JP3518118B2 - Electrochemical concentration measurement method - Google Patents

Electrochemical concentration measurement method

Info

Publication number
JP3518118B2
JP3518118B2 JP34383895A JP34383895A JP3518118B2 JP 3518118 B2 JP3518118 B2 JP 3518118B2 JP 34383895 A JP34383895 A JP 34383895A JP 34383895 A JP34383895 A JP 34383895A JP 3518118 B2 JP3518118 B2 JP 3518118B2
Authority
JP
Japan
Prior art keywords
partition wall
sample
electrode
opening
electrochemical concentration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP34383895A
Other languages
Japanese (ja)
Other versions
JPH09184818A (en
Inventor
昭夫 刈米
郁子 原田
隆造 林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
New Oji Paper Co Ltd
Oji Holdings Corp
Original Assignee
Oji Holdings Corp
Oji Paper Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oji Holdings Corp, Oji Paper Co Ltd filed Critical Oji Holdings Corp
Priority to JP34383895A priority Critical patent/JP3518118B2/en
Publication of JPH09184818A publication Critical patent/JPH09184818A/en
Application granted granted Critical
Publication of JP3518118B2 publication Critical patent/JP3518118B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Investigating Or Analysing Biological Materials (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は液体試料を分析する
にあたり、簡単な構成でありながら、高精度測定が可能
な、電極を利用して電流量変化、電位変化等の種々の変
化量を検出する電気化学的濃度測定装置および測定方法
に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention detects various changes such as changes in current amount and changes in potential by using electrodes, which are capable of highly accurate measurement with a simple structure when analyzing a liquid sample. The present invention relates to an electrochemical concentration measuring device and a measuring method.

【0002】[0002]

【従来の技術】酵素の持つ分子認識・変換機能と電極と
を組み合わせたバイオセンサーは、高感度かつ高選択的
な分析デバイスとして広く研究されてきている。その原
理は、酵素反応で消費される、あるいは生成する物質の
量を測定することで基質に対する物質情報を得るという
ものである。例えばグルコース酸化酵素を電極上に固定
化した固定化酵素電極を用いたバイオセンサーでは、酵
素を触媒とするグルコースの酸化反応で生成する過酸化
水素を電流検出することにより、測定溶液中のグルコー
ス濃度を求めることができる。
Biosensors, which combine the molecular recognition / conversion functions of enzymes with electrodes, have been widely studied as highly sensitive and highly selective analytical devices. The principle is to obtain the substance information for the substrate by measuring the amount of the substance consumed or produced in the enzymatic reaction. For example, in a biosensor using an immobilized enzyme electrode in which glucose oxidase is immobilized on the electrode, the concentration of glucose in the measurement solution is measured by detecting the hydrogen peroxide generated by the oxidation reaction of glucose using the enzyme as a catalyst. Can be asked.

【0003】このような目的の測定装置としては、スタ
ーラー等の均一混合手段を備えたバッチ式セルに測定電
極を備え試料を緩衝液と均一に混合して測定するバッチ
式測定装置、また連続する緩衝液等の移動相の流れに試
料を注入しフローセルに装着された検出電極で測定を行
うフロー式測定装置等が知られている。例えば、特開昭
52−123695号では撹拌機構を備えたバッチ式測
定セルに試料注入を行い測定する装置が開示されてい
る。注入された試料は撹拌機構により予め測定セルに貯
留された一定容量の緩衝液等と均一に混合され検出電極
で試料に対する応答値を得る。また、特開昭59−20
2066号では緩衝液を移動相としてポンプ等の送液機
構でフローセルに供給し、試料注入口より注入した試料
を移動相の流れに乗せてフローセルまで搬送して応答値
を得るフロー式計測装置が開示されている。
As a measuring device for such a purpose, a batch type measuring device having a measuring electrode in a batch type cell equipped with a uniform mixing means such as a stirrer, and a sample is uniformly mixed with a buffer solution, and a continuous measuring device is used. 2. Description of the Related Art Flow-type measuring devices and the like are known in which a sample is injected into a flow of a mobile phase such as a buffer solution, and measurement is performed with a detection electrode attached to a flow cell. For example, Japanese Unexamined Patent Publication No. 52-123695 discloses an apparatus for injecting a sample into a batch type measuring cell equipped with a stirring mechanism for measurement. The injected sample is uniformly mixed with a constant volume of buffer solution or the like stored in the measurement cell in advance by the stirring mechanism, and the response value to the sample is obtained by the detection electrode. In addition, JP-A-59-20
In No. 2066, a flow-type measurement device that supplies a buffer solution as a mobile phase to a flow cell by a liquid-feeding mechanism such as a pump and places the sample injected from the sample injection port on the flow of the mobile phase and conveys it to the flow cell to obtain a response value It is disclosed.

【0004】また簡易な測定装置として、特開平7−1
59366号では試料を直接測定電極と接触させて簡便
に測定を行う装置が開示されている。
As a simple measuring device, Japanese Patent Laid-Open No. 7-1
Japanese Patent No. 59366 discloses a device for contacting a sample directly with a measurement electrode to perform a simple measurement.

【0005】[0005]

【発明が解決しようとする課題】しかし、特開昭52−
123695号で開示されているように、撹拌機構を備
えたバッチ式測定装置の場合、測定精度を確保するため
には緩衝液と試料液は瞬時に混合均一化される必要があ
り、また電極出力値の時間的変化量や平衡状態での電極
出力値の何れを用いて測定する場合でも電極に接する溶
液の均一な流れが求められ撹拌精度等の確保が必要とな
り装置の複雑化が避けられない。
However, Japanese Patent Laid-Open No. 52-
As disclosed in No. 123695, in the case of a batch-type measuring device equipped with a stirring mechanism, the buffer solution and the sample solution need to be instantaneously mixed and homogenized in order to ensure measurement accuracy, and the electrode output Regardless of the time variation of the value or the output value of the electrode in the equilibrium state, a uniform flow of the solution in contact with the electrode is required and it is necessary to secure stirring accuracy, etc. .

【0006】さらにバッチ式反応層に添加された試料は
撹拌機構で混合されながら測定電極と接触するので、秒
単位の迅速な電極出力値変化を知りたい場合には試料が
完全に緩衝液と混合されるまでの時間の出力値は不確か
なものとなってしまうという問題点があった。また、特
開昭59−202066号で開示されているようなフロ
ー式計測装置の検出器としてアンペロメトリック検出電
極を用いた場合でも、フローインジェクション分析装置
は注入された試料が移動層の流れによって希釈されなが
ら検出部まで移送されるので流量精度を確保するために
ポンプにコストがかかる欠点があった。またバッチ式測
定装置と同様に注入する試料の容量も正確に制御しなけ
ればならないという欠点がある。
Further, since the sample added to the batch type reaction layer contacts the measurement electrode while being mixed by the stirring mechanism, the sample is completely mixed with the buffer solution in order to know the rapid change in the electrode output value in seconds. There was a problem that the output value of the time until it became uncertain. Further, even when an amperometric detection electrode is used as a detector of a flow type measuring device as disclosed in JP-A-59-202066, the flow injection analysis device uses an injected sample depending on the flow of the moving layer. Since it is transferred to the detection unit while being diluted, there is a drawback that the pump is costly in order to ensure flow rate accuracy. Further, similarly to the batch type measuring device, there is a drawback that the volume of the sample to be injected must be controlled accurately.

【0007】また特開平7−159366号のように試
料液をそのまま検出電極に接触させるように装置を構成
すれば確かに溶液の撹拌や送液が不要になるが、試料液
が検出電極に接触しだすとともに応答値が出力されるこ
ととなるので試料液に電極部を浸漬する際の試料液の急
激な動きが応答値に影響を与えてしまい精度良い測定が
できない。
Further, if the apparatus is constructed so that the sample solution is brought into direct contact with the detection electrode as in Japanese Patent Laid-Open No. 7-159366, it is certainly unnecessary to stir or feed the solution, but the sample solution is brought into contact with the detection electrode. Since the response value is output at the same time as starting, the rapid movement of the sample solution when the electrode portion is immersed in the sample solution affects the response value, and accurate measurement cannot be performed.

【0008】本発明は上記の問題点に鑑みて行われたも
のであり、少なくとも作用電極を備え、電流量変化、電
位変化等の種々の電気的変化量を求めて濃度測定をおこ
なう装置において、より簡便な構成の装置とその装置を
用いた簡便な測定方法を提供することを目的とする。
The present invention has been made in view of the above problems, and in an apparatus for measuring concentration, which comprises at least a working electrode, obtains various amounts of electrical changes such as changes in current amount and changes in potential, An object of the present invention is to provide a device having a simpler configuration and a simple measuring method using the device.

【0009】[0009]

【課題を解決するための手段】本発明の電気化学的濃度
測定方法は、少なくとも作用電極を有し、水密性を有す
る開閉可能な隔壁を持つ試料液を導入するための開口部
を有するセル室を備えた電気化学的濃度測定装置を使用
し、セル室内に緩衝液が充填され、かつ隔壁を閉鎖した
状態で隔壁の外側に試料が導入された状態の次に隔壁の
少なくとも一部を開放し作用電極と試料液を接触せしめ
て測定を行うことを特徴とする電気化学的濃度測定方法
である。
The electrochemical concentration measuring method of the present invention comprises a cell chamber having at least a working electrode and an opening for introducing a sample solution having a watertight openable / closable partition wall. Using an electrochemical concentration measuring device equipped with, the cell chamber was filled with a buffer solution and the partition wall was closed.
In the state where the sample is introduced outside the partition wall,
Open at least a part to bring the working electrode and sample solution into contact.
Electrochemical concentration measuring method characterized by performing measurement
Is.

【0010】上記電気化学的濃度測定装置が、更に、隔
壁の開閉運動が隔壁面内方向で行われるように構成され
ることが、より精度の高い測定を行う上で好ましい。
The above-mentioned electrochemical concentration measuring device is further provided with a remote controller.
The opening and closing movement of the wall is configured to be performed in the in-plane direction of the partition wall.
It is preferable to perform measurement with higher accuracy.

【0011】上記電気化学的濃度測定装置が、少なくと
も開閉運動中に開口部の縁部となる隔壁の端部に向かっ
て隔壁の肉厚が薄くなるよう構成されていることも、よ
り精度の高い測定を行う上で好ましい。上記電気化学的
濃度測定装置が、更に、開口部の外側に試料液を保持す
るための試料液室を更に備えることも、より精度の高い
測定を行う上で好ましい。
At least the above-mentioned electrochemical concentration measuring device is required.
Also toward the edge of the bulkhead, which is the edge of the opening during the opening and closing movement.
It is also possible that the partition wall is configured to be thin.
It is preferable for highly accurate measurement. Above electrochemical
The concentration measuring device further holds the sample liquid outside the opening.
It is more accurate to have a sample liquid chamber for
It is preferable for measurement.

【0012】[0012]

【発明の実施の形態】本発明で使用する作用電極は電流
量変化、電位変化など種々の変化量を検出する検出電極
を用いることができるが、例えばアンペロメトリック検
出法で過酸化水素等を検出する場合には従来よく用いら
れている白金等の貴金属やまたフェロシアン化カリウ
ム、NADHなどの電極活性物質を測定する場合にはカ
ーボンなどをその官能部に持つことができる。
BEST MODE FOR CARRYING OUT THE INVENTION The working electrode used in the present invention may be a detection electrode for detecting various changes such as a change in current amount and a change in potential. For example, hydrogen peroxide or the like may be detected by an amperometric detection method. In the case of detection, a noble metal such as platinum which is often used conventionally, or in the case of measuring an electrode active substance such as potassium ferrocyanide or NADH, carbon or the like can be contained in the functional part.

【0013】また、白金やカーボン等の電極官能部表面
あるいは電極表面近傍にその電極で検出可能な物質が関
与する反応を触媒する酵素などの触媒物質を公知の方法
で固定化することにより、機能性酵素電極として利用す
ることもできる。利用可能な酵素の一例を挙げると、白
金等の電極素材で過酸化水素検出用作用電極を形成する
場合には、通常知られている過酸化水素生成型酸化還元
酵素例えば、グルコースオキシダーゼ(E.C.1.
1.3.4)、ヘキソースオキシダーゼ(E.C.1.
1.3.5)、ガラクトースオキシダーゼ(E.C.
1.1.3.9)、アルコールオキシダーゼ(E.C.
1.1.3.13)などを固定化して用いることが可能
である。これらの酵素を単独であるいは他の酵素と例え
ばグルコアミラーゼとグルコースオキシダーゼのように
過酸化水素生成型酸化還元酵素とその酵素の基質を生成
する酵素等を組み合わせて固定化することができる。固
定化酵素膜は電極感応部表面に直接あるいは選択透過膜
等の他の機能性膜を介して設置することが可能である。
Further, by immobilizing a catalytic substance such as an enzyme which catalyzes a reaction involving a substance detectable by the electrode on the surface of the functional portion of the electrode such as platinum or carbon or in the vicinity of the electrode by a known method, the function can be improved. It can also be used as a sex enzyme electrode. As an example of an enzyme that can be used, when a working electrode for detecting hydrogen peroxide is formed with an electrode material such as platinum, a commonly known hydrogen peroxide-producing oxidoreductase such as glucose oxidase (E. C.1.
1.3.4), hexose oxidase (EC 1.
1.3.5), galactose oxidase (EC
1.1.3.9), alcohol oxidase (EC
It is possible to immobilize 1.1.3.13) and the like. These enzymes can be immobilized alone or in combination with other enzymes, for example, a hydrogen peroxide-producing oxidoreductase such as glucoamylase and glucose oxidase, and an enzyme that produces a substrate for the enzyme. The immobilized enzyme membrane can be placed directly on the surface of the electrode sensitive part or through another functional membrane such as a permselective membrane.

【0014】本発明は作用電極と対極より構成される2
電極形式および作用電極、対極と参照電極より構成され
る3電極形式の電気化学的濃度測定装置に適用可能であ
るが、その電極系の少なくとも作用電極を開閉可能な隔
壁で外側(外側に試料液室を有する場合はその試料液
室)と分離されるセル室内部に設置する。もちろん対
極、参照電極も必要であればセル室内部に設置すること
ができる。
The present invention comprises a working electrode and a counter electrode.
It can be applied to an electrochemical concentration measuring device of an electrode type and a working electrode, and a three-electrode type composed of a counter electrode and a reference electrode. If it has a chamber, install it inside the cell chamber that is separate from the sample solution chamber. Of course, the counter electrode and the reference electrode can be installed inside the cell chamber if necessary.

【0015】特にアンペロメトリック検出法など試料測
定前に電極出力値を安定化させておく必要がある場合に
は電極系を構成するすべての電極をセル室内に配置する
ことが望ましい。セル室の構造は作用電極がその内部に
設置されており、電極表面あるいは電極表面近傍に酵素
を固定化してある場合には隔壁の開閉運動により固定化
膜が破損しない位置に設置することが望ましい。さら
に、隔壁により閉鎖されたセル室内部にその測定系に適
した緩衝液等の液体を保持し、かつ隔壁を閉鎖した状態
では隔壁の外側の試料液とお互いに混合汚染しない水密
性を持つ構造であることが望ましい。また、測定時に静
止した状態の試料液を得る上で、隔壁の外側に試料液室
を更に設けることが好ましい。隔壁の外側に試料液室を
設けないような場合は隔壁の外側に試料液を導入するこ
とになる。この試料液を導入することは少なくとも開口
部を試料液溜まりに浸けることを意味する。試料液溜ま
りとは容器等に貯留された試料であり、具体的にはビー
カー中の試料液から河川等の水まで想定されるものであ
る。
Especially when it is necessary to stabilize the electrode output value before measuring the sample, such as in the amperometric detection method, it is desirable to arrange all the electrodes constituting the electrode system in the cell chamber. The structure of the cell chamber is such that the working electrode is installed inside it, and when the enzyme is immobilized on the electrode surface or in the vicinity of the electrode surface, it is desirable to install it in a position where the immobilization membrane is not damaged by the opening and closing movement of the partition wall. . Furthermore, a structure that holds a liquid such as a buffer solution suitable for the measurement system inside the cell chamber closed by the partition wall and has a watertight property that does not mix and contaminate with the sample liquid outside the partition wall when the partition wall is closed Is desirable. Further, in order to obtain a sample liquid in a stationary state during measurement, it is preferable to further provide a sample liquid chamber outside the partition wall. In the case where the sample liquid chamber is not provided outside the partition wall, the sample liquid is introduced outside the partition wall. The introduction of this sample solution means that at least the opening is immersed in the sample solution pool. The sample liquid pool is a sample stored in a container or the like, and is specifically assumed to range from the sample liquid in a beaker to water in a river or the like.

【0016】実際の測定にあたっては、あらかじめ、こ
のように構成された測定装置のセル室に測定系に適した
緩衝液等の液体を充填する。充填する方法としては、セ
ル室用に開閉可能な供給口を別途設けて行っても良い
し、また、試料液を隔壁の外側に導入する前に緩衝液を
隔壁の外側に導入しておき、隔壁を開放することにより
セル室に充填を行っても良い。このような緩衝液の充填
と試料液の充填はその順序は問はず、装置構成によって
は同時に行うことも可能である。ここでは、以下、もっ
とも単純な構成で行える緩衝液の充填を先に行う方法に
ついて説明する。
In the actual measurement, the cell chamber of the measuring device thus constructed is filled with a liquid such as a buffer solution suitable for the measuring system in advance. As a method of filling, it may be performed by separately providing a supply port that can be opened and closed for the cell chamber, or before introducing the sample solution to the outside of the partition wall, the buffer solution is introduced to the outside of the partition wall, The cell chamber may be filled by opening the partition wall. The filling of the buffer solution and the filling of the sample solution may be performed at the same time depending on the device configuration, regardless of the order. Here, a method of filling the buffer solution first with the simplest configuration will be described below.

【0017】このようにして測定準備段階として緩衝液
等を内部に充填したセル室の隔壁を閉鎖しておき、さら
に、隔壁の外側に測定試料を導入する。試料液室を設け
た場合、試料液室の形状は特に問わないが、上部開放口
より試料液を滴下して充填を行い、測定後底部または側
面に設けた排出口を開放し排出する構造が簡便である。
In this way, in the measurement preparation stage, the partition wall of the cell chamber filled with the buffer solution or the like is closed, and the measurement sample is introduced to the outside of the partition wall. When the sample liquid chamber is provided, the shape of the sample liquid chamber is not particularly limited, but the structure is such that the sample liquid is dropped and filled from the upper opening port, and after the measurement, the outlet port provided on the bottom or side face is opened and discharged. It's simple.

【0018】隔壁の外側に試料液を導入し、好ましくは
導入時の液の動きが収まって、ほぼ静止状態になった
後、隔壁を開放して、試料液を作用電極に接触せしめ
る。従って、セル室及び隔壁の外側に液体が存在する状
態で隔壁が開口部を開放するので溶液の動きが急激にな
ることがなく、精度の良い測定が行える。試料液の導入
時の液の動きは必要ならば別途隔壁の外側に設けられた
検出手段により、その静止状態を知ることもできる。そ
のような検出手段としては流量計や圧力発信素子等が挙
げられる。
After the sample solution is introduced to the outside of the partition wall, and preferably the movement of the solution at the time of introduction is stopped so that the sample solution becomes almost stationary, the partition wall is opened to bring the sample solution into contact with the working electrode. Therefore, since the partition opens the opening in the state where the liquid exists outside the cell chamber and the partition, the movement of the solution does not become sharp and accurate measurement can be performed. If necessary, the movement of the liquid when the sample liquid is introduced can be known by the detection means separately provided outside the partition wall. Examples of such detecting means include a flow meter and a pressure transmitting element.

【0019】セル室の容積が試料液室の容積と比較して
十分小さければ、セル室内の緩衝液と試料液の混合はほ
とんど測定速度に影響を与えない。従って、測定速度を
重視する場合には、セル室の容積は試料液室を設けた場
合、その0.001〜0.05倍の範囲であることが望
ましい。尚セル室の容積があまり小さすぎると隔壁の表
面で生じる層流が作用電極に過度の影響を与えるので後
述のセル室の奥行きや、開口部面積とともに、留意する
必要がある。
If the volume of the cell chamber is sufficiently smaller than that of the sample solution chamber, the mixing of the buffer solution and the sample solution in the cell chamber has almost no effect on the measurement speed. Therefore, when importance is attached to the measurement speed, the volume of the cell chamber is preferably in the range of 0.001 to 0.05 times that of the sample liquid chamber when it is provided. If the volume of the cell chamber is too small, the laminar flow generated on the surface of the partition wall exerts an excessive influence on the working electrode. Therefore, it is necessary to pay attention to the depth of the cell chamber and the opening area described later.

【0020】また、隔壁を開放した場合に試料液が速や
かに作用電極表面に到達するように、つまり、セル室内
での試料液の分散が速やかに行われる上で、隔壁に対し
て垂直方向のセル室の奥行きが0.1mm〜3mmであ
ることが望ましい。これは特に、隔壁に対して対向する
セル室の奥の壁面に作用電極が配置されている場合に特
に好ましい。
Further, in order to quickly reach the working electrode surface when the partition wall is opened, that is, in order to disperse the sample solution in the cell chamber promptly, the sample solution in the direction vertical to the partition wall The depth of the cell chamber is preferably 0.1 mm to 3 mm. This is particularly preferable when the working electrode is arranged on the inner wall surface of the cell chamber facing the partition wall.

【0021】隔壁の開放は、開口部の必ずしも全部を開
放する必要はなく、一部を開放し試料液を接触させるこ
ともできる。隔壁の開放運動により僅かに起こる液の動
きが試料液をセル室内の作用電極表面まで到達せしめ出
力値を与える。この時に起こる液の動きはなるべく静か
に、かつ一様な動きを起こさせることが肝要であり、そ
のためには隔壁がその隔壁面内で開閉運動を行うことが
望ましい。つまり隔壁の開閉のための運動方向が隔壁面
内での摺動運動、言い換えれば引き戸的な運動(スライ
ド運動)であって、隔壁面に対して垂直方向に隔壁が動
作するような運動は好ましくはないことを意味する。
When the partition is opened, it is not always necessary to open all the openings, and it is also possible to open a part of the partition and bring it into contact with the sample solution. A slight movement of the liquid caused by the opening movement of the partition wall causes the sample liquid to reach the surface of the working electrode in the cell chamber and gives an output value. It is essential that the movement of the liquid at this time be as gentle and uniform as possible. For that purpose, it is desirable that the partition wall perform opening / closing movement within the partition wall surface. That is, the moving direction for opening and closing the partition wall is a sliding motion within the partition wall surface, in other words, a sliding door motion (sliding motion), and a motion in which the partition wall operates in a direction perpendicular to the partition wall surface is preferable. Means no.

【0022】隔壁の移動は滑らかな移動運動が得られる
ならばバネ等による移動、モーター等による移動など各
種の方法で行うことができる。さらに、前記移動をする
隔壁の端部が不規則な乱流を起こさないように、少なく
とも開閉運動中に開口部の縁部となる隔壁の端部に向か
って隔壁の肉厚が薄くなるよう構成されていることが望
ましい。より好ましくは隔壁断面が流線形で滑らかなこ
とが好ましい。すなわち、溶液中を運動する隔壁の端部
の厚みが薄ければ、隔壁の移動が引き起こす液の動きは
滑らかな再現性のある動きとなり、電極出力値に不規則
な影響を与えることはない。
The movement of the partition wall can be carried out by various methods such as movement by a spring or the like and movement by a motor or the like if a smooth movement can be obtained. Furthermore, the wall thickness of the partition wall is thinned toward at least the edge part of the partition wall that is the edge of the opening during the opening / closing motion so that the moving partition wall end does not cause irregular turbulence. It is desirable that More preferably, the partition wall cross section is streamlined and smooth. That is, when the thickness of the end of the partition wall moving in the solution is thin, the movement of the partition wall causes a smooth and reproducible movement of the partition wall and does not irregularly affect the electrode output value.

【0023】セル室と隔壁の配置は特に問わないが、隔
壁の開閉運動が垂直上下運動になるように配置すると良
い。電極出力値は、電極出力値の増加速度、電極出力値
の増加が飽和状態になった平衡電流値等、通常公知のデ
ータ処理方法を適用することが可能である。このように
構成された測定装置を用いて、上記の操作方法で測定を
行えば撹拌機構や送液機構等の複雑な機構を必要とせず
精度の良い測定を行うことが可能となる。
The arrangement of the cell chamber and the partition is not particularly limited, but it is preferable to arrange the partition so that the opening / closing movement of the partition is vertical up / down movement. As the electrode output value, it is possible to apply a generally known data processing method such as an increasing rate of the electrode output value, a balanced current value at which the increase of the electrode output value is saturated, or the like. When the measurement device having such a configuration is used to perform the measurement by the above-described operation method, it is possible to perform the measurement with high accuracy without requiring a complicated mechanism such as a stirring mechanism and a liquid feeding mechanism.

【0024】[0024]

【実施例】本発明の実施例を以下に示すが、本発明はこ
れに限定されるものではない。 〔実施例1〕本発明の一実施例を図について説明する。
図1は本発明の電気化学的濃度測定装置の一実施例の斜
視図であり、図2はその電気化学的濃度測定装置の展開
組み立て図である。図3及び図4はその電気化学的濃度
測定装置の縦断面図である。
EXAMPLES Examples of the present invention are shown below, but the present invention is not limited thereto. [Embodiment 1] An embodiment of the present invention will be described with reference to the drawings.
FIG. 1 is a perspective view of an embodiment of the electrochemical concentration measuring device of the present invention, and FIG. 2 is an exploded assembly view of the electrochemical concentration measuring device. 3 and 4 are vertical sectional views of the electrochemical concentration measuring device.

【0025】図に示すように、直径2mmの白金作用電
極(1)、銀・塩化銀参照電極(2)、白金対極(3)
を備えた電極基板(4)に3電極配置部分に対応した箇
所に面積100mm2の開口部を持った厚さ0.25m
mのスペーサー(6)を設置してセル室(5)を構成し
た。ここでセル室(5)と開口部を厳密に定義するとセ
ル室(5)はスペーサー(6)に設けられた奥行き0.
25mm、容積は25μlの空洞部分であり、開口部と
はこの空洞部分の後述の隔壁(8)に対向している開口
面をいう。
As shown in the figure, a platinum working electrode (1) having a diameter of 2 mm, a silver / silver chloride reference electrode (2), and a platinum counter electrode (3).
0.25 m thick with an opening of 100 mm 2 in the area corresponding to the 3 electrode arrangement part on the electrode substrate (4) equipped with
A cell chamber (5) was constructed by installing m spacers (6). When the cell chamber (5) and the opening are defined strictly here, the cell chamber (5) has a depth of 0.
It is a hollow portion having a volume of 25 mm and a volume of 25 μl, and the opening means an opening surface facing a partition wall (8) described later of this hollow portion.

【0026】白金作用電極の表面にはウシ血清アルブミ
ンとグルタルアルデヒドの混合水溶液を乾燥製膜した選
択透過膜を設け、さらにその上にグルコースオキシダー
ゼ、ウシ血清アルブミンとグルタルアルデヒドの100
mMリン酸緩衝液溶液を乾燥製膜した固定化酵素膜を設
けた。上記の3電極系を電極基板(4)に設置し各電極
系はポテンシオスタットに接続し、作用電極に対銀・塩
化銀電極0.6Vの電圧を引加し作用電極に流れる電流
値を電極出力値とした。
On the surface of the platinum working electrode, a selective permeation membrane prepared by drying a mixed aqueous solution of bovine serum albumin and glutaraldehyde was provided.
An immobilized enzyme membrane was formed by dry-casting a mM phosphate buffer solution. The above-mentioned three-electrode system is installed on the electrode substrate (4), each electrode system is connected to a potentiostat, and a voltage of 0.6 V against silver / silver chloride electrode is applied to the working electrode to determine the current value flowing to the working electrode. The electrode output value was used.

【0027】この電極基板に電極系に対応した箇所に1
00mm2のセル室(5)を持つ厚さ0.25mmのス
ペーサー(6)を密着させた。さらにスペーサーの外周
に沿ってコ字型の枠体(7)を設置し、コ字型枠体の凹
部に一致する大きさの隔壁(8)を設置した。隔壁は上
下方向にモーター(図示省略)で30cm/秒の速度で
移動可能である。さらにその外側に隔壁の押さえ板
(9)を設置し、試料液室(10)を設けた。試料液室
の下部には弁機能を持った試料液導入・排出口(11)
が、上部には試料液導入時のオーバーフロー、試料液排
出時の空気穴として開放口(12)がある。尚、隔壁
(8)が下方にあってセル室(5)と試料液室(10)
を隔離している状態の測定装置の断面を図3に示し、隔
壁(8)が上方に移動してセル室(5)と試料液室(1
0)が接続した状態の測定装置の断面を図4に示してい
る。
1 is provided on the electrode substrate at a position corresponding to the electrode system.
A 0.25 mm thick spacer (6) having a cell chamber (5) of 00 mm 2 was adhered. Further, a U-shaped frame body (7) was installed along the outer periphery of the spacer, and a partition wall (8) having a size corresponding to the concave portion of the U-shaped frame body was installed. The partition wall can be moved vertically by a motor (not shown) at a speed of 30 cm / sec. Further, a pressing plate (9) for the partition was installed on the outside thereof, and a sample liquid chamber (10) was provided. Sample liquid inlet / outlet (11) with valve function at the bottom of the sample liquid chamber
However, there is an opening (12) in the upper part as an air hole when the sample solution is introduced and when the sample solution is discharged. The partition wall (8) is located below and the cell chamber (5) and the sample liquid chamber (10)
FIG. 3 shows a cross section of the measuring device in a state in which the cell chamber (5) and the sample solution chamber (1) are separated by moving the partition (8) upward.
FIG. 4 shows a cross section of the measuring device in a state in which 0) is connected.

【0028】〔測定手順〕このような装置を用いて以下
の手順で試料の測定をおこなった。 1.隔壁(8)を引き上げて開放した状態で、試料液導
入・排出口(11)より100mMリン酸緩衝液を試料
液室(10)とセル室(5)に充填した。 2.隔壁(8)を閉鎖しセル室(5)内の緩衝液を保持
したまま、試料液室(10)内の緩衝液を排出した。 3.試料液室(10)に試料液を充填した。 4.試料液の動きが十分におさまってから、隔壁(8)
を開放し試料液を作用電極(1)と接触させた。 5.隔壁(8)の開放と同時に電極出力値の取り込みを
行い、最大電流増加速度を得た。 〔測定結果〕1mMグルコース溶液を6回測定した結果
得られた最大電流増加速度(nA/秒)は表1の通りで
あった。
[Measurement Procedure] A sample was measured by the following procedure using such an apparatus. 1. With the partition wall (8) pulled up and opened, the sample solution chamber (10) and the cell chamber (5) were filled with the 100 mM phosphate buffer solution through the sample solution inlet / outlet port (11). 2. While the partition wall (8) was closed and the buffer solution in the cell chamber (5) was held, the buffer solution in the sample solution chamber (10) was discharged. 3. The sample liquid chamber (10) was filled with the sample liquid. 4. After the movement of the sample solution has subsided sufficiently, the partition (8)
Was opened to bring the sample solution into contact with the working electrode (1). 5. The electrode output value was taken in at the same time when the partition wall (8) was opened to obtain the maximum current increase rate. [Measurement Result] Table 1 shows the maximum current increase rate (nA / sec) obtained as a result of measuring the 1 mM glucose solution 6 times.

【0029】[0029]

【表1】 [Table 1]

【0030】〔評価〕表から分かるように、最大電流増
加速度の平均変動率が5%以下と少なく安定した測定が
行えることが分かった。尚、例えば本実施例の装置の構
成を利用して、隔壁(8)を開放した状態で、試料液導
入・排出口(11)より試料液を導入しながら測定して
みた。この場合は、先に求めたような平均変動率は試料
液の導入時の圧力変動等のため測定不可能であった。す
なわち、このような方法では安定した測定は不可能であ
るということが確認できた。
[Evaluation] As can be seen from the table, it was found that the average fluctuation rate of the maximum current increasing rate was as small as 5% or less and stable measurement could be performed. It should be noted that, for example, using the configuration of the apparatus of this example, measurement was carried out while introducing the sample liquid from the sample liquid introduction / discharge port (11) with the partition wall (8) opened. In this case, the average fluctuation rate obtained previously could not be measured because of the pressure fluctuation when the sample liquid was introduced. That is, it was confirmed that stable measurement was impossible by such a method.

【0031】以上の実施例で説明した隔壁(8)は隔壁
がセル室と試料液室の隔壁のなす面内で鉛直方向に単板
が摺動して開閉運動を行う例であった。このような例以
外に開閉のための運動方向が隔壁面内での摺動運動、言
い換えれば引き戸的な運動をする例を、図5から図8に
示した。これらの図では簡単のために隔壁とセル室を示
し、他の部分は省略して示している。図5は第1の別の
隔壁の例の構成を閉の状態で正面から示した正面図。図
6はその第1の別の隔壁の例の構成を開の状態で正面か
ら示した正面図。この例では隔壁は2枚の板(8a)
(8b)から構成されこの2枚がそれぞれ逆の方向に隔
壁面内で直線運動して、セル室(5)を開閉するもので
ある。図7は第2の別の隔壁の例の構成を閉の状態で正
面から示した正面図。図8はその第1の別の隔壁の例の
構成を開の状態で正面から示した正面図。この例では隔
壁は2枚の板(8c)(8d)から構成されこの2枚が
一つの支点Cを中心に回動運動を行ってセル室(5)の
開閉動作をするものである。
The partition wall (8) described in the above embodiment is an example in which the partition wall opens and closes by vertically sliding a single plate in the plane formed by the partition walls of the cell chamber and the sample liquid chamber. Other than such an example, FIGS. 5 to 8 show examples in which the opening and closing movement direction is a sliding movement within the partition wall surface, in other words, a sliding door movement. In these figures, the partition walls and the cell chamber are shown for simplification, and other parts are omitted. FIG. 5 is a front view showing the configuration of an example of a first different partition in a closed state from the front. FIG. 6 is a front view showing the configuration of an example of the first another partition wall from the front in an open state. In this example, the partition is two plates (8a)
It is composed of (8b), and these two plates linearly move in opposite directions in the partition wall surface to open and close the cell chamber (5). FIG. 7 is a front view showing the configuration of an example of a second different partition from the front in a closed state. FIG. 8: is the front view which showed the structure of the example of the 1st another partition in the open state from the front. In this example, the partition wall is composed of two plates (8c) and (8d), and these two plates perform a pivotal movement around one fulcrum C to open and close the cell chamber (5).

【0032】また、少なくとも開閉運動中に開口部の縁
部となる隔壁の端部に向かって隔壁の肉厚が薄くなるよ
う構成した隔壁の一例を図9に示した。図9は隔壁の一
例の断面図である。図に示すように、前記した如く開閉
運動中に開口部の縁部となる隔壁の下端部(8z)が端
部から4mm程度の間で削られて肉厚が薄くなるように
なっている。この隔壁を先の実施例で使用した隔壁
(8)の代わりに使用した場合は、最大電流増加速度の
平均変動率が更に低下し、より安定した測定が行えるこ
とが分かった。
Further, FIG. 9 shows an example of the partition wall configured so that the wall thickness of the partition wall becomes thinner toward the end portion of the partition wall which is the edge of the opening during at least the opening / closing movement. FIG. 9 is a cross-sectional view of an example of the partition wall. As shown in the figure, as described above, the lower end portion (8z) of the partition wall, which is the edge portion of the opening portion, is shaved within a distance of about 4 mm from the end portion during the opening and closing movement, and the wall thickness is reduced. It was found that when this partition wall was used instead of the partition wall (8) used in the previous example, the average fluctuation rate of the maximum current increase rate was further reduced, and more stable measurement could be performed.

【0033】[0033]

【発明の効果】本発明の電気化学的濃度測定装置を用い
ることにより、高精度に再現性の良い測定が簡便に行え
る。
By using the electrochemical concentration measuring apparatus of the present invention, highly accurate and reproducible measurement can be easily performed.

【図面の簡単な説明】[Brief description of drawings]

【図1】図1は本発明の電気化学的濃度測定装置の一実
施例の斜視図。
FIG. 1 is a perspective view of an embodiment of an electrochemical concentration measuring device of the present invention.

【図2】図2は図1の電気化学的濃度測定装置の展開組
み立て図。
FIG. 2 is an exploded assembly view of the electrochemical concentration measuring device of FIG.

【図3】図3は図1の電気化学的濃度測定装置の隔壁
(8)が下方にある状態の縦断面図。
3 is a vertical cross-sectional view of the electrochemical concentration measuring apparatus of FIG. 1 with a partition (8) below.

【図4】図4は図1の電気化学的濃度測定装置の隔壁
(8)が上方にある状態の縦断面図。
FIG. 4 is a vertical cross-sectional view of the electrochemical concentration measuring device of FIG. 1 with a partition (8) above.

【図5】図5は第1の別の隔壁の例の構成を閉の状態で
正面から示した正面図。
FIG. 5 is a front view showing the configuration of an example of a first another partition in a closed state from the front.

【図6】図6は第1の別の隔壁の例の構成を開の状態で
正面から示した正面図。
FIG. 6 is a front view showing the configuration of an example of a first another partition wall from the front in an open state.

【図7】図7は第2の別の隔壁の例の構成を閉の状態で
正面から示した正面図。
FIG. 7 is a front view showing the configuration of an example of another second partition in a closed state from the front.

【図8】図8は第2の別の隔壁の例の構成を開の状態で
正面から示した正面図。
FIG. 8 is a front view showing the configuration of an example of a second different partition from the front in an open state.

【図9】図9は電気化学的濃度測定装置の隔壁の一例の
断面図。
FIG. 9 is a cross-sectional view of an example of partition walls of an electrochemical concentration measuring device.

【符合の説明】[Explanation of sign]

1・・・白金作用電極 2・・・銀・塩化銀参照電極 3・・・白金対極 4・・・電極基板 5・・・セル室 6・・・スペーサー 7・・・枠体 8・・・隔壁 9・・・押さえ板 10・・・試料液室 11・・・試料液導入・排出口 12・・・開放口 1. Platinum working electrode 2 ... Silver / silver chloride reference electrode 3 Platinum counter electrode 4 ... Electrode substrate 5 ... Cell room 6 ... Spacer 7 ... frame 8 ... Partition 9 ... Press plate 10 ... Sample chamber 11 ... Sample liquid inlet / outlet port 12 ... Opening mouth

───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.7,DB名) G01N 27/28 G01N 27/28 301 G01N 27/327 ─────────────────────────────────────────────────── ─── Continuation of the front page (58) Fields surveyed (Int.Cl. 7 , DB name) G01N 27/28 G01N 27/28 301 G01N 27/327

Claims (4)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】少なくとも作用電極を有し、水密性を有す
る開閉可能な隔壁を持つ試料液を導入するための開口部
を有するセル室を備えた電気化学的濃度測定装置を使用
し、セル室内に緩衝液が充填され、かつ隔壁を閉鎖した
状態で隔壁の外側に試料が導入された状態の次に隔壁の
少なくとも一部を開放し作用電極と試料液を接触せしめ
て測定を行うことを特徴とする電気化学的濃度測定方
法。
1. A having at least a working electrode, using an electrochemical concentration measurement device having a cell chamber with an opening for introducing a sample solution with an openable partition wall having a watertight, cell chamber Filled with buffer and closed the septum
In the state where the sample is introduced outside the partition wall,
Open at least a part to bring the working electrode and sample solution into contact.
Electrochemical concentration measurement method characterized by performing measurements by
Law.
【請求項2】前記電気化学的濃度測定装置において、隔
壁の開閉運動が隔壁面内方向で行われることを特徴とす
る請求項1記載の電気化学的濃度測定方法
2. A wherein the electrochemical concentration measurement device, an electrochemical concentration measurement method according to claim 1, wherein the opening and closing movement of the partition is performed in septum-plane direction.
【請求項3】前記電気化学的濃度測定装置において少な
くとも開閉運動中に開口部の縁部となる隔壁の端部に向
かって隔壁の肉厚が薄くなるよう構成されていることを
特徴とする請求項2記載の電気化学的濃度測定方法
3. The electrochemical concentration measuring device is configured such that the wall thickness of the partition wall becomes thinner toward an end portion of the partition wall which is an edge portion of the opening portion at least during opening / closing motion. The electrochemical concentration measuring method according to claim 2, wherein
【請求項4】前記電気化学的濃度測定装置において開口
部の外側に試料液を保持するための試料液室を更に備え
たことを特徴とする請求項1〜3のいずれか1項に記載
の電気化学的濃度測定方法
4. The electrochemical concentration measuring device according to claim 1, further comprising a sample liquid chamber for holding the sample liquid outside the opening. Method for measuring electrochemical concentration.
JP34383895A 1995-12-28 1995-12-28 Electrochemical concentration measurement method Expired - Fee Related JP3518118B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP34383895A JP3518118B2 (en) 1995-12-28 1995-12-28 Electrochemical concentration measurement method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP34383895A JP3518118B2 (en) 1995-12-28 1995-12-28 Electrochemical concentration measurement method

Publications (2)

Publication Number Publication Date
JPH09184818A JPH09184818A (en) 1997-07-15
JP3518118B2 true JP3518118B2 (en) 2004-04-12

Family

ID=18364635

Family Applications (1)

Application Number Title Priority Date Filing Date
JP34383895A Expired - Fee Related JP3518118B2 (en) 1995-12-28 1995-12-28 Electrochemical concentration measurement method

Country Status (1)

Country Link
JP (1) JP3518118B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1209621C (en) 2000-12-13 2005-07-06 松下电器产业株式会社 Analytical element, and measuring instrument and substrate determining method using the same

Also Published As

Publication number Publication date
JPH09184818A (en) 1997-07-15

Similar Documents

Publication Publication Date Title
Sriyudthsak et al. Enzyme-epoxy membrane based glucose analyzing system and medical applications
EP0286118B1 (en) Glucose electrode and method of determining glucose
US6444115B1 (en) Electrochemical method for measuring chemical reaction rates
CN1932500B (en) Electrochemistry method
EP1303758B1 (en) Electrochemical method for measuring chemical reaction rates
US4230537A (en) Discrete biochemical electrode system
US4997627A (en) Sample analysis
US6153069A (en) Apparatus for amperometric Diagnostic analysis
US8128796B2 (en) Analyzer
US5653862A (en) Biochemical sensor device and method
EP0048090A2 (en) Substrate specific galactose oxidase enzyme electrodes
JPS61128152A (en) Biochemical sensor
AU2001273197A1 (en) Electrochemical method for measuring chemical reaction rates
AU2001273197A2 (en) Electrochemical method for measuring chemical reaction rates
JPS63290955A (en) Enzyme electrode
JP3518118B2 (en) Electrochemical concentration measurement method
RU2267120C2 (en) Electrochemical mode of measuring of speed of chemical reactions
US5158868A (en) Method of sample analysis
JP2901678B2 (en) Method and apparatus for diagnostic analysis by current measurement
EP0263125B1 (en) Biochemical detector
EP0304947A2 (en) Biosensor
Josypcuk et al. Electrochemical flow-through biosensors based on microfiber enzymatic filter discs placed at printed electrodes
Ikariyama et al. Microbiosensing device for real time determination.
Krejci et al. Microflow vessel improving reproducibility and sensitivity of electrochemical measurements
AU2006203606B2 (en) Electrochemical method for measuring chemical reaction rates

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040106

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040119

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090206

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090206

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100206

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees