JP3522398B2 - Cation exchange membrane - Google Patents

Cation exchange membrane

Info

Publication number
JP3522398B2
JP3522398B2 JP20203795A JP20203795A JP3522398B2 JP 3522398 B2 JP3522398 B2 JP 3522398B2 JP 20203795 A JP20203795 A JP 20203795A JP 20203795 A JP20203795 A JP 20203795A JP 3522398 B2 JP3522398 B2 JP 3522398B2
Authority
JP
Japan
Prior art keywords
membrane
anion
exchange
weight
polymer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP20203795A
Other languages
Japanese (ja)
Other versions
JPH0948861A (en
Inventor
武人 川嶋
正人 浜田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Kasei Chemicals Corp
Original Assignee
Asahi Kasei Chemicals Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Kasei Chemicals Corp filed Critical Asahi Kasei Chemicals Corp
Priority to JP20203795A priority Critical patent/JP3522398B2/en
Publication of JPH0948861A publication Critical patent/JPH0948861A/en
Application granted granted Critical
Publication of JP3522398B2 publication Critical patent/JP3522398B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】 【0001】 【発明の属する技術分野】本発明は主として、イオン交
換膜を用いて海水を電気透析により濃縮する際に、多価
陽イオン(Mg2+、Ca2+)よりも一価陽イオン(Na
+ 、K+ )を選択的に透過させる性質を有し、この性質
が長時間持続し、かつ電気透析時の膜電圧の極めて低い
新規な陽イオン交換膜に関するものである。 【0002】 【従来の技術】従来、陽イオン交換膜に、一価イオンを
多価イオンよりも選択的に透過させる性質、すなわち一
価イオン選択透過性を与えるには、陽イオン交換膜の表
面に陰イオン交換性の物質を存在させることが知られて
いる。又、この一価イオン選択透過性を持続させる方法
も知られている。例えば、特公昭53−44155号公
報では、陰イオン交換基を有し、水に不溶な架橋高分子
の微粒子の懸濁液で、陽イオン交換膜を処理して、陽イ
オン交換膜の表面に、これを付着させることで、持続性
の高い一価陽イオン選択透過性を付与する方法が示され
ている。しかしながら、この方法では、架橋高分子の水
または無機塩水溶液で陽イオン交換膜を処理する際に、
高温にして膜の基材を伸ばした状態で架橋高分子の微粒
子の一部を基材中に取り込ませ、架橋高分子の微粒子を
膜に保持させるので、実質的に高温に耐えられる膜でな
ければ浸透濃度の低下などを引き起こし、適用できない
という不都合があった。又、例えば特公平5−8557
4号公報では、第四級アンモニウム塩基類と3個以上の
ビニルベンジル基を有するビニル化合物の重合体を、表
面に存在させた陽イオン交換膜が示されている。この公
知陽イオン交換膜は、一価イオン選択透過性が付与され
るにあたって、交流1000サイクルで測定される膜の
電気抵抗の上昇もあまり無く、良好な一価イオン選択透
過性が長時間持続する。しかしながら、海水を電気透析
により濃縮する際の膜電圧が高い場合があり、一価イオ
ン選択透過性が長時間持続し、かつ、電気透析時の膜電
圧がより低い一層良好な陽イオン交換膜が求められてい
る。 【0003】 【発明が解決しようとする課題】本発明の課題は、良好
な一価イオン選択透過性が長時間持続し、かつ、電気透
析時の膜電圧が極めて低い、新規な陽イオン交換膜を提
供することを目的とするものである。 【0004】 【課題を解決するための手段】本発明者らは、海水を電
気透析により濃縮する際の膜電圧が低い、一価イオン選
択透過性陽イオン交換膜を開発するために、鋭意研究を
重ねた結果、膜表面及び膜母体内部に存在させる陰イオ
ン交換基を有する高分子物質の溶解度が、良好な一価イ
オン選択透過性を長時間持続させる為に重要な要素であ
ること、更に、膜表面及び膜母体内部での陰イオン交換
基を有する高分子物質の存在状態が、電気透析時の膜電
圧に大きく影響を及ぼすことを見いだし、これらの知見
に基づいて本発明をなすに至った。すなわち、陰イオン
交換基を有し25℃の海水に対する溶解度が0.2以下
である高分子物質を、該高分子物質が膜母体内部に10
0〜500nmの厚みで浸入させ、膜母体外部に10〜
50nmの厚みで陰イオン交換層を形成するように、存
在させた陽イオン交換膜である。 【0005】本発明で用いる高分子物質が有する陰イオ
ン交換基としては、4級アンモニウム基、第四級ピリジ
ニウム基、スルホニウム塩基、ホスホニウム塩基、第1
級、第2級もしくは第3級アミノ基、ピリジン基、イミ
ノ基等の1種又は2種以上であってもよい。一方、この
陰イオン交換性高分子物質の分子量は、膜母体内部に1
00〜500nmの厚みで浸入させ、膜母体外部に10
〜50nmの厚みで陰イオン交換層を形成させるために
は1,000〜100,000が好ましい。特に好まし
くは2,000〜10,000である。 【0006】本発明で用いる陽イオン交換膜は公知のも
のであれば特に限定されないが、例えば、芯材としてポ
リ塩化ビニル布を用いた電気透析時の膜電圧が低く、浸
透濃度が高い。特に、比較的高温に対する安定性が悪い
陽イオン交換膜を用いた場合の従来技術との比較では、
格段の効果が発揮される。本発明では、25℃の海水に
対する溶解度が0.2以下である陰イオン交換性高分子
物質の溶液に、陽イオン交換膜を浸漬することで、陰イ
オン交換性高分子物質が膜母体内部に100〜500n
mの厚みで浸入し、膜母体外部に10〜50nmの厚み
で陰イオン交換層を形成するように存在させる方法でも
できるし、溶解度が低下しうる陰イオン交換性高分子物
質の溶液に、陽イオン交換膜を浸漬し、同様な陰イオン
交換性高分子物質層を膜表面に形成させた後、この陰イ
オン交換性高分子物質の溶解度を低下させる処理を行っ
て、25℃の海水に対する溶解度が0.2以下とするこ
ともできる。陰イオン交換性高分子物質を陽イオン交換
膜に吸着させる際に、陰イオン交換性高分子物質層を膜
母体内部に100〜500nmの厚みで、膜母体外部に
10〜50nmの厚みで均一に形成させるためには、い
ずれにしても陰イオン交換性高分子物質を完全に溶解し
た溶液であることが肝心である。従って、あらかじめ2
5℃の海水に対する溶解度が0.2以下とした陰イオン
交換性高分子物質を用いる場合、陰イオン交換性高分子
物質を完全に溶解し、かつ陽イオン交換膜へ浸透濃度の
低下等の悪影響の無い溶媒を選択するために、25℃の
海水に対する溶解度は0.1以上であることが好まし
い。一方、膜上に存在している陰イオン交換性高分子物
質の海水に対する溶解度は低いほど、一価イオン選択透
過性の持続性が高くなるので、25℃の海水に対する溶
解度が0.2以下である陰イオン交換性高分子物質を用
いた場合であっても、必要に応じ溶解度を低下させる処
理を加えるのが好ましい。 【0007】本発明で用いる陰イオン交換性高分子物質
の製法は特に限定されないが、あらかじめ25℃の海水
に対する溶解度を調節する場合、一般的に、例えば以下
の方法で製造される。 1.塩基性窒素含有のビニル化合物モノマーの重合体の
四級化物の分子量、四級化剤種、四級化率を調節するこ
とで、好ましい溶解度の陰イオン交換性高分子物質を得
る。 【0008】塩基性窒素含有ビニル化合物としては、例
えば2−ビニルピリジン、4−ビニルピリジン等のビニ
ルピリジン誘導体、2−ビニルピペリジン等のビニルピ
ペリジン誘導体2−ビニルキノリン等のビニルキノリン
誘導体、2−ビニルベンズイミダゾール等のビニルイミ
ダゾール誘導体、ビニルカルバゾール誘導体、ビニルア
ニリン、ジメチルアミノエチルメタクリレート等があ
る。 【0009】これらの塩基性窒素含有ビニル化合物モノ
マーを用いて、どの様な分子量、四級化剤種、四級化率
の陰イオン交換性高分子物質にすれば、好ましい溶解度
にすることが出来るほかはモノマー種により異なるので
一概には言えないが、例えば、4−ビニルピリジンをア
ニオン重合により分子量3,000に重合し、ピリジン
基の3割をラウリルブロミドで、残り7割を塩化メチル
により四級ピリジニウム塩化することにより、25℃の
海水に対する溶解度が0.15の陰イオン交換性高分子
物質が製造される。 2.容易に陰イオン交換基を導入し得る基を有するビニ
ル化合物モノマー重合体に、陰イオン交換基を導入した
物の分子量、交換基種、交換基導入率を調節すること
で、好ましい溶解度の陰イオン交換性高分子物質を得
る。 【0010】容易に陰イオン交換基を導入し得る基を有
するビニルモノマーとしては、例えばスチレン、ビニル
トルエン、クロルメチルスチレン、グリシジルメタクリ
レート、ビニルナフタレン等がある。これらの容易に陰
イオン交換基を導入し得る基を有するビニル化合物モノ
マーを用いて、どの様な分子量、交換基種、交換基導入
率の陰イオン交換性高分子物質にすれば、好ましい溶解
度にすることが出来るかはモノマー種、イオン交換基種
により異なるので一概には言えないが、例えば、スチレ
ンをアニオン重合により分子量5,000に重合し、ベ
ンゼン環の5割をクロロメチルエーテルにてクロルメチ
ル化後、トリメチルアミンにてアミノ化することによ
り、25℃の海水に対する溶解度が0.1の陰イオン交
換性高分子物質が製造される。 【0011】一方、陰イオン交換性高分子物質を陽イオ
ン交換膜表面に存在させた後、溶解度を低下させる方法
としては、例えば、陰イオン交換性高分子物質に、あら
かじめ容易に架橋処理し得る反応性官能基を導入してお
き、吸着処理後を行い、その後に架橋処理を行うことに
より、溶解度を低下させることができる。容易に架橋処
理し得る反応性官能基としては、例えば第一級アミン、
第二級アミン、第三級アミン等のアミノ基を始め、水酸
基、チオール基、カルボニル基、カルボキシル基、二重
結合および三重結合がある。例えば、分子量80,00
0のポリエチレンイミンに臭化アリルを付加した陰イオ
ン交換性高分子物質を、陽イオン交換膜の表面に存在さ
せた後、レドックス系の重合開始剤にてアリル基の二重
結合を架橋してやれば、膜表面に存在させた陰イオン交
換性高分子物質の25℃海水に対する溶解度を0.2以
下にすることができる。 【0012】上記の様に製造された25℃の海水に対す
る溶解度が0.2以下、又は、溶解度を低下させうる陰
イオン交換性高分子物質は水、無機塩水溶液、又は、こ
れらとメタノール、アセトン、ジメチルスルホキシド等
の有機溶媒との混合溶媒に溶解させる。この際、陰イオ
ン交換性高分子物質の濃度は、陰イオン交換性高分子物
質層を膜母体内部に100〜500nmの厚みで、膜母
体外部に10〜50nmの厚みで形成させるためには、
数百〜数千ppmの範囲が好ましい。この際、25℃の
海水に対する溶解度が0.2以下である陰イオン交換性
高分子物質を完全に溶解するためには、無機塩水溶液と
有機溶媒との混合溶媒を用いるのが好ましい。ここで、
無機塩濃度及び有機溶媒濃度は、陰イオン交換性高分子
物質を完全に溶解し、かつ陽イオン交換膜の浸透濃度の
低下等の悪影響を及ぼさないようにするために、無機塩
濃度は0.1N〜0.5Nが好ましく、有機溶媒濃度は
1%〜5%が好ましい。一方、25℃の海水に対する溶
解度が0.2以上で、溶解度を低下しうる陰イオン交換
性高分子物質を用いる場合は、陽イオン交換膜の浸透濃
度の低下等の悪影響を及ぼさない範囲で、水、無機塩水
溶液、又は、これらと有機溶媒との混合溶媒のより広い
範囲から溶媒を選択することが出来る。 【0013】このようにして得られた、陰イオン交換性
高分子物質を完全に溶解した溶液中に、陽イオン交換膜
を浸漬することによって、陽イオン交換膜の表面に陰イ
オン交換性高分子物質を吸着させる。この浸漬処理の温
度と時間は、陰イオン交換性高分子物質層を膜母体内部
に100〜500nmの厚みで、膜母体外部に10〜5
0nmの厚みで形成させるためには、温度は30℃〜5
0℃が好ましく、処理時間は1時間〜50時間程度の範
囲から適宜選ぶことができる。この際、陽イオン交換膜
表面に吸着させる陰イオン交換性高分子物質の量は、陽
イオン交換膜の種類によって異なるが、良好な一価イオ
ン選択透過性を確保し、かつ電気透析時の膜電圧を低く
保つためには、一般的に1〜3meq/m2 程度が好ま
しい。 【0014】浸漬処理を行って、陰イオン交換性高分子
物質を表面に存在させた陽イオン交換膜は、必要に応じ
て表面の陰イオン交換性高分子物質の海水に対する溶解
度を低下させる処理を行う。溶解度を低下させる方法と
しては既述の通りであるが、この際の溶媒、温度につい
ては吸着処理と同様、陽イオン交換膜の浸透濃度の低下
等の悪影響を及ぼさない条件であれば任意に選ぶことが
できる。 【0015】以上のようにして得られる、陰イオン交換
基を有し25℃の海水に対する溶解度が0.2以下であ
る高分子物質を、表面に存在させた陽イオン交換膜の表
面の陰イオン交換性高分子物層が、膜母体内部に100
〜500nmの厚みで、膜母体外部に10〜50nmの
厚みで形成されていることは、SIMS(2次イオン質
量分析)による表面の元素分析を用いることで確認する
ことができる。従来は、膜表面に存在させた陰イオン交
換性物質層の状態に関して知見を得るためのこのような
手法が確立されていなかったために、この点に関して
は、全く触れられていないか、推測の域を脱し得なかっ
た。しかしながら、最近の表面分析技術の向上により、
本発明のように、陽イオン交換膜表面の陰イオン交換性
物質層の状態を調節すること、すなわち陰イオン交換性
高分子物質層が、膜母体内部に100〜500nmの厚
みで、膜母体外部に10〜50nmの厚みで形成させる
ことで、電気透析時の膜電圧が極めて低く、かつ良好な
一価イオン選択透過性が長時間持続する陽イオン交換膜
を得ることが可能になった。陽イオン交換膜表面の陰イ
オン交換性高分子物質層が、膜母体内部に100〜50
0nmの厚みで、膜母体外部に10〜50nmの厚みで
形成していることは、電気透析時の膜電圧が極めて低
く、かつ良好な一価イオン選択透過性を長時間持続させ
るためには、必要かつ十分なものである。膜母体内部の
陰イオン交換性高分子物質層の厚みがこれ以下であれ
ば、一価イオン選択透過性の耐久性が悪くなり、膜母体
外部の陰イオン交換性高分子物質層の厚みがこれ以下で
あれば、一価イオン選択透過性自体が悪くなる。一方、
膜母体内外の陰イオン交換性高分子物質層の厚みがこれ
以上であると、膜抵抗の上昇を引き起こし、電気透析時
の膜電圧が高くなってしまう。従来技術で電気透析時の
膜電圧が高かった理由の一つに、上記の層が必要以上に
厚かった事が考えられる。 【0016】一方、陽イオン交換膜表面の陰イオン交換
性高分子物質層が、膜母体内部に100〜500nmの
厚みで、膜母体外部に10〜50nmの厚みで形成され
ている場合であっても、陰イオン交換性高分子物質の2
5℃の海水に対する溶解度が0.2よりも高い場合は、
一価イオン選択透過性の持続性が悪く、実用上問題にな
る。以上のように、陽イオン交換膜表面に存在する陰イ
オン交換性高分子物質の、25℃の海水に対する溶解度
が0.2以上であることと、この陰イオン交換性高分子
物質層が、膜母体内部に100〜500nmの厚みで、
膜母体外部に10〜50nmの厚みで形成されているこ
とを組み合わせることにより、従来技術と同等以上に良
好な一価イオン選択透過性が長時間持続し、しかも従来
技術では得られない電気透析時の膜電圧が極めて低い陽
イオン交換膜を、得ることができるようになった。 【0017】 【発明の実施の形態】次に実施例および比較例によって
本発明をさらに詳細に説明する。なお実施例中で使用す
る略号(F2 、V/P)は次の意味を有する。 (1)F2 :海水濃縮における陽イオン交換膜の一価陽
イオンに対する二価陽イオンの比選択透過性を示し、こ
の値が低いほど一価陽イオン選択透過性が高いことを示
し、(1)式で与えられる。 【0018】 【数1】 【0019】測定方法:陽イオン交換膜を旭化成工業
(株)製陰イオン交換膜A−172と共に旭化成工業
(株)製電気透析装置(商品名:アシライザー)SV−
7(有効通電面積0.5dm2 )に組み込んで、稀釈液
に海水を用い、海水流速4cm/sec、温度25℃、
電流密度3A/dm2 で電気透析を行い、各濃度を測定
し、上式を用いて算出する。 (2)V/P:電気透析時の1セル当たりのセル電圧で
陽イオン交換膜以外の部分の条件を一定にしておけば陽
イオン交換膜の電気透析時の膜電圧は、この値の高低に
よって評価できる。 【0020】測定方法:陽イオン交換膜を旭化成工業
(株)製陰イオン交換膜A−172と共に旭化成工業
(株)製電気透析装置SV−7(有効通電面積0.5d
2 )に組み込んで、稀釈液にCl- 濃度を0.4Nと
一定にコントロールした海水を用い、海水流速4cm/
sec、温度25℃、電流密度3A/dm2 で電気透析
を行い、10対のセル電圧を測定し、その値を10で除
して求める。 【0021】一方、一価イオン選択透過性の耐久性は、
3ヶ月間の連続透析を行い、3ヶ月後のF2 と初期のF
2 を比較することによって評価した。 【0022】 【実施例1】 陽イオン交換膜の製造:スチレン89重量部、純度56
%のジビニルベンゼン11重量部、ジメチルフタレート
15重量部、ニトリルブタジエンゴム6重量部、ポリ塩
化ビニルパウダー15重量部、ベンゾイルパーオキサイ
ド2重量部を混合して得られるペースト状混合物をポリ
塩化ビニル製の布にコートし、ポリエチレンテレフタレ
ート製のフィルムに挟んで90℃で12時間重合した。
このフィルム状重合物を99.5%の硫酸で40℃で2
4時間スルホン化し、一価イオン選択透過性が付与され
る前の陽イオン交換膜を得た。 【0023】陰イオン交換性高分子物質の製造:N−ビ
ニルイミダゾール100重量部、ベンゾイルパーオキサ
イド1重量部を窒素置換したアンプル中で60℃、2時
間加熱重合する。得られたポリマー94重量部を395
重量部のアセトン中に分散し1−ブロモノナン207重
量部を加え、40℃、72時間四級化反応を行った。 【0024】得られたポリマーの25℃での海水への溶
解度を測定したところ、0.15であった。(25℃の
100gの海水に対して) 陽イオン交換膜への一価陽イオン選択透過性の付与:こ
のポリマー3重量部を1%メタノール含有の0.1N−
CaCl2 溶液1,000重量部に40℃で溶解して処
理液とした。この処理液に上記した陽イオン交換膜を4
0℃で24時間浸漬し吸着処理を行い、その後、0.5
N食塩水で5回洗浄し、一価陽イオン選択透過性の陽イ
オン交換膜を得た。 【0025】この膜の、膜母体内外の陰イオン交換性高
分子物質層の厚み、V/P、初期及び3ヶ月連続透析後
のF2 、を表1に示す。又、処理を行っていない膜のF
2 、V/Pも表1に示す。実施例1では、25℃の海水
への溶解度が0.15の陰イオン交換性高分子物質が、
膜母体内部に150nm浸入し、膜母体外部に50nm
の陰イオン交換性層を形成して存在しているので、電気
透析時の膜電圧が低く、かつ良好な一価イオン選択透過
性の持続性が高くなっている。 【0026】 【比較例1】実施例1と同様の方法で重合したアルキル
化前のポリ−N−ビニルイミダゾール94重量部を39
5重量部に分散し、沃化メチル142重量部を加え、4
0℃、72時間四級化反応を行った。得られたポリマー
の25℃での海水に対する溶解度は30であった。 【0027】このポリマーを実施例1と同様に1%メタ
ノール含有の0.1N−CaCl2溶液に溶解し、実施
例1で調製したのと同じ未処理の陽イオン交換膜を40
℃で24時間浸漬処理を行った。この膜の、膜母体内外
の陰イオン交換性高分子物質層の厚み、V/P、初期及
び3ヶ月連続透析後のF2 、も表1に示す。 【0028】比較例1では、陰イオン交換性高分子物質
の膜表面における存在状態は、実施例1と同様である
が、陰イオン交換性高分子物質の溶解度が高いため、一
価イオン選択透過性及びその持続性が悪い。 【0029】 【参考例1】ポリアリルアミン塩酸塩(日東紡績製、平
均重量分子量、50,000〜83,000)49重量
部、水酸化ナトリウム20重量部、メタノール400重
量部の混合物を撹拌下50℃、5時間処理し、析出した
塩化ナトリウムを濾別し、ポリアリルアミンのメタノー
ル溶液を得る。この溶液に臭化アリル60重量部を加
え、40℃で120時間反応させ、ポリアリルアミンの
アミノ基にアリル基を付加させる。このメタノール溶液
5.6重量部を1,000重量部の0.5N塩化ナトリ
ウム水溶液に溶解し処理液とした。 【0030】この処理液に、実施例1で調製したのと同
じ、一価イオン選択透過性が付与される前の陽イオン交
換膜を、40℃で24時間浸漬し吸着処理を行った。そ
の後、過硫酸アンモニウムを1,000ppmになるよ
うに加え、40℃で20時間処理を行い、膜表面に吸着
した陰イオン交換性高分子物質の溶解度を低下させた。
この際、処理液中に沈殿した陰イオン交換性高分子物質
の海水に対する溶解度は0.2以下であった。その後、
膜を処理液から取り出し、0.5N食塩水で5回洗浄
し、一価陽イオン選択透過性の陽イオン交換膜を得た。 【0031】この膜の、膜母体内外の陰イオン交換性高
分子物質層の厚み、V/P、初期及び3ヶ月連続透析後
のF2 、を表2に示す。 【0032】 【比較例2】参考例1において、臭化アリルを加える前
のポリアリルアミンのメタノール溶液5.6重量部を、
1,000重量部の0.5N塩化ナトリウム水溶液に溶
解し処理液とし、実施例1で調製したのと同じ、一価イ
オン選択透過性が付与される前の陽イオン交換膜を、4
0℃で24時間浸漬し吸着処理を行った。その後、膜を
処理液から取り出し、0.5N食塩水で5回洗浄し、一
価陽イオン選択透過性の陽イオン交換膜を得た。 【0033】この膜の、膜母体内外の陰イオン交換性高
分子物質層の厚み、V/P、初期及び3ヶ月連続透析後
のF2 、を表2に示す。比較例2では、陰イオン交換性
高分子物質が、膜母体内部に深く浸入しすぎているた
め、電気透析時の膜電圧が高くなっている。 【0034】 【実施例2】ジメチルスルホキシド880重量部に窒素
雰囲気下、4−ビニルピリジン130重量部、30%カ
リウムメトキシドメタノール溶液4重量部を混合し、2
5℃で8時間アニオン重合を行い分子量3,000のポ
リ−4−ビニルピリジンのジメチルスルホキシド溶液を
得た。この溶液にクロルメチルスチレン76重量部、沃
化メチル105重量部を加え40℃で24時間反応を行
いポリ−4−ビニルピリジンのピリジン基を4級ピリジ
ニウム塩基とした。得られたポリマーの25℃での海水
への溶解度を測定したところ、0.2であった。このポ
リ−4−ビニルピリジン四級化物のジメチルスルホキシ
ド溶液14重量部を1,000重量部の0.3N食塩水
に40℃にて溶解して処理液とした。 【0035】この処理液に、実施例1で調製したのと同
じ、一価イオン選択透過性が付与される前の陽イオン交
換膜を、40℃で24時間浸漬し吸着処理を行った。そ
の後、吸着処理液より膜を取り出し、1.0Nの食塩水
1,000重量部に過硫酸カリウム1重量部、亜硫酸ナ
トリウム1重量部を溶解した液に、40℃で8時間浸漬
し、膜表面に吸着した陰イオン交換性高分子物質の溶解
度を更に低下させる処理を行った。最後に、0.5N食
塩水で5回洗浄し、一価陽イオン選択透過性の陽イオン
交換膜を得た。 【0036】この膜の、膜母体内外の陰イオン交換性高
分子物質層の厚み、V/P、初期及び3ヶ月連続透析後
のF2 、を表3に示す。 【0037】 【比較例3】4−ビニルピリジン96重量部、純度56
%のジビニルベンゼン4重量部、過酸化ベンゾイル0.
3重量部及びn−ヘキサン400重量部を、窒素置換し
たアンプルに密封し、振動させて撹拌しながら、60℃
で20時間重合させた。得られたポリマーをn−ヘキサ
ンで洗浄後、メタノールで洗浄した。洗浄後のポリマー
を沃化メチル25%ヘキサン溶液にて40℃、20時間
処理し、四級ピリジニウム塩基とした。 【0038】ポリマーを濾過分離後、ポリマーを乾燥
し、ボールミルにて3μm以下に粉砕した後、200重
量部の水に懸濁させて処理液とした。この処理液に、実
施例1で用いたものと同じ、一価イオン選択透過性が付
与される前の陽イオン交換膜を、95℃で20時間浸漬
したところ、陽イオン交換膜の樹脂が芯材から脱落し、
膜が破壊してしまった。 【0039】比較例3のような従来技術では、比較的高
温に対する安定性が悪い陽イオン交換膜に対しては適用
出来なかった。 【0040】 【比較例4】N,N,N’,N’,N”−ペンタメチル
イミノビスプロピルアミン20重量部、クロルメチルス
チレン46重量部を160重量部のメタノール中で室温
にて48時間反応させ、N,N,N’,N’,N”−ペ
ンタメチルイミノビスプロピルアミンの3個のアミンが
クロルメチルスチレンによって四級アンモニウム化され
た化合物を得た。この化合物1重量部を1,000重量
部の1.0N食塩水に溶解し、処理液とした。 【0041】この処理液に、実施例1で用いたものと同
じ、一価イオン選択透過性が付与される前の陽イオン交
換膜を、40℃で2時間浸漬し、次いで窒素雰囲気下、
重合開始剤として過硫酸カリウム及び亜硫酸ナトリウム
を各々1重量部加え、激しく撹拌し、40℃で10時間
重合を行った。その後、膜を処理液から取り出し、0.
5N食塩水で5回洗浄し、一価陽イオン選択透過性の陽
イオン交換膜を得た。 【0042】この膜の、膜母体内外の陰イオン交換性高
分子物質層の厚み、V/P、初期及び3ヶ月連続透析後
のF2 、を表3に示す。比較例4のような従来技術で
は、陰イオン交換性物質が、膜母体内部に深く浸入しす
ぎているため、電気透析時の膜電圧が高くなっている。 【0043】 【表1】 【0044】 【表2】 【0045】 【表3】 【0046】 【発明の効果】本発明の陽イオン交換膜は従来技術と同
等以上に良好な一価イオン選択透過性とその持続性を供
え、かつ、従来技術では達成できなかった電気透析時の
低い膜電圧を達成しており、本発明の陽イオン交換膜を
電気透析法による製塩に用いた場合、消費電力量を節減
できる。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention mainly relates to polyvalent cations (Mg 2+ , Ca 2+) when seawater is concentrated by electrodialysis using an ion exchange membrane. ) Than monovalent cations (Na
+ , K + ), a novel cation-exchange membrane that has a property of selectively permeating for a long time and has an extremely low membrane voltage during electrodialysis. 2. Description of the Related Art Conventionally, in order to provide a cation exchange membrane with a property of allowing monovalent ions to permeate more selectively than polyvalent ions, that is, a monovalent ion selective permeability, the surface of the cation exchange membrane must be changed. It is known that a substance having an anion exchange property is present in the anion. Further, a method of maintaining the selective permeability of the monovalent ion is also known. For example, in Japanese Patent Publication No. 53-44155, a cation exchange membrane is treated with a suspension of water-insoluble crosslinked polymer particles having an anion exchange group, and the surface of the cation exchange membrane is treated. A method of imparting a highly-persistent monovalent cation selective permeation by adhering it is disclosed. However, in this method, when treating the cation exchange membrane with water or an aqueous solution of an inorganic salt of the crosslinked polymer,
A part of the crosslinked polymer fine particles is taken into the substrate while the base material of the film is stretched at high temperature, and the crosslinked polymer fine particles are retained in the film. For example, there is a disadvantage that the permeation concentration is lowered and the application cannot be performed. Also, for example, Japanese Patent Publication No. 5-8557
In JP-A No. 4, there is disclosed a cation exchange membrane in which a polymer of a quaternary ammonium base and a vinyl compound having three or more vinylbenzyl groups is present on the surface. When the known cation exchange membrane is provided with the monovalent ion selective permeability, there is not much increase in the electrical resistance of the membrane measured at 1000 cycles of AC, and the good monovalent ion selective permeability lasts for a long time. . However, the membrane voltage when seawater is concentrated by electrodialysis may be high, the monovalent ion selective permeability is maintained for a long time, and a better cation exchange membrane having a lower membrane voltage during electrodialysis is required. It has been demanded. [0003] An object of the present invention is to provide a novel cation-exchange membrane which has a good permselective ion permeation for a long time and a very low membrane voltage during electrodialysis. The purpose is to provide. Means for Solving the Problems The present inventors have made intensive studies to develop a monovalent ion selectively permeable cation exchange membrane having a low membrane voltage when seawater is concentrated by electrodialysis. As a result, the solubility of the polymer substance having an anion exchange group present on the membrane surface and inside the membrane matrix is an important factor for maintaining good monovalent ion selective permeability for a long time. The present inventors have found that the presence state of a polymer substance having an anion exchange group on the membrane surface and inside the membrane matrix greatly affects the membrane voltage during electrodialysis, and based on these findings, led to the present invention. Was. That is, a polymer substance having an anion exchange group and having a solubility in seawater at 25 ° C. of 0.2 or less is added to the inside of the membrane matrix by the polymer substance.
Infiltrate with a thickness of 0 to 500 nm, and
It is a cation exchange membrane that was present so as to form an anion exchange layer with a thickness of 50 nm. [0005] The anion exchange group of the polymer substance used in the present invention includes a quaternary ammonium group, a quaternary pyridinium group, a sulfonium base, a phosphonium base,
It may be one or more of a primary, secondary or tertiary amino group, a pyridine group, an imino group and the like. On the other hand, the molecular weight of this anion exchangeable polymer substance is 1
100-500 nm in thickness, and 10
In order to form an anion exchange layer with a thickness of 50 to 50 nm, the thickness is preferably 1,000 to 100,000. Particularly preferably, it is 2,000 to 10,000. The cation exchange membrane used in the present invention is not particularly limited as long as it is a known one. For example, the membrane voltage at the time of electrodialysis using a polyvinyl chloride cloth as a core material is low and the osmotic concentration is high. In particular, in comparison with the prior art in the case of using a cation exchange membrane having poor stability at relatively high temperatures,
A remarkable effect is exhibited. In the present invention, the cation-exchange membrane is immersed in a solution of the anion-exchange polymer having a solubility in seawater at 25 ° C. of 0.2 or less, so that the anion-exchange polymer is contained inside the membrane matrix. 100-500n
m to a thickness of 10 to 50 nm to form an anion-exchange layer outside the membrane matrix, or to a solution of an anion-exchange polymer substance whose solubility may be reduced. After immersing the ion-exchange membrane and forming a similar anion-exchange polymer substance layer on the membrane surface, a treatment for reducing the solubility of this anion-exchange polymer substance is performed, and the solubility in seawater at 25 ° C. Can be set to 0.2 or less. When adsorbing the anion-exchange polymer substance on the cation-exchange membrane, the anion-exchange polymer substance layer is uniformly formed with a thickness of 100 to 500 nm inside the membrane matrix and 10 to 50 nm outside the membrane matrix. In any case, it is important that the solution is a solution in which the anion-exchange polymer substance is completely dissolved. Therefore, 2
When using an anion-exchange polymer having a solubility in seawater at 5 ° C. of 0.2 or less, the anion-exchange polymer is completely dissolved, and adverse effects such as a decrease in permeation concentration into the cation exchange membrane are caused. In order to select a solvent free from the above, the solubility in seawater at 25 ° C. is preferably 0.1 or more. On the other hand, the lower the solubility of the anion-exchangeable polymer substance present on the membrane in seawater, the higher the persistence of the monovalent ion selective permeability, so that the solubility in seawater at 25 ° C is 0.2 or less. Even when a certain anion exchangeable polymer substance is used, it is preferable to add a treatment for lowering the solubility as necessary. The method for producing the anion-exchangeable polymer substance used in the present invention is not particularly limited. However, when the solubility in seawater at 25 ° C. is adjusted in advance, it is generally produced, for example, by the following method. 1. By adjusting the molecular weight, quaternizing agent type, and quaternization rate of the quaternized polymer of the basic nitrogen-containing vinyl compound monomer, an anion-exchange polymer having favorable solubility can be obtained. Examples of the basic nitrogen-containing vinyl compound include vinyl pyridine derivatives such as 2-vinyl pyridine and 4-vinyl pyridine; vinyl piperidine derivatives such as 2-vinyl piperidine; vinyl quinoline derivatives such as 2-vinyl quinoline; There are vinylimidazole derivatives such as benzimidazole, vinylcarbazole derivatives, vinylaniline, dimethylaminoethyl methacrylate and the like. By using these basic nitrogen-containing vinyl compound monomers to form an anion-exchange polymer having any molecular weight, quaternizing agent type and quaternization rate, a preferable solubility can be obtained. For example, 4-vinylpyridine is polymerized to a molecular weight of 3,000 by anionic polymerization, and 30% of the pyridine group is converted to lauryl bromide and the remaining 70% is changed to 40% by methyl chloride. The anion-exchange polymer having a solubility in seawater at 25 ° C. of 0.15 is produced by salinization with grade pyridinium. 2. A vinyl compound monomer polymer having a group capable of easily introducing an anion exchange group, by adjusting the molecular weight of the product having an anion exchange group introduced, the type of exchange group, and the exchange group introduction rate, an anion having a preferable solubility. Obtain exchangeable polymeric substances. Examples of the vinyl monomer having a group into which an anion exchange group can be easily introduced include styrene, vinyl toluene, chloromethylstyrene, glycidyl methacrylate, and vinyl naphthalene. By using these vinyl compound monomers having a group capable of easily introducing an anion exchange group into an anion exchange polymer having any molecular weight, exchange group type, and exchange group introduction rate, a preferable solubility can be obtained. Since it depends on the type of monomer and the type of ion-exchange group, it cannot be said unconditionally. For example, styrene is polymerized to a molecular weight of 5,000 by anionic polymerization, and 50% of the benzene ring is converted to chloromethyl ether with chloromethyl ether. After the formation, an anion-exchange polymer substance having a solubility in seawater at 25 ° C. of 0.1 is produced by amination with trimethylamine. On the other hand, as a method for lowering the solubility after the anion-exchange polymer substance is present on the surface of the cation-exchange membrane, for example, the anion-exchange polymer substance can be easily cross-linked in advance. The solubility can be reduced by introducing a reactive functional group, performing the adsorption treatment, and then performing the crosslinking treatment. Reactive functional groups that can be easily cross-linked include, for example, primary amines,
There are amino groups such as secondary amines and tertiary amines, as well as hydroxyl groups, thiol groups, carbonyl groups, carboxyl groups, double bonds and triple bonds. For example, a molecular weight of 80,00
After the anion-exchange polymer substance obtained by adding allyl bromide to polyethyleneimine of No. 0 is present on the surface of the cation exchange membrane, the double bond of the allyl group is crosslinked with a redox polymerization initiator. The solubility of the anion-exchange polymer substance present on the membrane surface in seawater at 25 ° C. can be reduced to 0.2 or less. The anion-exchange polymer having a solubility in seawater of 25 ° C. or less produced as described above of 0.2 or lowering the solubility may be water, an inorganic salt aqueous solution, or methanol and acetone. Dissolved in a mixed solvent with an organic solvent such as dimethyl sulfoxide. At this time, the concentration of the anion-exchange polymer substance is set such that the anion-exchange polymer substance layer has a thickness of 100 to 500 nm inside the membrane matrix and a thickness of 10 to 50 nm outside the membrane matrix.
A range of several hundred to several thousand ppm is preferred. At this time, it is preferable to use a mixed solvent of an aqueous solution of an inorganic salt and an organic solvent in order to completely dissolve the anion exchange polymer substance having a solubility in seawater at 25 ° C. of 0.2 or less. here,
The concentration of the inorganic salt and the concentration of the organic solvent are preferably set at 0. 4 to completely dissolve the anion exchangeable polymer substance and not to have an adverse effect such as a decrease in the permeation concentration of the cation exchange membrane. 1N to 0.5N is preferable, and the organic solvent concentration is preferably 1% to 5%. On the other hand, if the solubility in seawater at 25 ° C. is 0.2 or more and an anion-exchange polymer that can reduce the solubility is used, a range that does not adversely affect the permeation concentration of the cation exchange membrane, etc. The solvent can be selected from a wider range of water, an aqueous solution of an inorganic salt, or a mixed solvent of these and an organic solvent. [0013] The cation exchange membrane is immersed in the solution obtained by completely dissolving the anion exchange polymer substance thus obtained, so that the surface of the cation exchange membrane is anion exchange polymer. Adsorb substances. The temperature and time of the immersion treatment are such that the anion-exchangeable polymer substance layer has a thickness of 100 to 500 nm inside the membrane matrix and 10 to 5 nm outside the membrane matrix.
In order to form a film having a thickness of 0 nm, the temperature is 30 ° C. to 5 ° C.
0 ° C. is preferred, and the treatment time can be appropriately selected from the range of about 1 hour to 50 hours. At this time, the amount of the anion-exchange polymer substance adsorbed on the surface of the cation-exchange membrane varies depending on the type of the cation-exchange membrane. In order to keep the voltage low, generally, about 1 to 3 meq / m 2 is preferable. The cation exchange membrane in which the anion exchange polymer substance is present on the surface by immersion treatment is subjected to a treatment for reducing the solubility of the surface of the anion exchange polymer substance in seawater, if necessary. Do. The method for reducing the solubility is as described above, but the solvent and temperature at this time are arbitrarily selected as long as they do not adversely affect the permeation concentration of the cation exchange membrane, as in the case of the adsorption treatment. be able to. A polymer substance having an anion exchange group and having a solubility of 0.2 or less in seawater at 25 ° C. obtained as described above is anion on the surface of a cation exchange membrane in which the polymer is present on the surface. The exchangeable polymer layer has 100
The formation of a thickness of about 500 nm and a thickness of about 10 to 50 nm outside the film matrix can be confirmed by using elemental analysis of the surface by SIMS (secondary ion mass spectrometry). Conventionally, such a method for obtaining knowledge on the state of the anion exchangeable substance layer present on the membrane surface has not been established. Could not escape. However, with the recent improvement of surface analysis technology,
As in the present invention, the condition of the anion exchangeable material layer on the surface of the cation exchange membrane is adjusted, that is, the anion exchangeable polymer material layer has a thickness of 100 to 500 nm inside the membrane matrix, By forming the membrane with a thickness of 10 to 50 nm, it became possible to obtain a cation exchange membrane having a very low membrane voltage during electrodialysis and a good monovalent ion selective permeability for a long time. An anion-exchangeable polymer substance layer on the surface of the cation-exchange membrane has a thickness of 100 to 50 inside the membrane matrix.
The thickness of 0 nm and the formation of a thickness of 10 to 50 nm outside the membrane matrix means that the membrane voltage at the time of electrodialysis is extremely low, and in order to maintain good monovalent ion selective permeability for a long time, Necessary and sufficient. If the thickness of the anion-exchange polymer material layer inside the membrane matrix is less than this, the durability of the monovalent ion selective permeability deteriorates, and the thickness of the anion-exchange polymer material layer outside the membrane matrix becomes smaller. If it is below, the monovalent ion selective permeability itself becomes poor. on the other hand,
If the thickness of the anion exchangeable polymer substance layer inside and outside the membrane matrix is more than this, the membrane resistance will increase, and the membrane voltage during electrodialysis will increase. One of the reasons why the membrane voltage during electrodialysis was high in the prior art is thought to be that the above layer was unnecessarily thick. On the other hand, the case where the anion exchangeable polymer material layer on the surface of the cation exchange membrane is formed with a thickness of 100 to 500 nm inside the membrane matrix and with a thickness of 10 to 50 nm outside the membrane matrix. Is also an anion exchange polymer
If the solubility in 5 ° C seawater is higher than 0.2,
Poor persistence of monovalent ion permselectivity results in a practical problem. As described above, the solubility of the anion-exchange polymer substance present on the surface of the cation-exchange membrane in seawater at 25 ° C. is 0.2 or more, and the anion-exchange polymer substance layer With a thickness of 100-500 nm inside the mother body,
By combining the thickness of 10 to 50 nm formed outside the membrane matrix, the monovalent ion selective permeability as good as or more than that of the prior art is maintained for a long time, and at the time of electrodialysis which cannot be obtained by the conventional technique. A cation exchange membrane having an extremely low membrane voltage can be obtained. Now, the present invention will be described in further detail with reference to Examples and Comparative Examples. The abbreviations (F 2 , V / P) used in the examples have the following meanings. (1) F 2 : shows the specific permselectivity of the divalent cation to the monovalent cation in the cation exchange membrane in seawater concentration, and the lower this value is, the higher the monovalent cation permselectivity is, It is given by the equation 1). ## EQU1 ## Measurement method: The cation exchange membrane was used together with an anion exchange membrane A-172 manufactured by Asahi Kasei Kogyo Co., Ltd. as an electrodialyzer (trade name: Acilyzer) SV- manufactured by Asahi Kasei Kogyo Co., Ltd.
7 (effective energizing area 0.5 dm 2 ), using seawater as a diluent, seawater flow rate 4 cm / sec, temperature 25 ° C,
Electrodialysis is performed at a current density of 3 A / dm 2 , each concentration is measured, and calculated using the above equation. (2) V / P: The cell voltage per cell at the time of electrodialysis, and if the conditions other than the cation exchange membrane are kept constant, the membrane voltage of the cation exchange membrane at the time of electrodialysis is higher or lower than this value. Can be evaluated by Measurement method: The cation exchange membrane was used together with an anion exchange membrane A-172 manufactured by Asahi Kasei Kogyo Co., Ltd. as an electrodialyzer SV-7 manufactured by Asahi Kasei Kogyo Co., Ltd. (effective conductive area: 0.5 d)
m 2 ), and seawater with a constant Cl concentration of 0.4 N was used as the diluent, and the seawater flow rate was 4 cm /
Electrodialysis is performed at a temperature of 25 ° C. and a current density of 3 A / dm 2 for 10 sec, and the cell voltage of 10 pairs is measured, and the value is obtained by dividing the value by 10. On the other hand, the durability of the permselective ion selective permeability is as follows:
After 3 months of continuous dialysis, F 2 after 3 months and initial F
The two were evaluated by comparing. Example 1 Production of a cation exchange membrane: 89 parts by weight of styrene, purity 56
% Of divinylbenzene, 15 parts by weight of dimethyl phthalate, 6 parts by weight of nitrile butadiene rubber, 15 parts by weight of polyvinyl chloride powder, and 2 parts by weight of benzoyl peroxide. The resultant was coated on a cloth and polymerized at 90 ° C. for 12 hours while sandwiched between polyethylene terephthalate films.
This film-form polymer was treated with 99.5% sulfuric acid at 40 ° C. for 2 hours.
Sulfonation was performed for 4 hours to obtain a cation exchange membrane before the monovalent ion selective permeability was imparted. Production of anion-exchangeable polymer substance: Polymerization is conducted by heating at 60 ° C. for 2 hours in an ampoule in which 100 parts by weight of N-vinylimidazole and 1 part by weight of benzoyl peroxide have been replaced with nitrogen. 94 parts by weight of the obtained polymer was 395
The mixture was dispersed in parts by weight of acetone, 207 parts by weight of 1-bromononane was added, and a quaternization reaction was performed at 40 ° C. for 72 hours. The measured solubility of the obtained polymer in seawater at 25 ° C. was 0.15. (For 100 g of seawater at 25 ° C.) Selective permeation of monovalent cation to the cation exchange membrane: 3 parts by weight of this polymer is 0.1N- containing 1% methanol.
It was dissolved in 1,000 parts by weight of a CaCl 2 solution at 40 ° C. to obtain a treatment liquid. The cation exchange membrane described above is
It is immersed at 0 ° C for 24 hours to perform adsorption treatment.
After washing with N saline five times, a cation exchange membrane having a monovalent cation selective permeability was obtained. Table 1 shows the thickness of the anion-exchange polymer layer inside and outside the membrane matrix, V / P, and F 2 after the initial and continuous three-month dialysis. In addition, F of the untreated film
2 and V / P are also shown in Table 1. In Example 1, the anion exchange polymer having a solubility in seawater at 25 ° C. of 0.15 is
Infiltrate 150 nm inside the film matrix and 50 nm outside the film matrix
Because of the presence of an anion-exchange layer, the membrane voltage during electrodialysis is low, and the persistence of good monovalent ion selective permeability is high. Comparative Example 1 94 parts by weight of poly-N-vinylimidazole before alkylation polymerized in the same manner as in Example 1 were added to 39 parts
5 parts by weight, and 142 parts by weight of methyl iodide were added.
A quaternization reaction was performed at 0 ° C. for 72 hours. The solubility of the obtained polymer in seawater at 25 ° C. was 30. This polymer was dissolved in a 0.1N CaCl 2 solution containing 1% methanol in the same manner as in Example 1, and the same untreated cation exchange membrane prepared in Example 1 was used.
The immersion treatment was performed at 24 ° C. for 24 hours. Table 1 also shows the thickness of the anion exchangeable polymer substance layer inside and outside the membrane matrix, V / P, and F 2 after the initial and three consecutive months of dialysis. In Comparative Example 1, the presence state of the anion exchange polymer on the membrane surface is the same as that of Example 1, but since the solubility of the anion exchange polymer is high, the monovalent ion selective permeation occurs. Poor sex and its persistence. REFERENCE EXAMPLE 1 A mixture of 49 parts by weight of polyallylamine hydrochloride (manufactured by Nitto Boseki, average weight molecular weight, 50,000 to 83,000), 20 parts by weight of sodium hydroxide, and 400 parts by weight of methanol was stirred and mixed. The mixture was treated at 5 ° C. for 5 hours, and the precipitated sodium chloride was separated by filtration to obtain a methanol solution of polyallylamine. 60 parts by weight of allyl bromide is added to this solution and reacted at 40 ° C. for 120 hours to add an allyl group to the amino group of polyallylamine. 5.6 parts by weight of this methanol solution was dissolved in 1,000 parts by weight of a 0.5 N aqueous solution of sodium chloride to obtain a treatment liquid. The same cation exchange membrane as that prepared in Example 1 before the monovalent ion selective permeability was imparted thereto was immersed in this treatment solution at 40 ° C. for 24 hours to perform an adsorption treatment. Thereafter, ammonium persulfate was added to a concentration of 1,000 ppm, and treatment was performed at 40 ° C. for 20 hours to reduce the solubility of the anion exchange polymer substance adsorbed on the membrane surface.
At this time, the solubility of the anion exchangeable polymer substance precipitated in the treatment liquid in seawater was 0.2 or less. afterwards,
The membrane was taken out of the treatment solution and washed five times with 0.5 N saline to obtain a cation exchange membrane having a monovalent cation selective permeability. Table 2 shows the thickness of the anion exchangeable polymer substance layer inside and outside the membrane matrix, V / P, and F 2 after the initial and three consecutive months of dialysis. Comparative Example 2 In Reference Example 1 , 5.6 parts by weight of a methanol solution of polyallylamine before adding allyl bromide was added.
Dissolved in 1,000 parts by weight of a 0.5N aqueous sodium chloride solution to obtain a treatment liquid, and the same cation exchange membrane as that prepared in Example 1 before imparting monovalent ion selective permeability was used.
It was immersed at 0 ° C. for 24 hours to perform an adsorption treatment. Thereafter, the membrane was taken out of the treatment solution and washed five times with 0.5N saline to obtain a cation exchange membrane having a monovalent cation selective permeability. Table 2 shows the thickness of the anion-exchangeable polymer layer inside and outside the membrane matrix, V / P, and F 2 after the initial and continuous three-month dialysis. In Comparative Example 2, the membrane voltage at the time of electrodialysis was high because the anion-exchangeable polymer substance penetrated too deeply into the inside of the membrane matrix. EXAMPLE 2 Under nitrogen atmosphere, 880 parts by weight of dimethyl sulfoxide were mixed with 130 parts by weight of 4-vinylpyridine and 4 parts by weight of a 30% potassium methoxide methanol solution.
Anionic polymerization was performed at 5 ° C. for 8 hours to obtain a dimethylsulfoxide solution of poly-4-vinylpyridine having a molecular weight of 3,000. To this solution, 76 parts by weight of chloromethylstyrene and 105 parts by weight of methyl iodide were added and reacted at 40 ° C. for 24 hours to convert the pyridine group of poly-4-vinylpyridine into a quaternary pyridinium base. The solubility of the obtained polymer in seawater at 25 ° C. was 0.2. 14 parts by weight of this poly-4-vinylpyridine quaternized dimethyl sulfoxide solution was dissolved in 1,000 parts by weight of 0.3 N saline at 40 ° C. to obtain a treatment liquid. The same cation exchange membrane as that prepared in Example 1 before the monovalent ion selective permeability was imparted thereto was immersed in this treatment solution at 40 ° C. for 24 hours to perform an adsorption treatment. Thereafter, the membrane was taken out from the adsorption treatment liquid, immersed in a solution of 1 part by weight of potassium persulfate and 1 part by weight of sodium sulfite in 1,000 parts by weight of 1.0 N saline at 8 ° C. for 8 hours at 40 ° C. A treatment was carried out to further lower the solubility of the anion exchangeable polymer substance adsorbed on the polymer. Finally, the membrane was washed five times with 0.5N saline to obtain a cation exchange membrane having a monovalent cation selective permeability. Table 3 shows the thickness of the anion exchangeable polymer layer inside and outside the membrane matrix, V / P, and F 2 after the initial and continuous three-month dialysis. Comparative Example 3 96 parts by weight of 4-vinylpyridine, purity 56
% Divinylbenzene, 4 parts by weight of benzoyl peroxide.
3 parts by weight and 400 parts by weight of n-hexane were sealed in an ampoule purged with nitrogen, and shaken at 60 ° C.
For 20 hours. The obtained polymer was washed with n-hexane and then with methanol. The washed polymer was treated with a 25% hexane solution of methyl iodide at 40 ° C. for 20 hours to obtain a quaternary pyridinium base. After the polymer was separated by filtration, the polymer was dried, pulverized to 3 μm or less by a ball mill, and suspended in 200 parts by weight of water to obtain a treatment liquid. When the same cation exchange membrane as that used in Example 1 before the monovalent ion selective permeability was imparted thereto was immersed in this treatment solution at 95 ° C. for 20 hours, the resin of the cation exchange membrane became the core. Dropped from the material,
The membrane has been destroyed. The prior art such as Comparative Example 3 cannot be applied to a cation exchange membrane having relatively poor stability at high temperatures. Comparative Example 4 N, N, N ', N', N "-pentamethyliminobispropylamine 20 parts by weight and chloromethylstyrene 46 parts by weight in 160 parts by weight of methanol at room temperature for 48 hours. The reaction was carried out to obtain a compound in which three amines of N, N, N ', N', N "-pentamethyliminobispropylamine were quaternary ammonium-modified with chloromethylstyrene. One part by weight of this compound was dissolved in 1,000 parts by weight of 1.0 N saline to prepare a treatment liquid. The same cation exchange membrane as that used in Example 1 before the monovalent ion selective permeability was imparted thereto was immersed in this treatment solution at 40 ° C. for 2 hours.
One part by weight of potassium persulfate and 1 part by weight of sodium sulfite were added as polymerization initiators, and the mixture was vigorously stirred and polymerized at 40 ° C. for 10 hours. After that, the membrane was taken out of the processing solution, and the film was removed.
After washing 5 times with 5N saline, a cation exchange membrane having a monovalent cation selective permeability was obtained. Table 3 shows the thickness of the anion exchangeable polymer substance layer inside and outside the membrane matrix, V / P, and F 2 of the membrane at the initial stage and after continuous three-month dialysis. In the conventional technique as in Comparative Example 4, the membrane voltage during electrodialysis is high because the anion exchangeable substance has penetrated too deeply into the inside of the membrane matrix. [Table 1] [Table 2] [Table 3] The cation exchange membrane of the present invention provides a monovalent ion selective permeability equal to or better than that of the prior art and its persistence, and also achieves electrodialysis which cannot be achieved by the prior art. A low membrane voltage is achieved, and when the cation exchange membrane of the present invention is used for salt production by electrodialysis, power consumption can be reduced.

───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.7,DB名) C08J 5/22 B01D 61/46 B01J 39/18 B01J 47/12 ──────────────────────────────────────────────────続 き Continued on front page (58) Field surveyed (Int.Cl. 7 , DB name) C08J 5/22 B01D 61/46 B01J 39/18 B01J 47/12

Claims (1)

(57)【特許請求の範囲】 【請求項1】 25℃の海水に対する溶解度が0.2以
下である、分子量2,000〜10,000の陰イオン
交換基を有するビニルピリジン誘導体、ビニルイミダゾ
ール誘導体から選択される塩基性窒素含有ビニル化合物
高分子物質を、膜母体内部に100〜500nmの厚
みで浸入させ、且つ膜母体外部に10〜50nmの厚み
で陰イオン交換層を形成させた陽イオン交換膜。
(57) solubility [claimed is: 1. A 25 ° C. sea water is 0.2 or less, a vinyl pyridine derivative having an anion exchange group of molecular weight 2,000 to 10,000, vinylimidazoline
Nitrogen-containing vinyl compounds selected from polyester derivatives
A cation-exchange membrane in which the high-molecular weight material is infiltrated into the membrane matrix with a thickness of 100 to 500 nm, and an anion-exchange layer is formed outside the membrane matrix with a thickness of 10 to 50 nm.
JP20203795A 1995-08-08 1995-08-08 Cation exchange membrane Expired - Fee Related JP3522398B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20203795A JP3522398B2 (en) 1995-08-08 1995-08-08 Cation exchange membrane

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20203795A JP3522398B2 (en) 1995-08-08 1995-08-08 Cation exchange membrane

Publications (2)

Publication Number Publication Date
JPH0948861A JPH0948861A (en) 1997-02-18
JP3522398B2 true JP3522398B2 (en) 2004-04-26

Family

ID=16450894

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20203795A Expired - Fee Related JP3522398B2 (en) 1995-08-08 1995-08-08 Cation exchange membrane

Country Status (1)

Country Link
JP (1) JP3522398B2 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4759781B2 (en) 2000-01-28 2011-08-31 旭硝子株式会社 Monovalent cation selective permeable cation exchange membrane and method for producing the same
JP4718221B2 (en) * 2005-04-06 2011-07-06 株式会社アストム Method for producing a membrane for ion exchange membrane
EP3636696A1 (en) 2011-05-04 2020-04-15 Cornell University Multiblock copolymer films, methods of making same and uses thereof
CN105617891B (en) * 2016-04-08 2018-10-23 中国海洋大学 A kind of anion-exchange membrane and preparation method thereof with resistance acid function
SG10202010709UA (en) * 2016-04-28 2020-11-27 Terapore Tech Inc Charged isoporous materials for electrostatic separations
JP7104040B2 (en) 2016-11-17 2022-07-20 ケー. シースジ,ジェイラジ Isoporous self-assembling block copolymer film containing a high molecular weight hydrophilic additive and a method for producing the same.
SG11201907674WA (en) 2017-02-22 2019-09-27 Terapore Tech Inc Ligand bound mbp membranes, uses and method of manufacturing
MX2019013534A (en) 2017-05-12 2020-02-10 Terapore Tech Inc Chemically resistant fluorinated multiblock polymer structures, methods of manufacturing and use.
WO2019178045A1 (en) 2018-03-12 2019-09-19 Terapore Technologies, Inc. Isoporous mesoporous asymmetric block copolymer materials with macrovoids and method of making the same

Also Published As

Publication number Publication date
JPH0948861A (en) 1997-02-18

Similar Documents

Publication Publication Date Title
Osada et al. Control of water permeability by mechanochemical contraction of poly (methacrylic acid)-grafted membranes
JP3781773B2 (en) Improvement of electrodialysis including packed cell electrodialysis (electrodeionization)
CA2844706C (en) Resilient anion exchange membranes
US9636642B2 (en) Resilient anion exchange membranes prepared by polymerizing a composition
JP3522398B2 (en) Cation exchange membrane
TWI295587B (en) Mixed bed ion exchange resins
Chapiro et al. Synthesis of permselective membranes by radiation induced grafting of hydrophilic monomers into poly (tetrafluoroethylene) films
KR100542295B1 (en) Preparation of Polyethylene/Polyvinylbenzyl chloride anion-exchange membrane
Isono et al. Weak acid-strong base type charge-mosaic membrane. I. Carboxylic acid-quaternary amine system
JP2005535778A (en) Production method of monodisperse gel ion exchanger
KR20160060890A (en) Vinylbenzene-styrene based anion exchange composite membranes with nitrile rubber and method for preparing the same
JP3497619B2 (en) Cation exchange membrane
Son et al. Preparation and electrochemical characterization of membranes using submicron sized particles with high ion exchange capacity for electro-adsorptive deionization
KR101681637B1 (en) Styrene-tert-butyl styrene based cation exchange composite membranes with nitrile rubber and method for preparing the same
Poźniak et al. Tubular interpolymer ion-exchange membranes. Donnan dialysis through strong-base membranes
JPH02211257A (en) Anion exchanger
JPS59203613A (en) Method for desalting organic compound by using amphoteric ion exchange membrane
US3451926A (en) Solvent extraction process
JP2004149586A (en) Method for manufacturing ion-exchange membrane
JPH0490828A (en) Method of providing cation-exchange membrane with univalent cationic selective permeability
JPH01284308A (en) Purifying process
JPS6115885B2 (en)
JPH0556363B2 (en)
JPS5812895B2 (en) Method for producing polymers having halogenated methyl groups
JPH08182991A (en) Deionized water producing device

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20040107

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040107

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20040107

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040203

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040204

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080220

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090220

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090220

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100220

Year of fee payment: 6

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100220

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110220

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110220

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120220

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120220

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130220

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130220

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140220

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees