JP3530309B2 - Method for producing hydrogen storage alloy electrode - Google Patents

Method for producing hydrogen storage alloy electrode

Info

Publication number
JP3530309B2
JP3530309B2 JP14736496A JP14736496A JP3530309B2 JP 3530309 B2 JP3530309 B2 JP 3530309B2 JP 14736496 A JP14736496 A JP 14736496A JP 14736496 A JP14736496 A JP 14736496A JP 3530309 B2 JP3530309 B2 JP 3530309B2
Authority
JP
Japan
Prior art keywords
alloy powder
hydrogen storage
storage alloy
alloy
washing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP14736496A
Other languages
Japanese (ja)
Other versions
JPH09330711A (en
Inventor
忠司 伊勢
博 福田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP14736496A priority Critical patent/JP3530309B2/en
Publication of JPH09330711A publication Critical patent/JPH09330711A/en
Application granted granted Critical
Publication of JP3530309B2 publication Critical patent/JP3530309B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、水素吸蔵合金を負極材
料として使用する水素吸蔵合金電極の製造方法に関し、
特に、水素吸蔵合金粉末の酸処理方法の改良に関する。
FIELD OF THE INVENTION The present invention relates to a method for producing a hydrogen storage alloy electrode using a hydrogen storage alloy as a negative electrode material,
In particular, it relates to an improvement in the acid treatment method for hydrogen storage alloy powder.

【0002】[0002]

【従来の技術】最近のエレクトロニクス技術の進歩は目
覚ましく、今後もますます加速する傾向にある。これに
伴い、電子機器のポータブル化やコードレス化が進むと
同時に、これらの機器の電源として、小型で軽量でかつ
高エネルギー密度の高性能二次電池の開発が強く望まれ
ている。そこで、負極に水素吸蔵合金を用いた金属水素
化物蓄電池は、ニッケルカドミウム蓄電池や鉛蓄電池等
よりも高容量で高密度の上、クリーンな電源として最近
特に注目されている。
2. Description of the Related Art Recent advances in electronics technology have been remarkable and tend to continue to accelerate. Along with this, electronic devices are becoming more portable and cordless, and at the same time, there is a strong demand for the development of high-performance secondary batteries that are small, lightweight, and have high energy density as a power source for these devices. Therefore, a metal hydride storage battery using a hydrogen storage alloy for the negative electrode has recently attracted particular attention as a clean power source having a higher capacity and a higher density than nickel cadmium storage batteries, lead storage batteries and the like.

【0003】ここで、上記金属水素化物蓄電では、負極
活物質である水素吸蔵合金の活性度の優劣により電池性
能が左右される。このため、この種の蓄電池では、微細
化した水素吸蔵合金粉末が用いられている。微細な水素
吸蔵合金粉末であると、電気化学反応に関与する反応面
積が大きく、また電極基板への充填密度も大きくなるの
で、電池容量が高まるからである。
Here, in the above metal hydride storage, the battery performance depends on the superiority or inferiority of the activity of the hydrogen storage alloy which is the negative electrode active material. Therefore, in this type of storage battery, finely divided hydrogen storage alloy powder is used. This is because a fine hydrogen-absorbing alloy powder has a large reaction area involved in an electrochemical reaction and also has a high packing density in the electrode substrate, which increases the battery capacity.

【0004】しかし、水素吸蔵合金は極めて活性な物質
であるので、合金粉砕時に容易に酸素と反応して合金表
面に酸化被膜を形成する。この酸化被膜は、合金の電気
導電性を低下させ、初期活性化を阻害する。このため、
粉砕工程等で酸化を受けた合金の活性度を回復させるた
めに、以下に示すような種々の処理方法が提案されてい
る。
However, since the hydrogen storage alloy is an extremely active substance, it easily reacts with oxygen during crushing of the alloy to form an oxide film on the surface of the alloy. This oxide film reduces the electrical conductivity of the alloy and hinders its initial activation. For this reason,
In order to recover the activity of the alloy that has been oxidized in the crushing process and the like, various treatment methods as described below have been proposed.

【0005】特開平3−98259号公報に示すよう
に、水素吸蔵合金粉末を60℃以上の加熱水で処理する
方法。
As disclosed in JP-A-3-98259, a method of treating a hydrogen storage alloy powder with heated water at 60 ° C. or higher.

【0006】特開平4−179055号公報に示すよ
うに、酸性水溶液に浸漬した後、水洗する方法。
As disclosed in JP-A-4-179055, a method of immersing in an acidic aqueous solution and then washing with water.

【0007】特開平4−98760号公報に示すよう
に、水素吸蔵合金粉末を酸性水溶液に浸漬し、次いでア
ルカリ水溶液に浸漬した後、水洗する方法。
As disclosed in JP-A-4-98760, a method of immersing a hydrogen storage alloy powder in an acidic aqueous solution, then an alkaline aqueous solution, and then rinsing with water.

【0008】特開平3−49154号公報に示すよう
に、水素吸蔵合金の粉砕時や保存時または水素吸蔵合金
粉末に結着剤とを混練したスラリーに、リン酸塩やケイ
酸塩などの添加物を付加することにより、水素吸蔵合金
の酸化を抑制する方法。
As disclosed in JP-A-3-49154, when a hydrogen storage alloy is crushed or stored, or a hydrogen storage alloy powder is kneaded with a binder, slurry such as phosphate or silicate is added. A method for suppressing the oxidation of a hydrogen storage alloy by adding a substance.

【0009】[0009]

【発明が解決しようとする課題】しかしながら、前記の
各処理方法では、下記に示すような問題がある。
However, each of the above processing methods has the following problems.

【0010】特開平3−98259号公報に示す技術
の問題 当該技術では、処理に多くの時間を必要とし、また酸化
被膜等の除去効果が充分ではない。
Problems of the technique disclosed in Japanese Patent Laid-Open No. 3-98259 In this technique, a lot of time is required for the treatment and the effect of removing the oxide film is not sufficient.

【0011】特開平4−179055号公報に示す技
術の問題 当該技術は、酸性水溶液に浸漬することにより短時間で
酸化物層を除去しようとするものであり、この技術は酸
化被膜等の除去効果が高く、上記の技術に比べ処理操
作が簡単である。また、酸性水溶液の濃度を高くし充分
に浸漬した場合、合金表面の酸化物層が充分に除去で
き、利用率が向上する。
Problems of the Technique Shown in Japanese Patent Laid-Open No. 4-179055 This technique is intended to remove the oxide layer in a short time by immersing it in an acidic aqueous solution. The cost is high and the processing operation is simple compared to the above techniques. Further, when the concentration of the acidic aqueous solution is increased and the solution is sufficiently immersed, the oxide layer on the surface of the alloy can be sufficiently removed and the utilization rate is improved.

【0012】しかしながら、酸性水溶液の濃度を高くし
た場合には、酸処理の過程で合金表面に新たに水酸化物
層によって、初期充電における電池内圧が上昇し、また
高率放電特性を低下させる原因となる。
However, when the concentration of the acidic aqueous solution is increased, a new hydroxide layer on the surface of the alloy during the acid treatment causes an increase in the internal pressure of the battery during initial charging and a decrease in the high rate discharge characteristics. Becomes

【0013】一方、このようなことを考慮して、酸性水
溶液の濃度を下げた場合には、水素吸蔵合金粉末の緻密
な水酸化物層が充分に除去できないため、酸処理の効果
が充分に得られない。
On the other hand, in consideration of the above, when the concentration of the acidic aqueous solution is lowered, the dense hydroxide layer of the hydrogen storage alloy powder cannot be sufficiently removed, so that the effect of the acid treatment is sufficient. I can't get it.

【0014】特開平4−98760号公報に示す技術
の問題 当該技術は、予め酸性水溶液に浸漬して合金表面の酸化
物層を除去した後、アルカリ水溶液に浸漬して水素吸蔵
合金粉末の表面を粒界の多い水酸化物で被覆することに
より、充放電の初期から充分な放電容量を引き出そうと
するものである。しかし、この技術では、合金表面が水
酸化物層で覆われるため、初期充電時の電池内圧が高く
なり、また充分な高率放電特性を得られない。
The problem of the technique disclosed in Japanese Patent Laid-Open No. 4-98760 is that the surface of the hydrogen-absorbing alloy powder is immersed in an alkaline aqueous solution after removing the oxide layer on the alloy surface by immersing the surface in advance in an acidic aqueous solution. By coating with hydroxide having many grain boundaries, it is intended to draw out a sufficient discharge capacity from the initial stage of charge and discharge. However, in this technique, since the alloy surface is covered with the hydroxide layer, the internal pressure of the battery at the time of initial charging becomes high, and sufficient high rate discharge characteristics cannot be obtained.

【0015】特開平3−49154号公報に示す技術
の問題 当該技術は、合金にリン酸塩等の添加物を添加するとい
う簡便な方法で、電極作製工程中における酸化を抑制で
きる点で有用な技術であるが、合金の活性度を充分に高
めることはできない。
Problems of the Technique Shown in Japanese Patent Laid-Open No. 3-49154 This technique is useful in that oxidation can be suppressed during the electrode manufacturing process by a simple method of adding an additive such as phosphate to the alloy. Although it is a technique, it cannot sufficiently increase the activity of the alloy.

【0016】本願発明は、前記のような問題点に鑑みて
なされたものであり、初期充電時の電池内圧の上昇を防
止し、高率放電特性及びサイクル寿命特性の優れた金属
水素化物蓄電池を提供しようとすることを本発明の課題
とする。
The present invention has been made in view of the above problems, and provides a metal hydride storage battery which prevents an increase in battery internal pressure at the time of initial charging and is excellent in high rate discharge characteristics and cycle life characteristics. It is an object of the present invention to provide.

【0017】[0017]

【課題を解決するための手段】本発明の水素吸蔵合金電
極の製造方法は、水素吸蔵合金粉末を作製する合金粉末
作製工程と、前記水素吸蔵合金粉末を酸性溶液で洗浄し
た後、前記酸性溶液よりpH値の大きい酸性溶液で洗浄
処理する2段階酸処理工程と、前記2段階の酸処理した
水素吸蔵合金粉末に対し、オキソ酸塩水溶液で表面処理
するオキソ酸塩表面処理工程とを備えることを特徴とす
る。
Means for Solving the Problems A method for producing a hydrogen storage alloy electrode according to the present invention comprises an alloy powder producing step for producing hydrogen storage alloy powder, washing the hydrogen storage alloy powder with an acidic solution, and then producing the acidic solution. A two-step acid treatment step of performing a washing treatment with an acidic solution having a higher pH value, and an oxoacid salt surface treatment step of subjecting the hydrogen storage alloy powder subjected to the two-step acid treatment to an aqueous oxoacid salt solution. Is characterized by.

【0018】また、本発明の水素吸蔵合金電極の製造方
法は、水素吸蔵合金粉末を作製する合金粉末作製工程
と、前記水素吸蔵合金粉末を酸性溶液で洗浄した後、前
記酸性溶液よりpH値の大きい酸性溶液で洗浄処理する
2段階酸処理工程と、前記酸処理により水素吸蔵合金粉
末に取り込まれたアニオンの残留量が、水素吸蔵合金粉
末に対し5×10-6mol/g以下になるまで洗浄する
洗浄工程とを備えることを特徴とする。
The method for producing a hydrogen-absorbing alloy electrode of the present invention comprises: an alloy powder producing step of producing hydrogen-absorbing alloy powder; washing the hydrogen-absorbing alloy powder with an acidic solution; Two-step acid treatment process of washing with a large acidic solution, and until the residual amount of anions taken in the hydrogen storage alloy powder by the acid treatment becomes 5 × 10 −6 mol / g or less with respect to the hydrogen storage alloy powder. And a washing step of washing.

【0019】また、本発明の水素吸蔵合金電極の製造方
法は、水素吸蔵合金粉末を作製する合金粉末作製工程
と、前記水素吸蔵合金粉末を酸性溶液で洗浄した後、前
記酸性溶液よりpH値の大きい酸性溶液で洗浄処理する
2段階酸処理工程と、前記2段階の酸処理した水素吸蔵
合金粉末に対し、オキソ酸塩水溶液で表面処理するオキ
ソ酸塩表面処理工程と、水素吸蔵合金粉末に取り込まれ
たアニオンの残留量が、水素吸蔵合金粉末に対し5×1
-6mol/g以下になるまで洗浄する洗浄工程とを備
えることを特徴とする。
Further, the method for producing a hydrogen storage alloy electrode of the present invention comprises an alloy powder producing step of producing hydrogen storage alloy powder, a step of washing the hydrogen storage alloy powder with an acidic solution, and a pH value higher than that of the acidic solution. A two-step acid treatment step of washing with a large acidic solution, an oxoacid salt surface treatment step of surface-treating the hydrogen storage alloy powder subjected to the two-step acid treatment with an aqueous oxoacid salt solution, and incorporation into the hydrogen storage alloy powder The residual amount of generated anions is 5 × 1 relative to the hydrogen storage alloy powder.
And a washing step of washing to 0 -6 mol / g or less.

【0020】[0020]

【作用】本発明は、水素吸蔵合金粉末を作製する合金粉
末作製工程と、この水素吸蔵合金粉末を強酸性溶液で洗
浄した後、前記強酸性溶液よりpH値の大きい弱酸性溶
液で洗浄処理する2段階酸処理工程とを備えている。
According to the present invention, an alloy powder producing step for producing a hydrogen-absorbing alloy powder, the hydrogen-absorbing alloy powder is washed with a strongly acidic solution, and then washed with a weakly acidic solution having a pH value higher than that of the strongly acidic solution. And a two-step acid treatment process.

【0021】このような構成であると、第1回目の強酸
での処理において、合金表面に形成された酸化物又は水
酸化物の層が除去され、合金表面に触媒活性な金属単離
層(Niリッチ層)が形成される。更に、続いて行う第
2回目の弱酸による処理により第1回目の酸処理におい
て合金表面に新たに形成された水酸化物層が除去され
る。したがって、本発明にかかる2段階酸処理方法を適
用した水素吸蔵合金電極では、1回限りの酸処理を適用
した水素吸蔵合金電極、或るいは第1回目の酸処理に続
いてアルカリ処理を施す方法を適用した水素吸蔵合金電
極に比較し、電極の諸特性が顕著に向上する。以下に、
この理由を説明する。
With such a structure, in the first treatment with a strong acid, the oxide or hydroxide layer formed on the alloy surface is removed, and the catalytically active metal isolation layer ( Ni-rich layer) is formed. Furthermore, the hydroxide layer newly formed on the alloy surface in the first acid treatment is removed by the subsequent second weak acid treatment. Therefore, in the hydrogen storage alloy electrode to which the two-step acid treatment method according to the present invention is applied, the hydrogen storage alloy electrode to which the acid treatment is applied only once, or the alkali treatment is performed after the first acid treatment. Compared with the hydrogen storage alloy electrode to which the method is applied, various characteristics of the electrode are remarkably improved. less than,
The reason for this will be explained.

【0022】先ず、1回限りの酸処理(前記特開平4−
179055号公報等の技術)であると、次のような不
都合がある。即ち、合金を強酸で処理する過程で処理液
中の水素イオンが消費され、処理液pHが上昇する。処
理液pHが低い段階では、合金表面の酸化物や水酸化物
の層は処理液中に良く溶出する。しかし、前記溶出反応
の進行に伴って処理液pHが上昇して5を越える段階に
なると、希土類元素イオン等の溶解度が小さくなるた
め、処理液中に溶解していた前記希土類元素イオンが再
び合金表面に析出して水酸化物の層を形成し、この水酸
化物の層はその後の水洗いでは除去できない。
First, one-time acid treatment (see the above-mentioned JP-A-4-
The technology described in Japanese Patent No. 179055) has the following disadvantages. That is, hydrogen ions in the treatment liquid are consumed in the process of treating the alloy with a strong acid, and the treatment liquid pH rises. When the pH of the treatment liquid is low, the oxide and hydroxide layers on the surface of the alloy are well eluted in the treatment liquid. However, when the pH of the treatment liquid rises and exceeds 5 with the progress of the elution reaction, the solubility of rare earth element ions and the like decreases, so that the rare earth element ions dissolved in the treatment liquid are alloyed again. It deposits on the surface to form a hydroxide layer which cannot be removed by subsequent washing with water.

【0023】つまり、1回限りの酸処理では、再析出に
より新たに合金表面に水酸化物層が形成されるため、こ
れが水素吸蔵合金電極の諸特性、例えば充電初期電池内
圧、高率放電特性、サイクル特性の更なる向上を阻害す
るという問題がある。
That is, in the one-time acid treatment, a hydroxide layer is newly formed on the alloy surface by re-precipitation, which causes various characteristics of the hydrogen storage alloy electrode, for example, the initial pressure of the battery during charging, the high rate discharge characteristics. However, there is a problem that further improvement of cycle characteristics is hindered.

【0024】一方、第1回目の酸処理に続いてアルカリ
処理を施す酸アルカリ2段階処理方法(前記特開平4−
98760号公報等の技術)は、第2回目の処理をアル
カリで行うものであり、当然に合金表面に水酸化物の層
が形成される。従って、この技術では、充電初期電池内
圧、高率放電特性、サイクル特性の更なる向上を阻害す
るという問題を解消できない。
On the other hand, a two-step acid-alkali treatment method in which the first acid treatment is followed by an alkali treatment (see the above-mentioned JP-A-4-
No. 98760), the second treatment is performed with an alkali, and naturally a hydroxide layer is formed on the alloy surface. Therefore, this technique cannot solve the problem of impeding the further improvement of the initial pressure of the battery during charging, the high rate discharge characteristics, and the cycle characteristics.

【0025】ここにおいて、本発明では、第1回目の強
酸による処理に続いて、弱酸により第2回目の酸処理を
行う構成としてある。従って、この第2回目の弱酸処理
により、第1回目の強酸処理で形成された水酸化物の層
を除去できる。なぜなら、第2回目の処理液を弱酸とし
た場合、合金成分自体の溶出が少ないので処理液中の溶
出イオン(希土類元素イオン等)濃度が高まらない一
方、第1回目処理で形成された水酸化物層は弱酸に溶け
易いため、この除去が可能になる。ただし、このような
処理方法でも、希土類元素の水酸化物の層を合金表面か
ら完全には取り除くことはできずに、ある程度残存して
いる。
Here, in the present invention, the first acid treatment is followed by the second acid treatment with a weak acid. Therefore, by the second weak acid treatment, the hydroxide layer formed by the first strong acid treatment can be removed. This is because when the second treatment liquid is a weak acid, the elution of the alloy components themselves is small and the concentration of eluted ions (rare earth element ions, etc.) in the treatment liquid does not increase, while the hydroxide formed by the first treatment is Since the material layer is easily dissolved in a weak acid, this can be removed. However, even with such a treatment method, the layer of the hydroxide of the rare earth element cannot be completely removed from the surface of the alloy and remains to some extent.

【0026】そこで、本発明では、前記2段階で酸処理
した合金をオキソ酸塩水溶液で表面処理するオキソ酸塩
表面処理工程を施すことにより、前記2段階酸処理工程
でも合金表面に残存した希土類元素の水酸化物は、処理
液中のオキソ酸イオンと反応してオキソ酸希土類元素化
合物となる。このオキソ酸希土類元素化合物は、前記水
酸化物に比べ親水性が高いので、合金表面の含液性が向
上する。したがって、合金と電解液との接触性が高ま
り、酸素消費反応等が円滑に進ようになる。この結果、
電池初期内圧が低減し、また高率放電特性が向上すると
いう優れた効果が得られる。
Therefore, in the present invention, by carrying out an oxoacid salt surface treatment step of surface-treating the alloy treated in the two-step acid treatment with an aqueous oxoacid salt solution, the rare earths remaining on the alloy surface even in the two-step acid treatment step. The elemental hydroxide reacts with the oxo acid ion in the treatment liquid to form a oxo acid rare earth element compound. This rare earth oxoacid compound has a higher hydrophilicity than the above-mentioned hydroxide, so that the liquid content of the alloy surface is improved. Therefore, the contact between the alloy and the electrolytic solution is enhanced, and the oxygen consumption reaction and the like proceed smoothly. As a result,
An excellent effect that the initial internal pressure of the battery is reduced and the high rate discharge characteristic is improved can be obtained.

【0027】このように、2段階酸処理工程とオキソ酸
塩表面処理工程とを備えていれば、両工程の相乗効果に
より、一層電池特性が向上する。
As described above, if the two-step acid treatment process and the oxoacid salt surface treatment process are provided, the synergistic effect of both processes further improves the battery characteristics.

【0028】また、本発明は、水素吸蔵合金粉末を作製
する合金粉末作製工程と、前記水素吸蔵合金粉末を強酸
性溶液で洗浄した後、前記強酸性溶液よりpH値の大き
い弱酸性溶液で洗浄処理する2段階酸処理工程と、前記
酸処理により水素吸蔵合金粉末に取り込まれたアニオン
の残留量が、水素吸蔵合金粉末に対し5×10-6mol
/g以下になるまで洗浄する洗浄工程とを備えている。
The present invention also provides an alloy powder producing step for producing a hydrogen-absorbing alloy powder, and washing the hydrogen-absorbing alloy powder with a strongly acidic solution and then with a weakly acidic solution having a pH value higher than that of the strongly acidic solution. The two-step acid treatment step of treating and the residual amount of anions taken in the hydrogen storage alloy powder by the acid treatment are 5 × 10 −6 mol based on the hydrogen storage alloy powder.
/ G or less, the cleaning step of cleaning.

【0029】前記発明によれば、洗浄工程で前記酸処理
の際、合金中(特に合金表面)に取り込まれたアニオン
を合金に対し5×10-6mol/g濃度以下にまで洗浄
するので、残留アニオンが電池性能に悪影響を及ぼすこ
とがない。したがって、本発明方法を適用した水素吸蔵
合金を用いた場合、初期充放電により容易に合金の活性
度を高めることができ、また残留アニオンが正負極の活
性を低下させることがないので、高率放電特性、低温放
電特性及びサイクル特性に優れたアルカリ蓄電池を得る
ことができる。
According to the above invention, during the acid treatment in the washing step, the anions taken in the alloy (particularly the alloy surface) are washed to a concentration of 5 × 10 −6 mol / g or less with respect to the alloy. Residual anions do not adversely affect battery performance. Therefore, when the hydrogen storage alloy to which the method of the present invention is applied is used, the activity of the alloy can be easily increased by the initial charge and discharge, and the residual anion does not reduce the activity of the positive and negative electrodes, and thus the high rate is achieved. An alkaline storage battery having excellent discharge characteristics, low temperature discharge characteristics and cycle characteristics can be obtained.

【0030】このように、2段階酸処理工程と洗浄工程
とを備えていれば、両工程の相乗効果により、一層電池
特性が向上する。
As described above, if the two-step acid treatment step and the washing step are provided, the battery characteristics are further improved by the synergistic effect of both steps.

【0031】また、本発明は、水素吸蔵合金粉末を作製
する合金粉末作製工程と、前記水素吸蔵合金粉末を強酸
性溶液で洗浄した後、前記強酸性溶液よりpH値の大き
い弱酸性溶液で洗浄する2段階酸処理工程と、前記2段
階の酸処理した水素吸蔵合金粉末に対し、オキソ酸塩水
溶液で表面処理するオキソ酸塩表面処理工程と、水素吸
蔵合金粉末に取り込まれたアニオンの残留量が、水素吸
蔵合金粉末に対し5×10-6mol/g以下になるまで
洗浄する洗浄工程とを備えている。
The present invention also provides an alloy powder producing step for producing a hydrogen-absorbing alloy powder, washing the hydrogen-absorbing alloy powder with a strongly acidic solution, and then with a weakly acidic solution having a pH value higher than that of the strongly acidic solution. A two-step acid treatment step, and an oxoacid salt surface treatment step of surface-treating the two-step acid-treated hydrogen storage alloy powder with an aqueous oxoacid salt solution, and a residual amount of anions incorporated in the hydrogen storage alloy powder. However, the cleaning step for cleaning the hydrogen storage alloy powder to 5 × 10 −6 mol / g or less is provided.

【0032】このように、2段階酸処理工程とオキソ酸
塩表面処理工程と洗浄工程とを備えていれば、3つ工程
の相乗効果により、高率放電特性、低温放電特性及びサ
イクル特性等の電池諸特性が顕著に向上する。
As described above, if the two-step acid treatment step, the oxoacid salt surface treatment step and the cleaning step are provided, the high rate discharge characteristic, the low temperature discharge characteristic, the cycle characteristic, etc. can be obtained by the synergistic effect of the three steps. Various battery characteristics are remarkably improved.

【0033】[0033]

【実施例】【Example】

(実施例1) [水素吸蔵合金粉末の作製]市販のミッシュメタル(M
m;La,Ce,Nd,Pr等の希土類元素の混合
物):Ni:Co:Al:Mnの各金属元素を1:3.
4:0.8:0.2:0.6の割合となるように市販の
金属元素を秤量し、高周波溶解炉で溶融し、鋳型に流し
込むことにより、組成式MmNi3.4Co0.8Al0.2
0.6で表される水素吸蔵合金鋳塊を作製した。これを
1000℃で10時間熱処理を行った。
(Example 1) [Preparation of hydrogen storage alloy powder] Commercially available misch metal (M
m; a mixture of rare earth elements such as La, Ce, Nd and Pr): Ni: Co: Al: Mn for each metal element of 1: 3.
4: 0.8: 0.2: 0.6 commercially available metal element such that the ratio of weighed, melted in a high frequency melting furnace, by pouring into a mold, the composition formula MmNi 3.4 Co 0.8 Al 0.2 M
A hydrogen storage alloy ingot represented by n 0.6 was produced. This was heat-treated at 1000 ° C. for 10 hours.

【0034】次に、この合金鋳塊を窒素ガス雰囲気中で
機械的に粉砕し粉末となし、この合金粉末を100メッ
シュ(目開き:150μm)及び500メッシュ(目開
き:25μm)のフルイを使用して分級し、100メッ
シュから500メッシュの間に分級される合金粉末を得
た。 [酸処理]前記の様に作製した水素吸蔵合金粉末に対
し、pH値が1の塩酸水溶液を合金重量当り100wt
%注加し、撹拌型混合機を用いてpH値が7になるまで
撹拌した(第1回目の酸処理)。その後、撹拌型混合機
内の処理液を捨て第1回目の酸処理済水素吸蔵合金粉末
を得た。
Next, this alloy ingot was mechanically pulverized in a nitrogen gas atmosphere to form a powder, and this alloy powder was used with a 100 mesh (opening: 150 μm) and 500 mesh (opening: 25 μm) sieve. And classified to obtain an alloy powder classified between 100 mesh and 500 mesh. [Acid treatment] To the hydrogen-absorbing alloy powder prepared as described above, 100 wt.
%, And the mixture was stirred using a stirrer mixer until the pH value reached 7 (first acid treatment). Then, the treatment liquid in the stirring mixer was discarded to obtain a first acid-treated hydrogen storage alloy powder.

【0035】次いで、前記第1回目酸処理済合金粉末に
対して、pH値が4の塩酸水溶液を合金重量当り100
wt%注加し、前記撹拌混合機で10分間撹拌した(第
2回目の酸処理)。 [オキソ酸表面処理]更に、この処理済溶液を捨て、オ
キソ酸塩溶液としてリン酸水素2ナトリウム水溶液(以
下、Na2HPO4溶液)を用い、酸処理液を捨てた酸処
理済合金粉末に対し3wt%の濃度のNa2HPO4溶液
を加え、前記撹拌機で10分間撹拌洗浄する方法によ
り、オキソ酸塩表面処理を行った。 [洗浄工程]その後、前記処理済合金を純水にて、合金
中の塩素(アニオン)濃度が10×10-6mol/g以
下になるまで洗浄を施した。
Next, with respect to the first-time acid-treated alloy powder, an aqueous hydrochloric acid solution having a pH value of 4 is added to 100 weight% of the alloy weight.
wt% was added, and the mixture was stirred for 10 minutes by the stirring mixer (second acid treatment). [Oxo acid surface treatment] Furthermore, the treated solution is discarded, and an aqueous solution of disodium hydrogen phosphate (hereinafter referred to as Na 2 HPO 4 solution) is used as the oxo acid salt solution to form an acid treated alloy powder in which the acid treatment solution is discarded. On the other hand, a 3 wt% concentration of Na 2 HPO 4 solution was added, and the oxo acid salt surface treatment was carried out by a method of stirring and washing with the agitator for 10 minutes. [Washing Step] Then, the treated alloy was washed with pure water until the chlorine (anion) concentration in the alloy became 10 × 10 −6 mol / g or less.

【0036】具体的には、撹拌型混合機に洗浄液として
の純水を入れ、この純水に対しほぼ等重量の前記処理済
合金粉末を浸漬し、5分間撹拌した。その後、洗浄液を
交換して再び5分間撹拌するという操作を施し、このよ
うに作製された合金粉末を本発明合金a1と称する。 (実施例2)前記実施例1における[洗浄工程]におい
て、合金中の塩素(アニオン)濃度が5×10-6mol
/g以下になるまで洗浄を施す以外は前記実施例1と同
様にして本発明合金a2を作製した。
Specifically, pure water as a cleaning liquid was put into an agitating mixer, and the treated alloy powder of substantially equal weight was immersed in the pure water and stirred for 5 minutes. Then, the cleaning liquid is exchanged, and the operation of stirring again for 5 minutes is performed, and the alloy powder thus produced is referred to as alloy a1 of the present invention. (Example 2) In the [cleaning step] of Example 1, the chlorine (anion) concentration in the alloy was 5 x 10 -6 mol.
Alloy a2 of the present invention was produced in the same manner as in Example 1 except that cleaning was performed until the amount became less than or equal to / g.

【0037】具体的には、撹拌型混合機に洗浄液として
の純水を入れ、この純水に対しほぼ等重量の前記処理済
合金粉末を浸漬し、5分間撹拌した。その後、洗浄液を
交換し再び5分間撹拌するという操作を後3回施した。 (実施例3)前記実施例1における[洗浄工程]におい
て、合金中の塩素(アニオン)濃度が1×10-6mol
/g以下になるまで洗浄を施す以外は前記実施例1と同
様にして本発明合金a3を作製した。
Specifically, pure water as a cleaning liquid was put into an agitating mixer, and the treated alloy powder of substantially equal weight was immersed in the pure water and stirred for 5 minutes. Then, the operation of exchanging the cleaning liquid and stirring again for 5 minutes was performed three times later. (Example 3) In the [cleaning step] of Example 1, the chlorine (anion) concentration in the alloy was 1 x 10 -6 mol.
Alloy a3 of the present invention was produced in the same manner as in Example 1 except that washing was performed until the amount became less than or equal to / g.

【0038】具体的には、撹拌型混合機に洗浄液として
の0.3wt%のNa2HPO4水溶液を入れ、この洗浄
液に対しほぼ等重量の前記処理済合金粉末を浸漬し、5
分間撹拌した。その後、洗浄液を交換し再び5分間撹拌
するという操作を後3回施した。 (実施例4)前記実施例1における[オキソ酸表面処
理]を行わない以外は、前記実施例2と同様にして本発
明合金a4を作製した。 (実施例5)前記実施例1における[オキソ酸表面処
理]を行わない以外は、前記実施例3と同様にして本発
明合金a5を作製した。 (比較例1)前記実施例1における[オキソ酸表面処
理]を行わない以外は、前記実施例1と同様にして比較
合金x1を作製した。
Specifically, a 0.3 wt% Na 2 HPO 4 aqueous solution as a cleaning liquid is put in a stirring type mixer, and the treated alloy powder of substantially equal weight is immersed in the cleaning liquid, and 5
Stir for minutes. Then, the operation of exchanging the cleaning liquid and stirring again for 5 minutes was performed three times later. (Example 4) Inventive alloy a4 was produced in the same manner as in Example 2 except that the [oxo acid surface treatment] in Example 1 was not performed. (Example 5) An alloy a5 of the present invention was produced in the same manner as in Example 3 except that the [oxo acid surface treatment] in Example 1 was not performed. (Comparative Example 1) A comparative alloy x1 was produced in the same manner as in Example 1 except that the [oxo acid surface treatment] in Example 1 was not performed.

【0039】前記の合金について、合金の表面処理方法
を一覧表にしたので、下記表1に示す。
A list of alloy surface treatment methods for the above alloys is shown in Table 1 below.

【0040】[0040]

【表1】 [Table 1]

【0041】[電極の作製]前記本発明合金a1〜a5
及び比較合金x1を結着剤としてポリテトラフルオロエ
チレン粉末を合金重量に対して5wt%加えてペースト
を作製した。このペーストをパンチングメタルからなる
集電体の両面に圧着後、プレスして本発明水素吸蔵合金
電極A1〜A5及び比較水素吸蔵合金電極X1を作製し
た。 [ニッケル−水素蓄電池の作製]前記のように作製した
本発明水素吸蔵合金電極A1〜A5及び比較水素吸蔵合
金電極X1と、公知の焼結式ニッケル極とを、不織布か
らなるセパレータを介して捲回し、電極群を作製した。
この電極群を外装缶に挿入し、さらに30重量%の水酸
化カリウム水溶液を上記外装缶に注液した後、外装缶を
密閉することにより理論容量が1000mAhの円筒型
ニッケル−水素蓄電池を各々作製した。
[Production of electrodes] The alloys a1 to a5 of the present invention
A paste was prepared by adding 5 wt% of polytetrafluoroethylene powder to the weight of the alloy using the comparative alloy x1 as a binder. This paste was pressure-bonded to both sides of a current collector made of punching metal and then pressed to produce the hydrogen storage alloy electrodes A1 to A5 of the present invention and the comparative hydrogen storage alloy electrode X1. [Production of Nickel-Hydrogen Storage Battery] The hydrogen storage alloy electrodes A1 to A5 of the present invention and the comparative hydrogen storage alloy electrode X1 produced as described above and a known sintered nickel electrode are wound through a separator made of a non-woven fabric. The electrode group was made by turning.
This electrode group was inserted into an outer can, and a 30 wt% potassium hydroxide aqueous solution was poured into the outer can, and then the outer can was sealed to produce cylindrical nickel-hydrogen storage batteries each having a theoretical capacity of 1000 mAh. did.

【0042】[特性試験] 初期充電時内圧 前記のように作製した活性化を行う前のニッケル−水素
蓄電池を以下の条件で充電を行った時の電池内圧を測定
し、その結果を下記表2に示す。
[Characteristic Test] Internal Pressure at Initial Charging The nickel-hydrogen storage battery before activation prepared as described above was charged under the following conditions, and the internal pressure of the battery was measured. The results are shown in Table 2 below. Shown in.

【0043】充電:1000mA×1時間 サイクル寿命特性 前記のように作製した理論容量が1000mAhの円筒
型ニッケル−水素蓄電池を、先ず、下記の条件で充放電
を3サイクル行い電池の初期活性化を行った。
Charging: 1000 mA × 1 hour cycle life characteristics The cylindrical nickel-hydrogen storage battery having a theoretical capacity of 1000 mAh produced as described above was first charged and discharged for 3 cycles under the following conditions to perform initial activation of the battery. It was

【0044】 充電:100mA×16時間、休止:1時間 放電:200mA 放電終止電圧1.0V、休止:1時
間 次に、下記の条件で充放電を行い、放電容量が500m
Ah以下になった時点を電池寿命とし、これに至るまで
のサイクル数を測定し、この結果を下記表2に示す。
Charging: 100 mA × 16 hours, Pause: 1 hour Discharge: 200 mA Discharge end voltage: 1.0 V, Pause: 1 hour Next, charging / discharging was performed under the following conditions, and the discharge capacity was 500 m.
When the battery life reached Ah or less, the battery life was determined, and the number of cycles until the battery life was reached was measured. The results are shown in Table 2 below.

【0045】 充電:1500mA×48分間、休止:1時間 放電:1500mA、放電終止電圧1.0V、休止:1
時間 [試験セルの作製及び高率放電特性の評価]前記のよう
に作製した本発明水素吸蔵合金粉末a1〜a5及び比較
水素吸蔵合金粉末x1を各1g、導電剤としてカルボニ
ルニッケル1.2g、及び結着剤としてPTFE粉末
0.2gを加え、混練して合金ペーストを調整し、この
合金ペーストをニッケルメッシュで包みプレス加工する
ことにより電極を作製した。この電極より充分大きな容
量を持つ焼結式ニッケル極を密閉容器に配置し、電解液
として水酸化カリウム水溶液を過剰量入れて試験セルを
各々作製した。
Charging: 1500 mA × 48 minutes, rest: 1 hour Discharge: 1500 mA, discharge end voltage 1.0 V, rest: 1
Time [Preparation of test cell and evaluation of high rate discharge characteristics] 1 g of each of the hydrogen storage alloy powders a1 to a5 of the present invention and the comparative hydrogen storage alloy powder x1 produced as described above, 1.2 g of carbonyl nickel as a conductive agent, and An electrode was prepared by adding 0.2 g of PTFE powder as a binder, kneading to prepare an alloy paste, and wrapping the alloy paste in a nickel mesh and press-working. A sintered nickel electrode having a capacity sufficiently larger than this electrode was placed in a closed container, and an excess amount of an aqueous solution of potassium hydroxide was added as an electrolytic solution to prepare each test cell.

【0046】前記のように作製した試験セルを用いて、
下記の条件で充放電を行い、活性度を測定した。最初に
合金1gあたり50mAの電流値で8時間充電し、1時
間休止をおいて、合金1gあたり200mAの電流値で
放電終止電圧が1.0Vに達するまで放電し、このとき
の放電容量をCHとした。この後、1時間休止をおい
て、即ち、電圧を復帰させて、合金1gあたり50mA
の電流値で放電終止電圧が1.0Vに達するまで放電
し、このときの放電容量をCLとした。
Using the test cell prepared as described above,
Charging and discharging were performed under the following conditions, and the activity was measured. First, the alloy was charged with a current value of 50 mA per 1 g of the alloy for 8 hours, left for 1 hour, and discharged with a current value of 200 mA per 1 g of the alloy until the discharge end voltage reached 1.0 V. The discharge capacity at this time was C H. After this, a rest of 1 hour is made, that is, the voltage is returned to 50 mA per 1 g of the alloy.
The discharge was carried out until the discharge end voltage reached 1.0 V at the current value of, and the discharge capacity at this time was taken as C L.

【0047】高率放電特性の評価は、活性度(%)=C
H/(CH+CL)×100を使用して行った。この結果
を下記表2に示す。
The evaluation of the high rate discharge characteristic is as follows: Activity (%) = C
Performed using H / (C H + C L ) × 100. The results are shown in Table 2 below.

【0048】[0048]

【表2】 [Table 2]

【0049】表2から明らかなように、2段階の酸処理
を行った後、オキソ酸塩表面処理を行わないよりオキソ
酸塩表面処理を行った方が初期電池内圧特性、高率放電
特性及びサイクル寿命特性等の電池特性に優れ(x1と
a1との比較)、また、純水で洗浄する場合には洗浄時
間が長い方、即ちCl-等のアニオンの残留量が水素吸
蔵合金粉末に対し5×10-6mol/g以下になるまで
洗浄する方が初期電池内圧特性、高率放電特性及びサイ
クル寿命特性等の電池特性に優れていることがわかる
(x1とa4との比較)。
As is clear from Table 2, the initial cell internal pressure characteristics, high rate discharge characteristics and high initial discharge characteristics are better when the oxoacid salt surface treatment is performed after the two-step acid treatment. Excellent battery characteristics such as cycle life characteristics (comparison between x1 and a1). Also, when cleaning with pure water, the cleaning time is longer, that is, the residual amount of anions such as Cl is higher than that of hydrogen storage alloy powder. It can be seen that washing to 5 × 10 −6 mol / g or less is more excellent in battery characteristics such as initial cell internal pressure characteristics, high rate discharge characteristics and cycle life characteristics (comparison between x1 and a4).

【0050】特に、2段階酸処理工程、オキソ酸塩表面
処理工程及び洗浄工程の全工程を備えれば、初期電池内
圧特性、高率放電特性及びサイクル寿命特性が顕著に改
善されていることがわかる(x1、a2及びa3との比
較)。
Particularly, if the two-step acid treatment process, the oxoacid salt surface treatment process and the washing process are all provided, the initial battery internal pressure characteristics, high rate discharge characteristics and cycle life characteristics are remarkably improved. Understand (comparison with x1, a2 and a3).

【0051】更に、洗浄時の液としては純水よりリン酸
水素2ナトリウム水溶液を用いた方が、洗浄時間が同じ
でも合金中のアニオンの残留量の低減下が図れるために
高率放電特性及びサイクル寿命特性等の電池特性に優れ
ていることがわかる(a2とa3との比較及びa4とa
5との比較)。
Furthermore, it is possible to reduce the residual amount of anions in the alloy by using an aqueous solution of disodium hydrogen phosphate rather than pure water as the liquid for cleaning, so that high rate discharge characteristics and It is found that the battery characteristics such as cycle life characteristics are excellent (comparison between a2 and a3 and a4 and a3).
(Comparison with 5).

【0052】従って、2段階の酸処理工程の他に、オキ
ソ酸塩表面処理工程及び/又は洗浄工程を経る方が望ま
しく、特に洗浄工程においてはリン酸水素2ナトリウム
水溶液を用いるのが望ましい。
Therefore, in addition to the two-step acid treatment step, it is desirable to go through an oxo acid salt surface treatment step and / or a washing step, and it is particularly desirable to use an aqueous disodium hydrogen phosphate solution in the washing step.

【0053】[0053]

【発明の効果】以上から明らかなように、本発明によれ
ば、2段階酸処理工程の他にオキソ酸塩表面処理工程及
び/または、アニオンの残留量が合金に対して5×10
-6mol/g以下になるまで洗浄する工程とを備えてい
るので、高率放電特性及びサイクル寿命特性が優れ、初
期電池内圧の低減したニッケル−水素蓄電池を得ること
ができ、その工業的価値は高い。
As is apparent from the above, according to the present invention, in addition to the two-step acid treatment step, the oxo acid salt surface treatment step and / or the residual amount of anions is 5 × 10 5 relative to the alloy.
-6 mol / g or less of washing process is provided, so that it is possible to obtain a nickel-hydrogen storage battery having excellent high rate discharge characteristics and cycle life characteristics and reduced initial battery internal pressure, and its industrial value. Is high.

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平7−320731(JP,A) 特開 平5−190175(JP,A) 特開 平7−282807(JP,A) 特開 平4−179055(JP,A) 特開 平4−98760(JP,A) (58)調査した分野(Int.Cl.7,DB名) H01M 4/14 - 4/34 ─────────────────────────────────────────────────── --- Continuation of the front page (56) Reference JP-A-7-320731 (JP, A) JP-A-5-190175 (JP, A) JP-A-7-282807 (JP, A) JP-A-4- 179055 (JP, A) JP-A-4-98760 (JP, A) (58) Fields investigated (Int.Cl. 7 , DB name) H01M 4/14-4/34

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 水素吸蔵合金粉末を作製する合金粉末作
製工程と、 前記水素吸蔵合金粉末を酸性溶液で洗浄した後、前記酸
性溶液よりpH値の大きい酸性溶液で洗浄処理する2段
階酸処理工程と、 前記2段階の酸処理した水素吸蔵合金粉末に対し、オキ
ソ酸塩水溶液で表面処理するオキソ酸塩表面処理工程
と、 を備えることを特徴とする水素吸蔵合金電極の製造方
法。
1. An alloy powder producing step of producing a hydrogen-absorbing alloy powder, and a two-step acid treatment step of washing the hydrogen-absorbing alloy powder with an acidic solution and then washing with an acidic solution having a pH value higher than that of the acidic solution. And a oxoacid salt surface treatment step of surface-treating the two-stage acid-treated hydrogen storage alloy powder with an aqueous oxoacid salt solution, a method for producing a hydrogen storage alloy electrode.
【請求項2】 水素吸蔵合金粉末を作製する合金粉末作
製工程と、 前記水素吸蔵合金粉末を酸性溶液で洗浄した後、前記酸
性溶液よりpH値の大きい酸性溶液で洗浄処理する2段
階酸処理工程と、 前記酸処理により水素吸蔵合金粉末に取り込まれたアニ
オンの残留量が、水素吸蔵合金粉末に対し5×10-6
ol/g以下になるまで洗浄する洗浄工程と、 を備えることを特徴とする水素吸蔵合金の製造方法。
2. An alloy powder production step of producing hydrogen storage alloy powder, and a two-step acid treatment step of washing the hydrogen storage alloy powder with an acidic solution and then washing with an acidic solution having a pH value higher than that of the acidic solution. And the residual amount of anions taken in the hydrogen storage alloy powder by the acid treatment is 5 × 10 −6 m with respect to the hydrogen storage alloy powder.
A method of manufacturing a hydrogen storage alloy, comprising: a cleaning step of cleaning until it becomes ol / g or less.
【請求項3】 水素吸蔵合金粉末を作製する合金粉末作
製工程と、 前記水素吸蔵合金粉末を酸性溶液で洗浄した後、前記酸
性溶液よりpH値の大きい酸性溶液で洗浄処理する2段
階酸処理工程と、 前記2段階の酸処理した水素吸蔵合金粉末に対し、オキ
ソ酸塩水溶液で表面処理するオキソ酸塩表面処理工程
と、 水素吸蔵合金粉末に取り込まれたアニオンの残留量が、
水素吸蔵合金粉末に対し5×10-6mol/g以下にな
るまで洗浄する洗浄工程と、 を備えることを特徴とする水素吸蔵合金電極の製造方
法。
3. An alloy powder producing step of producing a hydrogen-absorbing alloy powder, and a two-step acid treatment step of washing the hydrogen-absorbing alloy powder with an acidic solution and then washing with an acidic solution having a pH value higher than that of the acidic solution. And an oxo acid salt surface treatment step of surface-treating the hydrogen storage alloy powder subjected to the two-step acid treatment with an aqueous oxo acid salt solution, and a residual amount of anions taken in the hydrogen storage alloy powder,
A method of manufacturing a hydrogen storage alloy electrode, comprising: a cleaning step of cleaning the hydrogen storage alloy powder to 5 × 10 −6 mol / g or less.
JP14736496A 1996-06-10 1996-06-10 Method for producing hydrogen storage alloy electrode Expired - Fee Related JP3530309B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14736496A JP3530309B2 (en) 1996-06-10 1996-06-10 Method for producing hydrogen storage alloy electrode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14736496A JP3530309B2 (en) 1996-06-10 1996-06-10 Method for producing hydrogen storage alloy electrode

Publications (2)

Publication Number Publication Date
JPH09330711A JPH09330711A (en) 1997-12-22
JP3530309B2 true JP3530309B2 (en) 2004-05-24

Family

ID=15428547

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14736496A Expired - Fee Related JP3530309B2 (en) 1996-06-10 1996-06-10 Method for producing hydrogen storage alloy electrode

Country Status (1)

Country Link
JP (1) JP3530309B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103111616A (en) * 2013-03-07 2013-05-22 桂林理工大学 Fluorination modification method for AB3-type hydrogen storage alloy

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7261059B2 (en) * 2019-03-29 2023-04-19 Fdk株式会社 Negative electrode for nickel-metal hydride secondary battery, method for manufacturing this negative electrode, nickel-hydrogen secondary battery using this negative electrode, and hydrogen-absorbing alloy powder

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103111616A (en) * 2013-03-07 2013-05-22 桂林理工大学 Fluorination modification method for AB3-type hydrogen storage alloy

Also Published As

Publication number Publication date
JPH09330711A (en) 1997-12-22

Similar Documents

Publication Publication Date Title
WO2002071527A1 (en) Method for manufacturing nickel hydrogen battery
JP3835993B2 (en) Electrode alloy powder and method for producing the same
JPH07122271A (en) Manufacture of nickel hydroxide for nickel pole, manufacture of nickel pole using the nickel hydroxide and alkaline secondary battery incorporating the nickel pole
US6740450B2 (en) Hydrogen-absorbing alloy for battery, method for producing the same, and alkaline storage battery using the same
JP3553750B2 (en) Method for producing hydrogen storage alloy for alkaline storage battery
JP3530309B2 (en) Method for producing hydrogen storage alloy electrode
JPH0221098B2 (en)
JP3433008B2 (en) Method for producing hydrogen storage alloy for alkaline storage battery
JP2899849B2 (en) Surface treatment method of hydrogen storage alloy for alkaline secondary battery and alkaline secondary battery equipped with hydrogen storage alloy subjected to the surface treatment as electrode
KR100384760B1 (en) Manufacturing method of hydrogen storage alloy for alkaline storage battery and manufacturing method of hydrogen storage alloy electrode
JP3433031B2 (en) Method for producing hydrogen storage alloy for alkaline storage battery
JP3454614B2 (en) Method for producing hydrogen storage alloy for alkaline storage battery
JP3454600B2 (en) Method for producing hydrogen storage alloy for alkaline storage battery
JP3548004B2 (en) Hydrogen storage alloy electrode for alkaline storage battery and method for producing the same
JP3454612B2 (en) Manufacturing method of hydrogen storage alloy electrode
JP3561577B2 (en) Method for producing hydrogen storage alloy for alkaline storage battery
JP3568337B2 (en) Hydrogen storage alloy electrode and metal hydride storage battery
JP3573789B2 (en) Method for producing hydrogen storage alloy for alkaline storage battery
JPH01107465A (en) Manufacture of sealed alkaline secondary battery
JP3136960B2 (en) Method of treating hydrogen storage alloy for batteries
JP3825582B2 (en) Hydrogen storage alloy for alkaline storage battery and method for manufacturing the same, hydrogen storage alloy electrode for alkaline storage battery and method for manufacturing the same
JPH10116611A (en) Manufacture of hydrogen storage alloy electrode
JP2001006666A (en) Hydrogen storage alloy for alkaline storage battery and manufacture of such alloy
JPH11204104A (en) Nickel-hydrogen secondary battery and manufacture of hydrogen storage alloy thereof
JPH10255779A (en) Manufacture for nickel hydrogen storage battery

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040116

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040224

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040227

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090305

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees