JP3526645B2 - Method for producing multi-phase structured carbon electrode material - Google Patents

Method for producing multi-phase structured carbon electrode material

Info

Publication number
JP3526645B2
JP3526645B2 JP02203795A JP2203795A JP3526645B2 JP 3526645 B2 JP3526645 B2 JP 3526645B2 JP 02203795 A JP02203795 A JP 02203795A JP 2203795 A JP2203795 A JP 2203795A JP 3526645 B2 JP3526645 B2 JP 3526645B2
Authority
JP
Japan
Prior art keywords
electrode material
carbonaceous material
carbon electrode
electrode
carbonaceous
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP02203795A
Other languages
Japanese (ja)
Other versions
JPH08222218A (en
Inventor
文一 水谷
祥司 山口
学 林
圭子 菅原
隆 亀田
彰一郎 森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Chemical Corp
Original Assignee
Mitsubishi Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical Corp filed Critical Mitsubishi Chemical Corp
Priority to JP02203795A priority Critical patent/JP3526645B2/en
Publication of JPH08222218A publication Critical patent/JPH08222218A/en
Application granted granted Critical
Publication of JP3526645B2 publication Critical patent/JP3526645B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Inert Electrodes (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、非水溶媒二次電池に適
した電極材料の製造方法に関し、特に多相構造を有する
炭素電極材料の製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing an electrode material suitable for a non-aqueous solvent secondary battery, and more particularly to a method for producing a carbon electrode material having a multiphase structure.

【0002】[0002]

【従来の技術】近年、電子機器の小型化に伴い高容量の
二次電池が必要になってきている。特にニッケル・カド
ミウム電池、ニッケル・水素電池に比べてエネルギー密
度の高いリチウム二次電池が注目されてきている。その
負極材料として、はじめリチウム金属を用いることが試
みられたが、充放電を繰り返すうちに樹枝状(デンドラ
イト状)にリチウムが析出し、セパレーターを貫通して
正極にまで達し、両極を短絡してしまう可能性があるこ
とが判明した。そのため、金属電極に変わってデンドラ
イトを防止できる炭素系の材料が着目されてきている。
2. Description of the Related Art In recent years, with the miniaturization of electronic equipment, a high capacity secondary battery has become necessary. In particular, lithium secondary batteries, which have higher energy density than nickel-cadmium batteries and nickel-hydrogen batteries, have been receiving attention. Attempts were initially made to use lithium metal as the negative electrode material, but lithium was deposited in a dendritic form (dendritic form) during repeated charging and discharging, penetrated the separator, and reached the positive electrode, and short-circuited both electrodes. It turned out that there is a possibility that it will end up. Therefore, attention has been paid to carbon-based materials that can prevent dendrites instead of metal electrodes.

【0003】炭素系の二次電池電極材料としては、特開
平4−171677号公報に示されるような、多相構造
を有する炭素質物を用いることが検討されている。これ
は、結晶性の高い炭素質物の長所(高容量かつ不可逆容
量が小さい)と短所(プロピレンカーボネート系電解液
を分解する)および結晶化度の低い炭素質物の長所(電
解液との安定性に優れる)と短所(容量が小さく不可逆
容量大)を組合せ、互いの長所を生かしつつ、短所を補
い合うという考えによる。
As a carbon-based secondary battery electrode material, it has been considered to use a carbonaceous material having a multiphase structure as disclosed in Japanese Patent Application Laid-Open No. 4-171677. This is due to the advantages (high capacity and small irreversible capacity) of carbonaceous matter with high crystallinity, the disadvantages (decomposing the propylene carbonate-based electrolyte solution) and the advantages of carbonaceous material with low crystallinity (stability with the electrolyte solution). The idea is to combine the advantages and disadvantages (small capacity and large irreversible capacity), while making the most of each other's strengths while compensating for their weaknesses.

【0004】[0004]

【発明が解決しようとする問題点】しかしながら、炭素
系電極材料を円筒型電池に使用する場合には通常は電極
をシート状に成形するために炭素系電極材料を粉末状に
する必要があり、特開平4−171677号公報に記載
の多相構造を有する炭素質物の場合でも、焼成後に粉砕
しなければならないため、被覆が破壊され核が露出して
しまい電極性能が低下するという問題があった。本発明
は、結晶化度の高い炭素質物を比較的結晶化度の低い炭
素質物で被覆してなる多相構造を有する炭素質物を、高
品質で連続的に焼成する方法を提供するものである。
However, when the carbon-based electrode material is used in a cylindrical battery, it is usually necessary to make the carbon-based electrode material into a powder form in order to form the electrode into a sheet shape. Even in the case of the carbonaceous material having a multiphase structure described in JP-A-4-171677, there is a problem that the coating is broken and the core is exposed because the carbonaceous material has a multiphase structure, and the electrode performance is deteriorated. . The present invention provides a method for continuously firing a carbonaceous material having a multiphase structure, which is obtained by coating a carbonaceous material having a high crystallinity with a carbonaceous material having a relatively low crystallinity, with high quality. .

