JP3525804B2 - Gas adsorption material and method for producing the same - Google Patents

Gas adsorption material and method for producing the same

Info

Publication number
JP3525804B2
JP3525804B2 JP17833599A JP17833599A JP3525804B2 JP 3525804 B2 JP3525804 B2 JP 3525804B2 JP 17833599 A JP17833599 A JP 17833599A JP 17833599 A JP17833599 A JP 17833599A JP 3525804 B2 JP3525804 B2 JP 3525804B2
Authority
JP
Japan
Prior art keywords
gas
pores
adsorption
graft polymerization
adsorbent material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP17833599A
Other languages
Japanese (ja)
Other versions
JP2001000860A (en
Inventor
直樹 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP17833599A priority Critical patent/JP3525804B2/en
Publication of JP2001000860A publication Critical patent/JP2001000860A/en
Application granted granted Critical
Publication of JP3525804B2 publication Critical patent/JP3525804B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02CCAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
    • Y02C20/00Capture or disposal of greenhouse gases
    • Y02C20/20Capture or disposal of greenhouse gases of methane

Landscapes

  • Separation Of Gases By Adsorption (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)
  • Graft Or Block Polymers (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、気体貯蔵用あるい
は気体浄化用に有用な気体吸着材料およびその製造方法
に関する。
TECHNICAL FIELD The present invention relates to a gas adsorbent material useful for gas storage or gas purification, and a method for producing the same.

【0002】[0002]

【従来の技術】天然ガスや水素のような燃料ガス等の気
体を貯蔵するために、あるいは室内や車内の空気中の悪
臭を除去するために、気体吸着材料を利用することが提
案されている。例えば、特公平8−22721号公報に
は、活性炭やゼオライト(アルミノケイ酸ナトリウム)
等の細孔内に気体分子を吸着する気体貯蔵材料が開示さ
れている。
2. Description of the Related Art It has been proposed to use a gas adsorbent material to store gas such as natural gas or fuel gas such as hydrogen, or to remove a bad odor in the air in a room or in a vehicle. . For example, Japanese Examined Patent Publication No. 22721/1996 discloses activated carbon and zeolite (sodium aluminosilicate).
Etc., a gas storage material that adsorbs gas molecules in the pores thereof is disclosed.

【0003】このように細孔内に気体を吸着する気体吸
着材料は、細孔の大きさと吸着する気体分子の大きさと
の適合性と、吸着する気体に対する細孔の吸着特性が、
吸着性能に大きく影響する。したがって、吸着材料の吸
着性能を高めるには、吸着する気体の種類(分子の大き
さ)に応じた細孔径とすること、吸着する気体に適した
吸着特性を細孔に付与することが重要である。
As described above, the gas adsorbing material that adsorbs gas in the pores has the compatibility between the size of the pores and the size of the adsorbing gas molecules and the adsorption property of the pores with respect to the adsorbing gas.
It greatly affects the adsorption performance. Therefore, in order to improve the adsorption performance of the adsorbent material, it is important to make the pore diameter according to the type of adsorbed gas (molecular size) and to give the pores an adsorption characteristic suitable for the adsorbed gas. is there.

【0004】しかし従来は、吸着する気体の種類に応じ
て細孔径や吸着特性を調整することができなかった。
However, conventionally, it has not been possible to adjust the pore size and the adsorption characteristics according to the type of gas to be adsorbed.

【0005】[0005]

【発明が解決しようとする課題】本発明は、吸着する気
体の種類に応じて細孔径および/または吸着特性を調整
した気体吸着材料およびその製造方法を提供することを
目的とする。
SUMMARY OF THE INVENTION It is an object of the present invention to provide a gas adsorbent material having a pore size and / or adsorption property adjusted according to the type of gas to be adsorbed and a method for producing the same.

【0006】[0006]

【課題を解決するための手段】上記の目的を達成するた
めに、第一発明によれば、細孔内に気体を吸着する気体
吸着材料の製造方法において、上記気体吸着材料をプラ
ズマ雰囲気に晒すことにより上記細孔を広げて、上記吸
着する気体の種類に応じた細孔径に調整する工程を含む
ことを特徴とする気体吸着材料の製造方法が提供され
る。
To achieve the above object, according to the first invention, in a method for producing a gas adsorbing material in which gas is adsorbed in pores, the gas adsorbing material is exposed to a plasma atmosphere. Thus, there is provided a method for producing a gas adsorbent material, which comprises the step of expanding the pores and adjusting the pore diameter according to the kind of the gas to be adsorbed.

【0007】また、第二発明によれば、細孔内に気体を
吸着する気体吸着材料の製造方法において、上記細孔内
にグラフト重合を生成させることにより上記細孔の実効
径を小さくして、上記吸着する気体の種類に応じた実効
径に調整する工程を含むことを特徴とする気体吸着材料
の製造方法が提供される。第二発明の製造方法は、望ま
しくは、上記グラフト重合に、上記気体を吸着する官能
基を付与する工程を更に含む。
According to the second aspect of the invention, in the method for producing a gas adsorbing material for adsorbing gas in the pores, the effective diameter of the pores is reduced by generating graft polymerization in the pores. There is provided a method for producing a gas adsorbing material, which comprises the step of adjusting the effective diameter according to the type of the gas to be adsorbed. The production method of the second invention desirably further comprises a step of imparting a functional group that adsorbs the gas to the graft polymerization.

【0008】上記第二発明により製造された気体吸着材
料は、細孔内に気体を吸着する気体吸着材料において、
上記細孔内にグラフト重合が生成されていることを特徴
とする。この気体吸着材料は、望ましくは、上記グラフ
ト重合に、上記気体を吸着する官能基が付与されてい
る。
The gas adsorbent material produced by the second invention is a gas adsorbent material which adsorbs gas in the pores,
It is characterized in that graft polymerization is generated in the pores. In this gas adsorbent material, a functional group that adsorbs the gas is preferably added to the graft polymerization.

【0009】[0009]

【発明の実施の形態】第一発明においては、吸着材料を
プラズマ雰囲気に晒すことにより、細孔の内壁をイオン
ボンバード(イオンエッチング)して細孔径を広げ、吸
着対象とする気体分子の大きさに適合する細孔径に調整
する。細孔内に気体分子を吸着する気体吸着材料の一例
として、モレキュラーシーブカーボン、ゼオライト(ア
ルミノケイ酸ナトリウム)があり、その細孔径に適合す
る気体分子のみが吸着によりトラップされる。例えば、
ゼオライトZSM−5は細孔径が0.55nmであり、
この細孔内に吸着し得る最大の分子寸法を持つ気体の一
つはシクロヘキサンである。また、メタン吸着に最適な
細孔径はポテンシャル理論から1.14nmと言われて
いる。
BEST MODE FOR CARRYING OUT THE INVENTION In the first aspect of the present invention, the size of gas molecules to be adsorbed is increased by exposing the adsorbent material to a plasma atmosphere to expand the pore diameter by ion bombarding (ion etching) the inner walls of the pores. Adjust the pore size to fit. Molecular sieve carbon and zeolite (sodium aluminosilicate) are examples of gas adsorbing materials that adsorb gas molecules in the pores, and only gas molecules that match the pore diameter are trapped by adsorption. For example,
Zeolite ZSM-5 has a pore size of 0.55 nm,
Cyclohexane is one of the gases with the largest molecular size that can be adsorbed in the pores. Further, the optimum pore size for methane adsorption is said to be 1.14 nm from the potential theory.

【0010】このように、吸着する気体によって最適な
細孔径は0.01nmのオーダーで変わるが、従来はそ
れに対応させて細孔径を調整することはできなかった。
一方、活性炭は代表的な吸着材料であるが、その細孔径
は広く分布しており、均一ではないため、特定の気体に
対して高い吸着性能を発揮することはできない。第一発
明によれば、吸着材料をプラズマ雰囲気に晒すことによ
り、細孔の内壁がイオンボンバードによって微細な加工
を受けるので、0.01nmのオーダーで細孔径を調整
することができる。
As described above, the optimum pore diameter changes in the order of 0.01 nm depending on the gas to be adsorbed, but conventionally it has not been possible to adjust the pore diameter correspondingly.
On the other hand, activated carbon is a typical adsorbent material, but its pore size is widely distributed and not uniform, so that it cannot exhibit high adsorption performance for a specific gas. According to the first invention, by exposing the adsorbent material to the plasma atmosphere, the inner walls of the pores are subjected to fine processing by ion bombardment, so that the pore diameter can be adjusted in the order of 0.01 nm.

【0011】第一発明の方法の典型的な態様の一つにお
いては、活性炭、モレキュラーシーブカーボン、ゼオラ
イト等の吸着材料を真空容器に入れて、一旦、真空排気
する。その後、真空容器内にプラズマ発生用のガスを導
入し、高周波放電あるいは直流放電を行って、プラズマ
を発生させる。プラズマによる細孔径の制御に影響を及
ぼすパラメータとしては、真空度(プラズマ発生用ガス
導入後の雰囲気圧力)、雰囲気温度、プラズマ発生用ガ
スの種類、プラズマ出力がある。
In one of the typical embodiments of the method of the first invention, an adsorbent material such as activated carbon, molecular sieve carbon, zeolite or the like is placed in a vacuum container and then evacuated. Then, a gas for plasma generation is introduced into the vacuum container, and high frequency discharge or direct current discharge is performed to generate plasma. The parameters that affect the control of the pore size by the plasma include the degree of vacuum (atmospheric pressure after introducing the plasma generating gas), the atmospheric temperature, the type of plasma generating gas, and the plasma output.

【0012】真空度は、プラズマ発生が可能な上限の雰
囲気圧力である数Torrから、有効なイオンボンバードが
得られる下限の雰囲気圧力である1×10-5Torr程度ま
での範囲が通常は適当である。雰囲気温度は、不純物除
去およびプラズマの効果を確保できる温度範囲であり、
通常は室温から1000℃程度までの範囲が通常は適当
である。
The degree of vacuum is usually in the range of several Torr, which is the upper limit atmospheric pressure at which plasma can be generated, to about 1 × 10 -5 Torr, which is the lower limit atmospheric pressure at which effective ion bombardment is obtained. is there. The ambient temperature is a temperature range where the effect of removing impurities and the effect of plasma can be secured,
Usually, the range from room temperature to about 1000 ° C. is usually suitable.

【0013】プラズマ発生用ガス(雰囲気ガス)として
は、Ar、Ne等の不活性ガスを用いても良いし、酸素
等の活性ガスを用いることもできる。酸素のような活性
ガスを用いれば、例えば活性炭のような炭素材料を酸化
により効率的に加工(エッチング)できる。更に、不活
性ガスと活性ガスとの混合ガスを用いることもできる。
プラズマ発生用ガスの種類によりガス分子(イオン)の
質量が異なるので、ガス種の選択により加工強度を種々
に変えることで、細孔径を制御することができる。
As the plasma generating gas (atmosphere gas), an inert gas such as Ar or Ne may be used, or an active gas such as oxygen may be used. If an active gas such as oxygen is used, a carbon material such as activated carbon can be efficiently processed (etched) by oxidation. Further, a mixed gas of an inert gas and an active gas can also be used.
Since the mass of gas molecules (ions) varies depending on the type of plasma generating gas, the pore size can be controlled by changing the processing strength variously by selecting the gas type.

【0014】第一発明を適用する気体吸着材料として
は、活性炭、モレキュラーシーブカーボン、ゼオライ
ト、シリカゲル、カーボンナノチューブ、FSM(Fold
ed SheetMesoporous Material: メソ多孔体)、層間化
合物等があるが、特にこれらに限定する必要はなく、細
孔内に気体を吸着する気体吸着材料であれば良い。特
に、FSMは細孔壁が厚いので、第一発明により細孔壁
を加工して細孔径を拡大すると大きい効果が得られる。
ここでFSMの細孔は、一般に2〜50nm程度のメソ
孔である。
As the gas adsorbing material to which the first invention is applied, activated carbon, molecular sieve carbon, zeolite, silica gel, carbon nanotube, FSM (Fold)
ed Sheet Mesoporous Material), intercalation compounds, etc., but it is not particularly limited to these and any gas adsorbing material that adsorbs gas in the pores may be used. In particular, since the FSM has a thick pore wall, it is possible to obtain a great effect by processing the pore wall to expand the pore diameter according to the first invention.
Here, the pores of the FSM are generally mesopores of about 2 to 50 nm.

【0015】このように第一発明は、プラズマ雰囲気で
のイオンボンバードにより細孔径を広げ、吸着対象の気
体の分子に最も適合した細孔径に調整できるので、吸着
量を最大化できる。また、細孔径を拡大することによ
り、単純に吸着面積の増大により吸着量を増大できる。
イオンボンバードによる付加的な効果として、吸着サイ
トの増加により吸着量が増大する。
As described above, according to the first aspect of the present invention, since the pore diameter can be expanded by the ion bombardment in the plasma atmosphere and the pore diameter can be adjusted to be most suitable for the molecule of the gas to be adsorbed, the adsorption amount can be maximized. Also, by enlarging the pore size, the adsorption amount can be increased simply by increasing the adsorption area.
As an additional effect of ion bombardment, the amount of adsorption increases as the number of adsorption sites increases.

【0016】次に、第二発明においては、細孔内にグラ
フト重合を生成させることにより、細孔の実効径を制御
し、吸着対象とする気体分子に適合させる。第二発明の
望ましい態様においては、対象とする気体を吸着する官
能基を上記グラフト重合に付与することにより、細孔内
壁の吸着相互作用ポテンシャルを高めて、吸着量を増大
させることができる。
Next, in the second invention, graft polymerization is generated in the pores to control the effective diameter of the pores and to adapt them to the gas molecules to be adsorbed. In a desirable mode of the second invention, by imparting a functional group that adsorbs a target gas to the graft polymerization, the adsorption interaction potential of the inner wall of the pore can be increased and the adsorption amount can be increased.

【0017】第二発明の方法の典型的な態様の一つにお
いては、図1に示すように、細孔を有する吸着材料(多
孔体)に電子線やガンマ線等の放射線を照射し、材料表
面に反応中間体であるラジカルを形成する。その後、上
記ラジカルに反応性モノマーを接触させてグラフト重合
鎖を成長させる。更に、望ましい態様においては、上記
グラフト重合鎖の側鎖に、所望の官能基を有する化合物
を反応させることにより、グラフト重合に上記官能基を
付与する。
In one of the typical embodiments of the method of the second invention, as shown in FIG. 1, the adsorbent material (porous material) having pores is irradiated with radiation such as an electron beam or gamma ray, and the surface of the material is exposed. To form a radical that is a reaction intermediate. Then, a reactive monomer is brought into contact with the above radicals to grow a graft polymerization chain. Furthermore, in a desirable mode, the functional group is imparted to the graft polymerization by reacting a side chain of the graft polymerization chain with a compound having a desired functional group.

【0018】ただし、グラフト重合を生成するには、図
示のように放射線照射とグラフト重合鎖の成長を順次に
行ってもよいし、他の手順として、吸着材料とモノマー
を共存させた状態で放射線を照射してもよい。なお図1
には、細孔内のグラフト重合に官能基を付与した吸着材
料の吸着状況も併せて示した。
However, in order to generate the graft polymerization, the irradiation of radiation and the growth of the graft polymerization chain may be sequentially carried out as shown in the figure. Alternatively, as another procedure, the radiation is carried out in the state where the adsorbing material and the monomer coexist. May be irradiated. Figure 1
In addition, the adsorption state of the adsorption material having a functional group added to the graft polymerization in the pores is also shown.

【0019】図2に、図1の手順の具体例を示す。この
例では、基材である吸着材料を放射線照射した後、脱酸
素したスチレンモノマーに接触させてスチレン重合を生
成させ、これに硫酸またはスルホン酸を反応させてスル
ホン基を付与した。電子線は照射時間当たりの線量率が
ガンマ線源の300〜1000倍と高く、短時間照射が
可能である点で有利であるが、透過深度が小さい点で不
利である。電子線の加速電圧は一般に200kV〜5M
V程度である。グラフト重合に必要な照射線量は50〜
200kGy程度であり、この線量を得るにはガンマ線
で10時間程度、電子線で10秒程度の照射時間を要す
る。
FIG. 2 shows a specific example of the procedure of FIG. In this example, after the adsorbent material as the base material was irradiated with radiation, it was brought into contact with deoxygenated styrene monomer to generate styrene polymerization, and sulfuric acid or sulfonic acid was reacted with this to give a sulfo group. The electron beam is advantageous in that the dose rate per irradiation time is as high as 300 to 1000 times that of the gamma ray source and irradiation for a short time is possible, but it is disadvantageous in that the penetration depth is small. Accelerating voltage of electron beam is generally 200 kV to 5M
It is about V. The irradiation dose required for graft polymerization is 50-
It is about 200 kGy, and it takes about 10 hours for gamma ray and about 10 seconds for electron beam to obtain this dose.

【0020】第二発明を適用する気体吸着材料として
は、第一発明と同じく、活性炭、モレキュラーシーブカ
ーボン、ゼオライト、シリカゲル、カーボンナノチュー
ブ、FSM(Folded Sheet Mesoporous Material: メソ
多孔体)、層間化合物等があるが、特にこれらに限定す
る必要はなく、細孔内に気体を吸着する気体吸着材料で
あれば良い。特に、活性炭、カーボンナノチューブ、F
SM等の比較的大きい細孔を有する吸着材料に、官能基
付与まで含めて適用すると大きい効果が得られる。
As the gas adsorbing material to which the second invention is applied, activated carbon, molecular sieve carbon, zeolite, silica gel, carbon nanotube, FSM (Folded Sheet Mesoporous Material), intercalation compound and the like are used as in the first invention. However, it is not particularly limited to these, and any gas adsorbing material that adsorbs gas in the pores may be used. In particular, activated carbon, carbon nanotube, F
A large effect can be obtained by applying it to an adsorbent material having relatively large pores such as SM including functional groups.

【0021】グラフト重合に付与する官能基は、吸着す
る気体との吸着相互作用が大きいものを選択する。すな
わち、典型的には、アンモニアガスのような塩基性ガス
を吸着する場合には、酸性官能基(−SO3 H、−CO
OH等)を用いる。硫化物、窒素酸化物等の酸性ガスを
吸着するには、表面積の大きい塩基性グラフト重合繊維
にフタロシアニン環を持つ有機金属化合物を付与する。
また、メタンガスを吸着するには、クロロメチルスチレ
ンでグラフト重合を生成し、ジメチルアミン、トリメチ
ルアミン等の、メタンとの吸着相互作用が大きい官能基
を付与する。
As the functional group imparted to the graft polymerization, one having a large adsorptive interaction with the adsorbed gas is selected. That is, typically, in the case of adsorbing the basic gas such as ammonia gas, an acidic functional group (-SO 3 H, -CO
OH, etc.) is used. In order to adsorb acidic gases such as sulfides and nitrogen oxides, basic graft polymerized fibers having a large surface area are provided with an organometallic compound having a phthalocyanine ring.
Further, in order to adsorb methane gas, graft polymerization is generated with chloromethylstyrene to give a functional group such as dimethylamine and trimethylamine, which has a large adsorptive interaction with methane.

【0022】図3に、第一発明および第二発明の方法に
より処理した気体吸着材料の細孔内への吸着状態を、処
理前の細孔内への吸着状態と比較して模式的に示す。図
3(1A)のように細孔壁の厚い吸着材料に第一発明の
方法を適用することにより図3(1B)のように細孔壁
を加工して細孔壁を薄く、すなわち細孔径を大きくする
ことにより吸着量が増大する。図3(2A)のように細
孔径の大きい吸着材料に第二発明の方法を適用すること
により図3(2B)のように細孔の実効径を小さく調整
し且つ官能基を付与することにより吸着量が増大する。
FIG. 3 schematically shows an adsorption state in the pores of the gas adsorbent material treated by the method of the first invention and the second invention in comparison with the adsorption state in the pores before the treatment. . By applying the method of the first invention to an adsorbent material having a thick pore wall as shown in FIG. 3 (1A), the pore wall is processed to be thin as shown in FIG. The adsorption amount increases by increasing. By applying the method of the second invention to an adsorbent material having a large pore diameter as shown in FIG. 3 (2A), the effective diameter of the pores is adjusted to be small and a functional group is added as shown in FIG. 3 (2B). The amount of adsorption increases.

【0023】以下、実施例により第一発明および第二発
明を更に具体的に説明する。
Hereinafter, the first invention and the second invention will be described more specifically by way of examples.

【0024】[0024]

【実施例】先ず、第一発明の実施例を説明する。 〔実施例1〕第一発明により、平均細孔径0.5nmの
モレキュラーシーブカーボンに下記条件でプラズマ処理
(イオンボンバード)を行った。
First, an embodiment of the first invention will be described. Example 1 According to the first invention, molecular sieve carbon having an average pore diameter of 0.5 nm was subjected to plasma treatment (ion bombardment) under the following conditions.

【0025】 <プラズマ処理条件> 真空度:0.1Torr 温度 :300℃ 雰囲気ガス:Ar 高周波出力:500W(13.56MHz) 上記プラズマ処理を行ったサンプルおよび未処理のサン
プルについて、1×106 Paまでの圧力範囲でメタン
ガスの吸着量を調べた結果を図4に示す。
<Plasma Treatment Conditions> Degree of vacuum: 0.1 Torr Temperature: 300 ° C. Atmosphere gas: Ar High frequency output: 500 W (13.56 MHz) About the plasma-treated sample and untreated sample, 1 × 10 6 Pa The results of examining the adsorption amount of methane gas in the pressure range up to are shown in FIG.

【0026】図4に示したように、調べて全圧力範囲
で、プラズマ処理によりメタン吸着量が約50%増加し
た。 〔実施例2〕第一発明により、平均細孔径0.9nmの
ゼオライトに下記条件でプラズマ処理(イオンボンバー
ド)を行った。
As shown in FIG. 4, the amount of adsorbed methane was increased by about 50% by the plasma treatment in the investigated whole pressure range. [Example 2] According to the first invention, a zeolite having an average pore diameter of 0.9 nm was subjected to plasma treatment (ion bombardment) under the following conditions.

【0027】 <プラズマ処理条件> 真空度 :0.05Torr 雰囲気温度:150℃ 雰囲気ガス:Ar 高周波出力:200W(13.56MHz) 上記プラズマ処理を行ったサンプルおよび未処理のサン
プルについて、1×106 Paまでの圧力範囲でメタン
ガスの吸着量を調べた結果を図5に示す。
<Plasma treatment conditions> Degree of vacuum: 0.05 Torr Atmosphere temperature: 150 ° C. Atmosphere gas: Ar High frequency output: 200 W (13.56 MHz) 1 × 10 6 for the plasma-treated sample and untreated sample The results of examining the adsorption amount of methane gas in the pressure range up to Pa are shown in FIG.

【0028】図5に示したように、調べた全圧力範囲
で、プラズマ処理によりメタン吸着量が約130%増加
した。 〔実施例3〕第一発明により、平均細孔径1.3nmの
FSMに下記条件でプラズマ処理(イオンボンバード)
を行った。
As shown in FIG. 5, the plasma treatment increased the amount of adsorbed methane by about 130% in the entire pressure range investigated. [Example 3] According to the first invention, plasma treatment (ion bombardment) was performed on FSM having an average pore diameter of 1.3 nm under the following conditions.
I went.

【0029】 <プラズマ処理条件> 真空度 :0.5Torr 雰囲気温度:250℃ 雰囲気ガス:Ar 高周波出力:800W(13.56MHz) 上記プラズマ処理を行ったサンプルおよび未処理のサン
プルについて、1×106 Paまでの圧力範囲でメタン
ガスの吸着量を調べた結果を図6に示す。
<Plasma treatment conditions> Degree of vacuum: 0.5 Torr Atmosphere temperature: 250 ° C. Atmosphere gas: Ar High frequency output: 800 W (13.56 MHz) 1 × 10 6 for the above-mentioned plasma-treated sample and untreated sample FIG. 6 shows the result of examining the adsorption amount of methane gas in the pressure range up to Pa.

【0030】図6に示したように、調べた全圧力範囲
で、プラズマ処理によりメタン吸着量が約70%増加し
た。 〔実施例4〕第二発明により、平均細孔径3nmの活性
炭に下記条件でグラフト重合の生成および官能基の付与
を行った。
As shown in FIG. 6, the plasma treatment increased the amount of adsorbed methane by about 70% in the entire pressure range examined. Example 4 According to the second invention, graft polymerization and functional group addition were carried out on activated carbon having an average pore size of 3 nm under the following conditions.

【0031】 <処理条件> 照射線:ガンマ線(10時間) 重合剤:クロロメチルスチレン、ジメチルアミン クロロメチルスチレンは、室温でジメチルアミンと混合
されることにより容易にアミン化される。
<Treatment Conditions> Irradiation ray: gamma ray (10 hours) Polymerization agent: chloromethylstyrene, dimethylamine Chloromethylstyrene is easily aminated by mixing with dimethylamine at room temperature.

【0032】上記処理を行ったサンプルおよび未処理の
サンプルについて、1×106 Paまでの圧力範囲でメ
タンガスの吸着量を調べた結果を図7に示す。図7に示
したように、調べた全圧力範囲で、グラフト重合生成お
よび官能基付与によりメタン吸着量が約40%増加し
た。これは、本来はメタン吸着に寄与できないマクロポ
ア(径50nm以上)、メソポア(径2〜50nm)に
優先的に官能基として、メタンとの吸着相互作用が大き
いメチル基が付与されたことによる。
FIG. 7 shows the results of examining the amount of adsorbed methane gas in the pressure range up to 1 × 10 6 Pa for the sample subjected to the above treatment and the untreated sample. As shown in FIG. 7, the amount of adsorbed methane increased by about 40% due to the formation of graft polymerization and the addition of functional groups in the entire pressure range examined. This is because the macropores (diameter 50 nm or more) and mesopores (diameter 2 to 50 nm), which cannot originally contribute to methane adsorption, were given a methyl group having a large adsorption interaction with methane as a functional group preferentially.

【0033】〔実施例5〕第二発明により、平均細孔径
10nmのシングルウォール型カーボンナノチューブに
下記条件でグラフト重合の生成および官能基の付与を行
った。 <処理条件> 照射線:電子線(1MV、10秒) 重合剤:クロロメチルスチレン、ジメチルアミン クロロメチルスチレンは、室温でジメチルアミンと混合
されることにより容易にアミン化される。
Example 5 According to the second invention, graft polymerization and functional group addition were carried out on single wall type carbon nanotubes having an average pore diameter of 10 nm under the following conditions. <Treatment conditions> Irradiation ray: electron beam (1 MV, 10 seconds) Polymerization agent: chloromethylstyrene, dimethylamine Chloromethylstyrene is easily aminated by mixing with dimethylamine at room temperature.

【0034】上記処理を行ったサンプルおよび未処理の
サンプルについて、1×106 Paまでの圧力範囲でメ
タンガスの吸着量を調べた結果を図8に示す。図8に示
したように、調べた全圧力範囲で、グラフト重合生成お
よび官能基付与によりメタン吸着量が約220%増加し
た。このように、本来なら細孔径が大きくメタン吸着量
が少ない材料であっても、グラフト重合の生成により細
孔の実効径を小さくしてメタン分子寸法との適合性を高
め、かつグラフト重合にメタンとの吸着相互作用が大き
いメチル基を付与したことにより、メタン吸着量を顕著
に向上できる。
FIG. 8 shows the results of examining the adsorption amount of methane gas in the pressure range up to 1 × 10 6 Pa for the sample subjected to the above treatment and the untreated sample. As shown in FIG. 8, the amount of adsorbed methane increased by about 220% due to the formation of graft polymerization and the addition of functional groups in the entire pressure range examined. As described above, even if the material has a large pore size and a small amount of adsorbed methane, it is possible to reduce the effective size of the pores by the generation of the graft polymerization to improve compatibility with the methane molecular size, and to use the methane for the graft polymerization. By providing a methyl group having a large adsorption interaction with, the methane adsorption amount can be remarkably improved.

【0035】本実施例では放射線照射を大気中で行って
いるが、細孔を有する多孔体は真空かで行った方が効果
がある。特に電子線の場合は、細孔内を電子が反射して
奥まで到達できる。第一発明および第二発明についてそ
れぞれ実施例を説明したが、第一発明と第二発明とを併
用することもできる。その場合は、プラズマ処理による
細孔径の精密制御による効果に加え、放射線グラフト重
合および官能基付与による効果が得られ、吸着性能を更
に向上させることができる。
In this embodiment, radiation irradiation is carried out in the atmosphere, but it is more effective to carry out the irradiation of the porous body having pores in vacuum. Particularly in the case of an electron beam, electrons are reflected in the pores and can reach deep inside. Although the embodiments of the first invention and the second invention have been described, respectively, the first invention and the second invention may be used in combination. In that case, in addition to the effect of precisely controlling the pore size by the plasma treatment, the effects of radiation graft polymerization and functional group addition can be obtained, and the adsorption performance can be further improved.

【0036】[0036]

【発明の効果】以上説明したように、本発明によれば、
吸着する気体の種類に応じて細孔径および/または吸着
特性を調整した気体吸着材料およびその製造方法が提供
される。
As described above, according to the present invention,
Provided are a gas adsorbent material in which a pore size and / or an adsorption property is adjusted according to the type of gas to be adsorbed, and a method for producing the same.

【図面の簡単な説明】[Brief description of drawings]

【図1】図1は、第二発明によりグラフト重合生成およ
び官能基付与を行い、吸着を行う過程を、吸着材料の細
孔一つについて、模式的に断面図で示すフローチャート
である。
FIG. 1 is a flow chart schematically showing, in a cross-sectional view, one step of adsorbent material pores of an adsorbent material, which is carried out by graft polymerization and functional grouping according to the second invention.

【図2】図2は、図1の過程の具体例を示すフローチャ
ートである。
FIG. 2 is a flowchart showing a specific example of the process of FIG.

【図3】図3は、第一発明および第二発明の方法により
処理した気体吸着材料の細孔内への吸着状態を、処理前
の細孔内への吸着状態と比較して模式的に示す断面図で
ある。
FIG. 3 is a schematic diagram showing the state of adsorption in the pores of the gas adsorbent material treated by the method of the first invention and the method of the second invention in comparison with the state of adsorption in the pores before the treatment. It is sectional drawing shown.

【図4】図4は、第一発明によりモレキュラーシーブカ
ーボンにプラズマ処理を行った場合のメタン吸着量を、
未処理の場合と比較して示すグラフである。
FIG. 4 is a graph showing the amount of methane adsorbed when the molecular sieve carbon is plasma-treated according to the first invention,
It is a graph shown in comparison with the case of untreated.

【図5】図5は、第一発明によりゼオライトにプラズマ
処理を行った場合のメタン吸着量を、未処理の場合と比
較して示すグラフである。
FIG. 5 is a graph showing the amount of adsorbed methane in the case where the zeolite is plasma-treated according to the first invention in comparison with the case where the zeolite is not treated.

【図6】図6は、第一発明によりFSMにプラズマ処理
を行った場合のメタン吸着量を、未処理の場合と比較し
て示すグラフである。
FIG. 6 is a graph showing the amount of methane adsorbed when FSM is plasma-treated according to the first invention in comparison with the untreated case.

【図7】図7は、第二発明により活性炭にグラフト重合
生成および官能基付与を行った場合のメタン吸着量を、
未処理の場合と比較して示すグラフである。
FIG. 7 is a graph showing the amount of adsorbed methane in the case where activated carbon is graft-polymerized and functionalized according to the second invention,
It is a graph shown in comparison with the case of untreated.

【図8】図8は、第二発明によりカーボンナノチューブ
にグラフト重合生成および官能基付与を行った場合のメ
タン吸着量を、未処理の場合と比較して示すグラフであ
る。
FIG. 8 is a graph showing the amount of methane adsorbed when carbon nanotubes are graft-polymerized and functionalized according to the second aspect of the invention, compared with the case of untreated carbon nanotubes.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI B01J 20/20 B01J 20/20 E 20/26 20/26 A C08F 292/00 C08F 292/00 ─────────────────────────────────────────────────── ─── Continued Front Page (51) Int.Cl. 7 Identification Code FI B01J 20/20 B01J 20/20 E 20/26 20/26 A C08F 292/00 C08F 292/00

Claims (4)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 細孔内に気体を吸着する気体吸着材料の
製造方法において、上記気体吸着材料の表面のうち少な
くとも上記細孔内にグラフト重合を生成させることによ
り、上記細孔の実効径を小さくして、上記吸着する気体
の種類に応じた実効径に調整する工程を含むことを特徴
とする気体吸着材料の製造方法。
1. A method for producing a gas adsorbent material for adsorbing gas in the pores, small of the surface of the gas adsorbent material
Gas adsorption characterized by including a step of reducing the effective diameter of the pores by generating graft polymerization in at least the pores and adjusting the effective diameter according to the type of the gas to be adsorbed. Material manufacturing method.
【請求項2】 上記グラフト重合に、上記気体を吸着す
る官能基を付与する工程を更に含む請求項記載の気体
吸着材料の製造方法。
To wherein said graft polymerization method for producing a gas adsorption material according to claim 1, further comprising the step of imparting a functional group that adsorbs the gas.
【請求項3】 細孔内に気体を吸着する気体吸着材料に
おいて、上記気体吸着材料の表面のうち少なくとも上記
細孔内にグラフト重合が生成されていることを特徴とす
る気体吸着材料。
3. A gas adsorbent material that adsorbs gas in pores, wherein graft polymerization is generated in at least the pores on the surface of the gas adsorbent material.
【請求項4】 上記グラフト重合に、上記気体を吸着す
る官能基が付与されていることを特徴とする請求項
載の気体吸着材料。
4. The gas adsorbent material according to claim 3 , wherein the graft polymerization is provided with a functional group that adsorbs the gas.
JP17833599A 1999-06-24 1999-06-24 Gas adsorption material and method for producing the same Expired - Fee Related JP3525804B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17833599A JP3525804B2 (en) 1999-06-24 1999-06-24 Gas adsorption material and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17833599A JP3525804B2 (en) 1999-06-24 1999-06-24 Gas adsorption material and method for producing the same

Publications (2)

Publication Number Publication Date
JP2001000860A JP2001000860A (en) 2001-01-09
JP3525804B2 true JP3525804B2 (en) 2004-05-10

Family

ID=16046701

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17833599A Expired - Fee Related JP3525804B2 (en) 1999-06-24 1999-06-24 Gas adsorption material and method for producing the same

Country Status (1)

Country Link
JP (1) JP3525804B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102553546A (en) * 2012-01-18 2012-07-11 中国人民解放军63971部队 High-molecule adsorption material

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100820652B1 (en) * 2001-01-29 2008-04-10 도꾸리쯔교세이호징 가가꾸 기쥬쯔 신꼬 기꼬 Carbon nanohorn adsorbent and process for producing the same
WO2002064654A1 (en) * 2001-02-09 2002-08-22 Reika Kogyo Kabushiki Kaisha Functional particle and method for preparation thereof and method of plasma treatment
US6749826B2 (en) * 2001-06-13 2004-06-15 The Regents Of The University Of California Carbon nanotube coatings as chemical absorbers
JP2004099779A (en) * 2002-09-10 2004-04-02 Japan Science & Technology Corp Phenol-based polymer nanotube and method for producing the same
US7537695B2 (en) 2005-10-07 2009-05-26 Pur Water Purification Products, Inc. Water filter incorporating activated carbon particles with surface-grown carbon nanofilaments

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102553546A (en) * 2012-01-18 2012-07-11 中国人民解放军63971部队 High-molecule adsorption material
CN102553546B (en) * 2012-01-18 2014-04-23 中国人民解放军63971部队 High-molecule adsorption material

Also Published As

Publication number Publication date
JP2001000860A (en) 2001-01-09

Similar Documents

Publication Publication Date Title
EP1364704A1 (en) Carbon nanohorn adsorbent and process for producing the same
US5069926A (en) Method for modifying the surface of a polymer article
JP3525804B2 (en) Gas adsorption material and method for producing the same
CN110038445B (en) Hydrophilic modification method for hydrophobic membrane
CN105727753A (en) Method for surface hydrophilic modification of polytetrafluoroethylene hollow fiber membrane
CN112169757A (en) Low-temperature plasma modified carbon nanotube and application thereof in water treatment
Huang et al. Ultrafast synthesis of 13X@ NaA composites through plasma treatment for highly selective carbon capture
JPH0561297B2 (en)
R Loos et al. Plasma modification of carbon nanotubes
CN107857255B (en) Method for preparing porous graphene aerogel through electron beam irradiation
KR20020007237A (en) Manufacture of carbonnanotube with having increaseing surface area
JP2003159700A (en) Method of processing carbon nanotubes
CN116139828A (en) Biological adsorbent and preparation method and application thereof
CN1880270A (en) Mesoporous Si-Si composite material and its preparing process
JP3627021B2 (en) Method for producing tube-like substance with different elements introduced
CN114887655A (en) Nano NiO-VO X /TiO 2 -molecular sieve composite catalyst and preparation method and application thereof
KR20170141624A (en) Method for modification of carbon based materials using surfactant and surfactant modified carbon based materials
WO2004067714A3 (en) Process and apparatus for microwave desorption of elements or species from carbon nanotubes
JP2005177548A (en) Production method for visible light response type photocatalyst body
CN114177879B (en) Preparation method of nano selenium plasma modified ceramic nano mercury adsorption material
KR102372794B1 (en) Method for preparing the porous carbon using zinc oxide without aftertreatment process and supercapacitor electrode comprising the same
JPH03290446A (en) Processing of porous film
CN116328751B (en) Modified carbon catalyst and preparation method and application thereof
CN109012563B (en) Metal Ti modified black phosphorus alkene and preparation method and application thereof
CN117049535A (en) Super activated carbon for electro-adsorption desalination and preparation method thereof

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20031205

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040127

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040209

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080227

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090227

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100227

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110227

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110227

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120227

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120227

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130227

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees