by being left to cure at room temperature for about 12 hours, for example, is demolded to obtain the resinoid grinding wheel of the present invention. When a pore-forming agent that shrinks due to heat, such as the styrene foam particles, is added together with the abrasive grains, after removing the cast molded body containing the pore-forming agent that shrinks due to heat dispersed therein, at about 150 ° C. The resinoid grinding wheel of the present invention having pores can be obtained by performing after-curing (heat treatment) at a temperature to shrink the heat-shrinkable pore-forming agent such as the styrene foam particles.
[0044]
In the cast body, the content of the abrasive grains can be appropriately set depending on the use of the grinding wheel or the like, but the capacity T ′ of the abrasive grains and the total capacity B ′ of the binder when no pore forming agent is used are used. The capacity ratio T ′ / B ′ is preferably in the range of 1/100 to 150/100 (more preferably 10/100 to 90/100), and is combined with the capacity T ′ of the abrasive grains when a pore-forming agent is used. The capacity ratio T '/ B' of the total capacity B 'of the material is preferably in the range of 1/100 to 150/100 (more preferably, 10/100 to 90/100).
[0045]
In the above cast body, a capacity ratio J ′ / B of a capacity J ′ of a filler (for example, various kinds of fillers such as an organic hollow body, a pore-forming agent, and an inorganic hollow body) and a capacity B ′ of the binder in a manufacturing process. 'Is preferably in the range of 1/100 to 100/100 (more preferably 10/100 to 90/100) when no pore former is used, and preferably 1/100 to 100/100 when the pore former is used. 400/100 (more preferably 10/100 to 250/100).
[0046]
In the cast molding, the capacity ratio U ′ / B ′ of the capacity U ′ of the specific organic hollow body and the capacity B ′ of the binder is preferably 5/100 to 80 / when no pore-forming agent is used. 100 (more preferably 5/100 to 50/100, further preferably 20/100 to 50/100), and when using a pore-forming agent, preferably 5/100 to 80/100 (more preferably 5/100 to 50/100). / 100 to 50/100, more preferably 20/100 to 50/100).
[0047]
The volume of pores (pores excluding the voids in the organic hollow body and pores formed naturally at the time of the casting) is preferably 0 when the pore forming agent is not used, with respect to the entire volume of the cast molded body. When the pore-forming agent is used, it is preferably in the range of 0 to 40% by volume (more preferably 0 to 20% by volume).
[0048]
In the cast body, the volume ratio K2 ′ / B ′ of the volume K2 ′ of the pore-forming agent (for example, styrene foam) and the volume B ′ of the binder is preferably 5/100 to 350/100 (more preferably 20/100). / 100 to 200/100).
[0049]
When the resinoid grinding wheel of the present invention is manufactured using a pore-forming agent (for example, styrene foam) that shrinks by heating during the manufacturing process of the resinoid grinding wheel, the pores formed by the pore-forming agent in the manufactured resinoid grinding wheel. Inside, the core of the contracted pore-forming agent remains. The dimensions of such nuclei are so small that they do not hinder grinding.
[0050]
As the epoxy resin that can be used for manufacturing the resinoid grinding wheel of the present invention, any liquid epoxy resin such as a two-part mixed type and a one-part type can be used. Desirably, it is an epoxy resin. The reason for this is the relationship with the heat resistance of the organic hollow body itself.If the organic hollow body can be cured at a temperature lower than the heat resistance temperature, the resinoid grinding wheel of the present invention has a skeleton formed of, for example, an epoxy resin. Curing (heat treatment) after curing the epoxy resin does not cause any problem even if the temperature exceeds the heat resistance temperature of the organic hollow body itself. In addition, the same effect can be obtained for a grindstone containing styrofoam or a substitute for a large pore forming agent as a large pore-forming agent from the viewpoint of increasing the abrasive grain spacing by the grinding operation.
[0051]
When the resinoid grinding wheel of the present invention is produced using a two-part mixed type epoxy resin, the curing agent for the epoxy resin is preferably a temperature range in which a hollow body such as an amine type or an acid anhydride type is not damaged. And a curable composition (curing agent system) can be used.
[0052]
【Example】
Examples of the present invention will be described below. Here, the grinding wheel preparation conditions and the composition are as follows.
[0053]
<Whetstone preparation>
Al2O3-based abrasive grains having a grain size of # 150 were used as the abrasive grains. As a binder, a two-part mixed room-temperature-curable epoxy resin (the main component is a modified epoxy resin and the curing agent is an aromatic amine) was used. Styrofoam (particle size: 1 mm) was added in a predetermined amount as a pore-forming agent so that the finished grindstone structure (abrasive grain ratio, bond ratio (binder ratio), porosity) was the same. Incidentally, with respect to a grindstone having a structure in which the porosity exceeds 50%, the conventional production method causes a large aging deformation, and the unevenness of the structure occurs between the upper and lower parts due to sedimentation of the abrasive grains, so that the grindstone cannot be formed. After the after-cure, the portion filled with the styrofoam exists as complete pores. Table 1 shows the grindstone formulations in Examples 1 to 6 and Comparative Examples 1 to 5.
[0054]
[Table 1]
Figure 0003539854
[0055]
[Examples 1 to 6 and Comparative Examples 2 to 4]
In the above-mentioned whetstone preparation (raw material and its preparation amount), first, an organic bubble (organic hollow body) is mixed with a resin base material, and then a curing agent is added. Cast into Thereafter, after curing at room temperature for 12 hours, the mold was removed and after-cured at a temperature of 150 ° C. As the organic bubble, an acrylic bubble having a wall thickness of 0.1 μm and a true specific gravity of 0.04 was used.
[0056]
[Comparative Examples 1 and 5]
Comparative Example 1 was the same as Example 1 except that no organic bubbles were mixed with the main ingredient. Comparative Example 5 was the same as Example 1 except that 10 parts by volume of an inorganic filler (talc) was used instead of the organic bubbles.
[0057]
<Grinding test>
The grinding test grindstone was a disk (wheel) having a size of φ305 mm (outer diameter) × 20 mm (thickness) × φ50.8 mm (inner diameter), and a test was performed under the following grinding conditions. That is, a horizontal axis surface grinder was used as the grinder, and the peripheral speed of the grindstone was 1600 m / min. The work material is SS41 (raw material), and the work material has a column shape of 120 mm (length) × 10 mm (diameter).
[0058]
Here, as a criterion for evaluating the grindstone, a comparison was made between the power consumption (cutting property of the grindstone) applied during processing, the wear amount of the grindstone at the time of 100 pass (cutting amount: 500 μm), and the surface properties of the workpiece. Table 2 shows the results of the grinding test.
[0059]
[Table 2]
Figure 0003539854
[0060]
【The invention's effect】
Claim 1 6 The resinoid grinding wheel is formed by dispersing abrasive grains and a filler in a binder, and contains an effective amount of an organic hollow body having a diameter sufficient to obtain a work material excellent in grinding surface quality as the filler, Liquid resin as the binder At normal temperature Contains cured resin that is cured The cured resin is one or more of an epoxy cured resin, an acrylic cured resin and a urethane cured resin, The organic hollow body is , Having a closed space inside that does not communicate with the outside, An acrylic resin and a mixture of two or more of vinylidene chloride-based resins, wherein the average particle diameter of the organic hollow body is in the range of 10 to 500 μm, and the wall of the organic hollow body is The thickness is 0.05 to 5 μm, and the capacity ratio U / B of the capacity U of the organic hollow body to the capacity B of the binder is in the range of 5/100 to 80/100. Which has a configuration in which abrasive particles and the specific organic hollow body, which is the specific filler, are dispersed in an effective amount in the specific binder, and this configuration is retained even during grinding use. , While maintaining the inherent characteristics of resinoid grinding wheels such as low elastic modulus and good abrasive holding power, it has good bond retraction (binding agent retraction on the grinding surface of the grinding wheel), low grinding resistance, excellent sharpness, and excellent grinding. Burning is less likely to occur, and the grinding effect (grinding wheel life) is remarkably improved, and the basic effect of enabling high-load grinding can be achieved.
[0061]
Claim 2 6 Resinoid grinding wheels of the above, respectively, in addition to the above configuration Each claim With the specific configuration, the above-described basic effects are remarkable.
[Brief description of the drawings]
FIG. 1 is a schematic enlarged view of the surface of a resinoid grinding wheel of the present invention.
FIG. 2 is a schematic enlarged view of a cross section of the resinoid grinding wheel of the present invention and a work material when the work material is ground.
FIG. 3 is a schematic enlarged view of the surface of a conventional resinoid grinding wheel.
FIG. 4 is a schematic enlarged view of a cross section of a conventional resinoid grinding wheel and a workpiece when grinding the workpiece.

