JP2010040541A - Epitaxial growth apparatus - Google Patents

Epitaxial growth apparatus Download PDF

Info

Publication number
JP2010040541A
JP2010040541A JP2008197918A JP2008197918A JP2010040541A JP 2010040541 A JP2010040541 A JP 2010040541A JP 2008197918 A JP2008197918 A JP 2008197918A JP 2008197918 A JP2008197918 A JP 2008197918A JP 2010040541 A JP2010040541 A JP 2010040541A
Authority
JP
Japan
Prior art keywords
gas
reaction vessel
gas introduction
wafer
width direction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008197918A
Other languages
Japanese (ja)
Inventor
Daisuke Hieda
大輔 稗田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumco Corp
Original Assignee
Sumco Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumco Corp filed Critical Sumco Corp
Priority to JP2008197918A priority Critical patent/JP2010040541A/en
Publication of JP2010040541A publication Critical patent/JP2010040541A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Chemical Vapour Deposition (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an epitaxial growth apparatus restraining an automatic dope of a thin film from being formed, by preventing turbulent flow of a material gas. <P>SOLUTION: The epitaxial growth apparatus 10 includes: a reaction container 11 formed like a box and used to house a semiconductor wafer 13; and a gas supply source 12 for flowing a gas to generate a gas flow from one end to the other end in the inside of the reaction container. A gas flow regulating member 19 for forming a gas chamber between itself and the one end of the reaction container is provided on the one end side of the reaction container so as to spread in a width direction, a plurality of gas introducing channels 19a, 19b for dividing the material gas supplied into the gas chamber from the gas supply source and flowing the divided gas to the surrounding of a wafer are formed in the gas flow regulating member, and the plurality of gas introducing channels are formed in two or three rows in a direction perpendicular to the gas flow regulating member and its number is 10-40 in the width direction. Partitions 21 for dividing the gas chamber into a plurality of sub-gas changers arranged in the width direction are provided, gas supply ports for supplying the gas to the plurality of sub-gas chambers are formed, and control means for controlling the gas amount to be supplied to the plurality of sub-gas chambers are further provided. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、シリコン単結晶基板等の半導体ウェーハの表面に、シリコン単結晶薄膜等の薄膜を気相成長させる枚葉式のエピタキシャル装置に関するものである。   The present invention relates to a single wafer type epitaxial apparatus in which a thin film such as a silicon single crystal thin film is vapor-phase grown on the surface of a semiconductor wafer such as a silicon single crystal substrate.

半導体ウェーハの表面に、気相成長法によりシリコン単結晶薄膜をエピタキシャル成長により形成したシリコンエピタキシャルウェーハは、バイポーラICやMOS−IC等の電子デバイスに広く使用されている。近年、電子デバイスの微細化による薄膜化やウェーハの大口径化が進む中、形成されるシリコン単結晶薄膜の膜厚あるいは抵抗率の面内均一化をどのように図るかが重要な課題の一つとなっている。例えば直径が200mmのシリコン単結晶ウェーハの製造においては、複数枚のウェーハをバッチ処理する方法に代えて、膜厚分布等の制御が比較的容易な枚葉式装置が主流になりつつある。このエピタキシャル装置は箱形の反応容器を備え、その反応容器内に1枚のシリコン単結晶等の半導体ウェーハを水平に保持し、反応容器の一端から他端へ原料ガスを水平かつ一方向に供給しながら半導体ウェーハの表面に薄膜を気相成長させるものである。   A silicon epitaxial wafer in which a silicon single crystal thin film is formed by epitaxial growth on the surface of a semiconductor wafer by vapor deposition is widely used for electronic devices such as bipolar ICs and MOS-ICs. In recent years, as the thinning of electronic devices and the increase in diameter of wafers have progressed, one important issue is how to achieve in-plane uniformity of the film thickness or resistivity of the formed silicon single crystal thin film. It has become one. For example, in the manufacture of a silicon single crystal wafer having a diameter of 200 mm, a single-wafer apparatus that is relatively easy to control the film thickness distribution and the like is becoming the mainstream instead of the batch processing method for a plurality of wafers. This epitaxial apparatus is equipped with a box-shaped reaction vessel, and a semiconductor wafer such as a single silicon single crystal is horizontally held in the reaction vessel, and a source gas is supplied horizontally and in one direction from one end of the reaction vessel to the other end. However, a thin film is vapor-phase grown on the surface of the semiconductor wafer.

このようなエピタキシャル装置において、形成される薄膜の膜厚均一化を図る上で重要な因子の一つに、反応容器内の原料ガスの流速分布がある。原料ガスの流速分布の均一化を図るためのガス導入機構については、反応容器の一端側の幅方向に複数、例えば図7〜図9に示すように、3個のガス供給口2aを反応容器2の一端側に形成することが知られている(例えば、特許文献1参照。)。この反応容器2の内部にはサセプタ4が設けられ、半導体ウェーハ3をこのサセプタ4上に設置することにより半導体ウェーハ3は反応容器2に収容される。そして、反応容器2の一端側に形成された複数のガス供給口2aから原料ガスを反応容器2内に供給することにより、単一のガス供給口から原料ガスを反応容器内に供給する場合に比較して反応容器2内の原料ガスの流速分布を均一にできるとしている。
特開平8−181076号公報(明細書[0047]、図1)
In such an epitaxial apparatus, one of the important factors for achieving uniform film thickness of the thin film formed is the flow velocity distribution of the source gas in the reaction vessel. Regarding the gas introduction mechanism for making the flow velocity distribution of the raw material gas uniform, a plurality of, for example, three gas supply ports 2a are provided in the reaction vessel in the width direction on one end side of the reaction vessel as shown in FIGS. 2 is known to be formed on one end side (see, for example, Patent Document 1). A susceptor 4 is provided inside the reaction vessel 2, and the semiconductor wafer 3 is accommodated in the reaction vessel 2 by placing the semiconductor wafer 3 on the susceptor 4. And when supplying source gas in the reaction container 2 from the single gas supply port by supplying source gas into the reaction container 2 from the several gas supply port 2a formed in the one end side of the reaction container 2 In comparison, the flow velocity distribution of the raw material gas in the reaction vessel 2 can be made uniform.
JP-A-8-181076 (Specification [0047], FIG. 1)

しかし、反応容器2の一端側の幅方向に複数のガス供給口2aを形成しても、反応容器が箱形であることから、図9に示すように複数のガス供給口2aから反応容器2の一端側に供給された原料ガスは螺旋状となり、図7及び図8に示すように、反応容器2の一端から他端に移動するに従って乱流となることが知られている。そして、図7及び図8の実線矢印で示すようにそのガス流は時には渦を巻いてしまう場合も生じ得ることが判明してきた。このように、反応容器の内部で原料ガスが乱流を生じせると原料ガスの渦による滞留が起こりドーパントガス分布が均一にならず、形成される薄膜の比抵抗の深さ方向分布形状がだれる、即ちオートドープが発生してしまうという未だ解決すべき課題が残存していた。
本発明の目的は、形成される薄膜のオートドープを低減し得るエピタキシャル装置を提供することにある。
However, even if a plurality of gas supply ports 2a are formed in the width direction on one end side of the reaction vessel 2, the reaction vessel has a box shape, and therefore, as shown in FIG. It is known that the source gas supplied to one end side of the gas becomes spiral and becomes turbulent as it moves from one end of the reaction vessel 2 to the other end, as shown in FIGS. It has been found that the gas flow can sometimes vortex as shown by the solid arrows in FIGS. In this way, if the source gas causes turbulent flow inside the reaction vessel, the source gas is retained due to vortices, and the dopant gas distribution is not uniform, and the formed thin film has a specific resistance in the depth direction. That is, the problem to be solved still remains that auto-doping occurs.
An object of the present invention is to provide an epitaxial apparatus capable of reducing autodoping of a thin film to be formed.

請求項1に係る発明は、箱形に形成され半導体ウェーハが収容される反応容器と、反応容器の一端に原料ガスを供給して反応容器の内部に一端から他端に向かうガス流を生じさせるガス供給源とを備えたエピタキシャル装置の改良である。
その特徴ある構成は、反応容器の一端側内部にガス室を形成するガス整流部材が反応容器の幅方向に設けられ、ガス整流部材にガス供給源からガス室に供給された原料ガスを分流してウェーハの周囲に流す複数のガス導入流路が幅方向に間隔をあけて列をなして形成され、複数のガス導入流路は鉛直方向に2列又は3列であってかつ列間に10〜40個ガス整流部材に形成されたところにある。
The invention according to claim 1 is a reaction vessel formed in a box shape and containing a semiconductor wafer, and a source gas is supplied to one end of the reaction vessel to generate a gas flow from one end to the other end inside the reaction vessel. It is improvement of the epitaxial apparatus provided with the gas supply source.
The characteristic configuration is that a gas rectifying member that forms a gas chamber is provided in one end side of the reaction vessel in the width direction of the reaction vessel, and the source gas supplied from the gas supply source to the gas chamber is divided into the gas rectifying member. A plurality of gas introduction passages that flow around the wafer are formed in rows at intervals in the width direction, and the plurality of gas introduction passages are arranged in two or three rows in the vertical direction, and 10 between the rows. There are ˜40 gas rectifying members formed.

請求項2に係る発明は、請求項1に係る発明であって、ガス室を幅方向に複数の小ガス室に分断する仕切板がガス室に設けられ、複数の小ガス室にガスをそれぞれ供給するガス供給口が反応容器の一端に複数形成され、ガス供給源から複数のガス供給口を介して複数の小ガス室に供給するガス量を別々に調整する調整手段を更に備えたことを特徴とする。
請求項3に係る発明は、請求項1又は2に係る発明であって、ガス導入流路が鉛直方向に2列に形成され、上列又は下列のガス導入流路のいずれか一方が水平方向に形成され、上列又は下列のガス導入流路のいずれか他方が水平方向に対して下流側が下方になるように傾斜して形成されたことを特徴とする。
The invention according to claim 2 is the invention according to claim 1, wherein a partition plate that divides the gas chamber into a plurality of small gas chambers in the width direction is provided in the gas chamber, and gas is supplied to the plurality of small gas chambers, respectively. A plurality of gas supply ports to be supplied are formed at one end of the reaction vessel, and further provided with adjusting means for separately adjusting the amount of gas supplied from the gas supply source to the plurality of small gas chambers via the plurality of gas supply ports. Features.
The invention according to claim 3 is the invention according to claim 1 or 2, wherein the gas introduction flow paths are formed in two rows in the vertical direction, and either the upper row or the lower row gas introduction flow channels are in the horizontal direction. It is characterized in that either one of the upper row or the lower row gas introduction flow paths is inclined so that the downstream side is downward with respect to the horizontal direction.

請求項4に係る発明は、請求項3に係る発明であって、反応容器の内部天井面と反応容器に収容された半導体ウェーハの下面までの距離をLとし、水平方向に対して下流側が下方になるように傾斜して形成されたガス導入流路の水平方向に対する角度をθとし、傾斜して形成されたガス導入流路の下流側端縁の中心位置と反応容器の内部天井面との鉛直距離をXとするとき、以下の式(1)及び(2)を満たすことを特徴とする。
0度<θ<10度 ・・・(1)
0<X≦L ・・・(2)
The invention according to claim 4 is the invention according to claim 3, wherein the distance from the inner ceiling surface of the reaction vessel to the lower surface of the semiconductor wafer accommodated in the reaction vessel is L, and the downstream side is downward with respect to the horizontal direction. The angle with respect to the horizontal direction of the gas introduction channel formed so as to be inclined is θ, and the center position of the downstream edge of the gas introduction channel formed so as to be inclined and the inner ceiling surface of the reaction vessel When the vertical distance is X, the following expressions (1) and (2) are satisfied.
0 degree <θ <10 degrees (1)
0 <X ≦ L (2)

本発明のエピタキシャル装置では、反応容器の内部においてガス整流部材を越えた原料ガスの流れは、複数のガス導入流路を通過することにより、非常に均一な流速分布を持ったガス流となり、反応容器内部における原料ガスの逆流が抑えられる。この結果、ウェーハの表面に形成されるエピタキシャル厚さが均一となり、ウェーハ面内にオートドープの少ない、良好な深さ方向の抵抗率分布を有する薄膜を形成することが可能となる。   In the epitaxial apparatus of the present invention, the flow of the raw material gas beyond the gas rectifying member inside the reaction vessel becomes a gas flow having a very uniform flow velocity distribution by passing through a plurality of gas introduction flow paths, The backflow of the source gas inside the container is suppressed. As a result, the epitaxial thickness formed on the surface of the wafer becomes uniform, and it becomes possible to form a thin film having a good resistivity distribution in the depth direction with less autodoping in the wafer surface.

次に本発明を実施するための最良の形態を図面に基づいて説明する。
図1に示すように、このエピタキシャル装置10は、偏平状の箱形に形成された石英ガラス製の反応容器11と、その反応容器11の一端に原料ガスを供給するガス供給源12とを備える。反応容器11の底部にはサセプタ14が設けられ、このサセプタ14の上面に半導体ウェーハ13が設置されて反応容器11に収容されるように構成される。半導体ウェーハ13は円板状であり、例えば直径が略200mmあるいはそれ以上のものである。このサセプタ14はウェーハ13とともに回転可能に構成され,このようにして反応容器11の内部には、基材としての半導体ウェーハ13が略水平に1枚のみ収容される。図示しないが、半導体ウェーハ13の配置領域に対応して反応容器11の上下にはウェーハ13を加熱のためのハロゲン加熱ランプが所定間隔にて配置され、これによりこのエピタキシャル装置10は水平枚葉型装置として構成される。尚、加熱方式はハロゲン加熱ランプに限らず、赤外線ランプ、高周波による誘導加熱、抵抗加熱でもよい。また、加熱部材の設置位置は、反応容器11の上下のみならず、下側のみでも良いし、上側のみでも良い。
Next, the best mode for carrying out the present invention will be described with reference to the drawings.
As shown in FIG. 1, this epitaxial apparatus 10 includes a reaction vessel 11 made of quartz glass formed in a flat box shape, and a gas supply source 12 for supplying a source gas to one end of the reaction vessel 11. . A susceptor 14 is provided at the bottom of the reaction vessel 11, and a semiconductor wafer 13 is installed on the upper surface of the susceptor 14 so as to be accommodated in the reaction vessel 11. The semiconductor wafer 13 is disc-shaped, and has a diameter of approximately 200 mm or more, for example. The susceptor 14 is configured to be rotatable together with the wafer 13, and thus, only one semiconductor wafer 13 as a base material is accommodated in the reaction vessel 11 substantially horizontally. Although not shown, halogen heating lamps for heating the wafer 13 are arranged at predetermined intervals above and below the reaction vessel 11 corresponding to the arrangement region of the semiconductor wafer 13, whereby the epitaxial apparatus 10 is a horizontal single wafer type. Configured as a device. The heating method is not limited to the halogen heating lamp, but may be an infrared lamp, induction heating by high frequency, or resistance heating. Further, the installation position of the heating member is not limited to the upper and lower sides of the reaction vessel 11 but may be only on the lower side or only on the upper side.

ガス供給源12から反応容器11の一端に供給された原料ガスは、その反応容器11の内部で一端から他端に向かうガス流を生じさせ、半導体ウェーハ13の表面上を通過した後に反応容器11の他端側から排出されるように構成される。原料ガスは半導体ウェーハ13上にシリコン単結晶薄膜を気相成長させるためのものであり、この原料ガスとしては、SiHCl3、SiCl4、SiH2Cl2、SiH4、Si26等のシリコン化合物が挙げられる。また、このような原料ガスには、ドーパンドガスとしてのB26あるいはPH3や、キャリアガスとしてのH2、N2、Ar等を適宜使用することができる。また、薄膜の気相成長処理に先立ってそのウェーハ13に対して前処理、例えば自然酸化膜や付着有機物の除去処理等を行う際には、HCl、HF、ClF3、NF3等から適宜選択された腐蝕性ガスをキャリアガスにて希釈した前処理用ガスを反応容器11内に供給するか、又は、H2雰囲気中で高温熱処理を施すようなこともできる。 The source gas supplied from the gas supply source 12 to one end of the reaction vessel 11 generates a gas flow from one end to the other end inside the reaction vessel 11, and after passing over the surface of the semiconductor wafer 13, the reaction vessel 11. It is comprised so that it may discharge | emit from the other end side. The source gas is for vapor-phase growth of a silicon single crystal thin film on the semiconductor wafer 13, and as the source gas, silicon such as SiHCl 3 , SiCl 4 , SiH 2 Cl 2 , SiH 4 , Si 2 H 6, etc. Compounds. In addition, B 2 H 6 or PH 3 as a dopant gas, H 2 , N 2 , Ar, or the like as a carrier gas can be appropriately used as such a source gas. In addition, when performing pre-processing on the wafer 13 prior to the vapor phase growth processing of the thin film, for example, removal processing of a natural oxide film or adhering organic matter, etc., it is appropriately selected from HCl, HF, ClF 3 , NF 3, etc. It is also possible to supply a pretreatment gas obtained by diluting the corrosive gas thus obtained with a carrier gas into the reaction vessel 11 or to perform a high temperature heat treatment in an H 2 atmosphere.

反応容器11の一端側にはガス供給口11a,11b,11cが複数形成される。この実施の形態では3個形成される場合を示し、半導体ウェーハ13の中央位置に対応して反応容器11の幅方向略中央に形成された主供給口11aに加え、その主供給口11aの両側において略左右対称な位置に副供給口11b,11cが形成される。これは、半導体ウェーハ13の外周領域は、半導体ウェーハ13の回転周速の差や、容器11壁面による冷却あるいはガス流乱れ等の影響により、ウェーハ13中央領域とは膜形成速度等が異なりやすいことを考慮して、ウェーハ13中央領域と外周領域とで原料ガスの流れを独立に制御できるようにするためである。   A plurality of gas supply ports 11 a, 11 b, 11 c are formed on one end side of the reaction vessel 11. This embodiment shows a case where three are formed. In addition to the main supply port 11a formed at the approximate center in the width direction of the reaction vessel 11 corresponding to the center position of the semiconductor wafer 13, both sides of the main supply port 11a are provided. The sub supply ports 11b and 11c are formed at substantially symmetrical positions. This is because the film formation speed and the like of the outer peripheral region of the semiconductor wafer 13 are likely to be different from the central region of the wafer 13 due to the difference in the rotational peripheral speed of the semiconductor wafer 13 and the influence of cooling by the wall surface of the container 11 or gas turbulence. This is because the flow of the source gas can be controlled independently in the central region and the outer peripheral region of the wafer 13 in consideration of the above.

また、これらのガス供給口11a,11b,11cとガス供給源12とはガス配管16により接続される。図におけるガス配管16は、ガス供給源12と主供給口11aを連結する主配管16aと、その主配管16aからその主配管16aの両側に分岐した2本の分岐配管16b,16cとを有し、その一方の分岐配管16bを一方の副供給口11bに接続し、他方の分岐配管16cを他方の副供給口11cに接続している。そして、分岐された部分と主供給口11cの間の主配管16aと2本の分岐配管16b,16cには、それらを流れる原料ガスのガス量を別々に調整する調整手段であるマスフローコントローラ(MFC)がそれぞれ設けられる。   The gas supply ports 11a, 11b, 11c and the gas supply source 12 are connected by a gas pipe 16. The gas pipe 16 in the figure has a main pipe 16a connecting the gas supply source 12 and the main supply port 11a, and two branch pipes 16b and 16c branched from the main pipe 16a to both sides of the main pipe 16a. The one branch pipe 16b is connected to one sub supply port 11b, and the other branch pipe 16c is connected to the other sub supply port 11c. The main pipe 16a and the two branch pipes 16b and 16c between the branched portion and the main supply port 11c are provided with a mass flow controller (MFC) which is an adjusting means for separately adjusting the amount of source gas flowing therethrough. ) Are provided.

一方、反応容器11の一端側内部には、ガス室18を形成するガス整流部材19が容器の幅方向に広がるように設けられる。このガス整流部材19は、ステンレス又は石英から成るブロック体であって、このガス整流部材19にはガス供給源12からガス供給口11a,11b,11cを介してガス室18に供給された原料ガスを分流してウェーハ13の周囲に流す複数のガス導入流路19a,19bが幅方向に間隔をあけて列をなして形成される。この実施の形態では、ガス供給口11a,11b,11cが反応容器11の一端に3個形成されており、このガス室18には、このガス室18を幅方向に複数の小ガス室18a,18b,18cに分断する仕切板21が設けられる。そのガス室18が分断されて形成された複数の小ガス室18a,18b,18cには複数のガス供給口11a,11b,11cに対応して形成され、それらのガス供給口11a,11b,11cはそれぞれの小ガス室18a,18b,18cに対応した原料ガスを供給するように構成される。   On the other hand, a gas rectifying member 19 forming a gas chamber 18 is provided inside the one end side of the reaction vessel 11 so as to spread in the width direction of the vessel. The gas rectifying member 19 is a block body made of stainless steel or quartz, and the gas rectifying member 19 has a raw material gas supplied from the gas supply source 12 to the gas chamber 18 through the gas supply ports 11a, 11b, and 11c. A plurality of gas introduction passages 19a and 19b are formed in a row at intervals in the width direction. In this embodiment, three gas supply ports 11a, 11b, and 11c are formed at one end of the reaction vessel 11, and the gas chamber 18 includes a plurality of small gas chambers 18a, A partition plate 21 that is divided into 18b and 18c is provided. A plurality of small gas chambers 18a, 18b, and 18c formed by dividing the gas chamber 18 are formed corresponding to the plurality of gas supply ports 11a, 11b, and 11c, and the gas supply ports 11a, 11b, and 11c are formed. Is configured to supply source gases corresponding to the small gas chambers 18a, 18b, and 18c.

ガス整流部材19に形成される複数のガス導入流路19a,19bは、ガス整流部材19に鉛直方向に2列又は3列であってかつ列毎に10〜40個形成される。ガス導入流路19a,19bはガス整流部材19を孔開け加工することにより形成された断面が円形であってかつ直線状のいわゆるパイプ状の孔である。このガス導入流路19a,19bを鉛直方向に2列又は3列に限定するのは、原料ガスの乱流を防止するとともにその加工を容易にするためであり、1列であると原料ガスの乱流を十分に防止できないからであり、3列を超えるとガス整流部材19の加工が困難になるからである。列毎に10〜40個とするのも原料ガスの乱流を防止するとともにその加工を容易にするためであり、10個未満であると原料ガスの乱流を十分に防止できないからであり、40個を超えるとガス整流部材19の加工が困難になるからである。好ましくは、ガス導入流路19a,19bを列毎に30〜40個形成することが好ましく、その数を列毎に異ならせても良い。例えば、上列のガス導入流路19aの個数を、下列のガス導入流路19bの個数より多くしてみたり、又は少なくしてみたりしても良い。   A plurality of gas introduction flow paths 19 a and 19 b formed in the gas rectifying member 19 are formed in the gas rectifying member 19 in two or three rows in the vertical direction, and 10 to 40 are formed in each row. The gas introduction channels 19a and 19b are so-called pipe-shaped holes having a circular cross section and a straight line formed by drilling the gas rectifying member 19. The reason why the gas introduction channels 19a and 19b are limited to two or three rows in the vertical direction is to prevent the turbulent flow of the raw material gas and facilitate the processing thereof. This is because turbulent flow cannot be sufficiently prevented, and when the number of rows exceeds three, the processing of the gas rectifying member 19 becomes difficult. The reason why the number is 10 to 40 per row is to prevent the turbulent flow of the raw material gas and facilitate its processing, and when it is less than ten, the turbulent flow of the raw material gas cannot be sufficiently prevented. This is because if the number exceeds 40, the processing of the gas rectifying member 19 becomes difficult. Preferably, 30 to 40 gas introduction channels 19a and 19b are preferably formed for each column, and the number thereof may be varied for each column. For example, the number of upper gas introduction channels 19a may be increased or decreased from the number of lower gas introduction channels 19b.

この実施の形態では、図2に示すように、複数のガス導入流路19a,19bがガス整流部材19に鉛直方向に2列に形成され、上列のガス導入流路19aが水平方向に形成され、下列のガス導入流路19bが水平方向に対して下流側が下方になるように傾斜して形成される。そして、反応容器11の内部天井面とサセプタ14までの距離、即ち、反応容器11の内部天井面と半導体ウェーハ13の下面までの距離をLとし、下列のガス導入流路19bの水平方向に対する角度をθとし、下列のガス導入流路19bの下流側端縁の中心位置と反応容器11の内部天井面との鉛直距離をXとするとき、以下の式(1)及び(2)を満すことが好ましい。   In this embodiment, as shown in FIG. 2, a plurality of gas introduction channels 19a and 19b are formed in two rows in the gas rectifying member 19 in the vertical direction, and the upper gas introduction channels 19a are formed in the horizontal direction. Then, the lower row gas introduction passages 19b are formed to be inclined so that the downstream side is downward with respect to the horizontal direction. The distance between the inner ceiling surface of the reaction vessel 11 and the susceptor 14, that is, the distance between the inner ceiling surface of the reaction vessel 11 and the lower surface of the semiconductor wafer 13, is L, and the angle with respect to the horizontal direction of the gas introduction flow path 19b in the lower row. Is θ, and the vertical distance between the center position of the downstream edge of the gas introduction flow path 19b in the lower row and the internal ceiling surface of the reaction vessel 11 is X, the following equations (1) and (2) are satisfied. It is preferable.

0度<θ<10度 ・・・(1)
0≦X≦L ・・・(2)
上記(1)を満たすこと、即ち傾斜させたガス導入流路19bの角度θが10度未満であることが好ましいのは、そのガス導入流路19bを通過した原料ガスの流れによりウェーハ13の表面に薄膜をエピタキシャル成長させるためであり、傾斜角度が10度以上であると、そのガス導入流路19bを通過した原料ガスの流れが乱れるおそれがある。このθの好ましい範囲は5度以上10度未満である。また、上記(2)を満たすことが好ましいのは、そのガス導入流路19bを通過した原料ガスの流れによりウェーハ13の表面に薄膜をエピタキシャル成長させるためであり、傾斜させたガス導入流路19bの下流側端縁の中心位置がLを越えると、そのガス導入流路19bを通過した原料ガスがウェーハ13の周囲に到達しないからである。そして、このXの好ましい範囲は0.2L以上0.5L以下である。
0 degree <θ <10 degrees (1)
0 ≦ X ≦ L (2)
It is preferable that the angle θ of the inclined gas introduction channel 19b satisfies the above (1), that is, the angle θ of the gas introduction channel 19b is less than 10 degrees because of the flow of the raw material gas that has passed through the gas introduction channel 19b. If the inclination angle is 10 degrees or more, the flow of the source gas that has passed through the gas introduction flow path 19b may be disturbed. A preferable range of θ is 5 degrees or more and less than 10 degrees. Moreover, it is preferable to satisfy the above (2) in order to epitaxially grow a thin film on the surface of the wafer 13 by the flow of the raw material gas that has passed through the gas introduction channel 19b. This is because if the center position of the downstream edge exceeds L, the raw material gas that has passed through the gas introduction flow path 19 b does not reach the periphery of the wafer 13. And the preferable range of this X is 0.2L or more and 0.5L or less.

次に、本発明のエピタキシャル装置を用いた薄膜の気相成長方法について説明する。
図1に示すように、反応容器11内に配置されたサセプタ14上に半導体ウェーハ13をセットし、必要に応じ酸化膜除去等の前処理を行った後、半導体ウェーハ13を回転させながら図示しないハロゲン加熱ランプにより所定の反応温度に加熱する。その状態で、各ガス供給口11a,11b,11cから原料ガスを所定の流速にて、各小ガス室18a,18b,18cに供給する。ガス室18に供給された原料ガスは、ガス整流部材19に当り、流れが分散されてガス流の圧力を減少しつつ複数のガス導入流路19a,19bを通過することでガス流の圧力が均一化されてガス整流部材19を越えて反応容器11の下流側に流れ込む。
Next, a thin film vapor phase growth method using the epitaxial apparatus of the present invention will be described.
As shown in FIG. 1, a semiconductor wafer 13 is set on a susceptor 14 arranged in a reaction vessel 11, and after pretreatment such as oxide film removal is performed as necessary, the semiconductor wafer 13 is rotated and not shown. Heat to a predetermined reaction temperature with a halogen heating lamp. In this state, the raw material gas is supplied from the gas supply ports 11a, 11b, and 11c to the small gas chambers 18a, 18b, and 18c at a predetermined flow rate. The raw material gas supplied to the gas chamber 18 hits the gas rectifying member 19, and the flow is dispersed to reduce the pressure of the gas flow while passing through the plurality of gas introduction passages 19a and 19b. It is made uniform and flows into the downstream side of the reaction vessel 11 beyond the gas rectifying member 19.

反応容器11の内部においてガス整流部材19を越えた原料ガスの流れは、複数のガス導入流路19a,19bを通過することにより、非常に均一な流速分布を持ったガス流となる。これにより、反応容器11内部における原料ガスの逆流が抑えられる結果、ウェーハ13の表面に形成されるエピタキシャル厚さが均一となり、ウェーハ13面内にオートドープの少ない、良好な深さ方向の抵抗率分布を有する薄膜を形成することが可能となる。   The flow of the raw material gas beyond the gas rectifying member 19 inside the reaction vessel 11 passes through the plurality of gas introduction passages 19a and 19b, and becomes a gas flow having a very uniform flow velocity distribution. As a result, the backflow of the source gas inside the reaction vessel 11 is suppressed, and as a result, the epitaxial thickness formed on the surface of the wafer 13 becomes uniform, and there is less autodoping in the surface of the wafer 13 and good resistivity in the depth direction. A thin film having a distribution can be formed.

また、この実施の形態では、上列のガス導入流路19aを水平方向に形成し、下列のガス導入流路19bが水平方向に対して下流側が下方になるように傾斜して形成したので、下列のガス導入流路19bを介してガス整流部材19を越えた原料ガスの流れによりウェーハ13の表面に薄膜がエピタキシャル成長され、上列のガス導入流路19aを介してガス整流部材19を越えた原料ガスは、反応容器の天井内面に沿って下流側に流れ、その原料ガスの逆流が軽減されることから、反応容器11の内面に付着する汚れを低減することができると考えられる。   In this embodiment, the upper row of gas introduction passages 19a is formed in the horizontal direction, and the lower row of gas introduction passages 19b is formed so as to be inclined downward with respect to the horizontal direction. A thin film is epitaxially grown on the surface of the wafer 13 by the flow of the raw material gas over the gas rectifying member 19 via the lower gas introducing passage 19b, and exceeds the gas rectifying member 19 via the upper gas introducing passage 19a. Since the source gas flows downstream along the ceiling inner surface of the reaction vessel and the back flow of the source gas is reduced, it is considered that the dirt adhering to the inner surface of the reaction vessel 11 can be reduced.

なお、上述した実施の形態では、上列のガス導入流路19aを水平方向に形成し、下列のガス導入流路19bを傾斜して形成したけれども、図5に示すように、下列のガス導入流路19bを水平方向に形成し、上列のガス導入流路19aを水平方向に対して下流側が下方になるように傾斜して形成してもよい。この場合であっても、下列のガス導入流路19bを介してガス整流部材19を越えた原料ガスの流れによりウェーハ13の表面に薄膜がエピタキシャル成長され、上列のガス導入流路19aを介してガス整流部材19を越えた原料ガスが反応容器の天井内面に沿って下流側に流れ、その原料ガスの逆流が軽減されることから、反応容器11の内面に付着する汚れを低減することができると考えられる。   In the above-described embodiment, the upper row of gas introduction passages 19a is formed in the horizontal direction, and the lower row of gas introduction passages 19b is formed to be inclined. However, as shown in FIG. The flow path 19b may be formed in the horizontal direction, and the upper row of gas introduction flow paths 19a may be formed to be inclined so that the downstream side is downward with respect to the horizontal direction. Even in this case, a thin film is epitaxially grown on the surface of the wafer 13 by the flow of the raw material gas over the gas rectifying member 19 via the lower gas introduction flow path 19b, and then via the upper gas introduction flow path 19a. Since the raw material gas that has passed through the gas rectifying member 19 flows downstream along the ceiling inner surface of the reaction vessel and the back flow of the raw material gas is reduced, the contamination attached to the inner surface of the reaction vessel 11 can be reduced. it is conceivable that.

次に、本発明の実施例を比較例とともに説明する。
<実施例1>
図1に示すようなエピタキシャル装置10を準備した。即ち、反応容器11の内部天井面とサセプタ14までの距離L(図2)が2cmである反応容器11の一端側に3個のガス供給口11a,11b,11cが形成され、その反応容器11の一端側内部にガス整流部材19が設けられたエピタキシャル装置10を準備した。ガス整流部材19には複数のガス導入流路19a,19bを鉛直方向に2列に形成し、列毎に40個形成した。そのガス導入流路19a,19bは断面直径が2mmのパイプ状の孔であって、上列のガス導入流路19aを水平方向に形成し、下列のガス導入流路19bを下流側が下方になるように傾斜して形成した。そして、図2に示すように、ガス導入流路19bの水平方向に対する角度θは7度であり、下列のガス導入流路19bの下流側端縁の中心位置と反応容器11の内部天井面との鉛直距離Xは1cmであった。
Next, examples of the present invention will be described together with comparative examples.
<Example 1>
An epitaxial apparatus 10 as shown in FIG. 1 was prepared. That is, three gas supply ports 11a, 11b, and 11c are formed on one end side of the reaction container 11 whose distance L (FIG. 2) from the internal ceiling surface of the reaction container 11 to the susceptor 14 is 2 cm. The epitaxial apparatus 10 in which the gas rectifying member 19 was provided inside one end side of was prepared. In the gas rectifying member 19, a plurality of gas introduction channels 19a and 19b are formed in two rows in the vertical direction, and 40 pieces are formed in each row. The gas introduction passages 19a and 19b are pipe-shaped holes having a cross-sectional diameter of 2 mm. The upper row of gas introduction passages 19a is formed in the horizontal direction, and the lower row of gas introduction passages 19b is on the downstream side. Inclined to form. As shown in FIG. 2, the angle θ with respect to the horizontal direction of the gas introduction channel 19b is 7 degrees, and the center position of the downstream edge of the gas introduction channel 19b in the lower row and the internal ceiling surface of the reaction vessel 11 The vertical distance X was 1 cm.

このようなエピタキシャル装置10を用い、サセプタ14上に外径が200mmp型<100>の半導体ウェーハ13を設置してそのウェーハ13を反応容器11に収容し、図示しないハロゲン加熱ランプによりそのウェーハ13を1100度に加熱した。その後、主供給口11aに1分間に100リットルの原料ガスを供給するとともに、副供給口11b,11cには1分間に50リットルの原料ガスをそれぞれ供給した。このようにして、反応容器11の内部においてガス整流部材19を越えた原料ガスにより、p+型の<100>ウェーハ13の表面に1層目をn型10μm10mΩcmと2層目でn型60μm、100Ωcmの構造すなわちIGBT(インシュレーテッドゲートバイポーラトランジスター)構造のエピタキシャル層を成長させた。このような薄膜が表面に形成されたウェーハを実施例1とした。   Using such an epitaxial apparatus 10, a semiconductor wafer 13 having an outer diameter of 200 mmp type <100> is placed on the susceptor 14, the wafer 13 is accommodated in the reaction vessel 11, and the wafer 13 is held by a halogen heating lamp (not shown). Heated to 1100 degrees. Thereafter, 100 liters of source gas was supplied to the main supply port 11a per minute, and 50 liters of source gas was supplied to the sub supply ports 11b and 11c. In this way, with the source gas exceeding the gas rectifying member 19 inside the reaction vessel 11, the first layer on the surface of the p + type <100> wafer 13 is n-type 10 μm 10 mΩcm, and the second layer is n-type 60 μm, 100 Ωcm. An epitaxial layer having the above structure, that is, an IGBT (insulated gate bipolar transistor) structure was grown. A wafer having such a thin film formed on its surface was designated as Example 1.

<比較例1>
実施例1におけるエピタキシャル装置10の反応容器11からガス整流部材19を取り外したことを除いて、実施例1と同一の条件及び手順によりウェーハ13の表面に薄膜をエピタキシャル成長させた。このような薄膜が表面に形成されたウェーハを比較例1とした。
<Comparative Example 1>
A thin film was epitaxially grown on the surface of the wafer 13 under the same conditions and procedures as in Example 1 except that the gas rectifying member 19 was removed from the reaction vessel 11 of the epitaxial apparatus 10 in Example 1. A wafer having such a thin film formed on its surface was designated as Comparative Example 1.

<比較試験及び評価>
実施例1及び比較例1のそれぞれの半導体ウェーハ13の表面に形成された薄膜の深さと抵抗値の関係を日本SSM製広がり抵抗測定器を用いて測定した。この結果を図6に示す。
図6から明らかなように、表面からの深さが60μm近傍で、実施例1のウェーハの方が比較例1のウェーハに比較して高い値を示している。即ち、オートドープが少ない事が分かる。また、実施例はシリコンの反応器への析出(ウォールデポジション)も見られなかった。
<Comparison test and evaluation>
The relationship between the depth of the thin film formed on the surface of each semiconductor wafer 13 of Example 1 and Comparative Example 1 and the resistance value was measured using a spread resistance measuring instrument manufactured by Japan SSM. The result is shown in FIG.
As is clear from FIG. 6, the depth from the surface is around 60 μm, and the wafer of Example 1 shows a higher value than the wafer of Comparative Example 1. That is, it is understood that there is little auto dope. In the examples, no silicon deposition (wall deposition) was observed in the reactor.

本発明実施形態のエピタキシャル装置の構成を示す斜視図である。It is a perspective view which shows the structure of the epitaxial apparatus of embodiment of this invention. その装置の内部構造を示す図3のA−A線断面図である。It is the sectional view on the AA line of FIG. 3 which shows the internal structure of the apparatus. 図2のB−B線断面図である。FIG. 3 is a sectional view taken along line B-B in FIG. 2. 図2のC−C線断面図である。It is CC sectional view taken on the line of FIG. 本発明の別の実施の形態を示す図2に対応する断面図である。It is sectional drawing corresponding to FIG. 2 which shows another embodiment of this invention. 実施例の結果である深さと抵抗値との関係を示す図である。It is a figure which shows the relationship between the depth which is the result of an Example, and resistance value. 従来のエピタキシャル装置の内部構造を示す図2に対応する断面図である。It is sectional drawing corresponding to FIG. 2 which shows the internal structure of the conventional epitaxial apparatus. その従来の装置を示す図3に対応する断面図である。It is sectional drawing corresponding to FIG. 3 which shows the conventional apparatus. その従来の装置を示す図4に対応する断面図である。It is sectional drawing corresponding to FIG. 4 which shows the conventional apparatus.

符号の説明Explanation of symbols

10 エピタキシャル装置
11 反応容器
11a,11b,11c ガス供給口
12 ガス供給源
13 半導体ウェーハ
17 マスフローコントローラ(調整手段)
18 ガス室
18a,18b,18c 小ガス室
19 ガス整流部材
19a,19b ガス導入流路
21 仕切板
L 反応容器の内部天井面と半導体ウェーハの下面までの距離
θ 傾斜して形成されたガス導入流路の水平方向に対する角度
X 傾斜したガス導入流路の下流側端縁の中心と反応容器の内部天井面との鉛直距離
DESCRIPTION OF SYMBOLS 10 Epitaxial apparatus 11 Reaction container 11a, 11b, 11c Gas supply port 12 Gas supply source 13 Semiconductor wafer 17 Mass flow controller (adjustment means)
18 Gas chamber 18a, 18b, 18c Small gas chamber 19 Gas rectifying member 19a, 19b Gas introduction flow path 21 Partition plate L Distance between the inner ceiling surface of the reaction vessel and the lower surface of the semiconductor wafer θ Inclined gas introduction flow formed Angle relative to the horizontal direction of the passage X Vertical distance between the center of the downstream edge of the inclined gas introduction flow path and the internal ceiling of the reaction vessel

Claims (4)

箱形に形成され半導体ウェーハが収容される反応容器と、反応容器の一端に原料ガスを供給して前記反応容器の内部に一端から他端に向かうガス流を生じさせるガス供給源とを備えたエピタキシャル装置において、
前記反応容器の一端側内部にガス室を形成するガス整流部材が前記反応容器の幅方向に設けられ、
前記ガス整流部材に前記ガス供給源から前記ガス室に供給された原料ガスを分流して前記ウェーハの周囲に流す複数のガス導入流路が幅方向に間隔をあけて列をなして形成され、
前記複数のガス導入流路は鉛直方向に2列又は3列であってかつ列毎に10〜40個前記ガス整流部材に形成された
ことを特徴とするエピタキシャル装置
A reaction vessel formed in a box shape and containing a semiconductor wafer, and a gas supply source for supplying a source gas to one end of the reaction vessel to generate a gas flow from one end to the other end inside the reaction vessel In epitaxial equipment,
A gas rectifying member that forms a gas chamber inside one end of the reaction vessel is provided in the width direction of the reaction vessel,
A plurality of gas introduction passages that flow around the wafer by dividing the source gas supplied from the gas supply source to the gas chamber to the gas rectifying member are formed in rows at intervals in the width direction,
The plurality of gas introduction flow paths are formed in two or three rows in the vertical direction and 10 to 40 gas rectifying members are formed in each row.
ガス室を幅方向に複数の小ガス室に分断する仕切板が前記ガス室に設けられ、
複数の前記小ガス室にガスをそれぞれ供給するガス供給口が反応容器の一端に複数形成され、
ガス供給源から複数の前記ガス供給口を介して複数の前記小ガス室に供給するガス量を別々に調整する調整手段を更に備えた請求項1記載のエピタキシャル装置。
A partition plate for dividing the gas chamber into a plurality of small gas chambers in the width direction is provided in the gas chamber,
A plurality of gas supply ports for supplying gas to the plurality of small gas chambers are formed at one end of the reaction vessel,
The epitaxial apparatus according to claim 1, further comprising adjusting means for separately adjusting the amount of gas supplied from a gas supply source to the plurality of small gas chambers via the plurality of gas supply ports.
ガス導入流路が鉛直方向に2列に形成され、上列又は下列のガス導入流路のいずれか一方が水平方向に形成され、上列又は下列のガス導入流路のいずれか他方が水平方向に対して下流側が下方になるように傾斜して形成された請求項1又は2記載のエピタキシャル装置。   The gas introduction flow paths are formed in two rows in the vertical direction, either the upper row or the lower row gas introduction flow passages are formed in the horizontal direction, and the other one of the upper row or the lower row gas introduction flow passages is in the horizontal direction. The epitaxial apparatus according to claim 1, wherein the epitaxial apparatus is formed so as to be inclined with respect to the downstream side. 反応容器の内部天井面と前記反応容器に収容された半導体ウェーハの下面までの距離をLとし、水平方向に対して下流側が下方になるように傾斜して形成されたガス導入流路の水平方向に対する角度をθとし、前記傾斜して形成されたガス導入流路の下流側端縁の中心位置と前記反応容器の内部天井面との鉛直距離をXとするとき、以下の式(1)及び(2)を満たす請求項3記載のエピタキシャル装置。
0度<θ<10度 ・・・(1)
0<X≦L ・・・(2)
The horizontal direction of the gas introduction channel formed so that the distance from the inner ceiling surface of the reaction vessel to the lower surface of the semiconductor wafer accommodated in the reaction vessel is L and the downstream side is downward with respect to the horizontal direction. And the vertical distance between the center position of the downstream edge of the inclined gas introduction flow path and the internal ceiling surface of the reaction vessel is X, and the following equation (1) and The epitaxial apparatus according to claim 3, wherein (2) is satisfied.
0 degree <θ <10 degrees (1)
0 <X ≦ L (2)
JP2008197918A 2008-07-31 2008-07-31 Epitaxial growth apparatus Pending JP2010040541A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008197918A JP2010040541A (en) 2008-07-31 2008-07-31 Epitaxial growth apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008197918A JP2010040541A (en) 2008-07-31 2008-07-31 Epitaxial growth apparatus

Publications (1)

Publication Number Publication Date
JP2010040541A true JP2010040541A (en) 2010-02-18

Family

ID=42012817

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008197918A Pending JP2010040541A (en) 2008-07-31 2008-07-31 Epitaxial growth apparatus

Country Status (1)

Country Link
JP (1) JP2010040541A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012167865A (en) * 2011-02-14 2012-09-06 Ulvac-Riko Inc Heat treatment device
KR20150074165A (en) * 2012-10-26 2015-07-01 어플라이드 머티어리얼스, 인코포레이티드 Epitaxial chamber with customizable flow injection

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012167865A (en) * 2011-02-14 2012-09-06 Ulvac-Riko Inc Heat treatment device
KR20150074165A (en) * 2012-10-26 2015-07-01 어플라이드 머티어리얼스, 인코포레이티드 Epitaxial chamber with customizable flow injection
JP2015534283A (en) * 2012-10-26 2015-11-26 アプライド マテリアルズ インコーポレイテッドApplied Materials,Incorporated Epitaxial chamber with customizable flow injection
TWI628729B (en) * 2012-10-26 2018-07-01 應用材料股份有限公司 Epitaxial chamber with customizable flow injection
KR102135229B1 (en) * 2012-10-26 2020-07-17 어플라이드 머티어리얼스, 인코포레이티드 Epitaxial chamber with customizable flow injection

Similar Documents

Publication Publication Date Title
CN100482857C (en) Systems and methods for epitaxially depositing films on semiconductor substrates
JP4534978B2 (en) Semiconductor thin film manufacturing equipment
US20180209043A1 (en) Epitaxial chamber with customizable flow injection
TWI615500B (en) Inject and exhaust design for epi chamber flow manipulation
JP4379585B2 (en) Vapor phase growth apparatus and epitaxial wafer manufacturing method
JPH06232060A (en) Method and device for growing epitaxial silicon layer
JP5018708B2 (en) Vapor phase processing apparatus, vapor phase processing method and substrate
JP7365761B2 (en) Vapor phase growth equipment
JP2000269147A (en) Vapor growth device, vapor growth method and silicon epitaxial wafer
US8257499B2 (en) Vapor phase deposition apparatus and vapor phase deposition method
US10745824B2 (en) Film forming apparatus
TWI754765B (en) Inject assembly for epitaxial deposition processes
US11692266B2 (en) SiC chemical vapor deposition apparatus
JP2010040541A (en) Epitaxial growth apparatus
JP4581868B2 (en) Epitaxial growth apparatus and manufacturing method thereof
JP2016050164A (en) SiC chemical vapor deposition apparatus
CN107546101A (en) A kind of epitaxial growth method
JP2005353665A (en) Epitaxial vapor phase growth system and gradient angle setting method for partition member of gas inlet for the vapor phase growth system
JP2005072118A (en) Epitaxial growth device
JP7175169B2 (en) SiC epitaxial growth equipment
JP2010040590A (en) Epitaxial silicon wafer and method of manufacturing the same
JP4655801B2 (en) Epitaxial growth apparatus and epitaxial wafer manufacturing method
JP2011146414A (en) Method of manufacturing epitaxial wafer
JP6179790B2 (en) Vapor growth apparatus and epitaxial wafer manufacturing method
JP2010040607A (en) Susceptor for epitaxial growth and method of manufacturing epitaxial wafer