JP3528615B2 - Method for producing positive electrode active material for lithium secondary battery - Google Patents

Method for producing positive electrode active material for lithium secondary battery

Info

Publication number
JP3528615B2
JP3528615B2 JP22136898A JP22136898A JP3528615B2 JP 3528615 B2 JP3528615 B2 JP 3528615B2 JP 22136898 A JP22136898 A JP 22136898A JP 22136898 A JP22136898 A JP 22136898A JP 3528615 B2 JP3528615 B2 JP 3528615B2
Authority
JP
Japan
Prior art keywords
manganese
manganese dioxide
lithium
active material
positive electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP22136898A
Other languages
Japanese (ja)
Other versions
JP2000058050A (en
Inventor
真司 有元
邦夫 伊藤
彰 橋本
雅敏 永山
芳明 新田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP22136898A priority Critical patent/JP3528615B2/en
Publication of JP2000058050A publication Critical patent/JP2000058050A/en
Application granted granted Critical
Publication of JP3528615B2 publication Critical patent/JP3528615B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、非水電解質二次電
池における正極活物質の製造方法に関するものである。
TECHNICAL FIELD The present invention relates to a method for producing a positive electrode active material in a non-aqueous electrolyte secondary battery.

【0002】[0002]

【従来の技術】近年、民生用電子機器のポータブル化、
コードレス化が急速に進んでおり、これらの駆動用電源
を担う小型・軽量で、高エネルギー密度を有する二次電
池への要望も高まっている。このような観点から、非水
系二次電池、特にリチウム二次電池は、とりわけ高電圧
・高エネルギー密度を有する電池としてその期待は大き
く、開発が急がれている。
2. Description of the Related Art In recent years, portable electronic devices for consumer use,
The cordless technology is rapidly advancing, and there is an increasing demand for a small-sized, lightweight secondary battery having a high energy density, which serves as a power source for driving these. From this point of view, non-aqueous secondary batteries, especially lithium secondary batteries, have great expectations as batteries having high voltage and high energy density, and their development is urgently needed.

【0003】近年、LiCoO2、LiNiO2あるいは
LiMn24のリチウム含有複合酸化物を正極活物質と
し、負極に炭素質材料を用いた電池系が高エネルギー密
度が得られるリチウム二次電池として注目を集めてい
る。
Recently, a battery system in which a lithium-containing composite oxide of LiCoO 2 , LiNiO 2 or LiMn 2 O 4 is used as a positive electrode active material and a carbonaceous material is used as a negative electrode has attracted attention as a lithium secondary battery capable of obtaining high energy density. Are gathering.

【0004】これらリチウム含有複合酸化物の中で、資
源が豊富でかつ安価であるという理由からマンガンを使
用したLiMn24が近年注目されている。LiMn2
4は4V付近と2.8V付近の2段の放電電位を持っ
ており、4V付近のプラトーな放電領域を使用し、4.
5〜3.0Vの電圧範囲で充放電を繰り返すことで高電
位、高エネルギー密度を達成することができる。このリ
チウム複合マンガン酸化物の主な製造方法としては、マ
ンガン化合物とリチウム化合物を所定のモル比となるよ
うに混合した後、熱処理し合成する方法が一般的であ
る。例えば、水酸化リチウムと酸化マンガンを混合した
混合物を粉砕した後、焼成することにより両者の反応を
短時間で、均一に進行させる方法(特開平6−7682
4号公報)、500℃以下の温度で第1の熱処理をおこ
なった後に、500℃以上850℃以下の温度で第2の
熱処理をおこなうことでより組成が均一なスピネル構造
を得る方法(特開平8−217452号公報)、200
℃以上500℃未満で熱処理をした後、500℃以上8
50℃以下で再度熱処理をおこなうことで高容量なリチ
ウムマンガン酸化物を得る方法(特開平9−86933
号公報)等がある。
Among these lithium-containing composite oxides, LiMn 2 O 4 using manganese has recently attracted attention because it is rich in resources and inexpensive. LiMn 2
O 4 has a two-stage discharge potential near 4 V and around 2.8 V, and uses a plateau discharge region near 4 V.
By repeating charging and discharging in the voltage range of 5 to 3.0 V, high potential and high energy density can be achieved. As a main manufacturing method of this lithium composite manganese oxide, a method of mixing a manganese compound and a lithium compound in a predetermined molar ratio and then heat treating them to synthesize them is generally used. For example, a method in which a mixture of lithium hydroxide and manganese oxide is pulverized and then fired so that the reaction between the two is allowed to proceed uniformly in a short time (JP-A-6-7682).
No. 4), a first heat treatment is performed at a temperature of 500 ° C. or lower, and then a second heat treatment is performed at a temperature of 500 ° C. or higher and 850 ° C. or lower to obtain a spinel structure having a more uniform composition. 8-217452), 200
After heat treatment at ℃ or more and less than 500 ℃, 500 ℃ or more 8
A method of obtaining a high-capacity lithium manganese oxide by performing heat treatment again at 50 ° C. or lower (JP-A-9-86933).
Issue gazette) etc.

【0005】[0005]

【発明が解決しようとする課題】これらリチウム複合マ
ンガン酸化物を合成する出発物質として、リチウム化合
物とマンガン化合物が用いられるが、この出発物質とし
て用いられるマンガン化合物は、多くの場合、酸性浴中
に溶解しているマンガン塩を電解により電極表面上に析
出させた二酸化マンガン、いわゆる電解二酸化マンガン
である。この電解二酸化マンガンの特徴としては、電解
析出により造られるため、密度が高く緻密なものとな
る。また、ブロック状のものを所定の粒度に粉砕するた
め形状はごつごつした塊状になる。このため、電解二酸
化マンガンを出発物質として合成したリチウム複合マン
ガン酸化物も、同様の性状となり、これを正極活物質と
して用いた電池は、密度が高いため初期容量は高いが、
緻密であるため保液性が低い、また充放電に伴う膨張収
縮に弱いという理由から、充放電サイクル特性の悪い電
池となる課題を有していた。
A lithium compound and a manganese compound are used as starting materials for synthesizing these lithium composite manganese oxides. The manganese compound used as the starting material is often used in an acidic bath. It is so-called electrolytic manganese dioxide, which is prepared by electrolytically depositing a dissolved manganese salt on the electrode surface. As a characteristic of this electrolytic manganese dioxide, since it is produced by electrolytic deposition, it becomes dense and dense. Further, since the block-shaped material is crushed to a predetermined particle size, the shape becomes a lumpy mass. Therefore, a lithium composite manganese oxide synthesized by using electrolytic manganese dioxide as a starting material also has the same property, and a battery using this as a positive electrode active material has a high density but a high initial capacity.
Since it is dense, it has a low liquid retention property and is weak in expansion and contraction associated with charge and discharge, and thus has a problem of becoming a battery having poor charge and discharge cycle characteristics.

【0006】本発明はこれらの課題を解決するもので、
原材料のマンガン化合物の性状を選択することにより、
初期容量が高くかつ充放電サイクル特性の良好な非水電
解質二次電池用正極活物質の製造方法を提供することを
目的とする。
The present invention solves these problems.
By selecting the properties of the raw material manganese compound,
An object of the present invention is to provide a method for producing a positive electrode active material for a non-aqueous electrolyte secondary battery, which has a high initial capacity and good charge / discharge cycle characteristics.

【0007】[0007]

【課題を解決するための手段】上記課題を解決するため
に本発明は、電解二酸化マンガンと化学合成により得ら
れたマンガン化合物(ただし、Mn 2 3 ,Mn 3 4 ,M
nOOH,MnCO 3 からなる群より選択される少なく
とも1種)とをそれぞれ別々にリチウム化合物と混合、
加熱、合成した後、混合することにより、高密度で保液
性が良く、充放電に伴う膨張収縮に強い非水電解質二次
電池用正極活物質を得るものである。
In order to solve the above problems, the present invention is directed to electrolytic manganese dioxide and a manganese compound obtained by chemical synthesis (provided that Mn 2 O 3 , Mn 3 O 4 , M
selected from the group consisting of nOOH and MnCO 3
And one kind ) and separately mixed with a lithium compound,
By heating, synthesizing, and then mixing, a positive electrode active material for a non-aqueous electrolyte secondary battery, which has a high density, good liquid retention, and is resistant to expansion and contraction due to charge and discharge, is obtained.

【0008】[0008]

【発明の実施の形態】本発明は、電解二酸化マンガンと
化学合成により得られたマンガン化合物(ただし、Mn
2 3 ,Mn 3 4 ,MnOOH,MnCO 3 からなる群よ
り選択される少なくとも1種)とをそれぞれ別にリチウ
ム化合物と混合、加熱し合成した後に、混合する非水電
解質二次電池用正極活物質の製造方法である。特に、電
解二酸化マンガンと化学合成により得られたマンガン化
合物の割合がマンガンのモル比で10:90〜90:1
0とするのが好ましい。
BEST MODE FOR CARRYING OUT THE INVENTION The present invention relates to electrolytic manganese dioxide and a manganese compound obtained by chemical synthesis (provided that Mn
2 O 3, Mn 3 O 4 , MnOOH, the group consisting of MnCO 3
At least one selected from the following ) is separately mixed with a lithium compound, heated, synthesized, and then mixed, to prepare a positive electrode active material for a non-aqueous electrolyte secondary battery. In particular, the ratio of electrolytic manganese dioxide to the manganese compound obtained by chemical synthesis is 10:90 to 90: 1 in terms of molar ratio of manganese.
It is preferably 0.

【0009】電解二酸化マンガンは、酸性浴中に溶解し
ているマンガン塩を電解により電極表面上に析出させる
ことにより合成される。この電解二酸化マンガンの特徴
としては、電解析出により造られるため、密度が高く緻
密なものとなる。また、ブロック状のものを所定の粒度
に粉砕するため、二次粒子の形状はごつごつした塊状に
なる。このため、電解二酸化マンガンを出発物質として
合成したリチウム複合マンガン酸化物も、同様の性状と
なり、これを正極活物質として用いた電池は、密度が高
いため体積当たりの初期容量は高いが、緻密であるため
保液性が低い、また、充放電に伴う膨張収縮に弱いとい
う理由から、充放電サイクル特性の悪い電池となる。
Electrolytic manganese dioxide is synthesized by electrolytically depositing a manganese salt dissolved in an acidic bath on the electrode surface. As a characteristic of this electrolytic manganese dioxide, since it is produced by electrolytic deposition, it becomes dense and dense. Moreover, since the block-shaped particles are crushed to a predetermined particle size, the secondary particles have a lumpy shape. Therefore, the lithium composite manganese oxide synthesized using electrolytic manganese dioxide as a starting material also has the same properties, and a battery using this as a positive electrode active material has a high density but a high initial capacity per volume, but a dense structure. Therefore, the battery is poor in charge / discharge cycle characteristics because it has a low liquid retention property and is weak in expansion and contraction associated with charge / discharge.

【0010】この電解二酸化マンガンに対し、化学合成
によりマンガン化合物を生成する方法がある。この、化
学合成によるマンガン化合物の合成方法としては次のよ
うな物がある。まず、硫酸マンガンと炭酸アンモニウム
を反応させ炭酸マンガンを沈殿物として得る。この時、
反応条件を調節することにより生成される炭酸マンガン
の粒径を制御することができる。この炭酸マンガンに酸
化などの処理を行うことにより様々なマンガン化合物が
合成される。これらの化合物は液相で目的とする粒度に
合成されるため、粉砕の必要がなく、二次粒子は球状に
近い形状を有し、密度が低く多孔質なものである。この
ように、化学合成により合成されたマンガン化合物を出
発物質として合成したリチウム複合マンガン酸化物も、
同様の性状となる。よって、これを正極活物質として用
いた電池は、保液性が高く、充放電に伴う膨張収縮に強
いため、充放電サイクル特性は良好であるが、密度が低
いため、体積当たりの初期容量が悪い電池となる。これ
ら電解二酸化マンガンと、化学合成により得られたマン
ガン化合物とから合成されたそれぞれのリチウム複合マ
ンガン酸化物を混合し用いることにより、相互に欠点を
補い初期容量および充放電サイクル特性共に良好なリチ
ウム電池用正極活物質を得ることができる。
There is a method of producing a manganese compound from this electrolytic manganese dioxide by chemical synthesis. There are the following methods for synthesizing the manganese compound by the chemical synthesis. First, manganese sulfate and ammonium carbonate are reacted to obtain manganese carbonate as a precipitate. At this time,
The particle size of the produced manganese carbonate can be controlled by adjusting the reaction conditions. Various manganese compounds are synthesized by subjecting this manganese carbonate to treatment such as oxidation. Since these compounds are synthesized in the liquid phase to have a desired particle size, there is no need for pulverization, and the secondary particles have a shape close to a sphere and are low in density and porous. In this way, the lithium composite manganese oxide synthesized by using the manganese compound synthesized by chemical synthesis as a starting material,
It has similar properties. Therefore, a battery using this as a positive electrode active material has a high liquid retention property and is resistant to expansion and contraction associated with charge and discharge, and thus has good charge-discharge cycle characteristics, but has a low density, and therefore has an initial capacity per volume. It will be a bad battery. Each lithium composite compound synthesized from these electrolytic manganese dioxide and a manganese compound obtained by chemical synthesis .
By mixing and using gangan oxides, it is possible to obtain defects in the positive electrode active material for a lithium battery, which complement each other's defects and have good initial capacity and charge / discharge cycle characteristics.

【0011】このような化学合成により合成されるマン
ガン化合物としては、M23,Mn34,MnOOH
あるいはMnCO3などがあり、これらは上記に記載し
たように球状に近い二次粒子の形状を有し、密度が低く
多孔質なものである。
[0011] The manganese compound, which is synthesized by such a chemical synthesis, M n 2 O 3, Mn 3 O 4, MnOOH
Alternatively, there are MnCO 3 and the like, which have secondary particle shapes close to spherical as described above, and are low in density and porous.

【0012】23,Mn34,MnOOHあるいは
MnCO3などを用いる場合には、電解二酸化マンガン
とは別に、それぞれリチウム化合物と混合、加熱合成し
た後に混合するのが好ましい。これは、電解二酸化マン
ガンとの反応性の違いにより不均一な反応となり、均一
なリチウム複合マンガン酸化物が得られないためであ
る。
[0012] When the like M n 2 O 3, Mn 3 O 4, MnOOH or MnCO 3, apart from the electrolytic manganese dioxide, mixed with a lithium compound, is to mix after heating synthesized preferred. This is because a difference in reactivity with electrolytic manganese dioxide results in a non-uniform reaction, and a uniform lithium composite manganese oxide cannot be obtained.

【0013】また、電解二酸化マンガンと化学合成によ
り得られたマンガン化合物の割合がマンガンのモル比で
10:90〜90:10とするのが好ましい。これは、
電解二酸化マンガン中のマンガンのモル比の割合を10
%以上にすることで活物質の密度が高くなり、電池の初
期容量を大きなものとすることができる。また、化学合
成により得られたマンガン化合物中のマンガンのモル比
の割合を10%以上とすることで活物質の保液性が高
く、充放電による膨張収縮に強くなり、充放電特サイク
ル性を向上することができるためである。更に、電解二
酸化マンガンと化学合成により得られたマンガン化合物
の割合がマンガンのモル比が20:80〜80:20の
場合、初期容量と充放電サイクル特性ともにより良好な
値を示し、もっとも好ましいのは40:60〜60:4
0である。
The ratio of electrolytic manganese dioxide to the manganese compound obtained by chemical synthesis is preferably 10:90 to 90:10 in terms of manganese molar ratio. this is,
The molar ratio of manganese in electrolytic manganese dioxide is 10
When it is at least%, the density of the active material becomes high, and the initial capacity of the battery can be made large. In addition, by setting the molar ratio of manganese in the manganese compound obtained by chemical synthesis to 10% or more, the liquid retention of the active material is high and the expansion / shrinkage due to charging / discharging becomes strong, so that the charging / discharging special cycle property is improved. This is because it can be improved. Further, when the molar ratio of the manganese compound obtained by the chemical synthesis and the electrolytic manganese dioxide is 20:80 to 80:20, both initial capacity and charge / discharge cycle characteristics show better values, which is the most preferable. Is 40:60 to 60: 4
It is 0.

【0014】[0014]

【実施例】以下、本発明の一実施例を図面を参照しなが
ら用いて説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to the drawings.

【0015】(実施例1)本実施例のリチウム複合マン
ガン酸化物の合成法について説明する。
Example 1 A method for synthesizing the lithium composite manganese oxide of this example will be described.

【0016】電解二酸化マンガン(MnO2)と化学合
成二酸化マンガンと炭酸リチウム(Li2CO3)を電解
二酸化マンガンと化学合成二酸化マンガンのMnの合計
とLiの原子モル比が1:0.5となるように混合し
た。この混合物をアルミナ製容器に入れ、電気炉内で静
置し送風10l/minの空気雰囲気下で、2時間で8
50℃まで昇温し、昇温後850℃で10時間保持する
ことによりLiMn24を合成した。この時、電解二酸
化マンガンと化学合成二酸化マンガンの比率はMnのモ
ル比で表1に示した割合とした。得られたLiMn24
を粉砕、分級して電池用活物質1〜10とした。
Electrolytic manganese dioxide (MnO 2 ) and chemically synthesized manganese dioxide and lithium carbonate (Li 2 CO 3 ) were used. The total Mn of electrolytic manganese dioxide and chemically synthesized manganese dioxide and the atomic mole ratio of Li were 1: 0.5. Mixed so that This mixture was placed in an alumina container, allowed to stand in an electric furnace, and blown for 8 hours under an air atmosphere of 10 l / min of blowing air.
LiMn 2 O 4 was synthesized by raising the temperature to 50 ° C. and then holding the temperature at 850 ° C. for 10 hours. At this time, the ratio of the electrolytic manganese dioxide and the chemically synthesized manganese dioxide was set to the ratio shown in Table 1 in terms of Mn molar ratio. Obtained LiMn 2 O 4
Were pulverized and classified to obtain battery active materials 1 to 10.

【0017】[0017]

【表1】 [Table 1]

【0018】次に、得られた電池用活物質1〜10を用
い円筒型リチウム二次電池を構成した。図1は本発明の
実施例に用いた円筒型リチウム二次電池の縦断面図であ
る。
Next, a cylindrical lithium secondary battery was constructed using the obtained battery active materials 1-10. FIG. 1 is a vertical sectional view of a cylindrical lithium secondary battery used in an example of the present invention.

【0019】図1において正極板5および負極板6がセ
パレータ7を介して複数回渦巻状に巻回し構成された極
板群4が耐有機電解液性のステンレス鋼板を加工した電
池ケース1内に収納されている。正極板5からは正極ア
ルミリード5aが引き出されて封口板2に接続され、負
極板6からは負極ニッケルリード6aが引き出されて電
池ケース1の底部に接続されている。極板群4の上下部
にそれぞれ絶縁リング8が設けられており、電池ケース
1の開口部は、安全弁を設けた封口板2および絶縁パッ
キング3により封口されている。負極板6は炭素材料
(本実施例においてはピッチ系球状黒鉛を用いた)にス
チレン−ブタジエンゴムの水性ディスパージョンを重量
比で100:3.5の割合で混合し、これをカルボキシ
メチルセルロースの水溶液に懸濁させてペースト状にし
たものを銅箔の両面に塗着し、乾燥後、圧延し所定の大
きさに切り出し負極板を作製した。なお、スチレン−ブ
タジエンゴムの水性ディスパージョンの混合比率はその
固形分で計算している。正極板5は、合成した化合物1
〜10のLiMn24にアセチレンブラックおよびポリ
四フッ化エチレンの水性ディスパージョンを重量比で1
00:2.5:7.5の割合で混合し、これをカルボキ
シメチルセルロースの水溶液に懸濁させてペースト状に
する。次いでこのペーストをアルミ箔の両面に塗着し、
乾燥後、圧延し所定の大きさに切り出して正極板を作製
した。なお、ポリ四フッ化エチレンの水性ディスパージ
ョンの混合比率はその固形分で計算している。
In FIG. 1, a positive electrode plate 5 and a negative electrode plate 6 are spirally wound a plurality of times with a separator 7 in between to form a polar plate group 4 in a battery case 1 formed by processing a stainless steel plate resistant to organic electrolyte. It is stored. A positive electrode aluminum lead 5a is drawn out from the positive electrode plate 5 and connected to the sealing plate 2, and a negative electrode nickel lead 6a is drawn out from the negative electrode plate 6 and connected to the bottom of the battery case 1. Insulating rings 8 are provided on the upper and lower portions of the electrode plate group 4, respectively, and the opening of the battery case 1 is sealed by a sealing plate 2 provided with a safety valve and an insulating packing 3. For the negative electrode plate 6, a carbon material (pitch-based spherical graphite was used in the present embodiment) was mixed with an aqueous dispersion of styrene-butadiene rubber in a weight ratio of 100: 3.5, and this was mixed with an aqueous solution of carboxymethyl cellulose. The obtained product was suspended in a paste form and applied to both sides of a copper foil, dried, and then rolled and cut into a predetermined size to prepare a negative electrode plate. The mixing ratio of the aqueous dispersion of styrene-butadiene rubber is calculated based on its solid content. The positive electrode plate 5 is the synthesized compound 1
10 to 10 LiMn 2 O 4 with an aqueous dispersion of acetylene black and polytetrafluoroethylene in a weight ratio of 1
Mix at a ratio of 00: 2.5: 7.5 and suspend this in an aqueous solution of carboxymethyl cellulose to form a paste. Then apply this paste to both sides of the aluminum foil,
After drying, it was rolled and cut into a predetermined size to prepare a positive electrode plate. The mixing ratio of the aqueous dispersion of polytetrafluoroethylene is calculated based on its solid content.

【0020】上記方法により作製した正、負極板にそれ
ぞれリードを取付け、ポリエチレン製のセパレータを介
して渦巻き状に巻回し、電池ケースに収納した。電解液
にはエチレンカーボネートとエチルメチルカーボネート
を体積比で1:3で混合した溶媒に6フッ化リン酸リチ
ウム(LiPF6)を1.5mol/l溶解したものを
用いた。この電解液を上記の電池ケースに減圧注液後封
口し、電池1〜10とした。なお本実施例においては、
正極活物質の特性を評価するため、予め負極の容量を大
きくしたものを用いた。
Leads were attached to the positive and negative electrode plates produced by the above method, respectively, and they were spirally wound with a polyethylene separator interposed therebetween and housed in a battery case. The electrolytic solution used was a solvent in which ethylene carbonate and ethyl methyl carbonate were mixed at a volume ratio of 1: 3, and lithium hexafluorophosphate (LiPF 6 ) was dissolved therein at 1.5 mol / l. This electrolytic solution was injected into the battery case under reduced pressure and then sealed to obtain batteries 1 to 10. In this example,
In order to evaluate the characteristics of the positive electrode active material, a negative electrode having a large capacity was used in advance.

【0021】これら電池1〜10を用いて下記の条件で
試験を行った。まず、20℃で電池電圧4.2Vまで1
20mAの定電流で充電した後1時間休止を行い、その
後120mAの定電流で電池電圧3.0Vまで放電す
る。この方法で充放電を3回繰り返し、3回目の放電容
量を初期容量とした。さらに、20℃で充放電電流を1
20mAとし、充電終止電圧4.2V、放電終止電圧
3.0Vの条件で定電流充放電サイクル試験を行った。
初期容量に対する300サイクル時点での放電容量を%
で表したものを容量維持率として算出した。電解二酸化
マンガンと化学合成による二酸化マンガンの合計に対す
る電解二酸化マンガン中のMnのモル比率に対する初期
容量と容量維持率の結果を図2に示す。
Tests were carried out using the batteries 1 to 10 under the following conditions. First, 1 at 20 ° C up to a battery voltage of 4.2V
The battery is charged with a constant current of 20 mA, rested for 1 hour, and then discharged with a constant current of 120 mA to a battery voltage of 3.0V. By repeating this method, charging and discharging were repeated three times, and the discharge capacity at the third time was used as the initial capacity. Furthermore, charge and discharge current is 1 at 20 ℃.
A constant current charge / discharge cycle test was performed under the conditions of 20 mA, a charge end voltage of 4.2 V, and a discharge end voltage of 3.0 V.
The discharge capacity at 300 cycles relative to the initial capacity is%
Was expressed as the capacity retention rate. The results of the initial capacity and the capacity retention rate with respect to the molar ratio of Mn in electrolytic manganese dioxide to the total of electrolytic manganese dioxide and chemically synthesized manganese dioxide are shown in FIG.

【0022】図2より、電解二酸化マンガンの比率が多
いほど初期容量は大きくなる。また容量維持率は、化学
合成二酸化マンガンの比率が多いほど高くなっており、
電解二酸化マンガンと化学合成二酸化マンガンのマンガ
ンのモル比率が10:90〜90:10で初期容量及び
容量維持率ともに良好な結果が得られた。これは、電解
二酸化マンガンの比率が多いほど密度が高くなるため初
期容量は大きくなり、化学合成二酸化マンガンの比率が
多いほど保液性が高く充放電に伴う膨張収縮に強くなる
ため容量維持率が良くなるためと考えられる。
From FIG. 2, the larger the ratio of electrolytic manganese dioxide, the larger the initial capacity. In addition, the capacity retention rate increases as the ratio of chemically synthesized manganese dioxide increases.
When the molar ratio of manganese in electrolytic manganese dioxide and manganese in chemically synthesized manganese dioxide was 10:90 to 90:10, good results were obtained in both initial capacity and capacity retention rate. This is because the higher the ratio of electrolytic manganese dioxide, the higher the density and the larger the initial capacity, and the higher the ratio of chemically synthesized manganese dioxide, the higher the liquid holding property and the stronger the expansion and contraction due to charge and discharge, and the higher the capacity retention ratio. It is thought to improve.

【0023】(実施例2)電解二酸化マンガン(MnO
2)と化学合成二酸化マンガンをそれぞれ炭酸リチウム
(Li2CO3)とMnとLiの原子モル比が1:0.5
となるように混合した。この混合物をそれぞれアルミナ
製容器に入れ、電気炉内で静置し送風10l/minの
空気雰囲気下で、2時間で850℃まで昇温し、昇温後
850℃で10時間保持することによりLiMn24
合成した。合成した各のLiMn24を、電解二酸化マ
ンガンより合成したものと化学合成二酸化マンガンより
合成したもののMnのモル比が表2に示した割合となる
よう混合し、粉砕、分級して電池用活物質11〜20と
した。
Example 2 Electrolytic manganese dioxide (MnO)
2 ) and chemically synthesized manganese dioxide with lithium carbonate (Li 2 CO 3 ) and an atomic molar ratio of Mn and Li of 1: 0.5, respectively.
Mixed so that Each of the mixtures was placed in an alumina container, allowed to stand in an electric furnace, heated to 850 ° C. in 2 hours in an air atmosphere of 10 l / min of blowing air, and then held at 850 ° C. for 10 hours and then LiMn. 2 O 4 was synthesized. Each of the synthesized LiMn 2 O 4 was mixed so that the Mn molar ratio of the one synthesized from electrolytic manganese dioxide and the one synthesized from chemically synthesized manganese dioxide would be the ratio shown in Table 2, pulverized and classified, and then for batteries The active materials 11 to 20 were used.

【0024】[0024]

【表2】 [Table 2]

【0025】次に、得られた電池用活物質11〜20を
用い実施例1と同様に円筒型リチウム二次電池を構成
し、初期容量とサイクル寿命特性を評価し、容量維持率
を算出した。この結果を図3に示す。
Next, using the obtained battery active materials 11 to 20, a cylindrical lithium secondary battery was constructed in the same manner as in Example 1, the initial capacity and the cycle life characteristics were evaluated, and the capacity retention rate was calculated. . The result is shown in FIG.

【0026】図3より、電解二酸化マンガンの比率が多
いほど初期容量は大きくなる。また、容量維持率は、化
学合成二酸化マンガンの比率が多いほど高くなってお
り、電解二酸化マンガンと化学合成二酸化マンガンの比
率が10:90〜90:10で良好な結果が得られた。
これは、電解二酸化マンガンの比率が多いほど密度が高
くなるため初期容量は大きくなり、化学合成二酸化マン
ガンの比率が多いほど保液性が高く充放電に伴う膨張収
縮に強くなるため容量維持率が良くなるためと考えられ
る。
From FIG. 3, the larger the ratio of electrolytic manganese dioxide, the larger the initial capacity. Further, the capacity retention rate was higher as the ratio of the chemically synthesized manganese dioxide was higher, and good results were obtained when the ratio of the electrolytic manganese dioxide and the chemically synthesized manganese dioxide was 10:90 to 90:10.
This is because the higher the ratio of electrolytic manganese dioxide, the higher the density and the larger the initial capacity, and the higher the ratio of chemically synthesized manganese dioxide, the higher the liquid holding property and the stronger the expansion and contraction due to charge and discharge, and the higher the capacity retention ratio. It is thought to improve.

【0027】(実施例3)電解二酸化マンガン(MnO
2)と化学合成により合成した三二酸化マンガン(Mn2
3)を、それぞれ炭酸リチウム(Li2CO3)とMn
とLiの原子モル比が1:0.5となるように混合し
た。この混合物をそれぞれアルミナ製容器に入れ、電気
炉内で静置し送風10l/minの空気雰囲気下で、2
時間で850℃まで昇温し、昇温後850℃で10時間
保持することによりLiMn24を合成した。合成した
それぞれのLiMn24を電解二酸化マンガンより合成
したものと、三二酸化マンガンより合成したものをMn
のモル比が60:40となるように混合し、粉砕、分級
して電池用活物質21とした。
(Example 3) Electrolytic manganese dioxide (MnO)
2 ) and manganese trioxide (Mn 2
O 3 ) to lithium carbonate (Li 2 CO 3 ) and Mn, respectively.
And Li were mixed so that the atomic molar ratio of Li was 1: 0.5. Each of the mixtures was placed in an alumina container, allowed to stand in an electric furnace, and blown under an air atmosphere of 10 l / min for 2 hours.
LiMn 2 O 4 was synthesized by raising the temperature to 850 ° C. for 10 hours and then holding the temperature at 850 ° C. for 10 hours. Each of the synthesized LiMn 2 O 4 was synthesized from electrolytic manganese dioxide and the one synthesized from manganese trioxide was Mn.
Were mixed in a molar ratio of 60:40, pulverized and classified to obtain a battery active material 21.

【0028】また、上記三二酸化マンガンに換え化学合
成により合成した四三酸化マンガン(Mn34)、オキ
シ水酸化マンガン(MnOOH)、炭酸マンガン(Mn
CO 3)を用いた以外は同様にして炭酸リチウムと混
合、合成を行いLiMn24を合成し、電解二酸化マン
ガンより合成したLiMn24と混合、粉砕、分級して
電池用活物質22〜24とした。
In addition, a chemical compound is used instead of the manganese trioxide.
Manganese tetraoxide (Mn)3OFour), Oki
Manganese dihydroxide (MnOOH), manganese carbonate (Mn
CO 3) Was mixed with lithium carbonate in the same manner except that
In the case of synthesis, LiMn2OFourSynthesizes electrolytic man
LiMn synthesized from gun2OFourMix, crush, classify
The battery active materials 22 to 24 were used.

【0029】また、上記で用いた電解二酸化マンガン、
三二酸化マンガン、四三酸化マンガン、オキシ水酸化マ
ンガン、炭酸マンガンをそれぞれ炭酸リチウムとMnと
Liの原子モル比が1:0.5となるように混合した。
この混合物をそれぞれアルミナ製容器に入れ、電気炉内
で静置し送風10l/minの空気雰囲気下で、2時間
で850℃まで昇温し、昇温後850℃で10時間保持
することによりLiMn24を合成した。合成したそれ
ぞれのLiMn24を粉砕、分級して電池用活物質25
〜29とした。
Further, the electrolytic manganese dioxide used above,
Manganese trioxide, trimanganese tetraoxide, manganese oxyhydroxide, and manganese carbonate were mixed so that the atomic mole ratio of lithium carbonate and Mn and Li was 1: 0.5.
Each of the mixtures was placed in an alumina container, allowed to stand in an electric furnace, heated to 850 ° C. in 2 hours in an air atmosphere of 10 l / min of blowing air, and then held at 850 ° C. for 10 hours and then LiMn. 2 O 4 was synthesized. Each of the synthesized LiMn 2 O 4 was crushed and classified to obtain a battery active material 25.
It was set to 29.

【0030】このようにして得られた電池用活物質21
〜29を用い、実施例1と同様の方法にて円筒形リチウ
ム二次電池を構成し、初期容量とサイクル寿命特性を評
価し、容量維持率を算出した。この結果を表3に示す。
The active material 21 for battery thus obtained
-29, a cylindrical lithium secondary battery was constructed in the same manner as in Example 1, the initial capacity and the cycle life characteristics were evaluated, and the capacity retention rate was calculated. The results are shown in Table 3.

【0031】[0031]

【表3】 [Table 3]

【0032】表3より、電解二酸化マンガンと化学合成
により得られたマンガン化合物より合成したLiMn2
4を混合した活物質を用いた電池21〜24は、初期
容量、容量維持率共に良好な結果が得られた。これに対
し、電解二酸化マンガンより得られたLiMn24のみ
を用いたものは初期容量は高いが容量維持率は低く、ま
た化学合成により得られたマンガン化合物より得られた
LiMn24のみを用いたものはすべて容量維持率は高
いが初期容量は低くなった。これは、マンガン化合物の
種類によることなく、化学合成により得られたものは容
量維持率は高いが初期容量は低いものであるが、電解二
酸化マンガンより得られたLiMn24を混合すること
により、初期容量、容量維持率共に良好な結果を得られ
ることがわかった。
From Table 3, LiMn 2 synthesized from electrolytic manganese dioxide and a manganese compound obtained by chemical synthesis
Batteries 21 to 24 using the active material mixed with O 4 had good initial capacity and capacity retention rate. On the other hand, the one using only LiMn 2 O 4 obtained from electrolytic manganese dioxide has a high initial capacity but a low capacity retention rate, and only LiMn 2 O 4 obtained from a manganese compound obtained by chemical synthesis is used. In all of those using, the capacity retention rate was high, but the initial capacity was low. This is because regardless of the type of manganese compound, the one obtained by chemical synthesis has a high capacity retention rate but a low initial capacity, but by mixing LiMn 2 O 4 obtained from electrolytic manganese dioxide, It was found that good results were obtained for the initial capacity and the capacity retention rate.

【0033】なお、本実施例ではリチウム化合物として
炭酸リチウムを用いたが、水酸化リチウム、硝酸リチウ
ム、酸化リチウムなどの他のリチウム化合物を用いても
同様の効果が得られる。
In this embodiment, lithium carbonate was used as the lithium compound, but the same effect can be obtained by using other lithium compounds such as lithium hydroxide, lithium nitrate and lithium oxide.

【0034】また、負極としてリチウムの吸蔵放出が可
能な種々の炭素質材、リチウム合金、インターカレーシ
ョンが可能な無機物系負極を用いた電池においても同様
の効果が見られる。さらに、電解質として本実施例で用
いたエチレンカーボネートとエチルメチルカーボネート
の混合溶媒に六フッ化リン酸リチウムを溶解したもの以
外の組合せの溶媒にリチウム塩を溶解した電解液、ポリ
マ電解質を用いた電池においても効果が見られる。
Similar effects can be seen in batteries using various carbonaceous materials capable of inserting and extracting lithium, lithium alloys, and inorganic intercalating negative electrodes as the negative electrode. Further, as an electrolyte, an electrolyte solution in which a lithium salt is dissolved in a solvent of a combination other than that in which lithium hexafluorophosphate is dissolved in a mixed solvent of ethylene carbonate and ethyl methyl carbonate used in this example, a battery using a polymer electrolyte is used. The effect is seen also in.

【0035】[0035]

【発明の効果】以上のように本発明によれば、電解二酸
化マンガンと化学合成により得られたマンガン化合物と
から合成されたそれぞれのリチウムマンガン複合酸化物
混合して用いることで初期容量、充放電サイクル特性
共に優れたリチウム二次電池用正極活物質を得ることが
できる。
As described above, according to the present invention, each lithium manganese composite oxide synthesized from electrolytic manganese dioxide and a manganese compound obtained by chemical synthesis is used as a mixture. It is possible to obtain a positive electrode active material for a lithium secondary battery, which has excellent initial capacity and charge / discharge cycle characteristics.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明による円筒型リチウム二次電池の縦断面
FIG. 1 is a vertical sectional view of a cylindrical lithium secondary battery according to the present invention.

【図2】電解二酸化マンガンの割合に対する初期容量お
よび容量維持率を示す図
FIG. 2 is a diagram showing an initial capacity and a capacity retention rate with respect to a ratio of electrolytic manganese dioxide.

【図3】電解二酸化マンガンの割合に対する初期容量お
よび容量維持率を示す図
FIG. 3 is a diagram showing an initial capacity and a capacity retention rate with respect to a ratio of electrolytic manganese dioxide.

【符号の説明】[Explanation of symbols]

1 電池ケース 2 封口板 3 絶縁パッキング 4 極板群 5 正極板 5a 正極リード 6 負極板 6a 負極リード 7 セパレータ 8 絶縁リング 1 battery case 2 Seal plate 3 insulating packing 4 electrode group 5 Positive plate 5a Positive lead 6 Negative plate 6a Negative electrode lead 7 separator 8 insulating ring

───────────────────────────────────────────────────── フロントページの続き (72)発明者 永山 雅敏 大阪府門真市大字門真1006番地 松下電 器産業株式会社内 (72)発明者 新田 芳明 大阪府門真市大字門真1006番地 松下電 器産業株式会社内 (56)参考文献 特開 平3−145071(JP,A) 特開 平2−82450(JP,A) (58)調査した分野(Int.Cl.7,DB名) H01M 4/00 - 4/62 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Masatoshi Nagayama 1006 Kadoma, Kadoma City, Osaka Prefecture Matsushita Electric Industrial Co., Ltd. (72) Yoshiaki Nitta 1006 Kadoma, Kadoma City, Osaka Matsushita Electric Industrial Co., Ltd. In-house (56) References JP-A-3-145071 (JP, A) JP-A-2-82450 (JP, A) (58) Fields investigated (Int.Cl. 7 , DB name) H01M 4/00- 4/62

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 一般式LiMn24で表される組成を有
するリチウム複合マンガン酸化物からなる非水電解質二
次電池用正極活物質の製造方法であり、電解二酸化マン
ガンと化学合成により得られたマンガン化合物(ただ
し、Mn 2 3 ,Mn 3 4 ,MnOOH,MnCO 3 から
なる群より選択される少なくとも1種)とをそれぞれ別
にリチウム化合物と混合、加熱し合成した後に、混合す
ることを特徴とする非水電解質二次電池用正極活物質の
製造方法。
1. A method for producing a positive electrode active material for a non-aqueous electrolyte secondary battery comprising a lithium composite manganese oxide having a composition represented by the general formula LiMn 2 O 4 , which is obtained by electrolytic synthesis and chemical synthesis. Manganese compound (only
From then, Mn 2 O 3, Mn 3 O 4, MnOOH, MnCO 3
And at least one selected from the group consisting of (1) and (2 ) are separately mixed with a lithium compound, heated, synthesized, and then mixed, to prepare a positive electrode active material for a non-aqueous electrolyte secondary battery.
【請求項2】 電解二酸化マンガンと化学合成により得
られたマンガン化合物の割合がマンガンのモル比で1
0:90〜90:10である請求項1記載の非水電解質
二次電池用正極活物質の製造方法。
2. The ratio of electrolytic manganese dioxide to the manganese compound obtained by chemical synthesis is 1 in terms of manganese molar ratio.
The method for producing a positive electrode active material for a non-aqueous electrolyte secondary battery according to claim 1, which is 0:90 to 90:10.
JP22136898A 1998-08-05 1998-08-05 Method for producing positive electrode active material for lithium secondary battery Expired - Lifetime JP3528615B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22136898A JP3528615B2 (en) 1998-08-05 1998-08-05 Method for producing positive electrode active material for lithium secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22136898A JP3528615B2 (en) 1998-08-05 1998-08-05 Method for producing positive electrode active material for lithium secondary battery

Publications (2)

Publication Number Publication Date
JP2000058050A JP2000058050A (en) 2000-02-25
JP3528615B2 true JP3528615B2 (en) 2004-05-17

Family

ID=16765710

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22136898A Expired - Lifetime JP3528615B2 (en) 1998-08-05 1998-08-05 Method for producing positive electrode active material for lithium secondary battery

Country Status (1)

Country Link
JP (1) JP3528615B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100682862B1 (en) 2005-01-11 2007-02-15 삼성에스디아이 주식회사 Electrode for electrochemical cell, manufacturing method thereof, and electrochemical cell containing the electrode

Also Published As

Publication number Publication date
JP2000058050A (en) 2000-02-25

Similar Documents

Publication Publication Date Title
US6335119B1 (en) Lithium battery and method of producing positive electrode active material therefor
JPH11204110A (en) Manufacture of anode material for lithium ion battery
JP2000048817A (en) Manufacture of spinel type lithium manganate
JPH0737576A (en) Nonaqueous electrolyte secondary battery and manufacture of its positive pole active material
JP3468098B2 (en) Method for producing positive electrode active material for lithium secondary battery
KR20010052669A (en) Method for preparing lithium manganate having spinel structure
JPH06150928A (en) Non-aqueous electrolyte secondary battery
JPH09265984A (en) Nonaqueous electrolyte secondary battery
JP4626058B2 (en) Non-aqueous electrolyte secondary battery
JP2002042812A (en) Positive electrode active material for lithium secondary battery and lithium secondary battery using the same
JP2512241B2 (en) Non-aqueous electrolyte secondary battery and method for producing positive electrode active material thereof
JP4581157B2 (en) Cathode active material for non-aqueous electrolyte secondary battery and method for producing the same
JP3528615B2 (en) Method for producing positive electrode active material for lithium secondary battery
JP2517176B2 (en) Non-aqueous electrolyte secondary battery and method for producing positive electrode active material thereof
JPH0644970A (en) Nonaqueous electrolyte lithium battery
JP2979826B2 (en) Method for producing positive electrode active material for non-aqueous electrolyte secondary battery
JPH056779A (en) Nonaqueous electrolytic secondary battery
JP4186291B2 (en) Method for producing positive electrode active material for non-aqueous electrolyte secondary battery
JP2000327340A (en) Lithium manganese compound oxide particulate composition and its production and utilization for lithium ion secondary battery
JPH09110431A (en) Production of lithium-manganese oxide based on limno2
JP2000294239A (en) Manufacture of spinel type lithium manganate
JP2002033101A (en) Lithium-manganese oxide and lithium secondary battery using it
JPH0822826A (en) Synthesizing method for positive active material of nonaqueous secondary battery
JPS63114065A (en) Organic electrolyte secondary battery
JP2001196062A (en) Lithium manganate mixture and lithium secondary battery using the same

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040203

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040216

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080305

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090305

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100305

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110305

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110305

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120305

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130305

Year of fee payment: 9