Claims (6)

砥粒と充填材を結合剤に分散して成り、前記充填材として研削面品位に優れた被削材を得るのに十分な径の有機質中空体を有効量含有し、前記結合剤として液状の樹脂を常温硬化させて成る硬化樹脂を含有し、
前記硬化樹脂はエポキシ硬化樹脂、アクリル硬化樹脂及びウレタン硬化樹脂のうちの1種以上であり、
前記有機質中空体は、外部に連通しない閉じた空隙を内部に有し、アクリル系樹脂及び塩化ビニリデン系樹脂のうちのいずれか1種又は2種以上の混合体から成り、前記有機質中空体の平均粒径は10〜500μmの範囲内にあり、前記有機質中空体の壁の厚さは0.05〜5μmであり、前記有機質中空体の容量Uと前記結合材の容量Bの容量比U/Bは5/100〜80/100の範囲内にあることを特徴とするレジノイド研削砥石。
An abrasive and a filler are dispersed in a binder, and the filler contains an effective amount of an organic hollow body having a diameter sufficient to obtain a work material having excellent grinding surface quality, and the filler is in a liquid state. Contains a cured resin obtained by curing the resin at room temperature ,
The cured resin is one or more of an epoxy cured resin, an acrylic cured resin and a urethane cured resin,
The organic hollow body has a closed void therein that does not communicate with the outside, and is made of a mixture of one or more of an acrylic resin and a vinylidene chloride-based resin. The particle size is in the range of 10 to 500 μm, the thickness of the wall of the organic hollow body is 0.05 to 5 μm, and the volume ratio U / B of the capacity U of the organic hollow body and the capacity B of the binder is U / B. Is a resinoid grinding wheel characterized by being in the range of 5/100 to 80/100.
前記有機質中空体の平均粒径は10〜300μmの範囲内にあることを特徴とする請求項に記載のレジノイド研削砥石。The resinoid grinding wheel according to claim 1 , wherein the average particle diameter of the organic hollow body is in a range of 10 to 300 m. 前記有機質中空体の壁の厚さは0.1μm以上5μm以下であることを特徴とする請求項1〜のいずれかに記載のレジノイド研削砥石。Resinoid grinding wheel according to any one of claims 1-2, wherein the thickness of the wall of said organic hollow material is 0.1μm or more 5μm or less. 前記有機質中空体の真比重は0.01〜0.1であることを特徴とする請求項1〜のいずれかに記載のレジノイド研削砥石。The resinoid grinding wheel according to any one of claims 1 to 3 , wherein a true specific gravity of the organic hollow body is 0.01 to 0.1. 前記有機質中空体の容量Uと前記結合材の容量Bの容量比U/Bは、20/100〜80/100の範囲内にあることを特徴とする請求項1〜のいずれかに記載のレジノイド研削砥石。Volume ratio U / B capacity B of the binder and capacity U of the organic hollow body according to any one of claims 1 to 4, characterized in that in the range of 20 / 100-80 / 100 Resinoid grinding wheel. 前記有機質中空体の空隙とは別に気孔を有し、前記気孔の容量Kと前記結合剤の容量Bの容量比K/Bは、5/100〜350/100の範囲内にあることを特徴とする請求項1〜のいずれかに記載のレジノイド研削砥石。The organic hollow body has pores separately from the voids, and the volume ratio K / B of the volume K of the pores to the volume B of the binder is in the range of 5/100 to 350/100. resinoid grinding wheel according to any one of claims 1 to 5.
JP34410197A 1997-11-28 1997-11-28 Resinoid grinding wheel Expired - Lifetime JP3539854B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP34410197A JP3539854B2 (en) 1997-11-28 1997-11-28 Resinoid grinding wheel
EP98955931A EP0963813A4 (en) 1997-11-28 1998-11-25 Resinoid grinding wheel
PCT/JP1998/005312 WO1999028086A1 (en) 1997-11-28 1998-11-25 Resinoid grinding wheel
US09/755,113 US6440185B2 (en) 1997-11-28 2001-01-08 Resinoid grinding wheel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP34410197A JP3539854B2 (en) 1997-11-28 1997-11-28 Resinoid grinding wheel

Publications (2)

Publication Number Publication Date
JPH11156725A JPH11156725A (en) 1999-06-15
JP3539854B2 true JP3539854B2 (en) 2004-07-07

Family

ID=18366661

Family Applications (1)

Application Number Title Priority Date Filing Date
JP34410197A Expired - Lifetime JP3539854B2 (en) 1997-11-28 1997-11-28 Resinoid grinding wheel

Country Status (3)

Country Link
EP (1) EP0963813A4 (en)
JP (1) JP3539854B2 (en)
WO (1) WO1999028086A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105171628A (en) * 2015-08-03 2015-12-23 苏州瑞高工程科技有限公司 Resin abrasive disc
CN106826591A (en) * 2017-03-17 2017-06-13 衢州学院 A kind of rubber resin combined binder grinding tool and preparation method thereof

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001085394A1 (en) * 2000-05-10 2001-11-15 Noritake Co., Limited Porous phenol resin grindstone and method for its preparation
JP2006320992A (en) * 2005-05-18 2006-11-30 Noritake Co Ltd Method of manufacturing mirror polishing resinoid grinding wheel containing solid lubricant
CA3200535A1 (en) 2006-11-06 2008-05-15 Fisher & Paykel Healthcare Limited Integrated humidifier chamber and lid
JP5476666B2 (en) * 2007-08-27 2014-04-23 学校法人早稲田大学 Cutting grinding composition, cutting grinding fluid, cutting grinding wheel and surface modifying material
KR20110019427A (en) 2008-06-23 2011-02-25 생-고뱅 어브레이시브즈, 인코포레이티드 High porosity vitrified superabrasive products and method of preparation
CN102119202A (en) * 2008-06-23 2011-07-06 圣戈班磨料磨具有限公司 High porosity superabrasive resin products and method of manufacture
TW201024034A (en) * 2008-12-30 2010-07-01 Saint Gobain Abrasives Inc Bonded abrasive tool and method of forming
KR101088241B1 (en) 2009-05-25 2011-11-30 이화다이아몬드공업 주식회사 Tip of wheel for grinding
CN102639297B (en) 2009-10-27 2015-11-25 圣戈班磨料磨具有限公司 The abrasive material of vitreous bonding
AU2010315460B2 (en) 2009-10-27 2014-11-20 Saint-Gobain Abrasifs Resin bonded abrasive
US9266220B2 (en) 2011-12-30 2016-02-23 Saint-Gobain Abrasives, Inc. Abrasive articles and method of forming same
CN103223643B (en) * 2013-05-03 2015-10-28 鲁启华 A kind of Ultrathin blade
CN103786105B (en) * 2014-01-23 2016-01-20 沈阳中科超硬磨具磨削研究所 A kind of efficient grooving resin wheel and application process preventing workpiece burn
CN104440610B (en) * 2014-11-14 2017-09-19 河南新源超硬材料有限公司 High-precision drum-type resin anchoring agent diamond grinding wheel and preparation method thereof
CN104493734B (en) * 2014-12-23 2016-10-05 广东奔朗新材料股份有限公司 Hide the preparation method of diamond abrasive tool of solidified type epoxy resinoid bond
CN105290985B (en) * 2015-11-23 2017-11-28 郑州磨料磨具磨削研究所有限公司 A kind of superhard resin wheel
JP6929060B2 (en) * 2016-12-28 2021-09-01 スリーエム イノベイティブ プロパティズ カンパニー Abrasives and their manufacturing methods
CN107953275A (en) * 2017-11-18 2018-04-24 宁波大华砂轮有限公司 A kind of modified resin emery wheel and preparation method thereof
CN109968221B (en) * 2017-12-27 2021-04-06 山东圣泉新材料股份有限公司 High-strength heavy-load grinding wheel and preparation method thereof
JP2019171520A (en) 2018-03-28 2019-10-10 株式会社ノリタケカンパニーリミテド Resinoid grinding wheel

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2806772A (en) * 1954-09-15 1957-09-17 Electro Refractories & Abrasiv Abrasive bodies
US3502453A (en) * 1968-08-22 1970-03-24 Minnesota Mining & Mfg Abrasive article containing hollow spherules filled with lubricant
JPS5486892A (en) * 1977-12-22 1979-07-10 Heijirou Fukuda Method of continuously making thin resinoid layer artificial grindstone for cutting off metal material
JPS55137887A (en) * 1979-04-06 1980-10-28 Noritake Co Ltd Grindstone of fine abrasive particle and its manufacturing method
JPS59107859A (en) * 1982-12-09 1984-06-22 Inoue Japax Res Inc Grindstone
JPS6239185A (en) * 1985-08-14 1987-02-20 Riken Korandamu Kk Emery cloth
JPS63256365A (en) * 1987-04-11 1988-10-24 Showa Denko Kk Porous grindstone
US5110322A (en) * 1989-09-13 1992-05-05 Norton Company Abrasive article

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105171628A (en) * 2015-08-03 2015-12-23 苏州瑞高工程科技有限公司 Resin abrasive disc
CN106826591A (en) * 2017-03-17 2017-06-13 衢州学院 A kind of rubber resin combined binder grinding tool and preparation method thereof

Also Published As

Publication number Publication date
EP0963813A4 (en) 2003-08-13
WO1999028086A1 (en) 1999-06-10
EP0963813A1 (en) 1999-12-15
JPH11156725A (en) 1999-06-15

Similar Documents

Publication Publication Date Title
JP3539854B2 (en) Resinoid grinding wheel
US6440185B2 (en) Resinoid grinding wheel
KR101951978B1 (en) Composite abrasive wheel
TWI295952B (en) Bonded abrasive tool and method of centerless grinding
JP2559106Y2 (en) Coarse grains for grinding
JP2523971B2 (en) Abrasive article
US2986455A (en) Bonded abrasive articles
US2806772A (en) Abrasive bodies
RU2203797C2 (en) Method for making abrasive article
KR20130103330A (en) Ceramic shaped abrasive particles, methods of making the same, and abrasive articles containing the same
CN106687253A (en) Methods of making abrasive articles and bonded abrasive wheel preparable thereby
TW201024034A (en) Bonded abrasive tool and method of forming
US3850589A (en) Grinding tool having a rigid and dimensionally stable resin binder
WO2005105377A1 (en) Abrasive articles, compositions, and methods of making the same
KR101546694B1 (en) High porosity superabrasive resin products and method of manufacture
US6796891B2 (en) Grinding wheel, a process of manufacturing the grinding wheel and a process of reclaiming the grinding wheel
US2734812A (en) robie
US20110281511A1 (en) Grinding disk having plant seed capsules as a filler and method for the production thereof
CA1175665A (en) Abrasive article
GB2102445A (en) Abrasive material and method of making it
CN109852019A (en) A kind of hollow glass micropearl-elastic resin composite grain and the preparation method and application thereof
JP3691988B2 (en) Multi-porous epoxy grinding wheel and method for producing the same
JPS63234037A (en) Polishing article and its production
JPH0763936B2 (en) Grinding stone and method for manufacturing the same
JP2001138246A (en) Porous epoxy grinding wheel and its manufacturing method

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20021022

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040323

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090402

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100402

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110402

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120402

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120402

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130402

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130402

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140402

Year of fee payment: 10

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term