【0005】[0005]

【問題点を解決するための手段】本発明は、結晶化度の
高い炭素質物を縮合多環炭化水素化合物を主成分とする
炭素質で被覆し、熱処理してなる粉体状の原料を、不活
性ガス中でロータリーキルンにより回転運動を与えなが
ら700〜1800℃で焼結させることなく焼成するこ
とによって表層の炭素質物相を炭化し、多相構造の炭
素電極材料を得ることを特徴とする二次電池炭素電極材
製造方法である。
According to the present invention, a powdery raw material obtained by coating a carbonaceous material having a high degree of crystallinity with a carbonaceous material containing a condensed polycyclic hydrocarbon compound as a main component and heat-treating A carbon electrode material having a multi-phase structure is obtained by carbonizing a phase of a carbonaceous material of a surface layer by firing at 700 to 1800 ° C. in an inert gas while giving rotary motion by a rotary kiln without sintering. It is a method of manufacturing a carbon electrode material for a secondary battery.

【0006】本発明の製造方法により得る多相構造の炭
素質物である二次電池電極材料において最終的に核を形
成する結晶化度の高い炭素質物については、好ましくは
X線広角回折において(002)面の面間隔d002
0.345nm以下、C軸方向の結晶子の大きさLcが
15nm以上、より好ましくは、d002が0.340n
m以下、Lcが50nm以上、さらに好ましくはLcが
80nm以上である。また、体積平均粒径については、
好ましくは100μm以下、より好ましくは50μm以
下さらに好ましくは30μm以下である。
A carbonaceous material having a high degree of crystallinity, which finally forms nuclei in a secondary battery electrode material which is a carbonaceous material having a multiphase structure obtained by the production method of the present invention, is preferably (002) ), The interplanar spacing d 002 is 0.345 nm or less, the crystallite size Lc in the C-axis direction is 15 nm or more, and more preferably d 002 is 0.340 n.
m or less, Lc is 50 nm or more, and more preferably Lc is 80 nm or more. Also, regarding the volume average particle size,
It is preferably 100 μm or less, more preferably 50 μm or less, still more preferably 30 μm or less.

【0007】核となる炭素質物は、 (1)有機化合物を、不活性ガス流中又は真空中におい
て、300〜3000℃、好ましくは500〜3000
℃の温度で加熱することによって分解し、炭素化と黒鉛
化を行なう。 (2)カーボンブラック、コークスなどの炭素質物をさ
らに加熱して炭素化を適当に進める。 (3)人造黒鉛、天然黒鉛、気相成長黒鉛ウィスカーを
用いる。等により得ることができる。
The carbonaceous material serving as the core is (1) an organic compound in an inert gas flow or in a vacuum at 300 to 3000 ° C., preferably 500 to 3000.
It decomposes by heating at a temperature of ℃, carbonization and graphitization. (2) Carbonaceous materials such as carbon black and coke are further heated to appropriately carbonize them. (3) Use artificial graphite, natural graphite, or vapor-grown graphite whiskers. And the like.

【0008】方法(1)において、出発物質として用い
ることのできる有機化合物としては、ナフタレン、フェ
ナンスレン、アントラセン、トリフェニレン、ピレン、
クリセン、ナフタセン、ピセン、ペリレン、ペンタフェ
ン、ペンタセンのような、3員環以上の単環炭化水素化
合物が互いに2個以上縮合してなる縮合多環式炭化水素
化合物;又は上記化合物のカルボン酸、カルボン酸無水
物、カルボン酸イミドのような誘導体;上記各化合物の
混合物を主成分とする各種のピッチを挙げることができ
る。
In the method (1), as the organic compound which can be used as a starting material, naphthalene, phenanthrene, anthracene, triphenylene, pyrene,
Fused polycyclic hydrocarbon compounds obtained by condensing two or more monocyclic hydrocarbon compounds having three or more membered rings, such as chrysene, naphthacene, picene, perylene, pentaphene, and pentacene; or carboxylic acids or carvone of the above compounds Derivatives such as acid anhydrides and carboxylic acid imides; various pitches containing a mixture of the above compounds as a main component can be mentioned.

【0009】上述のピッチについてさらに詳述すると、
ナフサの分解の際に生成するエチレンヘビーエンドピッ
チ、原油の分解の時に生成する原油ピッチ、石炭の熱分
解の際に生成するコールピッチ、アスファルトの分解に
よって生成するアスファルト分解ピッチ、ポリ塩化ビニ
ル等を熱分解して生成するピッチなどを例として挙げる
ことができる。また、これらの各種のピッチをさらに不
活性ガス流下などで加熱し、キノリン不溶分が好ましく
は80%以上、より好ましくは90%以上、さらに好ま
しくは95%以上のメソフェーズピッチにして用いるこ
とができる。
The above pitch will be described in more detail below.
Ethylene heavy-end pitch generated during naphtha decomposition, crude oil pitch generated during crude oil decomposition, coal pitch generated during thermal decomposition of coal, asphalt decomposition pitch generated by asphalt decomposition, polyvinyl chloride, etc. Pitch etc. which are generated by thermal decomposition can be mentioned as an example. Further, these various pitches can be further heated under a flow of an inert gas or the like to form a mesophase pitch having a quinoline insoluble content of preferably 80% or more, more preferably 90% or more, still more preferably 95% or more. .

【0010】一方、表層を構成する炭素質物の原料とし
ては、ナフタレン、フェナンスレン、アントラセン、ト
リフェニレン、ピレン、クリセン、ナフタセン、ピセ
ン、ペリレン、ペンタフェン、ペンタセンのような、3
員環以上の単環炭化水素化合物が互いに2個以上縮合し
てなる縮合多環式炭化水素化合物;又は上記化合物のカ
ルボン酸、カルボン酸無水物、カルボン酸イミドのよう
な誘導体;上記各化合物の混合物を主成分とする各種の
ピッチを挙げることができる。
On the other hand, as the raw material for the carbonaceous material constituting the surface layer, there are 3 such as naphthalene, phenanthrene, anthracene, triphenylene, pyrene, chrysene, naphthacene, picene, perylene, pentaphene and pentacene.
A condensed polycyclic hydrocarbon compound obtained by condensing two or more monocyclic hydrocarbon compounds each having at least one membered ring; or a derivative of the above compound such as a carboxylic acid, a carboxylic acid anhydride or a carboxylic acid imide; Various pitches containing a mixture as a main component can be mentioned.

【0011】上述のピッチについてさらに詳述すると、
ナフサの分解の際に生成するエチレンヘビーエンドピッ
チ、原油の分解の時に生成する原油ピッチ、石炭の熱分
解の際に生成するコールピッチ、アスファルトの分解に
よって生成するアスファルト分解ピッチ、ポリ塩化ビニ
ル等を熱分解して生成するピッチなどを例として挙げる
ことができる。
The above pitch will be described in more detail below.
Ethylene heavy-end pitch produced during naphtha decomposition, crude oil pitch produced during crude oil decomposition, coal pitch produced during thermal decomposition of coal, asphalt decomposition pitch produced by asphalt decomposition, polyvinyl chloride, etc. Pitch etc. which are generated by thermal decomposition can be mentioned as an example.

【0012】これら2種の炭素質物は焼成前に予め撹拌
し、表層材料の脱揮および重縮合を進行させるのが好ま
しい。この場合の処理温度は100〜600℃が好まし
く、また、減圧下、不活性雰囲気中で行うのが好まし
い。
It is preferable to stir these two types of carbonaceous materials in advance before firing to promote devolatilization and polycondensation of the surface layer material. In this case, the treatment temperature is preferably 100 to 600 ° C., and it is preferable to perform the treatment under reduced pressure in an inert atmosphere.

【0013】焼成炉に供給される原料は、粉体状である
ことが望ましい。原料の平均粒径は好ましくは200μ
m以下、さらに好ましくは100μm以下、とくに好ま
しくは50μm以下である。
The raw material supplied to the firing furnace is preferably in powder form. The average particle size of the raw material is preferably 200μ
m or less, more preferably 100 μm or less, particularly preferably 50 μm or less.

【0014】本発明に用いる焼成装置としては、水平面
に角度を持って回転する管状の回転炉、所謂ロータリー
キルンが好ましい。また、焼成中は炉の壁面による回転
力のみを原材料に与えるのが好ましく、回転炉内部に強
制撹拌手段を持たないものが好ましい。
The firing apparatus used in the present invention is preferably a tubular rotary furnace which rotates at an angle on a horizontal plane, a so-called rotary kiln. Further, it is preferable to apply only the rotational force by the wall surface of the furnace to the raw materials during firing, and it is preferable that the rotating furnace does not have a forced stirring means.

【0015】焼成炉での焼成は不活性ガス中で行うが、
処理温度は表面層を構成する炭素質物の炭化が始まり、
さらに加熱しても焼結しなくなる温度より高いことが重
要である。処理温度は、好ましくは700℃乃至180
0℃、さらに好ましくは900℃乃至1500℃、とく
に好ましくは900℃乃至1300℃である。
Firing in a firing furnace is carried out in an inert gas,
At the treatment temperature, carbonization of the carbonaceous material that constitutes the surface layer begins,
It is important that the temperature is higher than the temperature at which sintering does not occur even if heating is further performed. The processing temperature is preferably 700 ° C to 180 ° C.
The temperature is 0 ° C, more preferably 900 ° C to 1500 ° C, particularly preferably 900 ° C to 1300 ° C.

【0016】回転管の回転数は回転管の内径をr
(m)、回転数をN(rpm)とすると、好ましくは
0.001≦N/r≦500、さらに好ましくは0.0
1≦N/r≦100、特に好ましくは0.1≦N/r≦
50である。焼成後の炭素質物は粉末状あるいは顆粒状
になる。顆粒状になった場合でも硬く焼結しておらず、
簡単に解砕できる。
The number of rotations of the rotary tube is r
(M) and the number of revolutions is N (rpm), preferably 0.001 ≦ N / r ≦ 500, more preferably 0.0
1 ≦ N / r ≦ 100, particularly preferably 0.1 ≦ N / r ≦
50. The carbonaceous material after firing becomes powdery or granular. Even if it becomes granular, it is not hard and sintered,
It can be crushed easily.

【0017】顆粒状になった場合の解砕は、粉砕エネル
ギーが小さく、過粉砕の起こりにくいものが望ましく、
例えば、回転羽や粉砕球による解砕機構のついた篩い機
などが挙げられる。この解砕機構付き篩い機の場合、解
砕された粉体はすぐにふるい分けられるので、過粉砕が
起こりにくい。
In the case of crushing in the form of granules, it is desirable that the crushing energy is small and over-milling does not easily occur.
For example, a sieving machine equipped with a crushing mechanism such as rotary feathers and crushed balls can be used. In the case of this sieving machine with a crushing mechanism, the crushed powder is immediately sieved, so overcrushing does not easily occur.

【0018】炭化した表面層による被覆の度合いはラマ
ン分光法により知ることができる。炭素質物は一般に、
波長514.5nmのアルゴンイオンレーザー光を用い
たラマンスペクトル分光において、1580cm-1付近
のピークおよび1360cm -1付近のピークを有し、1
580cm-1付近のピーク強度I1580に対する1360
cm-1付近のピーク強度I1360の比であるR値(I1360
/I1580)が結晶化度に対応しており、R値は結晶化度
が高いほど小さくなることが知られている。また、炭素
質物のラマンスペクトルは、炭素質物の表面または表面
に非常に近い部分の構造変化に敏感であるため、本発明
のような多相構造の炭素質物の場合には、表層の被覆の
度合いを表す指標となる。本発明において最終的に核を
形成する結晶化度の高い炭素質物のR値は0.4以下が
望ましく、最終的に得られる多相構造の炭素電極材料の
R値は、核となる炭素質物のR値よりも大きくなること
が好ましく、さらには0.5以上であることが好まし
い。
The degree of coverage by the carbonized surface layer is
It can be known by spectroscopy. Carbonaceous matter is generally
Using an argon ion laser beam with a wavelength of 514.5 nm
Raman spectrum spectroscopy, 1580 cm-1near
Peak and 1360 cm -1With a peak near 1
580 cm-1Peak intensity I near1580Against 1360
cm-1Peak intensity I near1360R value (I1360
/ I1580) Corresponds to the crystallinity, and the R value is the crystallinity.
It is known that the higher is the smaller. Also carbon
The Raman spectrum of the carbonaceous material is the surface or surface of the carbonaceous material.
The present invention is sensitive to structural changes in a portion very close to
For multi-phase carbonaceous materials such as
It serves as an indicator of the degree. In the present invention, the core is finally
The R value of the carbonaceous material having high crystallinity to be formed is 0.4 or less.
Of the desired and finally obtained multiphase carbon electrode material
R value must be greater than that of core carbonaceous material
Is preferable, and more preferably 0.5 or more.
Yes.

【0019】[0019]

【実施例】内容積20リットルのステンレスタンクに人
造黒鉛粉末(LONZA社製KS−44を3kg投入
し、更にナフサ分解時に得られるエチレンヘビーエンド
タール(三菱化学社製)7kgを加えて、ハンドミキサ
ーにて20分撹拌した。更に80℃の温水でステンレス
容器を湯浴し、更に10分間同様な手法で撹拌した。こ
こで得られたスラリー状の混合物を計量ギアポンプを用
いて、栗本鉄工所製KRCS1リアクタ1台に1kg/
hrで供給し、被覆原料の熱処理ピッチ化反応を行っ
た。リアクタ内温を325℃に保ち、更に減圧度を66
0mmHgとし、脱気及び脱揮を行い、エチレンヘビー
エンドタールの軽質留分の除去を行った。高粘性を示す
半固溶体である生成物を、KRCリアクタ出口より、ス
トランド状で0.5kg/hrで回収した。こうして炭
素質物粒子と熱処理ピッチの複合物を得た。さらに粉砕
を行い粉体状の焼成原料を得た。
[Example] 3 kg of artificial graphite powder (KS-44 manufactured by LONZA Co., Ltd.) was charged into a stainless steel tank having an internal volume of 20 liters, and further 7 kg of ethylene heavy end tar (Mitsubishi Chemical Co., Ltd.) obtained at the time of naphtha decomposition was added, and a hand mixer was used. The stainless steel container was bathed in hot water at 80 ° C. and stirred for 10 minutes in the same manner. The slurry mixture obtained here was manufactured by Kurimoto Iron Works using a measuring gear pump. 1kg / in one KRCS1 reactor
It was supplied by the hr and the coating material was subjected to a heat treatment pitching reaction. Keep the reactor temperature at 325 ° C and further reduce the pressure to 66
Degassing and devolatilization were performed at 0 mmHg to remove the light fraction of ethylene heavy end tar. The product, which is a semi-solid solution exhibiting high viscosity, was recovered in a strand form from the KRC reactor outlet at 0.5 kg / hr. Thus, a composite of carbonaceous material particles and heat-treated pitch was obtained. Further, pulverization was performed to obtain a powdery raw material for firing.

【0020】次に、ロータリーキルン(株式会社広築製
ロータリーチューブファーネス)を用いて、窒素気流
下1200℃で焼成して電極材料を得た。焼成原料はス
クリューフィーダーで回転管に投入した。ロータリーキ
ルンの回転管は外径100mm、長さ1500mmで、
傾斜4度、5.1rpmで運転した。得られた炭素質物
は、ほとんど焼結しておらず、塊状あるいは顆粒状のも
のも手で簡単に解砕できる程度であった。
Next, an electrode material was obtained by firing at 1200 ° C. in a nitrogen stream using a rotary kiln (rotary tube furnace manufactured by Hirotsuki Co., Ltd.). The firing raw material was put into a rotary tube with a screw feeder. The rotary tube of the rotary kiln has an outer diameter of 100 mm and a length of 1500 mm.
It was operated at a tilt of 4 degrees and 5.1 rpm. The obtained carbonaceous material was hardly sintered, and even a lumpy or granular material could be easily crushed by hand.

【0021】焼成度および表面構造を調べるためX線回
折およびラマン分光を行った。X線回折では、低角側ピ
ークから算出されるd002は、0.352nm、Lcは
26nmであり、高角側ピークから算出されるd
002は、0.336nm、Lcは100nm以上であっ
た。また、ラマン分光のR値は0.71であった。黒鉛
KS−44のR値は0.14であり、表面が被覆されて
いると判断された。
X-ray diffraction and Raman spectroscopy were performed to examine the degree of baking and the surface structure. In X-ray diffraction, d 002 calculated from the low-angle peak was 0.352 nm, Lc was 26 nm, and d 002 calculated from the high-angle peak.
002 was 0.336 nm, and Lc was 100 nm or more. The R value of Raman spectroscopy was 0.71. The R value of graphite KS-44 was 0.14, and it was determined that the surface was covered.

【0022】この多相構造炭素質物の電極性能をリチウ
ムを対極とした充放電試験で評価した。その結果、作成
した3サンプルの容量は347.8mAh/g、34
5.2mAh/gおよび338.9mAh/g、不可逆
容量は2.7mAh/g、2.1mAh/gおよび2.
3mAh/gであった。
The electrode performance of this multi-phase carbonaceous material was evaluated by a charge / discharge test using lithium as a counter electrode. As a result, the capacity of the created 3 samples was 347.8 mAh / g, 34
5.2 mAh / g and 338.9 mAh / g, irreversible capacities 2.7 mAh / g, 2.1 mAh / g and 2.
It was 3 mAh / g.

【0023】〔比較例〕バッチ炉を用いて焼成をおこな
い、衝撃式粉砕機で粉砕して電極材料とした以外は、実
施例と同様の方法で電極材料を作成した。バッチ炉での
焼成は窒素気流下1200℃で行った。X線回折では、
低角側ピークから算出されるd002は、0.350n
m、Lcは49nmであり、高角側ピークから算出され
るd002は0.336nm、Lcは100nm以上であ
った。また、ラマン分光のR値は0.44であった。実
施例のR値は0.71であり、表面が被覆が粉砕により
破壊されていると考えられる。
[Comparative Example] An electrode material was prepared in the same manner as in the example, except that firing was carried out in a batch furnace and crushed by an impact crusher to obtain an electrode material. Firing in a batch furnace was performed at 1200 ° C. under a nitrogen stream. In X-ray diffraction,
D 002 calculated from the low-angle peak is 0.350n
m and Lc were 49 nm, d 002 calculated from the high-angle peak was 0.336 nm, and Lc was 100 nm or more. The R value of Raman spectroscopy was 0.44. The R value of the example is 0.71, and it is considered that the coating on the surface is destroyed by crushing.

【0024】電極性能はリチウムを対極とした充放電試
験で評価した。その結果、作成した3サンプルの容量は
317.3mAh/g、321.3mAh/gおよび3
19.2mAh/g、不可逆容量は4.5mAh/g、
3.8mAh/gおよび4.3mAh/gであった。実
施例および比較例の物性値および充放電試験結果を表1
に示す。
The electrode performance was evaluated by a charge / discharge test using lithium as the counter electrode. As a result, the capacity of the three samples prepared was 317.3 mAh / g, 321.3 mAh / g and 3
19.2 mAh / g, irreversible capacity is 4.5 mAh / g,
It was 3.8 mAh / g and 4.3 mAh / g. Table 1 shows the physical property values and charge / discharge test results of Examples and Comparative Examples.
Shown in.

【0025】なお、実施例及び比較例において、各種測
定は次のように行った。 (X線回折)炭素質材料が粉末の場合にはそのまま、微
小片状の場合にはメノウ乳鉢で粉末化し、試料に対して
約15wt%のX線標準高純度シリコン粉末を加えて混
合し、試料セルに詰め、グラファイトモノクロメーター
で単色化したCuKα線を線源とし、反射式ディフラク
トメーター法によって広角X線回折曲線を測定した。得
られたX線回折曲線は異なる結晶化度に由来するふたつ
のピークが重なりあった形状を呈しており、低角側には
炭素質被覆相に由来する比較的ブロードなピーク、高角
側には内核に相当する炭素質に由来する比較的シャープ
なピークを有している。この回折曲線に対して、ピーク
の分離を行った後、それぞれのピークに対してd002
Lcを算出した。
In the examples and comparative examples, various measurements were carried out as follows. (X-Ray Diffraction) If the carbonaceous material is powder, if it is in the form of small pieces, it is powdered in an agate mortar, and about 15 wt% of X-ray standard high-purity silicon powder is added to the sample and mixed, A wide-angle X-ray diffraction curve was measured by a reflection diffractometer method using CuKα rays that were packed in a sample cell and monochromated with a graphite monochromator as a radiation source. The obtained X-ray diffraction curve has a shape in which two peaks derived from different crystallinities are overlapped with each other. A relatively broad peak derived from the carbonaceous coating phase is present on the low angle side and a high angle side is exhibited on the high angle side. It has a relatively sharp peak derived from carbonaceous matter corresponding to the inner core. After separating the peaks from this diffraction curve, d 002 and Lc were calculated for each peak.

【0026】(ラマン分光)波長514.5nmのアル
ゴンイオンレーザー光を用いた炭素質物のラマン分光法
では、1580cm-1付近のピークおよび1360cm
-1付近のピークを有する。1580cm-1付近のピーク
強度I1580に対する1360cm-1付近のピーク強度I
1360の比でR値(I1360/I1580)を求めた。
(Raman spectroscopy) In Raman spectroscopy of a carbonaceous material using an argon ion laser beam having a wavelength of 514.5 nm, a peak near 1580 cm -1 and 1360 cm -1 were obtained.
It has a peak near -1 . 1580 cm -1 peak intensity at around 1360 cm -1 to the peak intensity I 1580 near I
The R value (I 1360 / I 1580 ) was determined by the ratio of 1360 .

【0027】(充放電試験)炭素質物に熱可塑性エラス
トマーをバインダーとして加えたスラリーを作成し、銅
箔上にドクターブレード法で塗布してシート状電極を作
成した。この電極を円板状打ち抜き、電解液を含浸させ
たセパレーターをはさみ、リチウム金属電極に対抗させ
たコイン型セルを作成し、充放電試験を行った。電解液
としては、エチレンカーボネートとジエチレンカーボネ
ートを重量比1:1の比率で混合した溶媒に過塩素酸リ
チウムを1.5モル/リットルの割合で溶解させたもの
を用いた。
(Charge / Discharge Test) A slurry was prepared by adding a thermoplastic elastomer to a carbonaceous material as a binder, and the slurry was applied onto a copper foil by a doctor blade method to prepare a sheet electrode. This electrode was punched into a disc shape, and a separator impregnated with an electrolytic solution was sandwiched between the electrodes to prepare a coin-shaped cell opposed to a lithium metal electrode, and a charge / discharge test was conducted. The electrolytic solution used was a solvent prepared by mixing ethylene carbonate and diethylene carbonate at a weight ratio of 1: 1 and dissolving lithium perchlorate at a ratio of 1.5 mol / liter.

【0028】充放電試験は両電極値の電位差が0Vにな
るまで充電を行い、1.5Vまで放電を行った。その結
果、初期5サイクルの平均放電容量と、最初の1サイク
ルを除き5サイクル目まで不可逆容量(充電容量と放電
容量の差)を求めた。
In the charge / discharge test, charging was carried out until the potential difference between both electrode values became 0 V, and discharging was carried out to 1.5 V. As a result, the average discharge capacity of the initial 5 cycles and the irreversible capacity (difference between the charge capacity and the discharge capacity) were obtained up to the 5th cycle except the first 1 cycle.

【0029】[0029]

【表1】 [Table 1]

【0030】[0030]

【発明の効果】上記実施例および比較例から明らかなよ
うに本発明の方法によれば、多相構造を有する炭素質物
を被覆破壊により核を露出させることなく製造でき、優
れた電極性能を実現できる。
As is apparent from the above Examples and Comparative Examples, according to the method of the present invention, a carbonaceous material having a multiphase structure can be produced without exposing the nucleus by coating destruction, and excellent electrode performance is realized. it can.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 菅原 圭子 茨城県稲敷郡阿見町中央8丁目3番1号 三菱化学株式会社筑波研究所内 (72)発明者 亀田 隆 茨城県稲敷郡阿見町中央8丁目3番1号 三菱化学株式会社筑波研究所内 (72)発明者 森 彰一郎 茨城県稲敷郡阿見町中央8丁目3番1号 三菱化学株式会社筑波研究所内 (56)参考文献 特開 平5−94838(JP,A) (58)調査した分野(Int.Cl.7,DB名) H01M 4/36 - 4/62 H01M 4/02 - 4/04 H01M 10/40 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Keiko Sugawara Keiko Sugawara 3-3-1 Chuo, Ami-cho, Inashiki-gun, Ibaraki Mitsubishi Chemical Corporation Tsukuba Research Institute (72) Takashi Kameda 8-chome, Ami-cho, Inashiki-gun, Ibaraki 3-1, Mitsubishi Chemical Co., Ltd. Tsukuba Research Laboratory (72) Inventor Shoichiro Mori 8-3-1 Chuo, Ami-cho, Inashiki-gun, Ibaraki Mitsubishi Chemical Co., Ltd. Tsukuba Research Laboratory (56) Reference JP 5-94838 ( (58) Fields investigated (Int.Cl. 7 , DB name) H01M 4/36-4/62 H01M 4/02-4/04 H01M 10/40

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 d002が345nm以下の炭素質物を、
縮合多環化合物を主体とする有機化合物で被覆した後1
00℃〜600℃で熱処理して得られた炭素原料を、不
活性ガス雰囲気下に、ロータリーキルンの回転管の壁面
により回転運動を与えながら700℃〜1800℃で焼
成する多相構造炭素電極材料の製造方法。
1. A carbonaceous material having a d 002 of 345 nm or less,
After coating with an organic compound mainly composed of a condensed polycyclic compound 1
The carbon raw material obtained by heat treatment at 00 ° C to 600 ° C is placed under an inert gas atmosphere in a wall surface of a rotary tube of a rotary kiln.
The method for producing a multi-phase structure carbon electrode material, which comprises firing at 700 ° C. to 1800 ° C. while imparting rotational motion by
【請求項2】 ロータリーキルンの回転管の内径をr
(m)、回転数をN(回/分)とするとき、0.001
≦N/r≦500であることを特徴とする請求項1記載
の多相構造炭素電極材料の製造方法。
2. The inner diameter of the rotary tube of the rotary kiln is r
(M), when the number of rotations is N (times / minute), 0.001
The method for producing a multiphase structure carbon electrode material according to claim 1, wherein ≦ N / r ≦ 500.
JP02203795A 1995-02-09 1995-02-09 Method for producing multi-phase structured carbon electrode material Expired - Lifetime JP3526645B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP02203795A JP3526645B2 (en) 1995-02-09 1995-02-09 Method for producing multi-phase structured carbon electrode material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP02203795A JP3526645B2 (en) 1995-02-09 1995-02-09 Method for producing multi-phase structured carbon electrode material

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2000154086A Division JP2000357516A (en) 2000-01-01 2000-05-25 Multilayer structure carbon electrode material

Publications (2)

Publication Number Publication Date
JPH08222218A JPH08222218A (en) 1996-08-30
JP3526645B2 true JP3526645B2 (en) 2004-05-17

Family

ID=12071759

Family Applications (1)

Application Number Title Priority Date Filing Date
JP02203795A Expired - Lifetime JP3526645B2 (en) 1995-02-09 1995-02-09 Method for producing multi-phase structured carbon electrode material

Country Status (1)

Country Link
JP (1) JP3526645B2 (en)

Also Published As

Publication number Publication date
JPH08222218A (en) 1996-08-30

Similar Documents

Publication Publication Date Title
JP5326609B2 (en) Multi-layer structure carbonaceous material, method for producing the same, and non-aqueous secondary battery using the same
KR101441712B1 (en) Composite graphite particles for non-aqueous secondary batteries, negative electrode material containing the same, negative electrodes, and non-aqueous secondary batteries
CN101208819B (en) Graphite composite particle for non-aqueous secondary battery, negative electrode active material containing it, negative electrode, and non-aqueous secondary battery
US7785661B2 (en) Methods of preparing composite carbon-graphite-silicon particles and using same
EP0723306B1 (en) Electrode material for nonaqueous solvent secondary cell and method of manufacturing the same
US20090242830A1 (en) Anode powders for batteries
JPH10334915A (en) Electrode for nonaqueous secondary battery
JP3106129B2 (en) Anode material for lithium secondary battery, method for producing the same, and lithium secondary battery
JPH05286763A (en) Electrode material
JP3712288B2 (en) Nonaqueous solvent secondary battery electrode material and method for producing the same
JP3540085B2 (en) Carbonaceous material for battery electrode, method for producing the same, electrode structure, and battery
JP3666032B2 (en) Method for producing carbon-based composite material
JP3526645B2 (en) Method for producing multi-phase structured carbon electrode material
CN112996749A (en) Method for producing graphite material
JP3113057B2 (en) Manufacturing method of electrode material
JP2000357516A (en) Multilayer structure carbon electrode material
JPH09147839A (en) Manufacture of negative electrode for nonaqueous electrolyte secondary battery
JP4635413B2 (en) Method for producing graphite particles for non-aqueous electrolyte secondary battery negative electrode
JP3053844B2 (en) Secondary battery electrode
JP2002124255A (en) Nonaqueous solvent secondary battery
JPH06187991A (en) Manufacture of negative electrode material and lithium secondary battery
JP3291755B2 (en) Non-aqueous solvent secondary battery and its electrode material
JP2001202961A (en) Anode material for lithium secondary battery, its manufacturing method and lithium secondary battery
JPH07335217A (en) Nonaqueous electrolytic secondary battery
JP2001313031A (en) Anode active material for nonaqueous secondary cell and manufacturing method of the same, and nonaqueous secondary cell

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20031127

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040123

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040217

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040217

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080227

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090227

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090227

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100227

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100227

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110227

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120227

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120227

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130227

Year of fee payment: 9

EXPY Cancellation because of completion of term