JP3523716B2 - スクラップ溶解法 - Google Patents

スクラップ溶解法

Info

Publication number
JP3523716B2
JP3523716B2 JP11517795A JP11517795A JP3523716B2 JP 3523716 B2 JP3523716 B2 JP 3523716B2 JP 11517795 A JP11517795 A JP 11517795A JP 11517795 A JP11517795 A JP 11517795A JP 3523716 B2 JP3523716 B2 JP 3523716B2
Authority
JP
Japan
Prior art keywords
pulverized coal
oxygen
combustion
scrap
furnace
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP11517795A
Other languages
English (en)
Other versions
JPH08188811A (ja
Inventor
達郎 有山
孝憲 井ノ口
正博 松浦
英俊 野田
隆志 炭竃
登 坂本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP11517795A priority Critical patent/JP3523716B2/ja
Priority to US08/550,364 priority patent/US5698010A/en
Priority to KR1019950038675A priority patent/KR100187693B1/ko
Priority to AU34581/95A priority patent/AU691663B2/en
Priority to EP19950117259 priority patent/EP0710726B1/en
Priority to DE1995618297 priority patent/DE69518297T2/de
Priority to TW84111776A priority patent/TW404983B/zh
Publication of JPH08188811A publication Critical patent/JPH08188811A/ja
Application granted granted Critical
Publication of JP3523716B2 publication Critical patent/JP3523716B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B9/00General processes of refining or remelting of metals; Apparatus for electroslag or arc remelting of metals
    • C22B9/16Remelting metals
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23DBURNERS
    • F23D1/00Burners for combustion of pulverulent fuel
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B11/00Making pig-iron other than in blast furnaces
    • C21B11/02Making pig-iron other than in blast furnaces in low shaft furnaces or shaft furnaces
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C5/00Manufacture of carbon-steel, e.g. plain mild steel, medium carbon steel or cast steel or stainless steel
    • C21C5/56Manufacture of steel by other methods
    • C21C5/562Manufacture of steel by other methods starting from scrap
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23LSUPPLYING AIR OR NON-COMBUSTIBLE LIQUIDS OR GASES TO COMBUSTION APPARATUS IN GENERAL ; VALVES OR DAMPERS SPECIALLY ADAPTED FOR CONTROLLING AIR SUPPLY OR DRAUGHT IN COMBUSTION APPARATUS; INDUCING DRAUGHT IN COMBUSTION APPARATUS; TOPS FOR CHIMNEYS OR VENTILATING SHAFTS; TERMINALS FOR FLUES
    • F23L7/00Supplying non-combustible liquids or gases, other than air, to the fire, e.g. oxygen, steam
    • F23L7/007Supplying oxygen or oxygen-enriched air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23DBURNERS
    • F23D2900/00Special features of, or arrangements for burners using fluid fuels or solid fuels suspended in a carrier gas
    • F23D2900/00006Liquid fuel burners using pure oxygen or O2-enriched air as oxidant
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23LSUPPLYING AIR OR NON-COMBUSTIBLE LIQUIDS OR GASES TO COMBUSTION APPARATUS IN GENERAL ; VALVES OR DAMPERS SPECIALLY ADAPTED FOR CONTROLLING AIR SUPPLY OR DRAUGHT IN COMBUSTION APPARATUS; INDUCING DRAUGHT IN COMBUSTION APPARATUS; TOPS FOR CHIMNEYS OR VENTILATING SHAFTS; TERMINALS FOR FLUES
    • F23L2900/00Special arrangements for supplying or treating air or oxidant for combustion; Injecting inert gas, water or steam into the combustion chamber
    • F23L2900/07002Injecting inert gas, other than steam or evaporated water, into the combustion chambers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23LSUPPLYING AIR OR NON-COMBUSTIBLE LIQUIDS OR GASES TO COMBUSTION APPARATUS IN GENERAL ; VALVES OR DAMPERS SPECIALLY ADAPTED FOR CONTROLLING AIR SUPPLY OR DRAUGHT IN COMBUSTION APPARATUS; INDUCING DRAUGHT IN COMBUSTION APPARATUS; TOPS FOR CHIMNEYS OR VENTILATING SHAFTS; TERMINALS FOR FLUES
    • F23L2900/00Special arrangements for supplying or treating air or oxidant for combustion; Injecting inert gas, water or steam into the combustion chamber
    • F23L2900/07009Injection of steam into the combustion chamber
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/32Direct CO2 mitigation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/34Indirect CO2mitigation, i.e. by acting on non CO2directly related matters of the process, e.g. pre-heating or heat recovery
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/10Reduction of greenhouse gas [GHG] emissions
    • Y02P10/134Reduction of greenhouse gas [GHG] emissions by avoiding CO2, e.g. using hydrogen
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/32Technologies related to metal processing using renewable energy sources

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Combustion & Propulsion (AREA)
  • General Engineering & Computer Science (AREA)
  • Manufacture Of Iron (AREA)
  • Vertical, Hearth, Or Arc Furnaces (AREA)
  • Carbon Steel Or Casting Steel Manufacturing (AREA)

Description

【発明の詳細な説明】
【0001】
【産業上の利用分野】本発明はスクラップ溶解法、より
詳細には、スクラップを鉄源として溶銑を製造するとと
もに、燃料用ガスとして高い利用価値のある高カロリー
排ガスを得ることができるスクラップ溶解法に関する。
【0002】
【従来の技術】近年スクラップ(銑屑、鉄屑)の供給が
増加の一途を辿っており、そのリサイクルが資源の有効
利用の面で重要な課題となりつつある。このためスクラ
ップを原料として低コストに高い生産性で溶銑を製造で
きる技術の開発が強く望まれている。従来、スクラップ
から溶銑を製造するために電気炉が用いられているが、
電気炉法は莫大な電気を必要とするためコストが高く、
製造コスト面での要求を満足できない。
【0003】また、キュポラ法によりスクラップを原料
とした鋳物銑の製造が行われているが、このキュポラ法
では燃料として鋳物用の高品位大塊コークスを使用する
必要があり、この鋳物用コークスは高炉用コークスの4
倍程度の価格であるため製造コストの面で汎用化は難し
い。キュポラ法ではスクラップの円滑な溶解を促すため
に、羽口から吹き込まれた熱風中の酸素を羽口先のコー
クスによって急速に消費させず、炉の下部に形成される
コークスベット上部のスクラップ溶解帯付近で消費させ
るようにし、この部分で最高温度になるような温度分布
にすることが必要であり、このためコークスは高炉用コ
ークスよりも反応性が低く、燃焼しにくいものを使用す
る必要がある。このため、高炉用コークスよりも粒度が
大きく反応性の低い特殊な鋳物用コークスを用いること
が不可欠である。
【0004】以上のような従来の電気炉法やキュポラ法
に対して、シャフト炉を用いたスクラップ溶解法とし
て、シャフト炉内に鉄源であるスクラップと高炉用コー
クスとを装入するとともに、羽口部から常温の高酸素富
化空気と微粉炭を吹き込んで燃焼させ、この燃焼ガスの
顕熱によりスクラップを溶解するとともに、シャフト部
から空気を吹き込むことで燃焼ガスを二次燃焼させてス
クラップの溶解を促進させるようにしたスクラップ溶解
法が提案されている(鉄と鋼 Vol.79,No.2,P.139〜14
6)。
【0005】また、他の方法として、シャフト炉の外部
に微粉炭燃焼用の燃焼炉を設けてこの燃焼炉で微粉炭を
多量に燃焼させ、発生した高温の燃焼ガスをスクラップ
とコークスが装入されたシャフト炉に導入するととも
に、この導入の際に酸素含有ガスを補給して燃焼ガスを
二次燃焼させ、この燃焼ガスの顕熱によりスクラップを
溶解するようにしたスクラップ溶解法が提案されている
(特開平1−195225号公報)。これらの提案によ
るスクラップ溶解法は、熱源の一部として微粉炭を使用
し且つ炉内に装入するコークスとして安価な高炉用コー
クスを使用できるため、経済的な操業を実現できる可能
性がある。
【0006】
【発明が解決しようとする課題】しかし、上述した2つ
のスクラップ溶解法はいずれも低燃料比によるエネルギ
ーミニマムを指向した技術であり、このため燃料比を低
く抑えた操業(燃料比:300kg/t未満)を行な
い、且つ微粉炭の燃焼により生成した燃焼ガスにさらに
空気等の酸素含有ガスを吹き込んで二次燃焼させること
により、低燃料比の下でのスクラップ溶解の促進を図っ
ている。すなわち、これら従来のスクラップ溶解法の狙
いは、燃料比の低減化と熱源の一部として微粉炭を使用
することによりスクラップ溶解の低コスト化を実現しよ
うとするものであり、したがって、微粉炭の大量供給を
行なって高燃料比の操業を行い、大量供給された微粉炭
を積極的に燃焼ガス化して大量の排ガス(燃料ガス)を
得るというような意図はなく、また、これが可能となる
ような操業条件や手段を備えてもいない。
【0007】また、上記のスクラップ溶解法では製造コ
ストの低減化のために熱源の一部として微粉炭を用いて
いるが、その供給量は微粉炭比/コークス比で1.0に
満たず(せいぜい高くても0.9程度)、燃料比を低く
抑えてはいるものの、微粉炭比に対してコークス比が相
対的に高いという意味で低コスト化が十分に図られてい
るとは言い難い。また、これらのスクラップ溶解法で
は、低燃料比による操業を可能とするために微粉炭の燃
焼ガスにさらに空気等の酸素含有ガスを吹き込んで二次
燃焼させており、また、微粉炭の燃焼や二次燃焼のため
に空気若しくは酸素富化された空気を用いているため、
排出される排ガスには必然的に窒素やCO2等が多量に
含まれることになる。したがって、これら従来技術のス
クラップ溶解法において炉から排出される排ガスは、燃
料ガスとしてそれなりの利用価値はあるものの、例えば
高効率な発電を行なうための燃料ガスや加熱炉用燃料ガ
スとして利用できるような熱量を有する高カロリーガス
ではない。
【0008】例えば、前者の従来技術を述べた文献(鉄
と鋼 Vol.79,No.2,P.139〜146)では、キュポラ法に較
べて高カロリーの排ガスが得られ、これを燃料ガスとし
て有効利用できるとしているが、その排ガスカロリーは
約2000kcal/Nm3(約8400kJ/Nm3
程度に過ぎない。また、同文献では試験的に二次燃焼を
実施しないで行った実験例のデータも示されているが、
本発明者らが試算した結果では、この場合でも排ガスの
カロリーは高々2300kcal/Nm3程度に過ぎな
い。一般に、加熱炉用や高効率発電用の燃料ガスとして
は2500kcal/Nm3以上の高カロリーガスが使
用されており、したがって、従来技術で得られる排ガス
は加熱炉用や高効率発電用としては適さず、利用価値の
低いものと言わざるを得ない。また、低燃料比での操業
であるために発生する排ガス量も少なく、排ガスカロリ
ーが低いことも相俟って高品質の燃料ガスを大量に安定
供給できるような技術ではない。
【0009】また、後者の従来技術(特開平1−195
225号公報)では、溶解炉とは別に微粉炭燃焼用の燃
焼炉が必要であるため設備コストが高く、また、燃焼炉
で生成した高温ガスをガス導管によりシャフト炉に導く
途中でガス顕熱の一部が失われるため、経済性の面でも
問題がある。なお、先に述べたキュポラ法の改良技術と
して、羽口から酸素富化熱風を微粉炭とともに吹き込む
ようにした方法も提案( Klaus Scheiding : Proceedin
gs of the Enghth Japan-Germany Seminar, Oct.,6,7,1
993( Sendai,Japan ),p.22“ Hot Metal Production
Based on Scrap, Coal and Oxygen ”)されているが、
この方法では高炉用コークスのなかでも大径のコークス
を使用しなければならず、製造コストが高くなる問題が
ある。また、先に述べた従来技術と同様、この技術にも
微粉炭を大量に供給してその燃焼ガス化を図るというよ
うな意図はなく、また、これが可能となるような操業条
件や手段を備えてもおらず、さらに窒素を含む熱風の吹
き込みを行なっていること等からしても、高カロリーの
排ガスを得ることは到底望めない。
【0010】このように従来提案されているスクラップ
溶解技術は、基本的に燃料比の低減化によるエネルギー
ミニマムを指向しているが故に、その排ガスは熱量が小
さく且つ排出量も少なく、利用価値の低いものであっ
た。また、熱源の一部として微粉炭を用いているが、微
粉炭の高効率な燃焼を実現することができないためコー
クス比に対して微粉炭比を十分に高めることができず、
微粉炭使用による低コスト化が十分に図られていない。
このような従来のスクラップ溶解技術に対し、本発明は
スクラップを高効率に溶解して溶銑を製造できるだけで
なく、燃料用ガスとして利用価値の高い高カロリーの排
ガスを大量に製造することができ、しかも高カロリー排
ガスの利用価値を考慮した場合に従来技術に較べて相当
程度に低い製造コストで操業を行なうことができる、全
く新たなタイプのスクラップ溶解法を提供しようとする
ものである。
【0011】
【課題を解決するための手段】本発明はこのような課題
を、微粉炭の大量吹き込みによる高燃料比、高微粉炭比
での操業の下で下記の(1)〜(5)の手段により達成するこ
とを特徴としている。 (1) 羽口部の燃焼バーナから微粉炭とともに酸素を吹き
込む。 (2) 微粉炭と酸素とを、両者が羽口先で速かに接触して
混合するような特定の方法により吹き込むことにより、
微粉炭の急速燃焼を実現させる。 (3) 微粉炭の燃焼による燃焼ガスを有意に二次燃焼させ
ない。(4) 燃焼バーナから吹き込む微粉炭量PC(kg/h)
と酸素流量O (Nm /h)との比[PC/O ]を
0.7kg/Nm 以上とする。 (5) 燃料比を300kg/t以上、微粉炭比(kg/
t)とコークス比(kg/t)の重量比[微粉炭比/コ
ークス比]を1.0以上とする。
【0012】すなわち本発明は、シャフト炉内に鉄源で
あるスクラップとコークスを装入するとともに、羽口部
に設けられた燃焼バーナから微粉炭量PC(kg/h)
と酸素流量O (Nm /h)との比[PC/O ]が
0.7kg/Nm 3 以上となるような条件で微粉炭と酸
素とを炉内に吹き込み、燃料比を300kg/t以上、
微粉炭比(kg/t)とコークス比(kg/t)の重量
比[微粉炭比/コークス比]を1.0以上とする操業条
件で実施されるスクラップ溶解法であって、前記微粉炭
と酸素の吹き込みに当たっては、燃焼バーナの径方向中
心若しくはその近傍から微粉炭を吹き込むとともに、そ
の周囲から酸素を吹き込んで両者を混合させることによ
り微粉炭を羽口先に形成される燃焼帯で急速燃焼させ、
この燃焼ガスの顕熱でスクラップを溶解して溶銑を製造
するとともに、生成した燃焼ガスを炉内で有意に二次燃
焼させることなく燃料用ガスとして回収することを特徴
とするスクラップ溶解法である。本発明のスクラップ溶
解法では、燃焼バーナにおける微粉炭の吹き込み部の内
側からさらに酸素を吹き込むことができる。したがって
この場合には、燃焼バーナの径方向中心若しくはその近
傍から酸素を吹き込むとともに、その周囲から微粉炭を
吹き込み、さらにその周囲から酸素を吹込むことにな
る。
【0013】本発明では、シャフト炉に装入されるコー
クスとして高炉用コークスを用いることができる。
【0014】燃焼バーナにより微粉炭の周囲から酸素を
吹き込むに当っては、微粉炭吹出部の周りを環状に囲む
ような酸素吹出部から酸素を吹き込むようにしてもよい
し、或いは微粉炭吹出部の周りに適宜間隔をおいて配さ
れた複数の酸素吹出部から酸素を吹き込むようにしても
よい。また、燃焼バーナにおける微粉炭の吹き出し位置
はバーナの中心から或る程度偏位していてもよく、要は
バーナ径方向の中心若しくはその近傍から微粉炭が吹き
出され、その周囲から酸素が吹き出されるようにすれば
よい。また、微粉炭の吹き込み部の内側からさらに酸素
を吹き込む方法においても、酸素の周囲から微粉炭を吹
き込むに当っては、酸素吹出部の周りを環状に囲むよう
な微粉炭吹出部から酸素を吹き込むようにしてもよい
し、或いは酸素吹出部の周りに適宜間隔をおいて配され
た複数の微粉炭吹出部から微粉炭を吹き込むようにして
もよい。また、微粉炭の周囲から酸素を吹き込む方法に
ついては上述した通りである。また、このように微粉炭
吹出部の内側から酸素を吹き込む場合の酸素吹き出し位
置も、バーナの中心から或る程度偏位していてもよい。
なお、本発明においては、炉内にスクラップとともに他
の鉄源及び装入物を装入することを妨げるものではな
い。
【0015】
【作用】本発明は、スクラップ溶解において高カロリー
排ガスを積極的に得るために、微粉炭の大量吹込みによ
り燃料比を高め且つコークス比に対して微粉炭比を高め
た操業を行うことを前提とし、炉内に大量に吹込まれた
微粉炭を効率的に燃焼させ且つ排ガス中の低カロリー成
分を低減させるために、羽口部の燃焼バーナから微粉炭
とともに酸素を吹込むとともに、微粉炭と酸素とが羽口
先で速かに接触して混合するような特定の吹込方法を用
いることにより、吹き込まれた微粉炭を羽口先で急速燃
焼させて効率的に燃焼ガス化し、さらに、この燃焼ガス
を二次燃焼させることなく炉外に排出することにより、
スクラップの溶解と高カロリー排ガスの回収とを低コス
トで実現させるスクラップ溶解法である。
【0016】以下、本発明の詳細を説明する。シャフト
炉の炉頂部からは鉄源であるスクラップとコークスが装
入される。コークスとしては、一般の高炉用コークス
(通常、粒度が20〜80mm)を用いることができ
る。炉内に装入されたコークスは、炉内に充填されたス
クラップを保持する作用をするとともに、スクラップ溶
解のための熱源の一部となる。但し、本発明では羽口部
から吹き込まれる微粉炭が熱源としてより大きな比重を
占めている。
【0017】羽口部に設けられた燃焼バーナからは微粉
炭と酸素(冷酸素でよい)が炉内に吹き込まれるが、こ
の際、微粉炭がその周囲を酸素で囲まれるようにして吹
き込まれるため、微粉炭と酸素の接触が極めて良好にな
り、両者は羽口先で速かに混合して微粉炭が急速燃焼す
る。したがって、単位酸素量当たり大量の微粉炭を吹き
込んでも微粉炭は高効率で燃焼して燃焼ガス化する。す
なわち、[PC/O2]を十分に高くしても微粉炭が高
効率で燃焼ガス化し、燃焼することなく炉頂ダストとし
て炉外に排出される微粉炭の量も極く低く抑えることが
できる。これに対して、公知のランス方式(図3参照)
で微粉炭を吹込んだ場合や、酸素ガスではなく熱風や酸
素富化空気を吹込んだ場合には、酸素と微粉炭との接触
が十分に確保されないため微粉炭を高効率に燃焼させる
ことができず、微粉炭の大量吹込み(高微粉炭比)が実
現できない。
【0018】酸素とともに吹き込まれた微粉炭の急速燃
焼により、羽口先には約2000℃程度の高温の燃焼帯
が形成され、その熱でスクラップが溶解し、溶銑として
炉外に取り出される。微粉炭の急速燃焼により生成した
還元性の燃焼ガスは、その顕熱でスクラップを予熱しつ
つシャフト炉を上昇し、排ガスとして炉上部から排出さ
れるが、本発明では微粉炭の燃焼により生成した燃焼ガ
スを有意に二次燃焼させることなく炉から排出する。す
なわち、従来技術のようにシャフト部に空気や酸素富化
空気を供給して燃焼ガスを二次燃焼させることはしな
い。
【0019】本発明では、羽口部から燃焼用に吹き込ま
れるガスが酸素であり、また、先に述べたように単位酸
素量当たり大量の微粉炭を効率的に燃焼ガス化すること
ができ、さらに上記のように燃焼ガスを二次燃焼させな
いことにより、COとH2の含有率が極めて高い(した
がって、CO2やN2の含有率が非常に少ない)高カロリ
ー排ガス(2700kcal/Nm2以上)が得られ
る。本発明では微粉炭を高効率で燃焼させることができ
るため、[PC/O2]:0.7kg/Nm3以上(好ま
しくは1.0kg/Nm3以上)においても安定した操
業が可能であり、大量供給された微粉炭を効率的に燃焼
させて大量の高カロリー排ガスを得ることができる。
【0020】また、微粉炭の吹き込み部の内側からさら
に酸素を吹き込む方法、すなわち、バーナの径方向中心
若しくはその近傍から酸素を、その周囲から微粉炭を、
さらにその周囲から酸素を吹込む方式では、微粉炭がそ
の内側と外側を酸素でサンドイッチされるようにして吹
き込まれるため微粉炭と酸素の接触がより良好になり、
これにより微粉炭の燃焼効率をより高めることができ
る。このため、燃焼することなく炉頂ダストとして炉外
に排出される微粉炭の量をより低減させることができ
る。
【0021】先に述べたように本発明は従来法に較べて
燃料比を高くし、且つ微粉炭の大量吹き込みを行なうこ
とを前提としているが、その狙いとする範囲は実操業ベ
ースで、燃料比:300kg/t以上、微粉炭比(kg
/t)とコークス比(kg/t)の重量比[微粉炭比/
コークス比]:1.0以上であり、これにより溶銑を高
効率に製造することができるとともに、上述したような
高カロリー排ガスを大量に安定供給することが可能とな
る。また、これらの上限は操業度、燃料コストと必要回
収ガスバランス等によって決まるが、一般には燃料比:
500kg/t、[微粉炭比/コークス比]:2.5程
度が実質的な上限となると考えられる。
【0022】このように本発明では、従来法に較べて燃
料比を相対的に高めた操業を行うことを前提としている
ため、従来法に較べて燃料費自体は高くなるが、一方に
おいてコークスに較べてはるかに安価な微粉炭を大量に
使用することでコークス比を相対的に低減させることが
でき、しかも利用価値の高い高カロリー排ガスを大量に
製造することができるため、全体としては従来法に較べ
て相当程度に低い製造・操業コストで実施することがで
きる。
【0023】また、微粉炭と酸素を本発明のような方式
で同時に吹き込むことは、溶銑の歩留り及び品質を確保
することにも役立つ。すなわち、熱源としてコークスの
みを炉内に装入して羽口部から酸素のみを吹き込む方式
を想定した場合、羽口先に酸素帯が奥行き方向に長く形
成され、その近傍を流れる溶銑が酸化され易いため、鉄
がFeOとしてスラグ中に移行して鉄の歩留まりを低下
させ、また、溶銑の成分中に酸化物を懸濁させることに
より溶銑の品質を劣化させることになる。これに対して
本発明では、微粉炭が急速に酸素を消費するため酸化帯
が十分に小さく、このため上記のような溶銑の酸化は殆
ど問題とならない。また、このような作用は、特に[P
C/O2]を0.7kg/Nm3以上、より好ましくは
1.0kg/Nm3以上とすることにより効果的に得ら
れる。
【0024】また本発明法では、羽口先で微粉炭を急速
燃焼させることにより形成される燃焼帯によりスクラッ
プが円滑に溶解するため、キュポラ法のような炉内の温
度分布制御のための特殊な鋳物用コークスを必要としな
い。本発明法では、溶解帯下部にレースウェイと呼ばれ
る燃焼帯を作り、充填されたスクラップを保持するため
にコークスが必要であるが、これには高炉用コークスを
利用することができる。そして、微粉炭がレースウェイ
内で急速燃焼して酸素が急速に消費され、炉内が還元雰
囲気となるため、溶解した鉄の酸化が効果的に抑えら
れ、スラグ中のFeOが微量で鉄歩留りが高い。
【0025】また、微粉炭の燃焼ガス化に伴って発生す
る主に石炭灰分から成るスラグは、容易に溶融して炉下
部の溶銑と分離してその上部に蓄積し、出銑とともに容
易に炉外に排出でき、操業に支障を与えない。なお、本
発明法では燃焼バーナによる微粉炭と酸素の吹き込みに
加え、同じ燃焼バーナ等を通じて燃焼温度調整用の水蒸
気や窒素等を冷却剤として適宜吹き込むことができる。
但し、このような燃焼温度調整用の流体は、先に述べた
ような微粉炭と酸素との接触を妨げないようにするた
め、微粉炭吹出部の周りに配される酸素吹出部のさらに
外側位置で供給することが好ましい。
【0026】本発明において燃焼バーナから吹き込まれ
る酸素ガスの純度は可能な限り高い方が好ましいが、一
般に工業用として使用されている酸素ガスの純度は99
%以上(通常、一般に販売されている工業用酸素ガスの
純度は約99.8%〜99.9%程度、製鉄所の酸素プ
ラントから得られる酸素ガスの純度は99.5%前後で
ある)であり、この程度の純度があれば十分である。ま
た、本発明により得られる作用効果の面から言うと、純
度が95%未満の酸素ガスでは羽口から吹き込まれる微
粉炭と酸素との接触が十分に確保できないため、微粉炭
の燃焼効率が悪くなり、また、排ガス中の低カロリーガ
ス成分も増加することになり、本発明の目的を達成する
ことが困難となる。したがって、本発明で羽口から吹き
込まれる酸素とは、純度が95%以上の酸素ガスを指す
ものとする。また、炉内に吹き込まれる微粉炭の粒度等
は特に限定しないが、例えば、粒度74μm以下が80
%以上含まれるような微粉炭が好適である。
【0027】図1は本発明のスクラップ溶解法に使用さ
れるシャフト炉の一構成例を示す概念図である。このシ
ャフト炉10の炉頂部に設けられた原料装入装置16
は、開閉装置18により大気と炉内を遮断できる構造と
し、高温の炉頂ガスを完全に回収できるようにしてあ
る。図2はシャフト炉10の羽口部12の一構成例(断
面構造)を示す説明図である。この羽口部12には燃焼
バーナ13が設置されており、この燃焼バーナ13の径
方向中心若しくはその近傍から微粉炭PCが吹込まれる
とともに、その周囲からは冷酸素O2が吹込まれ、両者
は急速混合して微粉炭が羽口先端に形成される燃焼帯1
4で急速燃焼し、スクラップを溶解させる。このときの
燃焼帯14及びレースウェイ15は、図示のように羽口
部12の先端近傍に形成される。また、燃焼バーナ13
からは燃焼温度調整用に水蒸気や窒素等が冷却剤として
羽口先に吹き込まれる。
【0028】図3及び図4は燃焼バーナ径方向における
微粉炭PCと冷酸素O2の吹き込みの態様を示してお
り、このうち図3は微粉炭吹出部aの周りを環状に囲む
ような酸素吹出部bから冷酸素O2を吹き込むようにし
た例であり、また、図4は微粉炭吹出部aの周りに適宜
間隔をおいて配された複数の酸素吹出部bから冷酸素O
2を吹き込むようにした例である。なお、図3及び図4
のcは燃焼温度調整用の冷却剤の吹出部である。
【0029】図5は、微粉炭の吹き込み部の内側からさ
らに酸素を吹き込む方法における羽口部12の一構成例
(断面構造)を示すもので、この羽口部12に設けられ
る燃焼バーナ13では、その径方向中心若しくはその近
傍から冷酸素O2が吹き込まれるとともに、その周囲か
ら微粉炭PCが吹込まれ、さらにその周囲から冷酸素O
2が吹込まれる。つまり、微粉炭PCはその内側と外側
を冷酸素O2でサンドイッチされるようにして吹き込ま
れ、微粉炭PCと冷酸素O2は急速混合して微粉炭が羽
口先端に形成される燃焼帯14で急速燃焼し、スクラッ
プを溶解させる。この方式では微粉炭PCと冷酸素O2
の接触がより良好となるため、微粉炭の燃焼効率がより
高められる利点がある。
【0030】図6ないし図8は、図5に示す燃焼バーナ
の径方向における微粉炭PCと冷酸素O2の吹き込みの
態様を示しており、このうち図6はバーナ径方向中心若
しくはその近傍の酸素吹出部b´の周りを環状に囲むよ
うな微粉炭吹出部aから微粉炭PCを吹き込み、さらに
その周囲を環状に囲むような酸素炭吹出部bから冷酸素
2を吹き込むようにした例である。また、図7はバー
ナの径方向中心若しくはその近傍の酸素吹出部b´の周
りを環状に囲むような微粉炭吹出部aから微粉炭PCを
吹き込み、さらにこの微粉炭吹出部aの周りに適宜間隔
をおいて配された複数の酸素吹出部bから冷酸素O2
吹き込むようにした例である。また、図8はバーナ径方
向中心若しくはその近傍の酸素吹出部b´の周りに適宜
間隔をおいて配された複数の微粉炭吹出部aから微粉炭
PCを吹き込み、さらにこの微粉炭吹出部aの周りに適
宜間隔をおいて配された複数の酸素吹出部bから冷酸素
2を吹き込むようにした例である。
【0031】
【実施例】
〔実施例1〕図1の炉体に図2に示す構造の羽口部を有
するスクラップ溶解用試験炉(炉内容積:2.5m3
生産量:10t/日)及び図1の炉体に図5に示す構造
の羽口部を有するスクラップ溶解用試験炉(炉内容積:
2.5m3,生産量:10t/日)とを用い、本発明法
により[PC/O2]を変化させてスクラップを溶解
し、溶銑を製造した。本実施例では燃焼バーナ13から
微粉炭とともに常温の酸素(冷酸素)を吹き込むととも
に、羽口先の燃焼温度を2000℃に調整するために窒
素及び水蒸気を冷却剤として吹き込んだ。
【0032】また、比較法として図1の炉体に図9に示
す羽口部を備えた試験炉を用い、[PC/O2]を変化
させてスクラップを溶解し、溶銑を製造した。図9は公
知のキュポラ法に基づき酸素富化した熱風にランス20
を通じて微粉炭を吹き込む方式であり、温度800℃の
熱風を用い、酸素富化量及び微粉炭量を調整して[PC
/O2]を変化させた。なお、本実施例においては、粒
度が74μm以下75%、表1に示す工業分析値を有す
る微粉炭を吹き込み用として用い、また、コークスとし
ては高炉用コークスを用いた。
【0033】本発明法及び比較法における微粉炭の吹き
込み限界を見るために、炉頂ガス中のダストを逐次採取
し、ダスト中のC濃度(%)を測定した。その結果を図
10に示す。図10は投入微粉炭量PC(kg/h)と
酸素流量O2(Nm3/h)の比[PC/O2]と炉頂乾
ダスト中のC濃度との関係を示したもので、比較法では
[PC/O2]の値が0.7kg/Nm3以上になると炉
頂ダスト中にC濃度が急増している。これは、[PC/
2]がこの領域になると微粉炭が羽口先で十分に燃焼
し切れず、炉頂から未燃焼のまま排出されていることを
示しており、吹き込まれた微粉炭が燃料として十分に利
用されていないことになる。
【0034】一方、図2の方式による本発明法におい
ては[PC/O2]が1.4kg/Nm3の近傍まで炉頂
乾ガス中のC濃度は低く、微粉炭を大量に吹き込んでも
高効率に燃焼して炉内で燃焼ガス化されていることが判
る。また、図5の方式による本発明法においては、微
粉炭がより高効率に燃焼していることが判る。なお、
[PC/O2]は化学量論的に1.4kg/Nm3がほぼ
上限であり、本発明法において[PC/O2]:1.4
kg/Nm3近傍で炉頂乾ガス中のC濃度が急増してい
るのは本発明法の限界を示すものではない。本実施例か
ら明らかなように、本発明法によれば羽口部から吹き込
まれた微粉炭と酸素とが羽口先で急速に混合して微粉炭
が急速燃焼するため、[PC/O2]を十分に高めても
微粉炭を効率的に燃焼させ、燃焼ガス化させることがで
きる。また、本発明法ではスクラップの溶解及び溶銑の
生産に関しても、全く支障がないことが確認できた。
【0035】
【表1】
【0036】〔実施例2〕 実施例1と同じ図2に示す羽口部を備えた試験炉と図9
に示す羽口部を備えた試験炉をそれぞれ用いてスクラッ
プを溶解し、溶銑を製造した。微粉炭及びコークスは実
施例1と同様のものを用いた。また、この実施例では、
一部の比較例においてシャフト部に二次燃焼用の空気を
導入し、燃焼ガスを二次燃焼させた。各実施例の製造条
件及びその結果を表2及び表3に示す。表2及び表3に
おいてケース3,4が本発明例、それ以外が比較例であ
り、また、ケース1以外の操業例は全て羽口部からの微
粉炭吹き込みを行なっている。また、ケース1〜4,8
〜11は図2に示す羽口部を備えた試験炉を用いた例、
ケース5〜7は図9に示す羽口部(ランス方式による微
粉炭の吹込み)を備えた試験炉を用いた例であり、いず
れの場合も羽口先温度は2200℃で一定に保った。
【0037】本実施例ではどのケースでも操業自体は全
く支障がなった。ケース1は微粉炭を吹き込まず(羽口
からは酸素のみを吹き込み)、熱源をすべてコークスと
した操業例(微粉炭比:0)であり、一方、ケース2,
3,4は燃焼バーナから酸素とともに微粉炭の吹き込み
を行ない、ケース2,3,4の順に微粉炭比を増加させ
た操業例である。微粉炭吹き込みを行わないケース1で
は、レースウェイ内の酸化帯が拡大した影響によりスラ
グ中のFeOが高くなり、溶銑の品質低下及び鉄歩留り
の低下を生じている。また、このケース1は熱源をすべ
てコークスとしているため当然に製造コストが高い。
【0038】ケース2は、微粉炭吹き込みを行ってはい
るが[PC/O]が低いため、ケース1ほどではない
がスラグ中のFeOが高くなっている。また、この操業
例では微粉炭比/コークス比が0.35程度であり、コ
ークス比が相対的に高いため製造コストの面で問題があ
る。これに対して本発明の実施例であるケース3,ケー
ス4においては、スラグ中のFeOが低く、溶銑の品質
及び鉄歩留りは良好である。また、これらケース3,ケ
ース4ではコークス比を超える大量の微粉炭を吹き込ん
でいるにも拘らず、微粉炭の燃焼が効率的に行なわれて
いるため、2700kcal/Nm以上の高カロリー
排ガスが大量に得られている。
【0039】ケース5は従来型の吹き込み羽口を(図9
参照)用いて微粉炭と酸素とを吹き込んだ操業例であ
り、微粉炭の燃焼効率が低いため[PC/O2]が上げ
られず、このため微粉炭に較べて大量のコークスを必要
とし、製造コストが高い。また、羽口先における微粉炭
と酸素との接触が十分に確保されていないため、スラグ
中のFeOが高く、溶銑の品質低下及び鉄歩留りの低下
を生じている。
【0040】ケース6は従来型の吹き込み羽口(図9参
照)を用いて酸素富化された空気を微粉炭とともに吹き
込んだ操業例であり、この操業例では、従来型の吹き込
み羽口を用いていることに加えて、吹き込みガスとして
酸素富化された空気を用いているために酸素と微粉炭と
の接触が十分に確保できず、このため微粉炭の燃焼効率
がケース5よりもさらに低く、したがってコークス比を
高くせざるを得ないため製造コストが高い。また、酸素
富化された空気(66%O2)を使用しているため、排
ガスのカロリーも低く(2500kcal/Nm3
満)、さらに、上記のように酸素と微粉炭との接触が十
分に確保されないため、スラグ中のFeOが高く、溶銑
の品質低下及び鉄歩留りの低下を生じている。
【0041】ケース7は従来型の吹き込み羽口(図9参
照)を用い、酸素富化された空気を微粉炭とともに吹き
込むとともに、シャフト部に二次燃焼用の空気を導入し
た操業例であり、この操業例ではケース6に較べて燃料
比は低くできるものの、ケース6と同様の理由により微
粉炭の燃焼効率が低く、コークス比が高いため製造コス
トが高い。また、酸素富化された空気(66%O2)を
使用し且つ微粉炭の燃焼により生じた燃焼ガスを二次燃
焼させているため、排ガスのカロリーが極めて低い(1
800kcal/Nm3未満)。また、ケース6と同様
に酸素と微粉炭との接触が十分に確保されないため、ス
ラグ中のFeOが高く、溶銑の品質低下及び鉄歩留りの
低下を生じている。
【0042】ケース8は本発明法に相当する羽口吹き込
み方式を採用し、微粉炭の周囲から酸素富化された空気
を吹き込んだ操業例であり、この操業例では吹き込みガ
スとして酸素富化された空気を用いているために酸素と
微粉炭との接触が十分に確保できず、このため微粉炭の
燃焼効率が低く、したがってコークス比を高くせざるを
得ないため製造コストが高い。また、酸素富化された空
気(69%O2)を使用しているため、排ガスのカロリ
ーも低い(2400kcal/Nm3未満)。さらに、
酸素富化された空気を用いているために酸素と微粉炭の
接触が十分に確保されないため、スラグ中のFeOがケ
ース3,4に較べて高く、溶銑の品質低下及び歩留低下
を生じている。
【0043】ケース9は本発明法に相当する羽口吹き込
み方式を採用し、微粉炭の周囲から酸素富化された空気
を吹き込むとともに、シャフト部に二次燃焼用の空気を
導入した操業例であり、この操業例ではケース8に較べ
て燃料比は低くできるものの、ケース8と同様の理由に
より微粉炭の燃焼効率が低く、コークス比が高いため製
造コストが高い。また、酸素富化された空気(62%O
2)を使用し且つ微粉炭の燃焼により生じた燃焼ガスを
二次燃焼させているため、排ガスのカロリーが極めて低
い(1800kcal/Nm3未満)。また、ケース8
と同様に酸素と微粉炭との接触が十分に確保されないた
め、スラグ中のFeOがケース3,4に較べて高く、溶
銑の品質低下及び鉄歩留りの低下を生じている。
【0044】ケース10とケース11は低燃料比による
操業例であり、このうちケース10は本発明法に相当す
る羽口吹き込み方式を採用し、微粉炭の周囲から酸素富
化された空気を吹き込んだ操業例である。この操業例で
は吹き込みガスとして酸素富化された空気を用いている
ために酸素と微粉炭との接触が十分に確保できず、この
ため微粉炭の燃焼効率が低く、したがってコークス比を
高くせざるを得ないため製造コストが高い。また、酸素
富化された空気(63%O2)を使用しているため、排
ガスのカロリーも低く(2300kcal/Nm3
満)、さらに、低燃焼比での操業であるため排ガス量も
少ない。また、酸素富化された空気を用いているために
酸素と微粉炭との接触が十分に確保されないため、スラ
グ中のFeOがケース3,4に較べて高く、溶銑の品質
低下及び歩留低下を生じている。
【0045】ケース11は本発明法に相当する羽口吹き
込み方式を採用し、微粉炭の周囲から酸素富化された空
気を吹き込むとともに、シャフト部に二次燃焼用の空気
を導入した操業例であり、この操業例ではケース10に
較べて燃料比は低くできるものの、ケース10と同様の
理由により微粉炭の燃焼効率が低く、コークス比が高い
ため製造コストが高い。また、酸素富化された空気(6
3%O2)を使用し且つ微粉炭の燃焼により生じた燃焼
ガスを二次燃焼させているため、排ガスのカロリーが極
めて低く(1800kcal/Nm3未満)、さらに、
低燃焼比での操業であるため排ガス量も少ない。また、
ケース10と同様に酸素と微粉炭との接触が十分に確保
されないため、スラグ中のFeOがケース3,4に較べ
て高く、溶銑の品質低下及び鉄歩留りの低下を生じてい
る。
【0046】以上の実施例から明らかなように、高燃料
比及び高微粉炭比による操業の下で、スクラップを効率
的に溶解し且つ高カロリー排ガスを大量に得ることによ
り低コスト操業を実現するためには、羽口部の燃焼バ
ーナから微粉炭とともに酸素を吹き込む、微粉炭と酸
素とを両者が羽口先で速かに接触して混合するような特
定の方法により吹き込むことにより、微粉炭の急速燃焼
を実現させる、微粉炭の燃焼による燃焼ガスを有意に
二次燃焼させない、という本発明法の条件を全て満足さ
せる必要があることが判る。
【0047】
【表2】
【0048】
【表3】
【0049】
【発明の効果】以上述べたように本発明によれば、スク
ラップを溶解して溶銑を効率的に製造できるだけでな
く、燃料用ガスとして利用価値の高い高カロリーの排ガ
スを大量に得ることができ、しかも、主要熱源として一
般炭を粉砕した安価な微粉炭を使用できること、[PC
/O2]を高めることができるため少ない酸素量で大量
の微粉炭を燃焼ガス化できること、簡易な設備で実施で
きること等から、スクラップと微粉炭とを主原料とした
溶銑及び高カロリー燃料用ガスの製造を低コストで実施
することができる。特に、微粉炭比を高めることができ
且つ利用価値の高い高カロリー排ガスを大量に製造でき
ることを考慮した場合に、従来技術に較べて相当程度に
低い製造・操業コストで実施することができるという優
れた効果がある。
【図面の簡単な説明】
【図1】本発明のスクラップ溶解法の使用されるシャフ
ト炉の一構成例を示す概念図
【図2】図1のシャフト炉の羽口部の一構成例(断面構
造)を示す説明図
【図3】図2に示す燃焼バーナにおいて、バーナ径方向
における微粉炭PCと冷酸素O2の吹き込みの態様の一
例を示す説明図
【図4】図2に示す燃焼バーナにおいて、バーナ径方向
における微粉炭PCと冷酸素O2の吹き込みの態様の他
の例を示す説明図
【図5】図1のシャフト炉の羽口部の他の構成例(断面
構造)を示す説明図
【図6】図5に示す燃焼バーナにおいて、バーナ径方向
における微粉炭PCと冷酸素O2の吹き込みの態様の一
例を示す説明図
【図7】図5に示す燃焼バーナにおいて、バーナ径方向
における微粉炭PCと冷酸素O 2の吹き込みの態様の他
の例を示す説明図
【図8】図5に示す燃焼バーナにおいて、バーナ径方向
における微粉炭PCと冷酸素O2の吹き込みの態様の他
の例を示す説明図
【図9】従来方式の羽口部の断面構造を示す説明図
【図10】実施例1において図2及び図5による吹込み
方式の本発明法と図9による吹込み方式の比較法につい
て、投入した微粉炭量PC(kg/h)と酸素流量O2
(Nm3/h)の比[PC/O2]と炉頂乾ガス中のC濃
度との関係を示したグラフ
【符号の説明】
10…シャフト炉、12…羽口部、13…燃焼バーナ、
14…燃焼帯、15…レースウェイ、16…原料装入装
置、18…開閉装置、20…ランス、a…微粉炭吹出
部、b,b´…酸素吹出部、c…冷却剤吹出部
───────────────────────────────────────────────────── フロントページの続き (72)発明者 松浦 正博 東京都千代田区丸の内一丁目1番2号 日本鋼管株式会社内 (72)発明者 野田 英俊 東京都千代田区丸の内一丁目1番2号 日本鋼管株式会社内 (72)発明者 炭竃 隆志 東京都千代田区丸の内一丁目1番2号 日本鋼管株式会社内 (72)発明者 坂本 登 東京都千代田区丸の内一丁目1番2号 日本鋼管株式会社内 (56)参考文献 特開 昭63−195207(JP,A) 特表 昭62−502202(JP,A)

Claims (4)

    (57)【特許請求の範囲】
  1. 【請求項1】 シャフト炉内に鉄源であるスクラップと
    コークスを装入するとともに、羽口部に設けられた燃焼
    バーナから微粉炭量PC(kg/h)と酸素流量O
    (Nm /h)との比[PC/O ]が0.7kg/
    Nm 以上となるような条件で微粉炭と酸素とを炉内に
    吹き込み、燃料比を300kg/t以上、微粉炭比(k
    g/t)とコークス比(kg/t)の重量比[微粉炭比
    /コークス比]を1.0以上とする操業条件で実施され
    るスクラップ溶解法であって、 前記 微粉炭と酸素の吹き込みに当たっては、燃焼バーナ
    の径方向中心若しくはその近傍から微粉炭を吹き込むと
    ともに、その周囲から酸素を吹き込んで両者を混合させ
    ることにより微粉炭を羽口先に形成される燃焼帯で急速
    燃焼させ、この燃焼ガスの顕熱でスクラップを溶解して
    溶銑を製造するとともに、生成した燃焼ガスを炉内で有
    意に二次燃焼させることなく燃料用ガスとして回収する
    ことを特徴とするスクラップ溶解法。
  2. 【請求項2】 燃焼バーナにおける微粉炭の吹き込み部
    の内側からさらに酸素を吹き込むことを特徴とする請求
    項1に記載のスクラップ溶解法。
  3. 【請求項3】 シャフト炉に装入されるコークスとして
    高炉用コークスを用いることを特徴とする請求項1また
    は2に記載のスクラップ溶解法。
  4. 【請求項4】 燃焼バーナから吹き込まれる酸素の純度
    が95%以上であることを特徴とする請求項1、2また
    は3に記載のスクラップ溶解法。
JP11517795A 1994-11-02 1995-04-17 スクラップ溶解法 Expired - Fee Related JP3523716B2 (ja)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP11517795A JP3523716B2 (ja) 1994-11-02 1995-04-17 スクラップ溶解法
US08/550,364 US5698010A (en) 1994-11-02 1995-10-30 Scrap melting method
AU34581/95A AU691663B2 (en) 1994-11-02 1995-10-31 Scrap melting method
KR1019950038675A KR100187693B1 (ko) 1994-11-02 1995-10-31 고철 용해 방법
EP19950117259 EP0710726B1 (en) 1994-11-02 1995-11-02 Scrap melting method
DE1995618297 DE69518297T2 (de) 1994-11-02 1995-11-02 Verfahren zum Einschmelzen von Schrott
TW84111776A TW404983B (en) 1994-11-02 1995-11-07 Scrap melting method

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP26946394 1994-11-02
JP6-269463 1994-11-02
JP11517795A JP3523716B2 (ja) 1994-11-02 1995-04-17 スクラップ溶解法

Publications (2)

Publication Number Publication Date
JPH08188811A JPH08188811A (ja) 1996-07-23
JP3523716B2 true JP3523716B2 (ja) 2004-04-26

Family

ID=26453743

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11517795A Expired - Fee Related JP3523716B2 (ja) 1994-11-02 1995-04-17 スクラップ溶解法

Country Status (7)

Country Link
US (1) US5698010A (ja)
EP (1) EP0710726B1 (ja)
JP (1) JP3523716B2 (ja)
KR (1) KR100187693B1 (ja)
AU (1) AU691663B2 (ja)
DE (1) DE69518297T2 (ja)
TW (1) TW404983B (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010172279A (ja) * 2009-01-30 2010-08-12 Eguchi Menki Seisakusho:Kk 麺帯の巻上げ方法及びその装置

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
PL366011A1 (en) 2000-09-29 2005-01-24 Bristol-Myers Squibb Company Dynamic resolution of isomers and resolved isomers
US20070205543A1 (en) * 2006-03-06 2007-09-06 Lanyi Michael D Oxidant-swirled fossil fuel injector for a shaft furnace
KR100948927B1 (ko) * 2007-08-29 2010-03-23 주식회사 포스코 용철 제조용 풍구 및 이를 이용한 가스 취입 방법
US20090280442A1 (en) * 2008-05-05 2009-11-12 American Air Liquide Inc. Device And Method Of Combusting Solid Fuel With Oxygen
AT510313B1 (de) 2010-08-25 2013-06-15 Siemens Vai Metals Tech Gmbh Verfahren zur erhöhung der eindringtiefe eines sauerstoffstrahles
CN103528057B (zh) * 2013-11-06 2015-10-21 王立臣 煤粉多氧燃烧器
CN110205419A (zh) * 2019-06-28 2019-09-06 华北理工大学 一种高炉添加废钢冶炼节约成本的计算方法及***
CN113088609B (zh) * 2021-04-13 2022-06-17 黎城太行钢铁有限公司 煤气双基还原炉及用煤气双基还原炉制造还原铁的方法

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2419165A1 (de) * 1973-04-25 1974-11-21 Centre Rech Metallurgique Verfahren und vorrichtung zum schmelzen von eisenschrott
BE798711A (fr) * 1973-04-25 1973-08-16 Centre Rech Metallurgique Procede et appareillage pour fondre des mitrailles ferreuses
JPS61195909A (ja) * 1985-02-26 1986-08-30 Kawasaki Steel Corp 転炉内での屑鉄溶解方法
GB8506655D0 (en) * 1985-03-14 1985-04-17 British Steel Corp Smelting shaft furnaces
JPS6227509A (ja) * 1985-07-26 1987-02-05 Nippon Kokan Kk <Nkk> 高炉操業方法
JPS63171818A (ja) * 1987-01-09 1988-07-15 Nkk Corp 酸素高炉の羽口
JPH01195225A (ja) * 1988-01-29 1989-08-07 Kobe Steel Ltd 製鉄原料の溶解方法
AT400181B (de) * 1990-10-15 1995-10-25 Voest Alpine Ind Anlagen Brenner für die verbrennung von feinkörnigen bis staubförmigen, festen brennstoffen
DE69327356T2 (de) * 1992-03-27 2000-08-24 Nippon Oxygen Co Ltd Schmelzverfahren für Metalle
DE4236510C2 (de) * 1992-10-26 1996-05-30 Mannesmann Ag Vorrichtung zum Einschmelzen von Schrott

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010172279A (ja) * 2009-01-30 2010-08-12 Eguchi Menki Seisakusho:Kk 麺帯の巻上げ方法及びその装置

Also Published As

Publication number Publication date
JPH08188811A (ja) 1996-07-23
EP0710726B1 (en) 2000-08-09
EP0710726A1 (en) 1996-05-08
AU3458195A (en) 1996-05-09
DE69518297T2 (de) 2001-01-18
AU691663B2 (en) 1998-05-21
DE69518297D1 (de) 2000-09-14
TW404983B (en) 2000-09-11
KR100187693B1 (ko) 1999-06-01
US5698010A (en) 1997-12-16
KR960017879A (ko) 1996-06-17

Similar Documents

Publication Publication Date Title
US4153426A (en) Synthetic gas production
JPH0778252B2 (ja) 溶融シャフト炉による製鉄におけるまたは関する改良
US5149363A (en) Process for smelting or melting ferrous or non-ferrous metal from self-reducing agglomerates or metal
JP3523716B2 (ja) スクラップ溶解法
JP6354962B2 (ja) 酸素高炉の操業方法
US5632953A (en) Process and device for melting iron metallurgical materials in a coke-fired cupola
SU1641194A3 (ru) Способ производства чугуна или стальных полупродуктов из железосодержащих кусковых материалов
JP3523720B2 (ja) スクラップ溶解法
JP3601799B2 (ja) 製鉄用溶解炉に用いられる燃焼バーナ
JPH0368082B2 (ja)
JP3395943B2 (ja) 冶金炉に用いられる燃焼バーナ
KR100259970B1 (ko) 스크랩 용해법
JP3293430B2 (ja) スクラップ溶解法
JPH11189816A (ja) 竪型鉄スクラップ溶解炉の操業方法
RU2034030C1 (ru) Способ работы доменной печи и доменная печь
JPH0995724A (ja) スクラップ溶解法
JP2015193927A (ja) 酸素高炉の操業方法
JP3293431B2 (ja) スクラップ溶解法
JPH0723502B2 (ja) 溶銑製造方法
JP2666385B2 (ja) 溶銑の製造方法
JPS63195244A (ja) フエロマンガンの製造方法
JPS62124210A (ja) 銑鉄の製造方法
JPH0894035A (ja) 廃棄物溶融炉及びその操業方法
JPH06172829A (ja) 微粉炭吹き込みにおける高炉の操業方法
JPS62267407A (ja) 電気炉,転炉の固体燃料吹込み方法及び吹込み装置

Legal Events

Date Code Title Description
A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040209

LAPS Cancellation because of no payment of annual fees