JP3539200B2 - Method for concentrating gallium from sediment containing gallium compound, abrasive grains and cutting oil - Google Patents

Method for concentrating gallium from sediment containing gallium compound, abrasive grains and cutting oil Download PDF

Info

Publication number
JP3539200B2
JP3539200B2 JP11063398A JP11063398A JP3539200B2 JP 3539200 B2 JP3539200 B2 JP 3539200B2 JP 11063398 A JP11063398 A JP 11063398A JP 11063398 A JP11063398 A JP 11063398A JP 3539200 B2 JP3539200 B2 JP 3539200B2
Authority
JP
Japan
Prior art keywords
gallium
cutting oil
abrasive grains
compound
fine powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP11063398A
Other languages
Japanese (ja)
Other versions
JPH11302753A (en
Inventor
武 上谷地
実行 柿本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP11063398A priority Critical patent/JP3539200B2/en
Publication of JPH11302753A publication Critical patent/JPH11302753A/en
Application granted granted Critical
Publication of JP3539200B2 publication Critical patent/JP3539200B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Manufacture And Refinement Of Metals (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、ガリウムを含む化合物半導体結晶ウエハの製造過程で発生しガリウム化合物、砥粒および切削油を含む澱物から、ガリウム分を濃縮して回収する方法に関する。
【0002】
【従来の技術】
ガリウムを含む化合物半導体結晶ウエハの製造過程で、ガリウムを含む化合物半導体結晶(以下「ガリウム化合物」という)を切断する際には、ダイヤモンド内周刃切断装置を用いていた。この際に切削屑として発生する澱物は、ガリウム化合物の切削粉がほとんどであり、金属ガリウム回収のための原料として利用されていた。
【0003】
しかるに、近年、切断ロス低減による低コスト化のため、ガリウム化合物の切断方法が切断しろのより少ないワイヤーソー切断に置き換わってきた。ワイヤーソー切断では砥粒を分散させた切削油を用いる。そのためワイヤーソー切断の際に発生する澱物は、微細な切削粉(細粉)、より粗大な砥粒(粗粉)および切削油を含む混合物として捕集される。ワイヤーソー切断では砥粒の使用量が多いため、上記澱物は、ガリウム化合物含有量が10重量%以下で、ガリウム濃度が低い(以下「重量%」を「%」と記す)。
【0004】
このようなワイヤーソー切断の際に発生した澱物からガリウム分を回収しようとすると、(1)ガリウム分を酸に溶解させるために、ガリウム濃度が低い該澱物を処理する必要がある、(2)該澱物が切削油を含むので、回収される金属ガリウムに不純物が多く含まれる。そのため、上記澱物からガリウム分を回収することは経済的に見合わなかった。そこで、従来、上記澱物は産業廃棄物として処分されていた。
【0005】
しかしながら、不足しがちなガリウム資源を有効に利用するという観点から、ワイヤーソー切断の際に発生した澱物から経済的に有利にガリウム分を回収することが強く要望されている。
【0006】
【発明が解決しようとする課題】
本発明の目的は、上記事情に鑑み、ガリウム化合物、砥粒および切削油を含む澱物(以下「ガリウム化合物、砥粒および切削油を含む澱物」を「澱物」と単にいう)からガリウム分を簡便に、かつ著しく濃縮して回収する方法を提供することにある。
【0007】
【課題を解決するための手段】
上記目的を達成するために、第1発明は、澱物中の切削油を除去するために該澱物中のガリウム化合物の熱分解温度未満の温度で該澱物を加熱することにより、乾燥物を得る第1工程、および該澱物中の砥粒を除去するために該乾燥物をガリウム分を主に含む細粉と該砥粒を主に含む粗粉とに分級することにより、該細粉を回収する第2工程からなる澱物からのガリウム分の濃縮方法である。
【0008】
また、第2発明は、澱物を有機溶媒に分散させて切削油を溶解させた後に固液分離することにより、固形物を得る第1工程、該固形物中に残留する該切削油および該有機溶媒を除去するために該固形物中のガリウム化合物の熱分解温度未満の温度で該固形物を加熱することにより、乾燥物を得る第2工程、および該乾燥物中の砥粒を除去するために該乾燥物をガリウム分を主に含む細粉と該砥粒を主に含む粗粉とに分級することにより、該細粉を回収する第3工程からなる澱物からのガリウム分の濃縮方法である。
【0009】
【発明の実施の形態】
[第1発明]
(1)第1工程
第1発明において、第1工程では、澱物中の切削油を蒸発させ除去するために該澱物中のガリウム化合物の熱分解温度未満の温度で該澱物を加熱する。そして、ガリウム分を主に含む細粉と砥粒を主に含む粗粉とからなる乾燥物を得る。
【0010】
上記ガリウム化合物の熱分解温度未満の温度を加熱温度とするのは、該熱分解温度以上とすると、該ガリウム化合物が熱分解し、生成した溶融金属ガリウムのためガリウムを主に含む細粉を第2工程(後述)で回収するのが困難となるからである。
【0011】
また上記加熱温度が切削油の沸点以上であると、切削油を速やかに蒸発させることができて好ましい。なお、切削油の沸点や後述する有機溶媒の沸点には温度範囲が通常あるが、温度範囲のある沸点の高低をいう場合に用いる沸点は、「沸点の上限」を本明細書では意味する。
【0012】
(2)第2工程
第2工程では、澱物中の砥粒を除去するために、ガリウム分を主に含む細粉と該砥粒を主に含む粗粉とに上記乾燥物を分級する。そして、上記細粉を回収する。
【0013】
分級は、ガリウム分を主に含む細粉と砥粒を主に含む粗粉との粒径差や密度差などを利用して、該細粉と該粗粉とをできるだけ分離性よく分離する条件で行えばよい。分級方法は、特に制限はないが、風力分級が簡便で好ましい。
【0014】
第1発明により、第1工程で澱物から切削油を除去し、また第1工程で得た乾燥物から第2工程で砥粒を除去するので、該澱物からガリウム分を簡便に、かつ著しく濃縮することができる。
【0015】
[第2発明]
(1)第1工程および第2工程
第2発明において、第1工程では、澱物を有機溶媒に分散させて切削油を溶解・希釈した後に固液分離する。そして、残留する切削油および有機溶媒を含む固形物を得る。澱物に含まれる切削油および有機溶媒の大部分が第1工程で分離液に移行するので、第2工程の加熱の負担が著しく軽減される。
【0016】
第2工程では、固形物中に残留する切削油および有機溶媒を蒸発させ除去するために該固形物中のガリウム化合物の熱分解温度未満の温度で該固形物を加熱する。そして、ガリウム分を主に含む細粉と砥粒を主に含む粗粉とからなる乾燥物を得る。固形物中に残留する切削油および有機溶媒を第2工程で除去するので、第3工程(後述)の分級で上記細粉と粗粉との分離性が向上するだけでなく、ガリウム分の濃縮率も向上する。
【0017】
第1工程で澱物を分散させる有機溶媒は、上記蒸発の際に切削油が完全に蒸発する前に有機溶媒が蒸発してしまうように、切削油より蒸発しやすいもの、つまり沸点が切削油の沸点より低いものが好ましい。
【0018】
有機溶媒を用いないで加熱すると、切削油中の不揮発成分がガリウム化合物と砥粒とを焼き付かせ密着凝集させる。これに対して、有機溶媒を用いると、該有機溶媒が上記不揮発成分を置換・除去して、ガリウム化合物と砥粒とを別々に分離させる。そのため、第3工程(後述)の分級でガリウム化合物と砥粒との分離性が向上する。
【0019】
上記有機溶媒としては、(a)切削油と容易に混合できる、(b)安価である、(c)回収再利用がしやすいという点で、灯油が最も適当である。
【0020】
澱物中に、ワイヤーソーのワイヤー片などの磁性物が含まれていると、第1工程で該磁性物を除去することが好ましい。具体的には、例えば有機溶媒に澱物を分散させた後、固液分離する前に、磁性物を磁石に吸着させ除去する。この除去により、金属ガリウムとして回収するまでに必要で、かつ繁雑な脱Fe処理を省くことができる。
【0021】
第2工程における固形物の加熱温度は、第1発明・第1工程における澱物の加熱温度と同様に、切削油の沸点以上が好ましい。
【0022】
(2)第3工程
第3工程では、上記乾燥物から砥粒を除去するために該乾燥物を分級して、上記細粉を回収する。すなわち、この第3工程は、第1発明の第2工程と同様である。例えば、分級方法は、風力分級が簡便で好ましい。
【0023】
第2発明により、第1工程および第2工程で澱物から切削油を除去し、また第2工程で得た乾燥物から第3工程で砥粒を除去するので、澱物からガリウム分を簡便に、かつ著しく濃縮することができる。
【0024】
【実施例】
[実施例1]
リン化ガリウム単結晶(熱分解温度:680℃)をワイヤーソーで切断した際に切削屑として発生した澱物を処理した。この澱物は、リン化ガリウムの切削粉、SiCが主成分の砥粒、および切削油(沸点:200〜300℃)を含む。上記澱物を分析した結果を表1に示す。
【0025】
【表1】

Figure 0003539200
【0026】
まず、上記澱物770g(ガリウム含有量48.7g)を300℃で加熱し、切削油分を蒸発させた。得られた乾燥物を分析した結果を表2に示す。
【0027】
【表2】
Figure 0003539200
【0028】
なお、上記乾燥物を顕微鏡で観察したところ、約10μmの粒子と1〜3μmの粒子とが凝集してより大きな粒子を形成していることが確認された。
【0029】
上記乾燥物を風力分級機により5μmを境として分級して、56gの細粉と627gの粗粉を得た。粗粉の主体をなすものはSiCの砥粒であり、リン化ガリウムは細粉の方に多く含まれる。細粉の分析の結果を表3に示す。
【0030】
【表3】
Figure 0003539200
【0031】
上記細粉56gから従来方法により金属ガリウムを回収した。すなわち、上記細粉を酸に溶解した後中和して、ガリウムを一旦水酸化ガリウムとした。その後、水酸化ガリウムをアルカリ性溶液に溶解し、電解にて金属ガリウムを回収した。その結果、21gの金属ガリウムが得られた。
【0032】
[実施例2]
実施例1で用いた澱物764g(ガリウム含有量:48.4g)を灯油(沸点:150〜280℃)2000ミリリットルに撹拌・分散した後、永久磁石を入れ磁石吸着物を除去し、該灯油ともども切削油を固液分離した。
【0033】
得られた固形物を300℃で加熱して残留灯油分を蒸発させ、乾燥物を得た。この乾燥物を分析した結果を表4に示す。
【0034】
【表4】
Figure 0003539200
【0035】
なお、上記乾燥物を顕微鏡で観察したところ、約10μmの粒子と1〜3μmの粒子とが分離して存在していることが確認された。
【0036】
上記乾燥物を風力分級機により5μmを境として分級して、92gの細粉と589gの粗粉を得た。粗粉の主体をなすものはSiCの砥粒であり、細粉にはリン化ガリウムが濃縮されている。細粉の分析の結果を表5に示す。
【0037】
【表5】
Figure 0003539200
【0038】
表5に示す組成の細粉92gから実施例1と同様の方法により金属ガリウムを回収したところ、37gの金属ガリウムが得られた。
【0039】
[比較例1]
実施例1で用いた澱物710g(ガリウム含有量:44.9g)を300℃で加熱して切削油分を蒸発させ、実施例1と同様の(表2に示す組成の)乾燥物639gを得た。
【0040】
酸溶解・中和以降の実施例1と同様の方法により上記乾燥物639gから金属ガリウムを回収した。その結果、17gの金属ガリウムが得られた。
【0041】
実施例1と比較例1との結果を比較すると、次の通りである。
【0042】
(1)当初の澱物からのガリウム回収率:
実施例1では43%(21g/48.7g×100)で、比較例1では38%(17g/44.9g×100)であり、ほぼ同等の値である。
【0043】
(2)当初の澱物量に対する酸に溶解する細粉量:
実施例1では7%(56g/770g×100)にまで減少しているのに対して、比較例1では90%(639g/710g×100)にしか減少していない。
【0044】
(3)酸に溶解する細粉量と回収した金属ガリウム量との比率:
実施例1では2.7(56g/21g)であるのに対して、比較例1が37.6(639g/17g)である。
【0045】
また、実施例2についての上記と同様の結果は、次の通りである。
【0046】
(1)当初の澱物からのガリウム回収率は76%(37g/48.4g×100)で、比較例1や実施例1より著しく高い。
【0047】
(2)当初の澱物量に対する酸に溶解する乾燥物量は、12%(92g/764g×100)で、実施例1より若干多いが比較例1より著しく減少している。
【0048】
(3)酸に溶解する乾燥物量と回収した金属ガリウム量との比率は2.5(92g/37g)で、実施例1と同様に著しく小さい。
【0049】
以上のことから、分級という簡便な工程を増やしただけで、酸溶解物(実施例1、2では細粉、比較例1では乾燥物)量を著しく減少させる(実施例1は比較例1の1/13.9(2.7/37.6))ことができることが分かる。
【0050】
【発明の効果】
本発明によれば、澱物からガリウム分を簡便に、かつ著しく濃縮する方法、つまり経済的に見合って澱物からガリウム分を回収する方法を提供することができる。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a method for concentrating and recovering gallium from a gallium-containing compound, abrasive grains, and a deposit containing cutting oil, which is generated in a manufacturing process of a compound semiconductor crystal wafer containing gallium.
[0002]
[Prior art]
In cutting a compound semiconductor crystal containing gallium (hereinafter referred to as a “gallium compound”) in a process of manufacturing a compound semiconductor crystal wafer containing gallium, a diamond inner peripheral blade cutting device has been used. Most of the sediment generated as cutting chips at this time is a cutting powder of a gallium compound, and has been used as a raw material for collecting metal gallium.
[0003]
However, in recent years, in order to reduce the cost by reducing the cutting loss, the cutting method of the gallium compound has been replaced by a wire saw cutting with less cutting margin. In the wire saw cutting, a cutting oil in which abrasive grains are dispersed is used. Therefore, the deposits generated during wire saw cutting are collected as a mixture containing fine cutting powder (fine powder), coarser abrasive grains (coarse powder) and cutting oil. Since the amount of abrasive used in wire saw cutting is large, the above-mentioned deposit has a gallium compound content of 10% by weight or less and a low gallium concentration (hereinafter, “% by weight” is referred to as “%”).
[0004]
In order to recover the gallium content from the precipitate generated during such wire saw cutting, (1) it is necessary to treat the precipitate having a low gallium concentration in order to dissolve the gallium component in an acid. 2) Since the deposit contains cutting oil, the metal gallium to be recovered contains many impurities. Therefore, it was not economically feasible to recover the gallium content from the precipitate. Therefore, the above-mentioned sediment has been conventionally disposed of as industrial waste.
[0005]
However, there is a strong demand for economically advantageous recovery of gallium from deposits generated during wire saw cutting, from the viewpoint of effectively utilizing the shortage of gallium resources.
[0006]
[Problems to be solved by the invention]
In view of the above circumstances, an object of the present invention is to convert gallium compounds, grit and cutting oil containing a grit (hereinafter, “grit containing gallium compound, grit and cutting oil” are simply referred to as “grit”) from gallium compound. It is an object of the present invention to provide a method for simply and remarkably concentrating and collecting the components.
[0007]
[Means for Solving the Problems]
In order to achieve the above object, a first aspect of the present invention provides a method for removing a cutting oil in a precipitate by heating the precipitate at a temperature lower than a thermal decomposition temperature of a gallium compound in the precipitate. A first step of obtaining the fine particles, and classifying the dried product into a fine powder mainly containing gallium and a coarse powder mainly containing the abrasive to remove abrasive grains in the precipitate. This is a method for concentrating gallium from sediment, comprising a second step of collecting powder.
[0008]
Also, the second invention is a first step of obtaining a solid by dispersing the precipitate in an organic solvent to dissolve the cutting oil and then performing solid-liquid separation, the cutting oil remaining in the solid and the cutting oil and Heating the solid at a temperature lower than the thermal decomposition temperature of the gallium compound in the solid to remove the organic solvent, thereby obtaining a dried product, and removing abrasive grains in the dried product. For this purpose, the dried product is classified into a fine powder mainly containing gallium and a coarse powder mainly containing the abrasive grains, thereby enriching the gallium from the sediment in the third step of recovering the fine powder. Is the way.
[0009]
BEST MODE FOR CARRYING OUT THE INVENTION
[First invention]
(1) First Step In the first invention, in the first step, the precipitate is heated at a temperature lower than the thermal decomposition temperature of the gallium compound in the precipitate in order to evaporate and remove the cutting oil in the precipitate. . Then, a dried product composed of fine powder mainly containing gallium and coarse powder mainly containing abrasive grains is obtained.
[0010]
The temperature lower than the thermal decomposition temperature of the gallium compound is set as the heating temperature. If the temperature is equal to or higher than the thermal decomposition temperature, the gallium compound is thermally decomposed, and fine powder mainly containing gallium is generated due to the generated molten metal gallium. This is because it becomes difficult to recover the solution in two steps (described later).
[0011]
When the heating temperature is equal to or higher than the boiling point of the cutting oil, the cutting oil can be quickly evaporated, which is preferable. The boiling point of the cutting oil and the boiling point of the organic solvent described later generally have a temperature range, but the boiling point used when referring to the level of the boiling point having a certain temperature range means “the upper limit of the boiling point” in this specification.
[0012]
(2) Second Step In the second step, the dried product is classified into a fine powder mainly containing gallium and a coarse powder mainly containing the abrasive in order to remove abrasive grains in the sediment. Then, the fine powder is collected.
[0013]
Classification is performed by using a particle size difference or a density difference between a fine powder mainly containing gallium and a coarse powder mainly containing abrasive grains to separate the fine powder and the coarse powder with as high a separability as possible. It should be done in. The classification method is not particularly limited, but air classification is simple and preferred.
[0014]
According to the first invention, the cutting oil is removed from the deposit in the first step, and the abrasive grains are removed in the second step from the dried product obtained in the first step. It can be significantly concentrated.
[0015]
[Second invention]
(1) First Step and Second Step In the second invention, in the first step, the sediment is dispersed in an organic solvent to dissolve and dilute the cutting oil, followed by solid-liquid separation. Then, a solid containing the remaining cutting oil and the organic solvent is obtained. Most of the cutting oil and the organic solvent contained in the sediment are transferred to the separated liquid in the first step, so that the heating load in the second step is remarkably reduced.
[0016]
In the second step, the solid is heated at a temperature lower than the thermal decomposition temperature of the gallium compound in the solid in order to evaporate and remove the cutting oil and the organic solvent remaining in the solid. Then, a dried product composed of fine powder mainly containing gallium and coarse powder mainly containing abrasive grains is obtained. Since the cutting oil and the organic solvent remaining in the solid matter are removed in the second step, the classification in the third step (described later) not only improves the separation between the fine powder and the coarse powder, but also concentrates the gallium content. The rate also improves.
[0017]
The organic solvent in which the sediment is dispersed in the first step is one which is more easily evaporated than the cutting oil so that the organic solvent evaporates before the cutting oil is completely evaporated during the evaporation, that is, the boiling point of the cutting oil is Lower than the boiling point of
[0018]
When heated without using an organic solvent, the non-volatile components in the cutting oil cause the gallium compound and the abrasive grains to be baked and adhered and coagulated. On the other hand, when an organic solvent is used, the organic solvent replaces and removes the non-volatile components, and separates the gallium compound and the abrasive grains separately. Therefore, the separation between the gallium compound and the abrasive grains is improved in the classification in the third step (described later).
[0019]
Kerosene is most suitable as the organic solvent in that (a) it can be easily mixed with cutting oil, (b) it is inexpensive, and (c) it is easy to recover and reuse.
[0020]
If the sediment contains a magnetic substance such as a wire piece of a wire saw, it is preferable to remove the magnetic substance in the first step. Specifically, for example, after dispersing the precipitate in an organic solvent and before solid-liquid separation, the magnetic substance is adsorbed on a magnet and removed. By this removal, it is possible to omit a complicated and complicated Fe removal process which is necessary until the metal gallium is recovered.
[0021]
The heating temperature of the solid in the second step is preferably equal to or higher than the boiling point of the cutting oil, similarly to the heating temperature of the deposit in the first invention and the first step.
[0022]
(2) Third Step In the third step, the dried substance is classified in order to remove abrasive grains from the dried substance, and the fine powder is collected. That is, the third step is the same as the second step of the first invention. For example, as a classification method, air classification is simple and preferable.
[0023]
According to the second invention, the cutting oil is removed from the deposit in the first and second steps, and the abrasive grains are removed in the third step from the dried product obtained in the second step. And remarkably concentrated.
[0024]
【Example】
[Example 1]
Gallium phosphide single crystal (pyrolysis temperature: 680 ° C.) was treated with a precipitate generated as cutting chips when cut with a wire saw. This deposit contains cutting powder of gallium phosphide, abrasive grains mainly composed of SiC, and cutting oil (boiling point: 200 to 300 ° C.). Table 1 shows the results of the analysis of the precipitate.
[0025]
[Table 1]
Figure 0003539200
[0026]
First, 770 g of the above precipitate (gallium content: 48.7 g) was heated at 300 ° C. to evaporate the cutting oil. The results of analyzing the obtained dried product are shown in Table 2.
[0027]
[Table 2]
Figure 0003539200
[0028]
When the dried product was observed with a microscope, it was confirmed that particles of about 10 μm and particles of 1 to 3 μm were aggregated to form larger particles.
[0029]
The dried product was classified by an air classifier at a boundary of 5 μm to obtain 56 g of fine powder and 627 g of coarse powder. The main component of the coarse powder is SiC abrasive grains, and gallium phosphide is contained more in the fine powder. Table 3 shows the results of the analysis of the fine powder.
[0030]
[Table 3]
Figure 0003539200
[0031]
Metal gallium was recovered from 56 g of the fine powder by a conventional method. That is, the above-mentioned fine powder was dissolved in an acid and then neutralized, and gallium was temporarily converted to gallium hydroxide. Thereafter, gallium hydroxide was dissolved in the alkaline solution, and metal gallium was recovered by electrolysis. As a result, 21 g of metal gallium was obtained.
[0032]
[Example 2]
After stirring and dispersing 764 g (gallium content: 48.4 g) of the precipitate used in Example 1 in 2000 ml of kerosene (boiling point: 150 to 280 ° C.), a permanent magnet was put in to remove the magnet adsorbed material, and the kerosene was removed. At the same time, the cutting oil was solid-liquid separated.
[0033]
The obtained solid was heated at 300 ° C. to evaporate the residual kerosene to obtain a dried product. Table 4 shows the results of analyzing the dried product.
[0034]
[Table 4]
Figure 0003539200
[0035]
When the dried product was observed with a microscope, it was confirmed that particles of about 10 μm and particles of 1 to 3 μm were present separately.
[0036]
The dried product was classified by an air classifier at a boundary of 5 μm to obtain 92 g of fine powder and 589 g of coarse powder. The main component of the coarse powder is abrasive grains of SiC, and the fine powder is enriched with gallium phosphide. Table 5 shows the results of the analysis of the fine powder.
[0037]
[Table 5]
Figure 0003539200
[0038]
When metal gallium was recovered from 92 g of the fine powder having the composition shown in Table 5 in the same manner as in Example 1, 37 g of metal gallium was obtained.
[0039]
[Comparative Example 1]
710 g of the precipitate used in Example 1 (gallium content: 44.9 g) was heated at 300 ° C. to evaporate the cutting oil, and 639 g of a dried product (of the composition shown in Table 2) similar to that of Example 1 was obtained. Was.
[0040]
Metal gallium was recovered from 639 g of the dried product in the same manner as in Example 1 after acid dissolution and neutralization. As a result, 17 g of metallic gallium was obtained.
[0041]
The comparison between the results of Example 1 and Comparative Example 1 is as follows.
[0042]
(1) Gallium recovery from the initial sediment:
In Example 1, it was 43% (21 g / 48.7 g × 100), and in Comparative Example 1, it was 38% (17 g / 44.9 g × 100), which are almost the same value.
[0043]
(2) Amount of fine powder dissolved in acid with respect to initial amount of sediment:
In Example 1, it was reduced to 7% (56 g / 770 g × 100), whereas in Comparative Example 1, it was reduced to only 90% (639 g / 710 g × 100).
[0044]
(3) Ratio between the amount of fine powder dissolved in the acid and the amount of recovered metallic gallium:
In Example 1, the weight was 2.7 (56 g / 21 g), while that in Comparative Example 1 was 37.6 (639 g / 17 g).
[0045]
In addition, the same results as described above for Example 2 are as follows.
[0046]
(1) The recovery rate of gallium from the initial precipitate is 76% (37 g / 48.4 g × 100), which is significantly higher than that of Comparative Example 1 or Example 1.
[0047]
(2) The amount of the dry matter dissolved in the acid with respect to the initial amount of the precipitate is 12% (92 g / 764 g × 100), which is slightly larger than that of Example 1 but is significantly smaller than that of Comparative Example 1.
[0048]
(3) The ratio of the amount of the dried substance dissolved in the acid to the amount of the recovered metal gallium is 2.5 (92 g / 37 g), which is extremely small as in Example 1.
[0049]
From the above, the amount of the acid-dissolved substance (fine powder in Examples 1 and 2 and dried substance in Comparative Example 1) was significantly reduced only by increasing the number of simple steps of classification (Example 1 was the same as Comparative Example 1). 1 / 13.9 (2.7 / 37.6)).
[0050]
【The invention's effect】
According to the present invention, it is possible to provide a method for simply and remarkably concentrating a gallium component from a sediment, that is, a method for recovering the gallium component from the sediment economically.

Claims (9)

ガリウム化合物、砥粒および切削油を含む澱物中の該切削油を除去するために該ガリウム化合物の熱分解温度未満の温度で該澱物を加熱することにより、乾燥物を得る第1工程、および該砥粒を除去するために該乾燥物をガリウム分を主に含む細粉と該砥粒を主に含む粗粉とに分級することにより、該細粉を回収する第2工程からなるガリウム化合物、砥粒および切削油を含む澱物からのガリウム分の濃縮方法。A first step of obtaining a dried product by heating the gallium compound at a temperature below the thermal decomposition temperature of the gallium compound to remove the cutting oil in the grit containing gallium compound, abrasive grains and cutting oil, And gallium comprising a second step of recovering the fine powder by classifying the dried product into fine powder mainly containing gallium and coarse powder mainly containing the abrasive to remove the abrasive grains. A method for concentrating gallium from a deposit containing a compound, abrasive grains and cutting oil. 第1工程における澱物の加熱温度は、切削油の沸点以上である請求項1に記載のガリウム化合物、砥粒および切削油を含む澱物からのガリウム分の濃縮方法。The method of claim 1, wherein the heating temperature of the precipitate in the first step is equal to or higher than the boiling point of the cutting oil. 第2工程における乾燥物の分級は、風力分級である請求項1に記載のガリウム化合物、砥粒および切削油を含む澱物からのガリウム分の濃縮方法。The method for concentrating gallium from a precipitate containing a gallium compound, abrasive grains and cutting oil according to claim 1, wherein the classification of the dried product in the second step is air classification. ガリウム化合物、砥粒および切削油を含む澱物を有機溶媒に分散させて該切削油を溶解させた後に固液分離することにより、固形物を得る第1工程、該固形物中に残留する該切削油および該有機溶媒を除去するために該ガリウム化合物の熱分解温度未満の温度で該固形物を加熱することにより、乾燥物を得る第2工程、および該砥粒を除去するために該乾燥物をガリウム分を主に含む細粉と該砥粒を主に含む粗粉とに分級することにより、該細粉を回収する第3工程からなるガリウム化合物、砥粒および切削油を含む澱物からのガリウム分の濃縮方法。A first step of obtaining a solid by dispersing a precipitate containing a gallium compound, abrasive grains and cutting oil in an organic solvent and dissolving the cutting oil, followed by solid-liquid separation. A second step of heating the solid at a temperature below the thermal decomposition temperature of the gallium compound to remove the cutting oil and the organic solvent to obtain a dried product; and A grit containing gallium compound, abrasive grains and cutting oil comprising a third step of recovering the fine powder by classifying the product into fine powder mainly containing gallium and coarse powder mainly containing the abrasive grains Of gallium content from coal. 第1工程で用いる有機溶媒の沸点は、切削油の沸点より低い請求項4に記載のガリウム化合物、砥粒および切削油を含む澱物からのガリウム分の濃縮方法。5. The method according to claim 4, wherein a boiling point of the organic solvent used in the first step is lower than a boiling point of the cutting oil. 第1工程で用いる有機溶媒は灯油である請求項4に記載のガリウム化合物、砥粒および切削油を含む澱物からのガリウム分の濃縮方法。5. The method for concentrating gallium from a deposit containing a gallium compound, abrasive grains and cutting oil according to claim 4, wherein the organic solvent used in the first step is kerosene. 第1工程における固液分離は、切削油熔解後に澱物中の磁性物を除去してから行う請求項に記載のガリウム化合物、砥粒および切削油を含む澱物からのガリウム分の濃縮方法。5. The method according to claim 4 , wherein the solid-liquid separation in the first step is performed after magnetic substances in the precipitate are removed after dissolving the cutting oil. . 第2工程における固形物の加熱温度は、切削油の沸点以上である請求項4に記載のガリウム化合物、砥粒および切削油を含む澱物からのガリウム分の濃縮方法。5. The method of claim 4, wherein the heating temperature of the solid in the second step is equal to or higher than the boiling point of the cutting oil. 第3工程における乾燥物の分級は、風力分級である請求項4に記載のガリウム化合物、砥粒および切削油を含む澱物からのガリウム分の濃縮方法。The method for concentrating gallium from a deposit containing a gallium compound, abrasive grains and cutting oil according to claim 4, wherein the classification of the dried product in the third step is air classification.
JP11063398A 1998-04-21 1998-04-21 Method for concentrating gallium from sediment containing gallium compound, abrasive grains and cutting oil Expired - Fee Related JP3539200B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11063398A JP3539200B2 (en) 1998-04-21 1998-04-21 Method for concentrating gallium from sediment containing gallium compound, abrasive grains and cutting oil

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11063398A JP3539200B2 (en) 1998-04-21 1998-04-21 Method for concentrating gallium from sediment containing gallium compound, abrasive grains and cutting oil

Publications (2)

Publication Number Publication Date
JPH11302753A JPH11302753A (en) 1999-11-02
JP3539200B2 true JP3539200B2 (en) 2004-07-07

Family

ID=14540699

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11063398A Expired - Fee Related JP3539200B2 (en) 1998-04-21 1998-04-21 Method for concentrating gallium from sediment containing gallium compound, abrasive grains and cutting oil

Country Status (1)

Country Link
JP (1) JP3539200B2 (en)

Also Published As

Publication number Publication date
JPH11302753A (en) 1999-11-02

Similar Documents

Publication Publication Date Title
JP5001589B2 (en) Method for producing silicon from waste sludge
JP5151072B2 (en) Method for recovering metal constituting electrode from lithium battery
JP2008115040A (en) Silicon reclamation apparatus and method of reclaiming silicon
JP4369095B2 (en) Slurry regeneration method
JP5722601B2 (en) Silicon cutting waste treatment method
JP2001278612A (en) Method of recovering silicon
US20160068929A1 (en) EXTRACTION OF RARE EARTH METALS FROM NdFeB USING SELECTIVE SULFATION ROASTING
CN110004308B (en) Impurity removal method for high-purity arsenic
JP4966938B2 (en) Silicon regeneration method
JP2009196849A (en) Silicon recovery method and silicon recovery apparatus
JP2007246367A (en) Method for recovering silicon-containing material
CN102229113B (en) Method for recovering sapphire powder
WO2009081725A1 (en) Silicon reclamation method
JP3539200B2 (en) Method for concentrating gallium from sediment containing gallium compound, abrasive grains and cutting oil
JP2009084069A (en) Apparatus and method for regenerating silicon
JP3436176B2 (en) Method for concentrating gallium from sediment containing gallium compound, abrasive grains and cutting oil
JP2003147455A (en) Method of recovering tantalum compound from wire saw slurry
JP3436146B2 (en) Method for concentrating gallium from sediment containing gallium compound, abrasive grains and cutting oil
JP3436145B2 (en) Method for concentrating gallium from sediment containing gallium compound, abrasive grains and cutting oil
JP3436304B2 (en) Method for concentrating gallium compound from sediment containing gallium compound, abrasive grains and cutting oil
JP5344376B2 (en) Gallium recovery method
JP2015112691A (en) Whole amount recycle system of silicon slurry waste liquid, coolant collected liquid, collected abrasive grain, and collected cutting chip
JP2019151863A (en) Method for recovering tin from copper smelting dust and recovered tin
JP5987769B2 (en) Copper smelting dust treatment method and copper smelting operation method
TW538112B (en) Method for treating an exhausted glycol-based slurry

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040210

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040210

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040302

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040315

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees