JP3516654B2 - Vapor phase growth apparatus and method for manufacturing epitaxial wafer - Google Patents

Vapor phase growth apparatus and method for manufacturing epitaxial wafer

Info

Publication number
JP3516654B2
JP3516654B2 JP2000398034A JP2000398034A JP3516654B2 JP 3516654 B2 JP3516654 B2 JP 3516654B2 JP 2000398034 A JP2000398034 A JP 2000398034A JP 2000398034 A JP2000398034 A JP 2000398034A JP 3516654 B2 JP3516654 B2 JP 3516654B2
Authority
JP
Japan
Prior art keywords
gas
partition plate
bank member
width direction
vapor phase
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2000398034A
Other languages
Japanese (ja)
Other versions
JP2002198316A (en
Inventor
明彦 田村
隆治 河野
博一 山本
進一 山口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Handotai Co Ltd
Original Assignee
Shin Etsu Handotai Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Handotai Co Ltd filed Critical Shin Etsu Handotai Co Ltd
Priority to JP2000398034A priority Critical patent/JP3516654B2/en
Publication of JP2002198316A publication Critical patent/JP2002198316A/en
Application granted granted Critical
Publication of JP3516654B2 publication Critical patent/JP3516654B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)
  • Chemical Vapour Deposition (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、シリコン単結晶基
板の主表面にシリコン単結晶薄膜を気相成長させるため
の気相成長装置と、それを用いて実現されるエピタキシ
ャルウェーハの製造方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a vapor phase growth apparatus for vapor phase growing a silicon single crystal thin film on a main surface of a silicon single crystal substrate, and an epitaxial wafer manufacturing method realized by using the same. Is.

【0002】[0002]

【従来の技術】シリコン単結晶基板(以下、単に「基
板」と略称する)の表面に、気相成長法によりシリコン
単結晶薄膜(以下、単に「薄膜」と略称する)を形成し
たシリコンエピタキシャルウェーハは、バイポーラIC
やMOS−IC等の電子デバイスに広く使用されてい
る。そして、電子デバイスの微細化等に伴い、素子を作
りこむエピタキシャルウェーハ主表面のフラットネスに
対する要求がますます厳しくなりつつある。フラットネ
スに影響を及ぼす因子としては、基板の平坦度と薄膜の
膜厚分布とがある。ところで、近年、例えば直径が20
0mmないしそれ以上のエピタキシャルウェーハの製造
においては、複数枚のウェーハをバッチ処理する方法に
代えて、枚葉式気相成長装置が主流になりつつある。こ
れは、反応容器内に1枚の基板を水平に回転保持し、反
応容器の一端から他端へ原料ガスを略水平かつ一方向に
供給しながら薄膜を気相成長させるものである。
2. Description of the Related Art A silicon epitaxial wafer in which a silicon single crystal thin film (hereinafter simply referred to as "thin film") is formed on a surface of a silicon single crystal substrate (hereinafter simply referred to as "substrate") by a vapor phase growth method. Is a bipolar IC
It is widely used in electronic devices such as MOS and IC. With the miniaturization of electronic devices, the flatness of the main surface of an epitaxial wafer on which elements are built is becoming more and more demanding. Factors that affect the flatness include the flatness of the substrate and the film thickness distribution of the thin film. By the way, in recent years, for example, the diameter is 20
In the production of epitaxial wafers of 0 mm or more, a single wafer type vapor phase growth apparatus is becoming the mainstream, instead of the method of batch processing a plurality of wafers. In this method, one substrate is horizontally rotated and held in a reaction container, and a thin film is vapor-phase grown while supplying a raw material gas from one end of the reaction container to the other end substantially horizontally and in one direction.

【0003】上記のような枚葉式気相成長装置におい
て、形成される薄膜の膜厚均一化を図る上で重要な因子
として、反応容器内における原料ガスの流量あるいは流
量分布がある。枚葉式気相成長装置においては、通常、
ガス供給管を介して反応容器の一端部に形成されたガス
導入口から原料ガスが供給され、基板表面に沿って原料
ガスが流れた後、容器他端側の排出口から排出される構
造となっている。このような構造の場合、ガス流量はガ
ス導入口もしくはその延長線上において局所的に高くな
りやすく、ガス流方向に対し水平に直交する向き(以
下、幅方向という)に流量のムラが生じやすい問題があ
る。これを解消するために、従来より、ガス導入口の下
流側に多数の孔を形成した分散板を設けたり、あるいは
ガス流を幅方向に仕切る仕切板を設けたりした装置が提
案されている。
In the above-mentioned single-wafer vapor phase growth apparatus, an important factor for achieving uniform film thickness of the thin film to be formed is the flow rate or flow rate distribution of the raw material gas in the reaction vessel. In a single-wafer vapor phase growth apparatus, normally,
A raw material gas is supplied from a gas introduction port formed at one end of the reaction vessel through a gas supply pipe, and after the raw material gas flows along the substrate surface, it is discharged from the discharge port on the other end side of the vessel. Has become. In the case of such a structure, the gas flow rate tends to be locally high at the gas introduction port or an extension thereof, and the flow rate tends to be uneven in a direction orthogonal to the gas flow direction (hereinafter referred to as the width direction). There is. In order to solve this, conventionally, there has been proposed an apparatus in which a dispersion plate having a large number of holes is provided on the downstream side of the gas introduction port, or a partition plate for partitioning the gas flow in the width direction is provided.

【0004】また、特開平7−193015号公報に
は、ガス導入口からの原料ガスを、基板を支持するサセ
プタの周囲に配置された堤部材の外周面に向けて流し、
堤部材を乗り越えさせる形で基板Wの表面に原料ガスを
供給する装置が開示されている。この方法の主旨は、原
料ガス流を堤部材の外周面に当てることで分散させ、流
量のムラを解消しようというものである。
Further, in Japanese Unexamined Patent Publication No. 7-193015, the source gas from the gas inlet is made to flow toward the outer peripheral surface of the bank member arranged around the susceptor supporting the substrate,
An apparatus for supplying the source gas to the surface of the substrate W so as to pass over the bank member is disclosed. The purpose of this method is to disperse the source gas flow by applying it to the outer peripheral surface of the bank member to eliminate the unevenness of the flow rate.

【0005】[0005]

【発明が解決しようとする課題】前記特開平7−193
015号公報の装置の場合、堤部材の外周面に当たった
原料ガスは、堤部材を乗り越えようとする流れと、外周
面に沿って横方向に向かおうとする流れとを生ずる形に
なる。この場合、その横方向の流れにより、堤部材の外
周面ひいては上記の幅方向に沿って原料ガスが均等に分
散することが、流量ムラを解消する上で重要である。し
かしながら、堤部材の外周面形状によっては原料ガスが
必ずしも幅方向に均等に分散せず、流れに偏りを生じて
しまうことがある。特に、図8に示すように、堤部材の
外周面23bの形状が円筒面状である場合、幅方向WL
における両端付近は、外周面23bが大きく傾斜してい
るため、当たったガスGが外側へ逃げやすく、流量ムラ
ひいては膜厚の不均一を生じやすい問題がある。また、
円筒面状の外周面23bは幅方向WLにおいて左右対称
であるから、これに当たって生ずるガス流の流量分布も
左右対称な分布となりやすい。従って、基板Wの回転軸
線Oに対して左右同じ位置に同じ傾向で流量ムラが生じ
やすくなり、回転する基板Wの半径方向の特定位置で
は、左右の流量ムラの影響が重なって、大きな膜厚異常
につながりやすくなる。
DISCLOSURE OF THE INVENTION Problems to be Solved by the Invention
In the case of the device of Japanese Patent No. 015, the raw material gas hitting the outer peripheral surface of the bank member forms a flow that tries to get over the bank member and a flow that tries to move laterally along the outer peripheral surface. In this case, it is important in order to eliminate the flow rate unevenness that the raw material gas is evenly distributed along the outer peripheral surface of the bank member, and thus the width direction, due to the lateral flow. However, depending on the shape of the outer peripheral surface of the bank member, the raw material gas may not necessarily be uniformly dispersed in the width direction, and the flow may be biased. In particular, as shown in FIG. 8, when the outer peripheral surface 23b of the bank member has a cylindrical surface shape, the width direction WL
Since the outer peripheral surface 23b is largely inclined in the vicinity of both ends, the hit gas G easily escapes to the outside, and there is a problem that flow rate unevenness and uneven film thickness are likely to occur. Also,
Since the cylindrical outer peripheral surface 23b is bilaterally symmetrical in the width direction WL, the flow rate distribution of the gas flow generated upon hitting this tends to be bilaterally symmetrical. Therefore, flow rate unevenness is likely to occur at the same position on the left and right sides with respect to the rotation axis O of the substrate W with the same tendency. It is easy to connect abnormally.

【0006】本発明の課題は、比較的単純な機構により
ながら、反応容器内の幅方向の流量分布の影響を効果的
に減殺することができ、ひいては良好な膜厚分布精度を
確保できる気相成長装置と、それを用いたエピタキシャ
ルウェーハの製造方法とを提供することにある。
The object of the present invention is to provide a gas phase which can effectively reduce the influence of the flow rate distribution in the width direction in the reaction vessel while using a relatively simple mechanism, and by which an excellent film thickness distribution accuracy can be secured. A growth apparatus and a method for manufacturing an epitaxial wafer using the growth apparatus are provided.

【0007】[0007]

【課題を解決するための手段及び作用・効果】本発明
は、シリコン単結晶基板の主表面にシリコン単結晶薄膜
を気相成長させる気相成長装置であって、上記の課題を
解決するために、水平方向における第一端部側にガス導
入口が形成され、同じく第二端部側にガス排出口が形成
された反応容器本体を有し、シリコン単結晶薄膜形成の
ための原料ガスがガス導入口から反応容器本体内に導入
され、該反応容器本体の内部空間にて略水平に回転保持
されるシリコン単結晶基板の主表面に沿う方向に沿って
原料ガスが流れた後、ガス排出口から排出されるように
構成され、内部空間内にて回転駆動される円盤状のサセ
プタ上にシリコン単結晶基板が配置される一方、サセプ
タを取り囲むとともに、上面が該サセプタの上面と一致
する位置関係にて堤部材が配置され、さらに、ガス導入
口は堤部材の外周面に対向する形にて開口し、該ガス導
入口からの原料ガスが、堤部材の外周面に当たって上面
側に乗り上げた後、サセプタ上のシリコン単結晶基板の
主表面に沿って流れるように構成され、かつ、反応容器
本体の第一端部からサセプタの回転軸線と直交して第二
端部に至る原料ガスの流れ方向に沿った仮想的な中心線
を水平基準線とし、該水平基準線と回転軸線との双方に
直交する方向を幅方向と定義したときに、ガス導入口と
堤部材との間に、シリコン単結晶基板に向かう原料ガス
の流れを、幅方向における複数個所にて仕切る仕切板が
設けられた気相成長装置において、複数の仕切板は、幅
方向において水平基準線に対し左右に振り分けた形に
て、各々堤部材の外周面に向かって延びるように配置さ
れるとともに、水平基準線に対し右側の仕切板の形成形
態と左側の仕切板の形成形態とを互いに異ならせたこと
を特徴とする。
The present invention is a vapor phase growth apparatus for vapor-depositing a silicon single crystal thin film on the main surface of a silicon single crystal substrate, and is intended to solve the above problems. , A gas inlet is formed on the first end side in the horizontal direction and a gas outlet is also formed on the second end side, and the source gas for forming the silicon single crystal thin film is a gas. After the raw material gas is introduced from the introduction port into the reaction container body and is rotated and held substantially horizontally in the internal space of the reaction container body, the source gas flows along the direction along the main surface of the silicon single crystal substrate, and then the gas discharge port The silicon single crystal substrate is arranged on the disk-shaped susceptor that is configured to be driven to be discharged from the susceptor while being rotated and driven in the internal space, while surrounding the susceptor and having a top surface matching the top surface of the susceptor. At the bank In addition, the gas inlet is opened so as to face the outer peripheral surface of the bank member, and the raw material gas from the gas inlet hits the outer peripheral surface of the bank member and rides on the upper surface side, and then on the susceptor. Of the silicon single crystal substrate, and along the flow direction of the source gas from the first end of the reaction vessel main body to the second end orthogonal to the rotation axis of the susceptor. When the virtual center line is the horizontal reference line and the direction orthogonal to both the horizontal reference line and the rotation axis is defined as the width direction, the silicon single crystal substrate is provided between the gas inlet and the bank member. In the vapor phase growth apparatus provided with a partition plate for partitioning the flow of the raw material gas toward a plurality of positions in the width direction, the plurality of partition plates are divided into left and right with respect to the horizontal reference line in the width direction, respectively. Extends toward the outer peripheral surface of the bank material Together they are arranged so as, characterized by having different and formation form of the right partition plate forming the form and the left partition plate to each other with respect to the horizontal reference line.

【0008】なお、右側と左側とで「仕切板の形成形態
を異ならせる」とは、仕切板の配置位置、仕切板の数、
仕切板の配置方向、仕切板の形状及び仕切板の寸法の少
なくともいずれかを異ならせることを意味する。また、
「上面がサセプタの上面と一致する位置関係にて堤部材
が配置され」とは、堤部材の上面とサセプタの上面とが
完全に一致することを必ずしも意味するのではなく、2
mm程度までの位置の違いは一致しているとみなす。
It should be noted that "differentiating the formation form of the partition plate" between the right side and the left side means the arrangement position of the partition plate, the number of partition plates,
This means that at least one of the arrangement direction of the partition plate, the shape of the partition plate, and the dimension of the partition plate is made different. Also,
The phrase "the bank member is arranged in a positional relationship in which the upper surface matches the upper surface of the susceptor" does not necessarily mean that the upper surface of the bank member and the upper surface of the susceptor completely match each other.
Differences in position up to about mm are considered to match.

【0009】また、本発明のエピタキシャルウェーハの
製造方法は、上記の気相成長装置の反応容器内にシリコ
ン単結晶基板を配置し、該反応容器内に原料ガスを流通
させてシリコン単結晶基板上にシリコン単結晶薄膜を気
相エピタキシャル成長させることによりエピタキシャル
ウェーハを得ることを特徴とする。
Further, in the method for producing an epitaxial wafer of the present invention, a silicon single crystal substrate is placed in the reaction vessel of the above-described vapor phase growth apparatus, and a raw material gas is circulated in the reaction vessel to form a silicon single crystal substrate on the silicon single crystal substrate. It is characterized in that an epitaxial wafer is obtained by vapor-phase epitaxially growing a silicon single crystal thin film.

【0010】上記構成によると、ガス導入口からの原料
ガスが堤部材の外周面に当たって上面側に乗り上げるの
で、原料ガス流は上記幅方向へ分散する。その際、堤部
材の外周面上の特定位置に原料ガスが極端に集中して当
たる不具合が生じないよう、基板に向かう原料ガスの流
れを、幅方向における複数個所にて仕切板により仕切
る。そして、本発明によると、上記の水平基準線に対し
右側の仕切板の形成形態と左側の仕切板の形成形態とを
互いに異ならせることにより、水平基準線に対し左右の
ガス流量分布を非対称なものとすることができる。これ
により、水平基準線から見て左右同じ位置に同一傾向の
流量ムラが重なる現象が生じ難くなるので、左右の流量
ムラが互いに相殺しあってより均一な膜厚分布の薄膜を
得ることができる。
According to the above construction, the raw material gas from the gas introduction port hits the outer peripheral surface of the bank member and runs up to the upper surface side, so that the raw material gas flow is dispersed in the width direction. At that time, the flow of the raw material gas toward the substrate is partitioned by a plurality of partitions in the width direction so that the problem that the raw material gas is extremely concentrated and hits a specific position on the outer peripheral surface of the bank member does not occur. Further, according to the present invention, by making the formation form of the right partition plate and the formation form of the left partition plate different from each other with respect to the horizontal reference line, the left and right gas flow distributions are asymmetric with respect to the horizontal reference line. Can be one. As a result, it becomes difficult for the flow rate unevenness of the same tendency to overlap at the same position on the right and left sides when viewed from the horizontal reference line, so that the flow rate unevenness on the left and right sides cancel each other out and a thin film having a more uniform film thickness distribution can be obtained. .

【0011】[0011]

【発明の実施の形態】以下、本発明の実施の形態を、図
面に示す種々の実施例に基づき説明する。図1〜図4
は、本発明に係る気相成長装置1の一例を模式的に示す
ものである。図1はその側面断面図、図2は図1の原料
ガス導入部付近の拡大図、図3は図1の要部を取り出し
て示す平面図、図4は同じく一部を切り欠いた斜視図で
ある。この気相成長装置1は、図1に示すように、水平
方向における第一端部31側にガス導入口21が形成さ
れ、同じく第二端部32側にガス排出口22が形成され
た反応容器本体2を有する。薄膜形成のための原料ガス
Gは、ガス導入口21から反応容器本体2内に導入さ
れ、該反応容器本体2の内部空間5にて略水平に回転保
持される基板Wの主表面に沿う方向に沿って流れた後、
ガス排出口22から排出管7を経て排出されるように構
成されている。
BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of the present invention will be described below with reference to various embodiments shown in the drawings. 1 to 4
FIG. 1 schematically shows an example of the vapor phase growth apparatus 1 according to the present invention. 1 is a side sectional view of the same, FIG. 2 is an enlarged view of the vicinity of the raw material gas introduction part of FIG. 1, FIG. 3 is a plan view showing the main part of FIG. 1 taken out, and FIG. Is. As shown in FIG. 1, this vapor phase growth apparatus 1 is a reaction in which a gas inlet 21 is formed on the first end 31 side in the horizontal direction and a gas outlet 22 is also formed on the second end 32 side in the horizontal direction. It has a container body 2. The raw material gas G for forming the thin film is introduced into the reaction container body 2 through the gas inlet 21 and extends in a direction along the main surface of the substrate W which is rotated and held substantially horizontally in the internal space 5 of the reaction container body 2. After flowing along
The gas is discharged from the gas discharge port 22 through the discharge pipe 7.

【0012】原料ガスGは、上記の基板W上にシリコン
単結晶薄膜を気相成長させるためのものであり、SiH
Cl、SiCl、SiHCl、SiH、Si
等のシリコン化合物の中から選択される。原料ガ
スGには、ドーパンドガスとしてのBあるいはP
や、希釈ガスとしてのH、N、Ar等が適宜配
合される。また、薄膜の気相成長処理に先立って基板前
処理(例えば自然酸化膜や付着有機物の除去処理)を行
う際には、HCl、HF、ClF、NF等から適宜
選択された腐蝕性ガスを希釈ガスにて希釈した前処理用
ガスを反応容器本体2内に供給するか、又は、H雰囲
気中で高温熱処理を施す。
The source gas G is silicon on the substrate W.
SiH is used for vapor phase growth of a single crystal thin film, and SiH
ClThree, SiClFour, SiHTwoClTwo, SiHFour, Si
TwoH 6Etc. are selected from silicon compounds. Raw material
In G, B as DopandgasTwoH6Or P
HThreeOr H as a diluent gasTwo, NTwo, Ar, etc.
Are combined. In addition, before the thin film vapor phase growth process,
Processing (for example, natural oxide film and organic matter removal treatment)
HCl, HF, ClFThree, NFThreeAppropriate from
For pretreatment by diluting selected corrosive gas with diluent gas
Gas is supplied into the reaction container body 2 or HTwoAtmosphere
Perform high temperature heat treatment in air.

【0013】図1に示すように、反応容器本体2の内部
空間5には、垂直な回転軸線Oの周りにモータ13によ
り回転駆動される円盤状のサセプタ12が配置され、そ
の上面に形成された浅い座ぐり12b内に、シリコンエ
ピタキシャルウェーハを製造するための基板Wが1枚の
み配置される。すなわち、該気相成長装置1は水平枚葉
型気相成長装置として構成されている。基板Wは、例え
ば直径が100mmあるいはそれ以上のものである。ま
た、基板Wの配置領域に対応して容器本体2の上下に
は、基板加熱のための赤外線加熱ランプ11が所定間隔
にて配置されている。
As shown in FIG. 1, a disk-shaped susceptor 12 which is rotatably driven by a motor 13 around a vertical rotation axis O is arranged in the internal space 5 of the reaction container body 2 and is formed on the upper surface thereof. Only one substrate W for manufacturing a silicon epitaxial wafer is arranged in the shallow counterbore 12b. That is, the vapor phase growth apparatus 1 is configured as a horizontal single-wafer type vapor phase growth apparatus. The substrate W has a diameter of 100 mm or more, for example. Further, infrared heating lamps 11 for heating the substrate are arranged at predetermined intervals above and below the container body 2 corresponding to the arrangement region of the substrate W.

【0014】内部空間5内には、図3に示すようにサセ
プタ12を取り囲むように堤部材23が配置されてい
る。図2に示すように、堤部材23は、その上面23a
がサセプタ12の上面12a(ひいては基板Wの主表
面)と略一致する位置関係にて配置される。図1に示す
ように、ガス導入口21は、堤部材23の外周面23b
に対向する形にて開口しており、該ガス導入口21から
の原料ガスGは、図2(図4も参照)に示すように、堤
部材23の外周面23bに当たって上面23a側に乗り
上げた後、サセプタ12上の基板Wの主表面に沿って流
れるようになっている。本実施形態では、堤部材23の
外周面23bは、サセプタ12の形状に対応した円筒面
状とされている。なお、堤部材23の内周縁に沿って板
状に形成された均熱用の予熱リング22が配置され、そ
の内側に配置されるサセプタ12の上面12aが、該予
熱リング22の上面22aと略面一となっている。
In the internal space 5, a bank member 23 is arranged so as to surround the susceptor 12 as shown in FIG. As shown in FIG. 2, the bank member 23 has an upper surface 23a.
Are arranged in a positional relationship substantially matching the upper surface 12a of the susceptor 12 (and thus the main surface of the substrate W). As shown in FIG. 1, the gas inlet 21 has an outer peripheral surface 23 b of the bank member 23.
The raw material gas G from the gas introduction port 21 hits the outer peripheral surface 23b of the bank member 23 and ran up to the upper surface 23a side as shown in FIG. 2 (see also FIG. 4). After that, it flows along the main surface of the substrate W on the susceptor 12. In the present embodiment, the outer peripheral surface 23b of the bank member 23 has a cylindrical surface shape corresponding to the shape of the susceptor 12. A plate-shaped preheating ring 22 for soaking is arranged along the inner peripheral edge of the bank member 23, and the upper surface 12a of the susceptor 12 arranged inside thereof is substantially the same as the upper surface 22a of the preheating ring 22. It is flush.

【0015】次に、図1に示すように、反応容器本体2
の第一端部31からサセプタ12の回転軸線Oと直交し
て第二端部32に至る原料ガスGの流れ方向に沿った仮
想的な中心線を水平基準線HSLとして定める。また、
図3に示すように、該水平基準線HSLと回転軸線Oと
の双方に直交する方向を幅方向WLとして定義する。本
実施形態の気相成長装置1には、ガス導入口21(図
1)と堤部材23との間に、基板Wに向かう原料ガスG
の流れを、幅方向WLにおける複数個所(本実施形態で
は2箇所)にて仕切る仕切板34R,34Lが設けられ
ている(図3、図4)。図4に示すように、これらの仕
切板34R,34Lは、幅方向WLにおいて水平基準線
HSLに対し左右に振り分けた形にて、各々堤部材23
の外周面23bに向かって延びるように配置されてい
る。
Next, as shown in FIG. 1, the reaction container body 2
An imaginary center line along the flow direction of the source gas G from the first end 31 to the second end 32 orthogonal to the rotation axis O of the susceptor 12 is defined as the horizontal reference line HSL. Also,
As shown in FIG. 3, a direction orthogonal to both the horizontal reference line HSL and the rotation axis O is defined as a width direction WL. In the vapor phase growth apparatus 1 of the present embodiment, the source gas G directed toward the substrate W is provided between the gas inlet 21 (FIG. 1) and the bank member 23.
Partitioning plates 34R and 34L for partitioning the flow of No. 2 at a plurality of locations (two locations in this embodiment) in the width direction WL are provided (FIGS. 3 and 4). As shown in FIG. 4, these partition plates 34R and 34L are divided into left and right sides with respect to the horizontal reference line HSL in the width direction WL, respectively.
Are arranged so as to extend toward the outer peripheral surface 23b.

【0016】図3に示すように、右側の仕切板34Rと
左側の仕切板34Lとのそれぞれに個別に対応してガス
導入口21A,21Bが形成されている。具体的には、
原料ガスGは、ガス配管50を経て各ガス導入口21
A,21Bから内部空間5に導かれる。本実施形態で
は、ガス配管50は、幅方向WLにおける内側領域にガ
スを供給する内側配管53と同じく外側にガスを供給す
る外側配管51とに分岐し、各々原料ガスの流量を、マ
スフローコントローラ(MFC)52,54により独立
に制御できるようにしている。ここで、MFC52、5
4の替りに手動バルブを使用してもよい。また、内側配
管53及び外側配管51は、それぞれ分岐配管56,5
6及び分岐配管55,55にさらに分れ、水平基準線H
SLに対して両側にそれぞれ内側ガス導入口21A,2
1A及び外側ガス導入口21B,21Bを開口してい
る。
As shown in FIG. 3, gas inlets 21A and 21B are formed respectively corresponding to the right partition plate 34R and the left partition plate 34L. In particular,
The raw material gas G is passed through the gas pipe 50 and supplied to each gas inlet 21.
It is guided to the internal space 5 from A and 21B. In the present embodiment, the gas pipe 50 is branched into an inner pipe 53 that supplies gas to the inner region in the width direction WL and an outer pipe 51 that supplies gas to the outer side in the same manner, and the flow rate of each raw material gas is controlled by the mass flow controller ( It can be controlled independently by MFC) 52 and 54. Here, MFC52, 5
A manual valve may be used instead of 4. The inner pipe 53 and the outer pipe 51 are branched pipes 56, 5 respectively.
6 and branch pipes 55, 55 are further divided into horizontal reference line H
Inner gas inlets 21A, 2 on both sides of SL
1A and outer gas introduction ports 21B and 21B are opened.

【0017】次に、気相成長装置1においては、図3に
示すように水平基準線HSLに対し右側の仕切板34R
の形成形態と左側の仕切板34Lの形成形態とが互いに
異るものとされている。すでに説明した通り、この構成
によると、水平基準線HSLに対し左右のガス流量分布
を非対称なものとすることができ、膜厚分布の均一化を
図る上で効果がある。例えば図3においては、その一形
態として、右側の仕切板34Rと左側の仕切板34Lと
を、幅方向WLにおいて水平基準線HSLからの距離D
、Dが互いに異なるものとなるように配置する構成
が採用されている(本実施形態ではD>Dである
が、もちろん逆でもよい)。この構成によると、左右の
仕切板34R,34Lの配置位置調整という簡便な手段
により、ガス流量分布の非対称化を効果的に図ることが
できる。以下、さらに詳細に説明する。
Next, in the vapor phase growth apparatus 1, as shown in FIG. 3, the partition plate 34R on the right side of the horizontal reference line HSL is used.
And the formation of the left partition plate 34L are different from each other. As described above, according to this configuration, the left and right gas flow rate distributions can be made asymmetric with respect to the horizontal reference line HSL, which is effective in achieving uniform film thickness distribution. For example, in FIG. 3, as one form thereof, the right partition plate 34R and the left partition plate 34L are separated from the horizontal reference line HSL in the width direction WL by a distance D.
A configuration in which R 1 and D L are arranged so as to be different from each other is adopted (in the present embodiment, D R > D L , but of course, the reverse is also possible). With this configuration, the gas flow rate distribution can be effectively made asymmetric by a simple means of adjusting the arrangement positions of the left and right partition plates 34R and 34L. The details will be described below.

【0018】図1、図3及び図4に示すように、本実施
形態の気相成長装置1では、内部にガス案内空間24s
が形成されたガス案内部材24がガス導入口21と堤部
材23との間に配置されており、ガス導入口21A,2
1Bからの原料ガスG1,G2は、このガス案内空間2
4sを経て堤部材23の外周面23bに向けて導かれる
とともに、仕切板34R,34Lはこのガス案内部材2
4に設けられる形となっている。図4に示すように、ガ
ス案内部材24は、ガス導入口21側と堤部材23側と
にそれぞれ開口する横長状断面を有する石英製の筒部材
であり、仕切板34R,34Lは、互いに略平行に配置
された上面板24bと下面板24aとの上端面と下端面
とが各々溶接される形もしくは点支持される形にて配置
されている。仕切板34R,34Lが一体化されたガス
案内部材24を、反応容器本体2に対して着脱可能に配
置することで、例えば仕切板34R,34Lの位置を変
更したい場合には、ガス案内部材24の交換により簡単
に対応することができる。
As shown in FIGS. 1, 3 and 4, in the vapor phase growth apparatus 1 of the present embodiment, the gas guiding space 24s is provided inside.
The gas guide member 24 formed with is disposed between the gas introduction port 21 and the bank member 23, and the gas introduction ports 21A, 2
The source gases G1 and G2 from 1B are used in this gas guide space 2
It is guided toward the outer peripheral surface 23b of the bank member 23 through 4s, and the partition plates 34R and 34L are connected to the gas guide member 2
It has a form to be provided in 4. As shown in FIG. 4, the gas guide member 24 is a quartz tubular member having a horizontally long cross section that is open to the gas inlet 21 side and the bank member 23 side, respectively, and the partition plates 34R and 34L are substantially the same. The upper surface and the lower surface of the upper plate 24b and the lower plate 24a arranged in parallel are respectively welded or point-supported. By arranging the gas guide member 24 in which the partition plates 34R and 34L are integrated so as to be detachable from the reaction vessel main body 2, for example, when it is desired to change the positions of the partition plates 34R and 34L, the gas guide member 24 It can be easily dealt with by replacing.

【0019】具体的には、図3に示すように、原料ガス
Gを堤部材23の外周面23bに向けて導く1対のガス
案内部材24R,24Lが、幅方向WLにおいて水平基
準線HSLに対し左右に振り分けた形にて、ガス導入口
21と堤部材23との間に配置されている。そして、ガ
ス案内部材24R,24Lの内側に形成されたガス案内
空間24s,24sの各々に仕切板34R,34Lが配
置されている。この構成によると、例えば左右のガス流
量分布の非対称の度合いや、流量バランス等を調整する
ために、一方の仕切板34Rの形成形態を固定して、他
方の仕切板34Lの形成形態(例えば配置位置)のみ設
計変更したい場合に、対応する側のガス案内部材24L
のみを交換すればよいから経済的である。なお、ガス案
内部材24R,24Lの、堤部材23の外周面23bと
の対向面は、該外周面23bに対応した円筒面状に形成
されている。また、幅方向WLにおいて、左右のガス案
内部材24R,24Lの間には、位置決め用のスペーサ
33が容器本体部2に対して一体的に設けられている。
この位置決め用のスペーサも一種の仕切り板として機能
していると見ることもできる。
Specifically, as shown in FIG. 3, a pair of gas guide members 24R and 24L for guiding the raw material gas G toward the outer peripheral surface 23b of the bank member 23 are aligned with the horizontal reference line HSL in the width direction WL. On the other hand, they are arranged between the gas introduction port 21 and the bank member 23 in a form of being divided right and left. The partition plates 34R and 34L are arranged in the gas guide spaces 24s and 24s formed inside the gas guide members 24R and 24L, respectively. According to this configuration, for example, in order to adjust the degree of asymmetry of the left and right gas flow rate distributions, the flow rate balance, and the like, the formation of one partition plate 34R is fixed and the formation of the other partition plate 34L (for example, the arrangement). When you want to change the design only for the position, the corresponding gas guide member 24L
It is economical because you only need to replace it. The surfaces of the gas guide members 24R and 24L facing the outer peripheral surface 23b of the bank member 23 are formed in a cylindrical shape corresponding to the outer peripheral surface 23b. Further, in the width direction WL, a positioning spacer 33 is provided integrally with the container body 2 between the left and right gas guide members 24R, 24L.
It can be considered that the positioning spacer also functions as a kind of partition plate.

【0020】次に、図3に示すように、堤部材23の外
周面23bには、原料ガスG1,G2の流れを幅方向W
Lにおける複数個所にて仕切る堤部材側仕切板35R,
35Lが設けられている。すなわち、原料ガスG1,G
2は、堤部材23に乗り上げる際に横方向に逃げやす
く、流量分布にムラを生じやすい。そこで、堤部材側仕
切板35R,35Lを設けておくと、原料ガスG1,G
2の横方向への逃げを抑制することができ、幅方向WL
における流量分布にムラを生じにくくすることができ
る。この場合、右側の仕切板34Rと左側の仕切板34
Lのうちいずれか一方、本実施形態では左側の仕切板3
4Lを、幅方向WLにおいて堤部材側仕切板35Lとは
異なる位置に配置することで、左右の流量分布を適度に
非対称化することができ、ひいては得られる薄膜の膜厚
分布をより均一なものとすることができる。
Next, as shown in FIG. 3, on the outer peripheral surface 23b of the bank member 23, the flows of the source gases G1 and G2 are applied in the width direction W.
Partition member side partition plate 35R for partitioning at a plurality of points in L,
35L is provided. That is, the source gases G1 and G
No. 2 easily escapes in the lateral direction when riding on the bank member 23, and the flow rate distribution is likely to be uneven. Therefore, if the bank member side partition plates 35R, 35L are provided, the raw material gases G1, G
2 can be prevented from escaping in the lateral direction, and the width direction WL
It is possible to prevent unevenness in the flow rate distribution in In this case, the right partition plate 34R and the left partition plate 34
One of L, the left side partition plate 3 in this embodiment.
By arranging 4L at a position different from the bank member side partition plate 35L in the width direction WL, the left and right flow distributions can be appropriately asymmetrical, and the film thickness distribution of the obtained thin film can be made more uniform. Can be

【0021】本実施形態では、堤部材側仕切板35R,
35Lは、幅方向WLにおいて水平基準線HSLに関し
左右に各々1個所ずつ配置されている。例えば、図5
(b)に示すような形で生じようとする内側のガス流G
1の外方向への逃げを、(a)に示すように左右の堤部
材側仕切板35R,35Lにより挟み込むことで効果的
に防止ないし抑制できる。
In this embodiment, the bank member side partition plate 35R,
35 L are arranged one each on the left and right with respect to the horizontal reference line HSL in the width direction WL. For example, in FIG.
Inner gas flow G that is about to occur in the form shown in (b)
The escape of 1 in the outward direction can be effectively prevented or suppressed by being sandwiched by the left and right bank member side partition plates 35R and 35L as shown in (a).

【0022】本実施形態においては、図4に示すよう
に、堤部材23の上面23aの外周縁部を、ガス案内部
材24との対向区間において凹状に切り欠くことにより
弓形の切欠部23kが形成されている。図1に示すよう
に、容器本体部2は、下部ケース3と上部ケース4とか
らなり、堤部材23は下部ケース3の内周面に沿って配
置されている。図2に示すように、切欠部23kの底面
23cは、ガス案内部材24の下面板24bの内面の延
長に略一致する形となっており、ガス案内面の役割を果
たす。そして、原料ガスは切欠部23kの側面23bに
当たって上面23aに乗り上げる。なお、上部ケース4
には、堤部材23の上面23aに対向する第一面4a
と、切欠部23kの側面23bに対向する第二面4b
と、同じく底面23cに対向する第三面4cとを有する
段部4dを有し、切欠部23kとの間にクランク状の断
面を有するガス通路51を形成している。図4に示すよ
うに、堤部材側仕切板35R,35Lは、ガス通路51
に対応したL字状(あるいは上面23a側まで延びるク
ランク状形態としてもよい)に形成されている。この構
造によると、原料ガスGの流れが、L字型の狭いガス通
路51を通過することにより横方向につぶれやすくな
り、流量分布の極端な偏りを生じにくくすることができ
る。
In the present embodiment, as shown in FIG. 4, an arcuate notch 23k is formed by notching the outer peripheral edge of the upper surface 23a of the bank member 23 in a section facing the gas guide member 24 in a concave shape. Has been done. As shown in FIG. 1, the container body 2 includes a lower case 3 and an upper case 4, and the bank member 23 is arranged along the inner peripheral surface of the lower case 3. As shown in FIG. 2, the bottom surface 23c of the cutout 23k has a shape substantially corresponding to the extension of the inner surface of the lower surface plate 24b of the gas guide member 24, and serves as a gas guide surface. Then, the raw material gas hits the side surface 23b of the cutout portion 23k and runs on the upper surface 23a. The upper case 4
The first surface 4a facing the upper surface 23a of the bank member 23.
And the second surface 4b facing the side surface 23b of the cutout 23k.
And a step portion 4d having a third surface 4c that also faces the bottom surface 23c, and a gas passage 51 having a crank-shaped cross section is formed between the step portion 4d and the cutout portion 23k. As shown in FIG. 4, the bank member side partition plates 35R, 35L are connected to the gas passage 51.
Is formed in an L shape (or a crank shape extending to the upper surface 23a side) corresponding to the above. According to this structure, the flow of the source gas G easily collapses in the lateral direction by passing through the narrow L-shaped gas passage 51, and it is possible to prevent an extreme deviation in the flow rate distribution.

【0023】また、図3に示すように、ガス導入口21
A,21Bとガス案内部材24R,24Lとの間には、
分散板26が配置されている。図4あるいは図6に示す
ように、分散板26は、ガス案内部材24R,24Lの
開口部に対応した横長に形成されており、長手方向に沿
って所定の間隔で複数のガス流通孔26aが形成されて
いる。なお、ガス流通孔26aは、仕切板34R,34
Lと干渉しない位置に形成されている。一方、図3に示
すように、堤部材23とガス排出口22との間には、排
出側ガス案内部材25が配置されている。
Further, as shown in FIG. 3, the gas inlet 21
Between A, 21B and the gas guide members 24R, 24L,
A dispersion plate 26 is arranged. As shown in FIG. 4 or 6, the dispersion plate 26 is formed in a horizontally long shape corresponding to the openings of the gas guide members 24R, 24L, and has a plurality of gas circulation holes 26a at predetermined intervals along the longitudinal direction. Has been formed. In addition, the gas flow holes 26a are formed by the partition plates 34R and 34R.
It is formed at a position where it does not interfere with L. On the other hand, as shown in FIG. 3, a discharge side gas guide member 25 is disposed between the bank member 23 and the gas discharge port 22.

【0024】以下、上記気相成長装置1の作用について
説明する。図1〜4に示すように、サセプタ12上に基
板Wをセットし、必要に応じ自然酸化膜除去等の前処理
を行った後、基板Wを回転させながら赤外線加熱ランプ
11により所定の反応温度に加熱する。その状態で、各
ガス導入口21A,21Bから原料ガスを所定の流速に
て導入する。
The operation of the vapor phase growth apparatus 1 will be described below. As shown in FIGS. 1 to 4, after setting the substrate W on the susceptor 12 and performing pretreatment such as natural oxide film removal as necessary, while rotating the substrate W, a predetermined reaction temperature is set by the infrared heating lamp 11. Heat to. In that state, the raw material gas is introduced at a predetermined flow rate from the respective gas introduction ports 21A and 21B.

【0025】原料ガスは、分散板26を通り、仕切板3
4R,34Lの間を通る内側ガス流G1と、同じく外側
を通る外側ガス流G2とに仕切られて、さらに堤部材2
3の外周面23bに向けて流れる。外周面23bに当た
ったガス流G1及びG2は、堤部材23の上面23aに
乗り上げて、基板Wの主表面に沿って流れ、排出側ガス
案内部材25を経て排出管7に集められ、排出される。
The source gas passes through the dispersion plate 26 and the partition plate 3
The bank member 2 is further divided into an inner gas flow G1 passing between 4R and 34L and an outer gas flow G2 also passing outside.
3 toward the outer peripheral surface 23b. The gas flows G1 and G2 that hit the outer peripheral surface 23b run on the upper surface 23a of the bank member 23, flow along the main surface of the substrate W, and are collected in the discharge pipe 7 via the discharge-side gas guide member 25 and discharged. It

【0026】例えば、図9(c)に示すように、仕切板
34R,34L及び堤部材側仕切板35R,35Lの配
置形態が、水平基準線HSLに関して完全に対称になっ
ている場合を考えると、外側ガス流G2は堤部材23の
円筒面状の外周面23bに対し、幅方向WLにおける端
部の大きく傾いた面に当たるので、外側に大きく逃げる
形となる。他方、内側ガス流G1は、幅方向WLにおけ
る中央付近の、それほど傾斜の強くない位置にて外周面
23bに直角に近い形態にて当たることと、仕切板34
R,34L及び堤部材側仕切板35R,35Lにより外
側への逃げが抑制されることから、直進しようとする傾
向が強くなる。その結果、ガス流量の幅方向WLにおけ
る分布には、図9(b)に示すように、ガスの直進傾向
が強い仕切板34R,34Lの間の領域においては第一
の高流量部Hが、横方向に逃げたガスが集中する左右
の端部付近には第二の高流量部Hが現われ、それらの
間の区間には谷状の低流量部Lが現われる。流量分布
は、水平基準線HSLに関してほぼ左右対称となるか
ら、軸線O周りに回転する基板の主表面上において右側
の高流量部H,H及び低流量部Lに、左側の高流
量部H,H及び低流量部Lが重なり、形成される
エピタキシャル層の厚さ分布には、図9(a)に示すよ
うに、ガス流量分布に対応した大きなムラが発生するこ
ととなる。
For example, as shown in FIG. 9C, consider a case where the layout of the partition plates 34R and 34L and the bank member side partition plates 35R and 35L is completely symmetrical with respect to the horizontal reference line HSL. The outer gas flow G2 hits the cylindrical outer peripheral surface 23b of the bank member 23 at the end of the end in the width direction WL that is largely inclined, and thus the outer gas flow G2 largely escapes to the outside. On the other hand, the inner gas flow G1 impinges on the outer peripheral surface 23b at a position near the center in the width direction WL, where the inclination is not so strong, and the partition plate 34
The R, 34L and the bank member side partition plates 35R, 35L suppress the escape to the outside, so that the tendency to go straight becomes stronger. As a result, in the distribution of the gas flow rate in the width direction WL, as shown in FIG. 9B, in the region between the partition plates 34R and 34L in which the gas has a strong tendency to go straight, the first high flow rate portion H 1 is present. A second high flow rate portion H 2 appears near the left and right ends where the gas escaped in the lateral direction is concentrated, and a valley-shaped low flow rate portion L 1 appears in the section between them. Since the flow rate distribution is substantially symmetrical with respect to the horizontal reference line HSL, on the main surface of the substrate that rotates around the axis O, the high flow rate portions H 1 and H 2 on the right side and the low flow rate portion L 1 and the high flow rate on the left side. The portions H 1 and H 2 and the low flow rate portion L 1 overlap with each other, and as shown in FIG. 9A, a large unevenness corresponding to the gas flow rate distribution occurs in the thickness distribution of the formed epitaxial layer. Become.

【0027】しかしながら、本実施形態の気相成長装置
1においては、左側の仕切板34Lの位置が、右側の仕
切板34Rよりも幅方向WLにおいて水平基準線HSL
に近い側に位置し、左右非対称な配置となっている。そ
のため、図10(c)に示すように、右側では図9と同
じ形態の内側ガス流G1及び外側ガス流G2が生じ、図
10(b)に示すようにガス流量分布も略同様となる
が、左側においては、図9では内側ガス流G1の一部と
なっていたガス流が仕切板34Lよりも外側へ逃がさ
れ、結果として図9では高流量部Hとなっていた部分
の流量が減少し、低流量部Lとなっていた部分の流量
が増大する形となる。これにより、仕切板34Lより内
側のガス流G1’は右側の高流量部H1に対応する位置
に低流量部L ’を作り、外側のガス流G2’は同じく
低流量部Lに対応する位置に高流量部H’を作る。
そして、このような左右非対称なガス流量分布のもと
で、軸線O周りに回転する基板の主表面上にエピタキシ
ャル成長を行なうと、右側の高流量部Hが左側の低流
量部L’により、同じく低流量部Lが高流量部
’によりそれぞれ相殺され、図10(a)に示すよ
うに、形成されるエピタキシャル層の厚さ分布はより均
一なものとなる。
However, the vapor phase growth apparatus of this embodiment
1, the position of the partition plate 34L on the left side is
Horizontal reference line HSL in the width direction WL than the cutting plate 34R
It is located on the side close to and has an asymmetrical arrangement. So
Therefore, as shown in FIG. 10 (c), the right side is the same as FIG.
An inner gas flow G1 and an outer gas flow G2 of the same shape are produced,
As shown in FIG. 10 (b), the gas flow rate distribution is almost the same.
However, on the left side, in FIG.
The gas flow that had been released escaped to the outside of the partition plate 34L.
As a result, in FIG. 9, the high flow rate portion H1The part that was
Flow rate decreases, low flow rate part L1Flow rate of the part
Will increase. As a result, inside the partition plate 34L
Side gas flow G1 'is located at a position corresponding to the right high flow rate portion H1.
Low flow rate part L 1', And the outer gas flow G2' is also
Low flow rate part L1High flow rate part H at the position corresponding to1'make.
Under such asymmetric gas flow distribution
On the main surface of the substrate rotating around the axis O
Of the high flow rate H on the right side1Is low current on the left
Quantity part L1', The low flow rate part L1Has a high flow rate
H1’, Which are offset by each other, as shown in FIG.
As described above, the thickness distribution of the formed epitaxial layer is more uniform.
It will be one.

【0028】なお、水平基準線HSLに対する左右の仕
切板の配置形態を非対称化する方法は、上記のものに限
られるものではない。図6に示すように、例えば右側の
仕切板34R及び堤部材側仕切板35Rの位置を、いず
れも水平基準線HSLからの距離がLとなるように固
定した場合で考えても(左右の反転は当然可能であ
る)、左側の仕切板34L及び堤部材側仕切板35Lの
非対称となる配置の組合せは、距離L、それよりも長
いL及び短いLの3種類同士の9種類の組合せか
ら、両部材34L.35Lの距離がいずれもLとなる
組合せを除いた都合8種類が可能である。図7(a)〜
(f)には、そのうちの6種類を例示してある。VP1
は、水平基準線HSLからの距離がLとなる仕切板3
4Lの位置を、VP2は同じく水平基準線HSLからの
距離がLとなる堤部材側仕切板35Lの位置を示して
いる。さらに、右側の仕切板34R及び堤部材側仕切板
35Rのいずれかについて、水平基準線HSLからの距
離をL以外の値に設定することも可能である。
The method for making the arrangement of the left and right partition plates asymmetric with respect to the horizontal reference line HSL is not limited to the above. As shown in FIG. 6, for example, even if the positions of the right partition plate 34R and the bank member side partition plate 35R are both fixed so that the distance from the horizontal reference line HSL is L 0 (left and right). Of course, the left side partition plate 34L and the bank member side partition plate 35L are asymmetrically arranged in a combination of 9 types, namely, a distance L 0 , a length L 1 longer than that, and a length L 2 shorter than that. The combination of both members 34L. Eight types are possible, except for combinations in which the distance of 35 L is L 0 . Fig.7 (a)-
In (f), 6 types of them are illustrated. VP1
Is a partition plate 3 whose distance from the horizontal reference line HSL is L 0.
4L, VP2 also indicates the position of the bank member side partition plate 35L at which the distance from the horizontal reference line HSL is L 0 . Furthermore, it is possible to set the distance from the horizontal reference line HSL to a value other than L 0 for either the right partition plate 34R or the bank member side partition plate 35R.

【0029】また、左右の仕切板の配置位置のみでな
く、仕切板の形状や数、さらには取付方向などを非対称
化することによっても、幅方向WLにおける左右のガス
流量分布を改善することが可能である。図11に、その
いくつかの例を示している。図11(a)は、左側の仕
切板34Lの下流側部分を省略して右側の仕切板34R
よりも短くした例であり、仕切板34Lよりも内側のガ
ス流の一部を該仕切板34Lよりも外側に逃がすことが
できるので、図10と同様の効果が達成できる。
Further, not only the arrangement positions of the left and right partition plates, but also the shape and number of the partition plates, and further, the mounting direction and the like are made asymmetric, so that the left and right gas flow rate distributions in the width direction WL can be improved. It is possible. FIG. 11 shows some examples thereof. FIG. 11A shows the right partition plate 34R by omitting the downstream side portion of the left partition plate 34L.
In this example, the gas flow inside the partition plate 34L can be partly released to the outside of the partition plate 34L, so that the same effect as in FIG. 10 can be achieved.

【0030】また、図11(b)は、幅方向WLにおい
て水平基準線HSLに対し右側の仕切板と左側の仕切板
との少なくともいずれか、本実施形態では左側の仕切板
134のみ、原料ガスの流れ方向における下流側の端1
34hが上流側の端134jよりも幅方向WLにおいて
内側に位置するように配置した例を示すものである。こ
のように構成すると、幅方向WLにおいて外側に逃げよ
うとするガス流Gが、仕切板134により内側に招き寄
せられるので、図9(b)のような高流量部H や低流
量部Lが形成されにくくなり、ガス流量分布の均一化
を図ることができる。なお、図11(b)の態様では、
左側においては、水平基準線HSLに関して右側の仕切
板34Rと対称な位置に設けられた仕切板34Lと、下
流側の端134hが上流側の端134jよりも幅方向W
Lにおいて内側に位置するように傾けて配置した仕切板
134Lとが組み合わせてある。すなわち、右側と左側
とで仕切板の配置枚数を異ならせた実施例にも相当す
る。
Further, FIG. 11 (b) shows the swell in the width direction WL.
Partition plate on the right and partition plate on the left with respect to the horizontal reference line HSL
And / or the left partition plate in the present embodiment.
Only 134, the downstream end 1 in the flow direction of the source gas
34h is more in the width direction WL than the upstream end 134j.
It shows an example in which it is arranged so as to be located inside. This
With such a configuration, escape outward in the width direction WL.
The gas flow G that is about to come is invited to the inside by the partition plate 134.
Therefore, the high flow rate portion H as shown in FIG. TwoAnd low current
Quantity part L1Is less likely to form, making the gas flow distribution uniform
Can be achieved. In the mode of FIG. 11B,
On the left side, the partition on the right side with respect to the horizontal reference line HSL
A partition plate 34L provided at a position symmetrical to the plate 34R, and
The end 134h on the flow side is in the width direction W than the end 134j on the upstream side.
Partition plate tilted so that it is located inside at L
It is combined with 134L. Ie right and left
Also corresponds to the embodiment in which the number of partition plates arranged is different by
It

【0031】また、図11(b)においては、ガス案内
部材24Lのガス入り口側の端からガス出口側の端に至
る傾斜した長い仕切板134Lを1枚のみ使用していた
が、図11(c)に示すように、ガス流方向の中間位置
からガス出口側の端に至る傾斜した短い仕切板135L
を設けてもよい。この実施形態では、このような仕切板
135Lを幅方向WLにおいて所定の間隔で複数枚配置
している。
Further, in FIG. 11B, only one long partition plate 134L inclined from the end on the gas inlet side of the gas guide member 24L to the end on the gas outlet side is used, but FIG. As shown in c), a short partition plate 135L inclined from the middle position in the gas flow direction to the end on the gas outlet side.
May be provided. In this embodiment, a plurality of such partition plates 135L are arranged at predetermined intervals in the width direction WL.

【0032】[0032]

【実施例】CZ法により作製した直径200mmのp
型シリコン単結晶基板Wを、図1〜図4に示すように気
相成長装置1内に配置した。なお、左右の仕切板34
R、34Lと、堤部材側仕切板35R,35Lの配置位
置は、図6において、右側の仕切板34R及び堤部材側
仕切板35Rと左側の堤部材側仕切板35Lに関して
は、水平基準線HSKからの距離を57.2mmに固定
し、左側の仕切板34Lまでの距離dを、32.5mm
(非対称)、57.2mm(対称)及び71.5mm
(非対称)のいずれかに設定した。
Example: p + with a diameter of 200 mm produced by the CZ method
The type silicon single crystal substrate W was arranged in the vapor phase growth apparatus 1 as shown in FIGS. The left and right partition plates 34
The positions of R and 34L and the bank member side partition plates 35R and 35L are the horizontal reference line HSK for the right partition plate 34R and the bank member side partition plate 35R and the left bank member side partition plate 35L in FIG. Is fixed at 57.2 mm, and the distance d to the left partition plate 34L is 32.5 mm.
(Asymmetric), 57.2 mm (Symmetric) and 71.5 mm
It was set to either (asymmetric).

【0033】そして、試験を下記の手順で行った。ま
ず、赤外線加熱ランプ11(図1)に通電し、基板Wの
温度が1100℃になった後に、基板W表面の自然酸化
膜を除去した。その後、基板Wの温度を1100℃に保
持したまま内側ガス導入口21A及び外側ガス導入口2
1Bから原料ガスとしてトリクロロシランガスを含有す
る水素ガスを流通して、基板W上にシリコン単結晶薄膜
を気相エピタキシャル成長させた。なお、内側ガス導入
口21Aと外側ガス導入口21Bとの原料ガスの合計供
給流量は50リットル/分に固定した。また、ガス導入
口21Aと外側ガス導入口21Bとの供給流量比は種々
に変えてシリコン単結晶薄膜の成長を行い、膜厚分布が
最適となるものを選択するようにした。
Then, the test was conducted in the following procedure. First, the infrared heating lamp 11 (FIG. 1) was energized, and after the temperature of the substrate W reached 1100 ° C., the natural oxide film on the surface of the substrate W was removed. After that, while maintaining the temperature of the substrate W at 1100 ° C., the inner gas inlet 21A and the outer gas inlet 2
Hydrogen gas containing trichlorosilane gas as a source gas was circulated from 1B to vapor-phase epitaxially grow a silicon single crystal thin film on the substrate W. The total supply flow rate of the raw material gas from the inner gas inlet 21A and the outer gas inlet 21B was fixed at 50 liters / minute. Further, the supply flow rate ratio between the gas inlet 21A and the outer gas inlet 21B was variously changed to grow the silicon single crystal thin film, and the one having the optimum film thickness distribution was selected.

【0034】そして、得られた薄膜付きの基板すなわち
エピタキシャルウェーハの、直径方向の膜厚分布プロフ
ァイルをFT−IR法により測定し、グラフにプロット
した。測定結果を図12に示す。すなわち、左右の仕切
板までの距離を非対称とした本発明の実施例((a)、
(c))は、対称とした比較例((b)よりも膜厚の位
置的な変動が小さく、均一な分布が得られていることが
わかる。
Then, the film thickness distribution profile in the diameter direction of the obtained substrate with a thin film, that is, an epitaxial wafer was measured by the FT-IR method and plotted in a graph. The measurement result is shown in FIG. That is, the embodiment of the present invention in which the distances to the left and right partition plates are asymmetrical ((a),
It can be seen that in (c), the positional variation of the film thickness is smaller than in the symmetrical comparative example ((b)), and a uniform distribution is obtained.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の気相成長装置の一例を示す側面断面
図。
FIG. 1 is a side sectional view showing an example of a vapor phase growth apparatus of the present invention.

【図2】図1の要部を拡大した断面図。FIG. 2 is an enlarged cross-sectional view of a main part of FIG.

【図3】図1の平面図。FIG. 3 is a plan view of FIG.

【図4】図1の装置の要部を一部切り欠いて示す分解斜
視図。
FIG. 4 is an exploded perspective view showing a main portion of the apparatus of FIG. 1 with a part thereof cut away.

【図5】堤部材側仕切板の作用説明図。FIG. 5 is an operation explanatory view of a bank member side partition plate.

【図6】左右の仕切板及び堤部材側仕切板の配置態様の
組合せ形態を説明する図。
FIG. 6 is a view for explaining a combination mode of arrangement of left and right partition plates and bank member side partition plates.

【図7】左右の仕切板及び堤部材側仕切板の配置態様の
変形例を示す図。
FIG. 7 is a diagram showing a modified example of the arrangement of left and right partition plates and bank member side partition plates.

【図8】円筒面状の外周面を有する堤部材の問題点を説
明する図。
FIG. 8 is a diagram illustrating a problem of a bank member having a cylindrical outer peripheral surface.

【図9】左右対称な仕切板配置形態を採用した場合の問
題点を説明する図。
FIG. 9 is a diagram for explaining a problem when a bilaterally symmetrical partition plate layout is adopted.

【図10】左右非対称な仕切板配置形態を採用すること
により達成される効果を説明する図。
FIG. 10 is a diagram illustrating an effect achieved by adopting a partition plate layout configuration that is asymmetrical to the left and right.

【図11】左右の仕切板の形状、配置数及び配置方向を
非対称とする種々の実施例を示す平面模式図。
FIG. 11 is a schematic plan view showing various embodiments in which the shapes of the left and right partition plates, the number of arrangements, and the arrangement directions are asymmetrical.

【図12】実施例の実験結果である膜厚分布の測定結果
を示すグラフ。
FIG. 12 is a graph showing the measurement results of the film thickness distribution, which is the experimental result of the example.

【符号の説明】[Explanation of symbols]

1 気相成長装置 2 反応容器本体 5 内部空間 12 サセプタ 12a サセプタの上面 21 ガス導入口 22 ガス排出口 23 堤部材 23a 堤部材の上面 23b 堤部材の外周面 24,24R,24L ガス案内部材 24s ガス案内空間 31 第一端部側 32 第二端部側 34R,34L 仕切板 35R,35L 堤部材側仕切板 134L 仕切板 134h 仕切板134Lの下流側の端 134j 仕切板134Lの上流側の端 W 基板 G 原料ガス O 回転軸線 HSL 水平基準線 WL 幅方向 1 Vapor growth equipment 2 Reaction container body 5 Internal space 12 susceptor 12a Upper surface of susceptor 21 gas inlet 22 Gas outlet 23 Levee member 23a Upper surface of bank member 23b Outer peripheral surface of bank member 24, 24R, 24L gas guide member 24s gas guide space 31 First end side 32 Second end side 34R, 34L partition plate 35R, 35L Partition member side partition plate 134L partition board 134h Downstream end of partition plate 134L 134j End of upstream side of partition plate 134L W board G raw material gas O rotation axis HSL horizontal reference line WL width direction

───────────────────────────────────────────────────── フロントページの続き (72)発明者 山本 博一 長野県更埴市大字屋代1393番地 長野電 子工業株式会社内 (72)発明者 山口 進一 長野県更埴市大字屋代1393番地 長野電 子工業株式会社内 (56)参考文献 特開2000−91237(JP,A) 特開 平8−250430(JP,A) 特開2000−331939(JP,A) 特開2000−68215(JP,A) 特開 平10−4064(JP,A) 特開 平7−193015(JP,A) (58)調査した分野(Int.Cl.7,DB名) H01L 21/205 C23C 16/24 C23C 16/455 C30B 25/14 C30B 29/06 504 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Hirokazu Yamamoto 1393 Yashiro Yashiro, Sarahaku-shi, Nagano Nagano Electronics Co., Ltd. (72) Inventor Shinichi Yamaguchi 1393 Yashiro Osahiro, Sarahima-shi, Nagano Nagano Denko Kogyo Co., Ltd. In-house (56) Reference JP 2000-91237 (JP, A) JP 8-250430 (JP, A) JP 2000-331939 (JP, A) JP 2000-68215 (JP, A) JP HEI 10-4064 (JP, A) JP-A-7-193015 (JP, A) (58) Fields investigated (Int.Cl. 7 , DB name) H01L 21/205 C23C 16/24 C23C 16/455 C30B 25 / 14 C30B 29/06 504

Claims (8)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 シリコン単結晶基板の主表面にシリコン
単結晶薄膜を気相成長させる気相成長装置であって、 水平方向における第一端部側にガス導入口が形成され、
同じく第二端部側にガス排出口が形成された反応容器本
体を有し、シリコン単結晶薄膜形成のための原料ガスが
前記ガス導入口から前記反応容器本体内に導入され、該
反応容器本体の内部空間にて略水平に回転保持される前
記シリコン単結晶基板の前記主表面に沿う方向に沿って
前記原料ガスが流れた後、前記ガス排出口から排出され
るように構成され、 前記内部空間内にて回転駆動される円盤状のサセプタ上
に前記シリコン単結晶基板が配置される一方、前記サセ
プタを取り囲むとともに、上面が該サセプタの上面と一
致する位置関係にて堤部材が配置され、 さらに、前記ガス導入口は前記堤部材の外周面に対向す
る形にて開口し、該ガス導入口からの前記原料ガスが、
前記堤部材の外周面に当たって上面側に乗り上げた後、
前記サセプタ上の前記シリコン単結晶基板の主表面に沿
って流れるように構成され、 かつ、前記反応容器本体の前記第一端部から前記サセプ
タの回転軸線と直交して前記第二端部に至る前記原料ガ
スの流れ方向に沿った仮想的な中心線を水平基準線と
し、該水平基準線と前記回転軸線との双方に直交する方
向を幅方向と定義したときに、前記ガス導入口と前記堤
部材との間に、前記シリコン単結晶基板に向かう前記原
料ガスの流れを、前記幅方向における複数個所にて仕切
る仕切板が設けられた気相成長装置において、 前記複数の仕切板は、前記幅方向において前記水平基準
線に対し左右に振り分けた形にて、各々前記堤部材の外
周面に向かって延びるように配置されるとともに、前記
水平基準線に対し右側の仕切板の形成形態と左側の仕切
板の形成形態とを互いに異ならせたことを特徴とする気
相成長装置。
1. A vapor phase growth apparatus for vapor-depositing a silicon single crystal thin film on a main surface of a silicon single crystal substrate, wherein a gas inlet is formed at a first end portion side in a horizontal direction,
Similarly, it has a reaction container body having a gas discharge port formed on the second end side, and a source gas for forming a silicon single crystal thin film is introduced into the reaction container body from the gas introduction port. Is configured to be discharged from the gas discharge port after the source gas flows along a direction along the main surface of the silicon single crystal substrate that is rotated and held substantially horizontally in the internal space of While the silicon single crystal substrate is arranged on a disk-shaped susceptor that is rotationally driven in a space, while surrounding the susceptor, the bank member is arranged in a positional relationship in which the upper surface matches the upper surface of the susceptor, Furthermore, the gas introduction port is opened in a manner to face the outer peripheral surface of the bank member, the raw material gas from the gas introduction port,
After hitting the outer peripheral surface of the bank member and riding on the upper surface side,
It is configured to flow along the main surface of the silicon single crystal substrate on the susceptor, and from the first end portion of the reaction container body to the second end portion orthogonal to the rotation axis of the susceptor. When a virtual center line along the flow direction of the raw material gas is a horizontal reference line, and the direction orthogonal to both the horizontal reference line and the rotation axis is defined as the width direction, the gas inlet and the Between the bank member and the flow of the raw material gas toward the silicon single crystal substrate, in a vapor phase growth apparatus provided with partition plates at a plurality of positions in the width direction, the plurality of partition plates, The left and right sides of the horizontal reference line in the width direction are arranged so as to extend toward the outer peripheral surface of the bank member, and the partition plate on the right side and the left side of the horizontal reference line are formed. Cutie Vapor deposition apparatus characterized by having different and formation form of a plate with one another.
【請求項2】 前記右側の仕切板と前記左側の仕切板
は、前記幅方向において前記水平基準線からの距離が互
いに異なるものとなるように配置されていることを特徴
とする請求項1記載の気相成長装置。
2. The right side partition plate and the left side partition plate are arranged so that the distances from the horizontal reference line are different from each other in the width direction. Vapor growth equipment.
【請求項3】 前記ガス導入口からの前記原料ガスを前
記堤部材の外周面に向けて導く1対のガス案内部材が、
前記幅方向において前記水平基準線に対し左右に振り分
けた形にて、前記ガス導入口と前記堤部材との間に配置
され、前記ガス案内部材の内側に形成されたガス案内空
間の各々に前記仕切板が配置されることを特徴とする請
求項1又は2に記載の気相成長装置。
3. A pair of gas guide members for guiding the raw material gas from the gas introduction port toward the outer peripheral surface of the bank member,
In the width direction, the gas is divided into the right and left with respect to the horizontal reference line, and is arranged between the gas inlet and the bank member, and is provided in each of the gas guide spaces formed inside the gas guide member. The vapor phase growth apparatus according to claim 1, wherein a partition plate is arranged.
【請求項4】 前記堤部材の外周面には、前記原料ガス
の流れを前記幅方向における複数個所にて仕切る堤部材
側仕切板が設けられ、前記右側の仕切板と前記左側の仕
切板のうちいずれか一方は、前記幅方向において前記堤
部材側仕切板とは異なる位置に配置されることを特徴と
する請求項1ないし3のいずれかに記載の気相成長装
置。
4. A bank member side partition plate for partitioning the flow of the raw material gas at a plurality of positions in the width direction is provided on the outer peripheral surface of the bank member, and the partition plate on the right side and the partition plate on the left side are provided. 4. The vapor phase growth apparatus according to claim 1, wherein one of them is arranged at a position different from the bank member side partition plate in the width direction.
【請求項5】 前記堤部材の外周面が円筒面状に形成さ
れることを特徴とする請求項1ないし4のいずれかに記
載の気相成長装置。
5. The vapor phase growth apparatus according to claim 1, wherein an outer peripheral surface of the bank member is formed into a cylindrical surface shape.
【請求項6】 前記堤部材側仕切板は、前記幅方向にお
いて前記水平基準線に関し左右に各々1個所ずつ配置さ
れることを特徴とする請求項4記載の気相成長装置。
6. The vapor phase growth apparatus according to claim 4, wherein the bank member side partition plates are arranged one each on the left and right sides of the horizontal reference line in the width direction.
【請求項7】 前記幅方向において前記水平基準線に対
し右側の仕切板と左側の仕切板との少なくともいずれか
を、前記原料ガスの流れ方向における下流側の端が上流
側の端よりも前記幅方向において内側に位置するように
配置したことを特徴とする請求項1ないし6のいずれか
に記載の気相成長装置。
7. A partition plate on the right side and a partition plate on the left side of the horizontal reference line in the width direction, wherein a downstream end in the flow direction of the raw material gas is more than an upstream end. The vapor phase growth apparatus according to any one of claims 1 to 6, wherein the vapor phase growth apparatus is arranged so as to be positioned inside in the width direction.
【請求項8】 請求項1ないし7のいずれかに記載の気
相成長装置の前記反応容器内に前記シリコン単結晶基板
を配置し、該反応容器内に前記原料ガスを流通させて前
記シリコン単結晶基板上に前記シリコン単結晶薄膜を気
相エピタキシャル成長させることによりエピタキシャル
ウェーハを得ることを特徴とするエピタキシャルウェー
ハの製造方法。
8. The silicon single crystal substrate is arranged in the reaction vessel of the vapor phase growth apparatus according to claim 1, and the raw material gas is circulated in the reaction vessel to obtain the silicon single crystal substrate. A method for manufacturing an epitaxial wafer, comprising obtaining an epitaxial wafer by vapor-phase epitaxially growing the silicon single crystal thin film on a crystal substrate.
JP2000398034A 2000-12-27 2000-12-27 Vapor phase growth apparatus and method for manufacturing epitaxial wafer Expired - Lifetime JP3516654B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000398034A JP3516654B2 (en) 2000-12-27 2000-12-27 Vapor phase growth apparatus and method for manufacturing epitaxial wafer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000398034A JP3516654B2 (en) 2000-12-27 2000-12-27 Vapor phase growth apparatus and method for manufacturing epitaxial wafer

Publications (2)

Publication Number Publication Date
JP2002198316A JP2002198316A (en) 2002-07-12
JP3516654B2 true JP3516654B2 (en) 2004-04-05

Family

ID=18863079

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000398034A Expired - Lifetime JP3516654B2 (en) 2000-12-27 2000-12-27 Vapor phase growth apparatus and method for manufacturing epitaxial wafer

Country Status (1)

Country Link
JP (1) JP3516654B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014061979A1 (en) * 2012-10-15 2014-04-24 Lg Siltron Inc. Gas flow controller for manufacturing high flatness wafer
WO2021050489A1 (en) * 2019-09-09 2021-03-18 Applied Materials, Inc. Processing system and method of delivering a reactant gas

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4379585B2 (en) 2003-12-17 2009-12-09 信越半導体株式会社 Vapor phase growth apparatus and epitaxial wafer manufacturing method
JP4348542B2 (en) * 2004-08-24 2009-10-21 信越半導体株式会社 Quartz jig and semiconductor manufacturing equipment
JP5176679B2 (en) * 2008-05-08 2013-04-03 信越半導体株式会社 Thin film vapor deposition method
KR20130081551A (en) * 2012-01-09 2013-07-17 주식회사 엘지실트론 Semiconductor manufacturing apparatus
US11486038B2 (en) 2019-01-30 2022-11-01 Applied Materials, Inc. Asymmetric injection for better wafer uniformity

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0967633A1 (en) * 1993-07-30 1999-12-29 Applied Materials, Inc. Gas inlets for wafer processing chamber
JPH08250430A (en) * 1995-03-10 1996-09-27 Shin Etsu Handotai Co Ltd Manufacture of single-crystal thin film
JP3498255B2 (en) * 1996-06-17 2004-02-16 東芝機械株式会社 Single wafer decompression CVD system
JP2000068215A (en) * 1998-08-18 2000-03-03 Shin Etsu Handotai Co Ltd Method for growing vapor phase thin film and device therefor
JP2000091237A (en) * 1998-09-09 2000-03-31 Shin Etsu Handotai Co Ltd Manufacture of semiconductor wafer
JP2000331939A (en) * 1999-05-17 2000-11-30 Applied Materials Inc Film-forming device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014061979A1 (en) * 2012-10-15 2014-04-24 Lg Siltron Inc. Gas flow controller for manufacturing high flatness wafer
WO2021050489A1 (en) * 2019-09-09 2021-03-18 Applied Materials, Inc. Processing system and method of delivering a reactant gas
JP2022547508A (en) * 2019-09-09 2022-11-14 アプライド マテリアルズ インコーポレイテッド Process system and method of supplying reactant gases
JP7376693B2 (en) 2019-09-09 2023-11-08 アプライド マテリアルズ インコーポレイテッド Processing system and method of supplying reactant gases

Also Published As

Publication number Publication date
JP2002198316A (en) 2002-07-12

Similar Documents

Publication Publication Date Title
JP4379585B2 (en) Vapor phase growth apparatus and epitaxial wafer manufacturing method
JP4588894B2 (en) Vapor phase growth apparatus and epitaxial wafer manufacturing method
US9551069B2 (en) Reaction apparatus having multiple adjustable exhaust ports
JPH07193015A (en) Gas inlet for wafer processing chamber
JP5004513B2 (en) Vapor growth apparatus and vapor growth method
JP3801957B2 (en) Vapor phase growth apparatus and epitaxial wafer manufacturing method
JP5018708B2 (en) Vapor phase processing apparatus, vapor phase processing method and substrate
WO2005059980A1 (en) Vapor growth device and porduction method for epitaxial wafer
JP3516654B2 (en) Vapor phase growth apparatus and method for manufacturing epitaxial wafer
JP2000269147A (en) Vapor growth device, vapor growth method and silicon epitaxial wafer
JP3893615B2 (en) Vapor phase growth apparatus and epitaxial wafer manufacturing method
JP2003168650A (en) Vapor phase growth unit and method of manufacturing epitaxial wafer
US20010050052A1 (en) Semiconductor device manufacturing apparatus and semiconductor device manufacturing method
JP4581868B2 (en) Epitaxial growth apparatus and manufacturing method thereof
JPH1032169A (en) Method and device for vapor growth
JP2003203866A (en) Vapor growth apparatus and method of manufacturing epitaxial wafer
JPH09148259A (en) Lateral reactor
JP4655801B2 (en) Epitaxial growth apparatus and epitaxial wafer manufacturing method
JP2001110726A (en) Method and device for forming film
JP6179790B2 (en) Vapor growth apparatus and epitaxial wafer manufacturing method
JP2000349030A (en) Gas-phase reactor
JP2010040590A (en) Epitaxial silicon wafer and method of manufacturing the same
JP2010040541A (en) Epitaxial growth apparatus
JP2000068215A (en) Method for growing vapor phase thin film and device therefor
JP5170056B2 (en) Epitaxial growth apparatus and epitaxial growth method

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20031224

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040106

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040120

R150 Certificate of patent or registration of utility model

Ref document number: 3516654

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080130

Year of fee payment: 4

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080130

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090130

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090130

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100130

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110130

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110130

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120130

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120130

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130130

Year of fee payment: 9

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130130

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140130

Year of fee payment: 10

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term