JP3518751B2 - Airflow classifier - Google Patents

Airflow classifier

Info

Publication number
JP3518751B2
JP3518751B2 JP2001220502A JP2001220502A JP3518751B2 JP 3518751 B2 JP3518751 B2 JP 3518751B2 JP 2001220502 A JP2001220502 A JP 2001220502A JP 2001220502 A JP2001220502 A JP 2001220502A JP 3518751 B2 JP3518751 B2 JP 3518751B2
Authority
JP
Japan
Prior art keywords
air
chamber
powder
dispersion chamber
fluid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001220502A
Other languages
Japanese (ja)
Other versions
JP2003033726A (en
Inventor
芳博 西田
伸一 田中
盛之 大熊
保富 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kaken Pharmaceutical Co Ltd
Original Assignee
Kaken Pharmaceutical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kaken Pharmaceutical Co Ltd filed Critical Kaken Pharmaceutical Co Ltd
Priority to JP2001220502A priority Critical patent/JP3518751B2/en
Publication of JP2003033726A publication Critical patent/JP2003033726A/en
Application granted granted Critical
Publication of JP3518751B2 publication Critical patent/JP3518751B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、粉粒体を旋回気流
中で遠心分離する気流分級機に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an air stream classifier for centrifuging powder particles in a swirling air stream.

【0002】[0002]

【従来の技術】従来の気流分流機01の構造を図5および
図6に図示する。気流分流機01は、鉛直中心軸を共通に
して上から順に小径円筒状の排気室02,中径偏平円筒状
の分散室03,下広円錐状のガイド室04,大径円筒状の分
級室05,同径の2次空気吸気室06,上広円錐状の回収ホ
ッパー07で構成されている。
2. Description of the Related Art The structure of a conventional airflow diverter 01 is shown in FIGS. The air flow diverter 01 is a small diameter cylindrical exhaust chamber 02, a medium diameter flat cylindrical dispersion chamber 03, a lower wide conical guide chamber 04, and a large diameter cylindrical classification chamber in order from the top with a common vertical center axis. 05, secondary air intake chamber 06 with the same diameter, and recovery hopper 07 with an upper wide cone shape.

【0003】排気室02には水平接線方向にブロワ吸引路
02aが延出し、分散室03には水平接線方向に流体供給路
03aが延出し、内部中央には分級室05と排気室02とを連
通する連通路03bが設けられ、ガイド室04には内部に円
錐状のガイドコーン04aが設けられ、分級室05には内部
に下広円錐状の分級コーン05aが設けられ、2次空気吸
気室06には水平接線方向に2次空気供給路06aが延出し
内部中央に下広円錐体06bが設けられている。
In the exhaust chamber 02, a blower suction path is provided in a horizontal tangential direction.
02a extends to the dispersion chamber 03 in the horizontal tangential direction to supply fluid.
03a extends, a communication passage 03b that connects the classification chamber 05 and the exhaust chamber 02 is provided in the center of the inside, the guide chamber 04 is provided with a conical guide cone 04a, and the classification chamber 05 is provided with an inside. Is provided with a lower wide cone-shaped classification cone 05a, the secondary air intake chamber 06 is provided with a secondary air supply passage 06a extending in the horizontal tangential direction, and a lower wide cone body 06b is provided in the center of the inside.

【0004】粉粒体と1次空気の固気混合流体が流体供
給路03aから分散室03に導入されると、1次空気が分散
室03の内周壁に沿って生じる旋回気流により、粉粒体が
内周壁に衝突したり、粉粒体どうしが互いに衝突したり
して分散し、ガイドコーン04aに案内されて旋回しなが
ら下降して分級室05に周縁部から入る。
When a solid-gas mixture fluid of powder and primary air is introduced into the dispersion chamber 03 from the fluid supply passage 03a, the primary air is swirled along the inner peripheral wall of the dispersion chamber 03 to generate powder particles. The particles collide with the inner peripheral wall, or the particles collide with each other and disperse, and are guided by the guide cone 04a to descend while swirling and enter the classification chamber 05 from the peripheral portion.

【0005】分級室05には下方の2次空気供給路06aか
ら2次空気が供給されて2次空気吸気室06で旋回気流と
して形成されて上記分散された固気混合流体の旋回速度
を高め、分級室05内で粉粒体を遠心力を利用して遠心方
向に粒径の大きさ順に分布するようにする。
Secondary air is supplied to the classifying chamber 05 from the lower secondary air supply passage 06a and is formed as a swirling airflow in the secondary air intake chamber 06 to increase the swirling speed of the dispersed solid-gas mixture fluid. In the classification chamber 05, the particles are distributed in the centrifugal direction in the order of particle size by utilizing centrifugal force.

【0006】すなわち粉粒体は中心から離れる程粒径が
大きくなるよう分布する。中心部に開口した連通路03b
を通して排気室02に中心付近の微粉が吸引されてブロワ
吸引路02aから排出され、残りの周縁部の粗粉は周縁部
を下降して回収ホッパー07に案内されて落下し回収さ
れ、微粉と粗粉に分級される。
That is, the powdery particles are distributed such that the particle size increases with increasing distance from the center. Communication passage 03b opened in the center
The fine powder in the vicinity of the center is sucked into the exhaust chamber 02 through the exhaust chamber 02 and discharged from the blower suction passage 02a, and the remaining coarse powder on the peripheral edge descends along the peripheral edge and is guided and dropped by the recovery hopper 07 to be recovered. Classified into powder.

【0007】原料粉粒体から有効成分粒径の成分を抽出
する場合、粗粉に有効成分粒径の粉粒体が多く含まれる
ようにして回収ホッパー07から回収される。旋回する気
流の旋回速度を大きくすることにより分級点を小さくす
ることができ、またガイドコーン04aと分級コーン05a
との間隔(コーン間隔ΔH)の調整により粉粒体の分級
点および粗粉,微粉それぞれの回収率を変えることがで
きる。
When extracting a component having an active ingredient particle size from a raw material granular material, it is recovered from the recovery hopper 07 such that the coarse powder contains a large amount of the active ingredient particle size granular material. The classification point can be reduced by increasing the swirling speed of the swirling air flow, and the guide cone 04a and the classification cone 05a
It is possible to change the classification point of the granular material and the recovery rate of each of the coarse powder and the fine powder by adjusting the interval (cone interval ΔH) between and.

【0008】[0008]

【発明が解決しようとする課題】このような気流分級機
は、通常カーボン粉や金属粉など無機系粉粒体のような
比較的破砕され難い粉粒体に多く使用されてきた。しか
し医薬品や農薬あるいは食品などの比較的に破砕され易
い粉粒体を分級するとなると、一般に分散力が強過ぎて
原料となる粉粒体の摩損が生じ、摩損により粉粒体の特
性が変化し、特に微粉および微粉より小さい極微粉の量
が増加してしまう。
Such an air stream classifier has been usually used in many cases for powder particles which are relatively difficult to be crushed, such as inorganic powder particles such as carbon powder and metal powder. However, when classifying powders that are relatively easily crushed, such as pharmaceuticals, pesticides, and foods, the dispersibility is generally too strong, and the powders that are the raw materials are worn away, and the properties of the powders change due to wear. In particular, the amount of fine powder and ultrafine powder smaller than fine powder increases.

【0009】原料粉粒体から有効成分粒径の成分を抽出
する場合、有効成分粒径より大きい粉粒体は再度気流分
級機に原料として使用して有効成分粒径の成分を抽出す
ることができるが、一旦有効成分粒径より小さく破砕さ
れたものからは有効成分粒径の成分を抽出することはで
きない。
In the case of extracting a component having an active ingredient particle size from a raw material granular material, a powder granule having a larger active ingredient particle diameter may be used again as a raw material in an air flow classifier to extract a component having an active ingredient particle diameter. It is possible, however, it is impossible to extract a component having the particle size of the active ingredient from the crushed product which is smaller than the particle size of the active ingredient.

【0010】したがって摩損により微粉および有効成分
粒径より小さい極微粉の量が多く生じる場合は、有効成
分粒径の成分を歩留まり良く抽出することができない。
そこで気流分級機における供給空気量(風量)を小さく
して摩損を少なくすることも考えられるが、風量を小さ
くすると廃棄される微粉に含まれる有効成分粒径の成分
量が多くなり、回収される粗粉に含まれる有効成分粒径
の成分量が減少してしまう。
Therefore, when a large amount of fine powder and ultrafine powder smaller than the particle size of the active ingredient is generated due to abrasion, the component having the particle size of the active ingredient cannot be extracted with good yield.
Therefore, it is conceivable to reduce the amount of air supply (air flow) in the air flow classifier to reduce wear and tear. However, if the air flow is decreased, the amount of the active ingredient particle size contained in the fine powder to be discarded increases and is recovered. The amount of the active ingredient particle size component contained in the coarse powder is reduced.

【0011】従来の気流分級機で試験した結果から上記
の様子を示すことができる。図7の表2は、その試験結
果および分級条件を示し、従来が前者の風量が大きい
場合であり、従来が後者の風量が小さい場合である。
The above situation can be shown from the result of the test using the conventional air flow classifier. Table 2 in FIG. 7 shows the test results and classification conditions, where the former is the case where the air volume of the former is large and the conventional case is the case where the air volume of the latter is smaller.

【0012】試験には食品業界で多く使用されている甘
味剤(エリスリトール)を原料として用い、その最大粒
径が834.27μm,平均粒径が119.78μmの粉粒体であ
り、抽出しようとする有効成分粒径が45〜106μmであ
り、粗粉として回収する。
In the test, a sweetener (erythritol), which is widely used in the food industry, is used as a raw material, and the powder has a maximum particle size of 834.27 μm and an average particle size of 119.78 μm. The component particle size is 45 to 106 μm and it is recovered as a coarse powder.

【0013】なお分級される前の原料としての粒度分布
は有効成分粒径より小さい粒径(<45μm)のものが2
0.21%、有効成分粒径(45〜106μm)のものが24.54
%、有効成分粒径より大きい粒径(>106μm)のもの
が55.25%であることが分かっている。
The particle size distribution as a raw material before classification is 2 if the particle size is smaller than the active ingredient particle size (<45 μm).
0.21%, effective ingredient particle size (45 ~ 106μm) is 24.54
%, Particles having a particle size larger than the particle size of the active ingredient (> 106 μm) are 55.25%.

【0014】試験条件の全風量(ブロワ風量)が従来
の場合、1.80m/minであるのに対して従来の場合
は1.45m/minであり、その他のガイドコーン04aと
分級コーン05aとのコーン間隔ΔHが15mm、2次空気風
量が1.00m/min、原料供給量が2000g、分級時間が4
0min、処理量が3kg/hr等の試験条件は同じである。
The total air flow (blower air flow) under the test conditions is 1.80 m 3 / min in the conventional case, whereas it is 1.45 m 3 / min in the conventional case, and the other guide cone 04a and classification cone 05a Has a cone spacing ΔH of 15 mm, a secondary air flow rate of 1.00 m 3 / min, a raw material supply rate of 2000 g, and a classification time of 4
The test conditions are the same, such as 0 min and the throughput of 3 kg / hr.

【0015】試験結果である回収ホッパー07から回収さ
れる粗粉とブロワ吸引路02aから排出される微粉の各回
収量および各粒度分布は、表の通りである。なお全粉
は、粗粉と微粉を合計した場合であり、有効成分粒径回
収率は、分級する前の原料の有効成分粒径の量に対する
回収される粗粉に含まれる有効成分粒径の量の割合をい
う。
The respective amounts and particle size distributions of the coarse powder recovered from the recovery hopper 07 and the fine powder discharged from the blower suction passage 02a, which are the test results, are as shown in the table. Note that the total powder is a case where the coarse powder and the fine powder are summed up, and the active ingredient particle size recovery rate is the effective ingredient particle size contained in the recovered coarse powder with respect to the amount of the active ingredient particle size of the raw material before classification. Amount ratio.

【0016】大きい全風量で分級する従来の場合、再
使用することができない有効成分粒径より小さい粒径
(<45μm)の成分割合が全粉で33.40%と大きく、歩
留まりが極めて悪い。
In the conventional case of classifying with a large total air volume, the proportion of components having a particle size (<45 μm) smaller than the particle size of the non-reusable active ingredient is as large as 33.40% in total powder, and the yield is extremely poor.

【0017】また小さい全風量で分級する従来の場
合、廃棄される微粉中の有効成分粒径(45〜106μm)
の成分割合が21.77%と大きく、そのため結局有効成分
粒径回収率が45.7%と低過ぎる。以上のように従来の気
流分級機01により破砕され易い粉粒体を分級する場合、
有効成分粒径の成分を歩留まり良く抽出することが難し
い。
Further, in the conventional case of classifying with a small total air volume, the particle size of the active ingredient in the fine powder to be discarded (45 to 106 μm)
The ratio of the component is as large as 21.77%, so the particle size recovery rate of the active component is too low as 45.7%. As described above, when classifying a powder or granular material that is easily crushed by the conventional airflow classifier 01,
It is difficult to extract the component of the active ingredient particle size with good yield.

【0018】なお上記のような気流分級機において分散
室(03)に水平接線方向に延出した流体供給路(03a)
から空気のみを供給し、この水平な空気供給方向に対し
て上方から垂直下方に固気混合流体を導入する例(特開
2000-202367号公報)があるが、これは鉛直下方に導入
される固気混合流体の流れを水平方向から供給される空
気流が妨げて乱れを生じさせ、混合流体中の粉粒体に強
い衝撃と振動を与えて破砕を積極的に行わしめるもので
ある。
In the airflow classifier as described above, a fluid supply passage (03a) extending horizontally tangentially to the dispersion chamber (03).
An example in which only the air is supplied from above and the solid-gas mixture fluid is introduced vertically downward from above with respect to this horizontal air supply direction.
2000-202367), which is disturbed by the air flow supplied from the horizontal direction in the flow of the solid-gas mixture fluid introduced vertically downward, causing turbulence, and is strong against powdery particles in the mixture fluid. It gives shock and vibration to actively perform crushing.

【0019】したがってカーボン粉や金属粉など無機系
粉粒体に適用されるもので、医薬品や農薬あるいは食品
などの比較的に破砕され易い粉粒体から有効成分粒径の
成分を抽出するには適さない。
Therefore, it is applied to inorganic powders such as carbon powders and metal powders, and in order to extract a component having an effective particle diameter from powders that are relatively easily crushed such as pharmaceuticals, agricultural chemicals, foods, etc. Not suitable.

【0020】本発明は、斯かる点に鑑みなされたもの
で、その目的とする処は、破砕され易い粉粒体を分級し
ても分散時の摩損を低減して有効成分粒径の成分を歩留
まり良く抽出することができる気流分級機を安価に供す
る点にある。
The present invention has been made in view of the above point, and the object thereof is to reduce the wear during dispersion even if the powder particles that are easily crushed are classified, and to reduce the component of the effective component particle size. The point is to provide an airflow classifier that can extract with good yield at low cost.

【0021】[0021]

【課題を解決するための手段及び作用効果】上記目的を
達成するために、本請求項1記載の発明は、粉粒体と1
次空気の固気混合流体を流入して旋回気流を形成して分
散する円筒形状の分散室と、同分散室の下方に2次空気
を流入して粗粉と微粉に遠心分離する分級室を備えた気
流分級機において、前記分散室に前記固気混合流体を
入する混合流体流入路とは別に前記分散室に空気のみを
流入する空気流入路が前記円筒形状の分散室に水平接線
方向に指向して形成され、前記混合流体流入路は前記円
筒形状の分散室に上方から下方斜め接線方向に指向して
前記空気流入路と鋭角に交わるように形成され、前記混
合流体流入路と前記空気流入路から流入された固気混合
流体と空気流体が前記分散室内の分級開始点の直前で鋭
角に合流する気流分級機とした。
In order to achieve the above-mentioned object, the invention according to the first aspect of the present invention provides
A cylindrical dispersion chamber in which a solid-air mixed fluid of secondary air is introduced to form a swirling air flow and dispersed, and a classification chamber in which secondary air is introduced below the dispersion chamber to centrifuge into coarse powder and fine powder. In the equipped air flow classifier, the solid-gas mixture fluid is flowed into the dispersion chamber.
Separately from the mixed fluid inflow path to enter, only air in the dispersion chamber
The inflowing air inflow path has a horizontal tangent to the cylindrical dispersion chamber.
And the mixed fluid inflow path is formed in the circle.
In the cylindrical dispersion chamber, point from the upper side to the lower diagonal tangential direction.
An airflow that is formed so as to intersect the air inflow path at an acute angle, and the solid-gas mixture fluid and the air fluid that have flowed in from the mixed fluid inflow path and the air inflow path merge at an acute angle immediately before the classification start point in the dispersion chamber. It was a classifier.

【0022】固気混合流体と空気流体が分級開始点の直
前で鋭角に合流するので、固気混合流体の流れを空気流
体が妨げることなく乱れを生じさせずに自然に合流す
る。したがって固気混合流体中の粉粒体に過度の分散力
を与えず、粉粒体の分散室内周壁への衝突力や粉粒体ど
うしの相互衝突力を緩和し、破砕され易い粉粒体を分級
しても適度に分散して摩損を低減し有効成分粒径の成分
を歩留まり良く抽出することができる。
Since the solid-gas mixture fluid and the air fluid merge at an acute angle immediately before the classification start point, the flow of the solid-gas mixture fluid naturally joins without disturbing the air fluid without causing turbulence. Therefore, without giving an excessive dispersion force to the particles in the solid-gas mixture fluid, the collision force of the particles on the inner wall of the dispersion chamber and the mutual collision force between the particles are mitigated, and the particles that are easily crushed Even if the particles are classified, the particles can be appropriately dispersed to reduce the wear and the components having the effective particle diameter can be extracted with a high yield.

【0023】従来の気流分級機の分散室に混合流体流入
路とは別に前記分散室に空気のみを接線方向に流入する
空気流入路を設けるだけの簡単な構造であり、低コスト
である。
In addition to the mixed fluid inflow passage, the air inflow passage for introducing only air in the dispersion chamber of the conventional airflow classifier is provided separately from the mixed fluid inflow passage.

【0024】[0024]

【0025】混合流体流入路に導かれて分散室に上方か
ら下方斜め接線方向に導入される固気混合流体に対して
空気流入路に導かれて水平方向に供給される空気流体が
鋭角に合流するので、円筒形状の分散室内に乱れのない
滑らかな旋回気流を形成して粉粒体の摩損を低減して適
度な分散を実現することができる。混合流体流入路が空
気流入路の上方に位置し、混合流体流入路への粉粒体の
供給がし易い。
The air fluid introduced into the air inflow passage and fed in the horizontal direction is merged at an acute angle with respect to the solid-gas mixture fluid introduced into the dispersion chamber in the obliquely downward tangential direction from above into the dispersion chamber. Therefore, a smooth swirling airflow without turbulence can be formed in the cylindrical dispersion chamber to reduce the abrasion of the powder and granules and realize proper dispersion. Since the mixed fluid inflow passage is located above the air inflow passage, it is easy to supply the granular material to the mixed fluid inflow passage.

【0026】請求項2記載の発明は、請求項1記載の気
流分級機において、前記粉粒体が、医薬品,農薬,食品
などの比較的に破砕され易い粉粒体であることを特徴と
する。
According to a second aspect of the present invention, in the air stream classifier according to the first aspect , the powdery or granular material is a powdery or granular material which is relatively easily crushed for pharmaceuticals, agricultural chemicals, foods and the like. .

【0027】医薬品,農薬,食品などの比較的に破砕さ
れ易い粉粒体に適用することで、摩損を低減した適度な
分散により有効成分粒径の成分を歩留まり良く抽出する
ことができる。
By applying to powders or granules such as pharmaceuticals, pesticides and foods which are relatively easily crushed, it is possible to extract components having an effective particle diameter with good yield by proper dispersion with reduced wear and tear.

【0028】[0028]

【発明の実施の形態】以下本発明に係る一実施の形態に
ついて図1ないし図4に基づき説明する。本実施の形態
に係る気流分級機1は、前記した従前の気流分級機01と
基本構造は同じであり、鉛直中心軸を共通にして上から
順に小径円筒状の排気室ケース2a内の排気室2,中径
偏平円筒状の分散室ケース3a内の分散室3,下広円錐
状のガイド室ケース4a内のガイド室4,大径円筒状の
分級室ケース5a内の分級室5,同径に延長した2次空
気吸気室ケース6a内の2次空気吸気室6,上広円錐状
の回収ホッパー7で構成されている。
BEST MODE FOR CARRYING OUT THE INVENTION An embodiment of the present invention will be described below with reference to FIGS. The airflow classifier 1 according to the present embodiment has the same basic structure as the above-described conventional airflow classifier 01, and has an exhaust chamber in a small-diameter cylindrical exhaust chamber case 2a in order from the top with a common vertical center axis. 2, a dispersion chamber in a medium-diameter flat cylindrical dispersion chamber case 3a, a guide chamber in a lower wide cone-shaped guide chamber case 4a 4, a large-diameter cylindrical classification chamber case 5a, a classification chamber 5, the same diameter The secondary air intake chamber 6 is formed by the secondary air intake chamber 6 and the recovery hopper 7 having an upper wide cone shape.

【0029】なお本実施の形態では気流分級機1の回収
ホッパー7の下端開口の下には、乾式のふるい8が配設
されており、同ふるい8のふるい目は106μmである。
In this embodiment, a dry type sieve 8 is arranged below the lower end opening of the recovery hopper 7 of the airflow classifier 1, and the sieve 8 has a sieve size of 106 μm.

【0030】円筒状の排気室ケース2aからは水平接線
方向に排気管12が延出してブロワ吸引路12aが形成さ
れ、中央部に上広円錐体2bが挿入され、その周囲の排
気室2における図2において時計回りの旋回気流がブロ
ワ吸引路12aから接線方向に排出される。
The exhaust pipe 12 extends in the horizontal tangential direction from the cylindrical exhaust chamber case 2a to form a blower suction passage 12a, and an upper wide cone 2b is inserted in the central portion of the exhaust chamber 2 around it. In FIG. 2, the clockwise swirling airflow is discharged tangentially from the blower suction passage 12a.

【0031】この排気室2の下に位置する分散室3の分
散室ケース3aからは水平接線方向に1次空気供給管13
が延出して1次空気供給路13aが形成され、中央に円筒
状の連通管23が設けられて下方の分級室5と上方の排気
室2とを連通している。
From the dispersion chamber case 3a of the dispersion chamber 3 located below the exhaust chamber 2, the primary air supply pipe 13 is arranged in the horizontal tangential direction.
To extend to form a primary air supply passage 13a, and a cylindrical communication pipe 23 is provided in the center to connect the lower classification chamber 5 and the upper exhaust chamber 2 to each other.

【0032】そして図3に示すように水平方向に指向し
た1次空気供給管13に対して上方から斜め下方に延びた
流体供給管33が1次空気供給管13に約45度の鋭角に結合
している。なお流体供給管33と1次空気供給管13の結合
角度は、15度から75度の範囲の鋭角ならば良好な結果が
得られる。
As shown in FIG. 3, a fluid supply pipe 33 extending obliquely downward from above with respect to the primary air supply pipe 13 oriented horizontally is coupled to the primary air supply pipe 13 at an acute angle of about 45 degrees. is doing. Good results can be obtained if the coupling angle between the fluid supply pipe 33 and the primary air supply pipe 13 is an acute angle in the range of 15 to 75 degrees.

【0033】同流体供給管33の流体供給路33aから供給
される流体と1次空気供給路13aから供給される1次空
気とは鋭角に合流して分散室3の内周面に沿って図2に
おいて時計回りの旋回気流を形成する。
The fluid supplied from the fluid supply passage 33a of the fluid supply pipe 33 and the primary air supplied from the primary air supply passage 13a merge at an acute angle and are drawn along the inner peripheral surface of the dispersion chamber 3. At 2, a clockwise swirling air flow is formed.

【0034】流体供給管33の一部から鉛直上方に向けて
漏斗33bが突出形成されており、同漏斗33bに粉粒体が
投入され、同伴空気とともに流体供給路33aを通って固
気混合流体として分散室3に供給される。
A funnel 33b is formed so as to project vertically upward from a part of the fluid supply pipe 33, and the granular material is put into the funnel 33b and passes through the fluid supply passage 33a together with the entrained air to form a solid-gas mixture fluid. Is supplied to the dispersion chamber 3.

【0035】分散室3の下のガイド室4内には前記連通
管23から下方へ末広がりに延出した円錐状のガイドコー
ン14が延設されている。ガイドコーン14の凹出した内側
は連通管23を介して排気室2と連通している。
In the guide chamber 4 below the dispersion chamber 3, a conical guide cone 14 extending downward from the communication pipe 23 is provided. The recessed inside of the guide cone 14 communicates with the exhaust chamber 2 via a communication pipe 23.

【0036】前記排気室2内の上広円錐体2bから中心
を鉛直下方に垂下した支持棒2cが連通管23を貫通して
ガイド室4からその下の分級室5まで達しており、この
支持棒2の下端に下広円錐状の分級コーン15が分級室5
内に吊設されている。
A support rod 2c hanging vertically downward from the upper wide cone 2b in the exhaust chamber 2 penetrates the communication pipe 23 to reach from the guide chamber 4 to the classification chamber 5 therebelow. At the lower end of the rod 2, there is a lower wide cone-shaped classification cone 15 in the classification chamber 5.
It is suspended inside.

【0037】分級室5の下の2次空気吸気室6には中央
に下広円錐体6bが突設され、その周囲で2次空気吸気
室ケース6a内周面に沿って螺旋状に内プレート6cが
内装されている。
A lower wide cone 6b is provided at the center of the secondary air intake chamber 6 below the classification chamber 5, and a spiral inner plate is formed around the lower wide cone 6b along the inner peripheral surface of the secondary air intake chamber case 6a. 6c is installed.

【0038】そして2次空気吸気室ケース6aからは水
平接線方向に2次空気供給管16が延出して2次空気供給
路16aが形成され、同2次空気供給路16aから供給され
る2次空気は2次空気吸気室6で螺旋状の内プレート6
cに案内されて螺旋状の図2において時計回りの旋回気
流を形成する。
The secondary air supply pipe 16 extends in the horizontal tangential direction from the secondary air intake chamber case 6a to form a secondary air supply passage 16a. The secondary air supply passage 16a supplies the secondary air. In the secondary air intake chamber 6, the air is a spiral inner plate 6
The spiral swirling airflow in FIG. 2 is formed by being guided by c.

【0039】本気流分級機1は、以上のような構造をし
ており、ブロワ吸引路12aから吸引を行い、流体供給管
33の漏斗33bに原料である粉粒体を投入すると、1次空
気供給路13aから1次空気が分散室3に水平接線方向に
供給され、粉粒体が投入された流体供給路33aからは同
伴空気とともに固気混合流体として斜め上方から前記水
平に供給される1次空気に約45度の鋭角に分散室3の分
級開始点の直前で合流して分散室3に導入される(図3
参照)。
The airflow classifier 1 has the above-mentioned structure and sucks from the blower suction passage 12a to supply the fluid to the fluid supply pipe.
When the powder or granules as a raw material is charged into the funnel 33b of 33, the primary air is supplied from the primary air supply passage 13a to the dispersion chamber 3 in the horizontal tangential direction, and the fluid supply path 33a into which the powder or granules are charged is supplied. Along with the entrained air, as a solid-gas mixture fluid, the primary air that is horizontally supplied from diagonally above is merged at an acute angle of about 45 degrees just before the classification start point of the dispersion chamber 3 and introduced into the dispersion chamber 3 (FIG. 3).
reference).

【0040】したがって固気混合流体の流れを1次空気
が妨げることなく乱れを生じさせずに自然に合流し、分
散室3に導入された固気混合流体は、分散室3の内周壁
に沿って生じる旋回気流により適度に分散し、ガイドコ
ーン14に案内されて旋回しながら下降して分級室5に周
縁部から入っていく。
Therefore, the flow of the solid-gas mixture fluid naturally joins without disturbing the primary air without causing turbulence, and the solid-gas mixture fluid introduced into the dispersion chamber 3 flows along the inner peripheral wall of the dispersion chamber 3. The particles are appropriately dispersed by the swirling airflow generated as a result, and are guided by the guide cone 14 to descend while swirling and enter the classification chamber 5 from the peripheral portion.

【0041】他方2次空気吸気室6には、2次空気供給
路16aから2次空気が吸入され、旋回気流を形成して前
記分級室5の固気混合流体の旋回速度を高め、分級室5
で粉粒体を遠心力を利用して粒径の大きさ順に遠心方向
に分布させる。すなわち粉粒体は中心から離れる程粒径
が大きくなるよう分布する。
On the other hand, the secondary air is sucked into the secondary air intake chamber 6 from the secondary air supply passage 16a to form a swirling airflow to increase the swirling speed of the solid-gas mixture fluid in the classifying chamber 5 to increase the swirling speed. 5
Using the centrifugal force, the particles are distributed in the centrifugal direction in the order of particle size. That is, the particles are distributed such that the particle size increases as the distance from the center increases.

【0042】分級室5の中心部に開口した連通管23を通
して分級室5の中心付近の微粉が排気室2に吸引されて
ブロワ吸引路12aから排出され、残りの周縁部の粗粉は
周縁部を下降して回収ホッパー7から落下して回収され
る。
Fine powder in the vicinity of the center of the classification chamber 5 is sucked into the exhaust chamber 2 through the communication pipe 23 opened in the center of the classification chamber 5 and discharged from the blower suction passage 12a. And is dropped and collected from the collection hopper 7.

【0043】こうして粉粒体が微粉と粗粉に分級され
る。排出される微粉は比較的粒径の小さい粒度分布を示
し、回収される粗粉は比較的粒径の大きい粒度分布を示
す。
Thus, the granular material is classified into fine powder and coarse powder. The discharged fine powder has a relatively small particle size distribution, and the recovered coarse powder has a relatively large particle size distribution.

【0044】本気流分級機1は、固気混合流体と1次空
気が鋭角に合流するので、固気混合流体の流れを1次空
気が妨げることなく乱れを生じさせずに自然に合流する
ことができ、固気混合流体中の粉粒体に過度の分散力を
与えず、粉粒体の分散室内周壁への衝突力や粉粒体どう
しの相互衝突力を緩和し、破砕され易い粉粒体を分級し
ても適度に分散して摩損を低減し有効成分粒径の成分を
歩留まり良く抽出することができる。
In the present air flow classifier 1, the solid-gas mixture fluid and the primary air merge at an acute angle, so that the flow of the solid-gas mixture fluid is naturally merged without disturbing the primary air without causing turbulence. It does not give an excessive dispersion force to the powder particles in the solid-gas mixture fluid, reduces the collision force of the particles on the inner wall of the dispersion chamber and the mutual collision force between the particles, and the particles are easily crushed. Even if the body is classified, the particles can be dispersed appropriately to reduce the wear and the components having the particle diameter of the active ingredient can be extracted with good yield.

【0045】本気流分級機1により甘味剤(エリスリト
ール)を原料として前記従来の気流分級機におけると略
同じ分級条件で分級試験を行った結果を図4の表1に示
す。なお本案が上記した方法により分級した場合であ
り、本案は1次空気供給管13と流体供給管33の役割を
交換し、1次空気供給管13から固気混合流体を供給し流
体供給管33から1次空気を供給して分級した場合であ
る。
Table 1 in FIG. 4 shows the results of a classification test conducted by the present air flow classifier 1 using a sweetener (erythritol) as a raw material under substantially the same classification conditions as in the conventional air flow classifier. The present case is a case where classification is performed by the above-mentioned method, and the present invention exchanges the roles of the primary air supply pipe 13 and the fluid supply pipe 33, and supplies the solid-gas mixture fluid from the primary air supply pipe 13 to supply the fluid supply pipe 33. This is the case where the primary air is supplied from the above to perform classification.

【0046】原料の甘味剤(エリスリトール)は、従来
,の場合と同じものを使用しており、試験条件は従
来と全く同じである。本案の場合の試験結果をみる
と、抽出される有効成分粒径(45〜106μm)が含まれ
る粗粉の割合が82.5%と大きく、その中で有効成分粒径
(45〜106μm)の成分割合が21.56%あり、分級する前
の原料の有効成分粒径の量に対する回収される粗粉に含
まれる有効成分粒径の量の割合である有効成分粒径回収
率は、72.5%と高い割合を示し、歩留まりが良い。
The raw material sweetener (erythritol) used is the same as in the conventional case, and the test conditions are exactly the same as in the conventional case. Looking at the test results in the case of this plan, the ratio of the coarse powder containing the extracted active ingredient particle size (45 to 106 μm) was as large as 82.5%, and the ratio of the active ingredient particle size (45 to 106 μm) Is 21.56%, and the active ingredient particle size recovery rate, which is the ratio of the amount of the active ingredient particle size contained in the recovered coarse powder to the amount of the active ingredient particle size of the raw material before classification, is as high as 72.5%. Shows good yield.

【0047】また82.5%と大きな割合の粗粉のうちで、
再使用可能な有効成分粒径より大きい粒径(>106μ
m)の成分割合が76.00%と大きな割合を占め、この大
きな粒径成分は回収ホッパー7から回収された粗粉をふ
るい目106μmのふるい8がふるい分けして取り出して
おり、再度分級に供して有効成分粒径の成分を抽出する
ことができるので、益々歩留まりが良くなる。
Of the large proportion of coarse powder of 82.5%,
Particle size larger than reusable active ingredient particle size (> 106μ)
The component ratio of m) occupies a large ratio of 76.00%, and this large particle size component is obtained by sieving the coarse powder recovered from the recovery hopper 7 through the sieve 8 with a sieve size of 106 μm, which is effective for classification again. Since the component having the component particle size can be extracted, the yield is further improved.

【0048】なお本案と本案とでは、有効成分粒径
回収率において本案の方が良好な結果となっている。
本気流分級機1は、従来の気流分級機の流体供給路に新
たに鋭角に結合する流体供給路を設ければよく、簡単な
加工で低コストに構成することができる。
In this case and in the case of the present case, the present case shows a better result in terms of the recovery rate of the particle diameter of the active ingredient.
The airflow classifier 1 may be constructed by a simple process and at a low cost as long as a fluid supply path that is newly connected to the fluid supply path of the conventional airflow classifier is connected to form an acute angle.

【0049】比較的破砕され易い粉粒体である甘味剤
(エリスリトール)を原料として使用して分級試験をし
たが、本気流分級機1は医薬品や農薬あるいは食品など
の比較的に破砕され易い粉粒体について分級し有効成分
粒径の成分を抽出するのに適している。
A classification test was carried out using a sweetener (erythritol), which is a powder that is relatively easily crushed, as a raw material. The airflow classifier 1 is a powder that is relatively easily crushed such as pharmaceuticals, pesticides or foods. It is suitable for classifying granules and extracting active ingredient particle size components.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施の形態に係る気流分級機の縦断
面図である。
FIG. 1 is a vertical sectional view of an airflow classifier according to an embodiment of the present invention.

【図2】同上面図である。FIG. 2 is a top view of the same.

【図3】要部側断面図である。FIG. 3 is a side sectional view of a main part.

【図4】本気流分級機による試験結果および分級条件を
示す表1である。
FIG. 4 is a table 1 showing test results and classification conditions by the airflow classifier.

【図5】従来の気流分級機の縦断面図である。FIG. 5 is a vertical sectional view of a conventional airflow classifier.

【図6】同上面図である。FIG. 6 is a top view of the same.

【図7】同従来の気流分級機による試験結果および分級
条件を示す表2である。
FIG. 7 is a table 2 showing test results and classification conditions by the conventional airflow classifier.

【符号の説明】[Explanation of symbols]

1…気流分級機、2…排気室、3…分散室、4…ガイド
室、5…分級室、6…2次空気吸気室、7…回収ホッパ
ー、8…ふるい、12…排気管、13…1次空気供給管、14
…ガイドコーン、15…分級コーン、16…2次空気供給
管、23…連通管、33…流体供給管。
1 ... Air flow classifier, 2 ... Exhaust chamber, 3 ... Dispersion chamber, 4 ... Guide chamber, 5 ... Classifying chamber, 6 ... Secondary air intake chamber, 7 ... Recovery hopper, 8 ... Sieve, 12 ... Exhaust pipe, 13 ... Primary air supply pipe, 14
… Guide cone, 15… Classification cone, 16… Secondary air supply pipe, 23… Communication pipe, 33… Fluid supply pipe.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI // A23L 1/236 A23L 1/236 A (72)発明者 田中 伸一 東京都渋谷区千駄ヶ谷5−27−7 日本 ブランズウィックビル 株式会社セイシ ン企業内 (72)発明者 大熊 盛之 静岡県藤枝市源助301 科研製薬株式会 社 総合研究所内 (72)発明者 加藤 保富 静岡県藤枝市源助301 科研製薬株式会 社 総合研究所内 (56)参考文献 特開 昭60−38072(JP,A) 実開 平5−39687(JP,U) (58)調査した分野(Int.Cl.7,DB名) B07B 1/00 - 15/00 ─────────────────────────────────────────────────── ─── Continuation of front page (51) Int.Cl. 7 Identification code FI // A23L 1/236 A23L 1/236 A (72) Inventor Shinichi Tanaka 5-27-7 Sendagaya, Shibuya-ku, Tokyo Japan Brunswick Building Stocks Company In-house company (72) Inventor Morinoyuki Okuma Gensuke Fujieda-shi, Shizuoka 301 Kaken Pharmaceutical Co., Ltd. Research Institute (72) Inventor Yasutomi Kato Fujieda-shi Gensuke 301 Kaken Pharmaceutical Co., Ltd. Research Institute (56 ) References JP-A-60-38072 (JP, A) Actual Kaihei 5-39687 (JP, U) (58) Fields investigated (Int.Cl. 7 , DB name) B07B 1/00-15/00

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 粉粒体と1次空気の固気混合流体を流入
して旋回気流を形成して分散する円筒形状の分散室と、
同分散室の下方に2次空気を流入して粗粉と微粉に遠心
分離する分級室を備えた気流分級機において、 前記分散室に前記固気混合流体を流入する混合流体流入
路とは別に前記分散室に空気のみを流入する空気流入路
が前記円筒形状の分散室に水平接線方向に指向して形成
され、 前記混合流体流入路は前記円筒形状の分散室に上方から
下方斜め接線方向に指向して前記空気流入路と鋭角に交
わるように形成され、 前記混合流体流入路と前記空気流入路から流入された
気混合流体と空気流体が前記分散室内の分級開始点の直
前で鋭角に合流することを特徴とする気流分級機。
1. A cylindrical dispersion chamber in which a solid-gas mixture fluid of powder and granules and primary air is introduced to form a swirling air flow and to be dispersed.
An air flow classifier equipped with a classifying chamber for injecting secondary air into the lower part of the dispersion chamber to centrifuge it into coarse powder and fine powder, separately from a mixed fluid inflow path for flowing the solid-gas mixed fluid into the dispersion chamber. An air inflow path through which only air flows into the dispersion chamber
Formed in the cylindrical dispersion chamber in the horizontal tangential direction
The mixed fluid inflow passage is inserted into the cylindrical dispersion chamber from above.
Point in a diagonally downward tangential direction and intersect the air inlet channel at an acute angle.
The air-flow classifier, characterized in that the solid-gas mixture fluid and the air fluid, which are formed to have different shapes and flow in from the mixed fluid inflow path and the air inflow path, merge at an acute angle immediately before the classification start point in the dispersion chamber. .
【請求項2】 前記粉粒体は、医薬品,農薬,食品など
の比較的に破砕され易い粉粒体であることを特徴とする
請求項1記載の気流分級機。
2. The airflow classifier according to claim 1, wherein the powder or granule is a powder or granule that is relatively easily crushed such as pharmaceuticals, agricultural chemicals, and foods.
JP2001220502A 2001-07-19 2001-07-19 Airflow classifier Expired - Fee Related JP3518751B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001220502A JP3518751B2 (en) 2001-07-19 2001-07-19 Airflow classifier

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001220502A JP3518751B2 (en) 2001-07-19 2001-07-19 Airflow classifier

Publications (2)

Publication Number Publication Date
JP2003033726A JP2003033726A (en) 2003-02-04
JP3518751B2 true JP3518751B2 (en) 2004-04-12

Family

ID=19054311

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001220502A Expired - Fee Related JP3518751B2 (en) 2001-07-19 2001-07-19 Airflow classifier

Country Status (1)

Country Link
JP (1) JP3518751B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4907887B2 (en) * 2005-03-15 2012-04-04 太平洋セメント株式会社 Method for separating foreign particles
AR068839A1 (en) * 2007-10-09 2009-12-09 Cbp Carbon Ind Inc PROCESOPARA CLASSIFY PARTICLES IN PIROLIZED CARBON
JP2011045819A (en) * 2009-08-26 2011-03-10 Nisshin Seifun Group Inc Powder classifying apparatus
JP6452997B2 (en) * 2014-09-01 2019-01-16 日本ニューマチック工業株式会社 Airflow classifier
CN105170465A (en) * 2015-08-28 2015-12-23 长沙深湘通用机器有限公司 Gravity concentration method
CN115672506A (en) * 2022-10-18 2023-02-03 江苏波杜农牧股份有限公司 Multistage grinding device for feed and using method thereof

Also Published As

Publication number Publication date
JP2003033726A (en) 2003-02-04

Similar Documents

Publication Publication Date Title
US10926270B2 (en) Method for operating a multi-cyclone for the separation of fine and very fine grain as well as a multi-cyclone
US4743363A (en) Classifying cyclone
JP2000015126A (en) Fluidized-bed jet crusher
JP3518751B2 (en) Airflow classifier
US4715951A (en) Apparatus for separating granulate material
US5873156A (en) Coal pulverizer and method of improving flow therein
US4131239A (en) Fluid energy mill for large particulate materials
US4637556A (en) High efficiency separator system
US4793917A (en) Centrifugal classifier for superfine powders
JP2003265975A (en) Dry media stirring type pulverizer
US6202854B1 (en) Air classifier for particulate material
JPS63501776A (en) Method and device for improving the crushing efficiency of pressure chamber crushers
JP3463078B2 (en) Airflow classifier
JP2008272627A (en) Powder classification apparatus
JP2005288270A (en) Crushing and classifying apparatus
JP3180420B2 (en) Powder classifier
JP2559775B2 (en) Powder separation device and powder processing unit
JPS63296857A (en) Separation of fine particles
JPH0574681U (en) Multi-stage classifier
JPH01207152A (en) Gaseous flow classifier
JP3091281B2 (en) Collision type air crusher
JPH0760194A (en) Pneumatic classifier and pneumatic classifying method
JPH01207178A (en) Pneumatic classifying machine
JPH02303559A (en) Gas flow classifier
JPH06226207A (en) Dry classifier

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040121

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040122

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090206

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100206

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110206

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120206

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130206

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130206

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140206

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees