JP3514004B2 - Regenerative controller for electric vehicle drive motor - Google Patents

Regenerative controller for electric vehicle drive motor

Info

Publication number
JP3514004B2
JP3514004B2 JP25482795A JP25482795A JP3514004B2 JP 3514004 B2 JP3514004 B2 JP 3514004B2 JP 25482795 A JP25482795 A JP 25482795A JP 25482795 A JP25482795 A JP 25482795A JP 3514004 B2 JP3514004 B2 JP 3514004B2
Authority
JP
Japan
Prior art keywords
δri
regenerative
battery
motor
calculator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP25482795A
Other languages
Japanese (ja)
Other versions
JPH0998508A (en
Inventor
正 足利
真人 森
忠夫 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Meidensha Corp
Original Assignee
Meidensha Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meidensha Corp filed Critical Meidensha Corp
Priority to JP25482795A priority Critical patent/JP3514004B2/en
Publication of JPH0998508A publication Critical patent/JPH0998508A/en
Application granted granted Critical
Publication of JP3514004B2 publication Critical patent/JP3514004B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility

Landscapes

  • Electric Propulsion And Braking For Vehicles (AREA)
  • Control Of Ac Motors In General (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、電気自動車(以下
EVとする)駆動用モータの回生制御装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a regeneration control device for an electric vehicle (hereinafter referred to as EV) drive motor.

【0002】[0002]

【従来の技術とその課題】EV駆動用モータの制御にあ
っては、一例としてPWMインバータを用いたベクトル
制御が行なわれており、モータトルクを線形に制御する
ことが可能である。この場合、駆動用電源としては、バ
ッテリが用いられ、電力消費により満充電時から放電末
期時までバッテリ電圧が大きく変わるという特性を有す
る。そして、インバータ直流入力電圧は満充電時の直流
電圧を基準にしており、このため放電にてバッテリで電
圧が低下するとインバータ出力電圧が低下し、電圧不足
となってモータ電流の高周波の増加、回転数の増加不可
という現象に至る。かかる現象を解決する一方策として
従来では、定出力制御にて低回転側に移動すればモータ
端子電圧をインバータ出力可能電圧以下に抑えるという
手段が開示される(特開平6−178574号公報)。
2. Description of the Related Art In controlling an EV drive motor, vector control using a PWM inverter is performed as an example, and motor torque can be linearly controlled. In this case, a battery is used as the driving power source, and has a characteristic that the battery voltage greatly changes from full charge to the end of discharge due to power consumption. The inverter DC input voltage is based on the DC voltage at full charge.Therefore, if the battery voltage drops due to discharge, the inverter output voltage will drop, causing a voltage shortage and increasing the motor current high frequency and rotation. This leads to the phenomenon that the number cannot be increased. As one measure for solving such a phenomenon, conventionally, a means has been disclosed in which the motor terminal voltage is controlled to be equal to or lower than the inverter output voltage by moving to the low rotation side by constant output control (Japanese Patent Laid-Open No. 6-178574).

【0003】このようにバッテリ電圧の変動を前提とし
てその変動に応じて手段を講じる一方で、制御時駆動用
モータを発電機として動作させバッテリへ電力を回生す
る制御も行なわれる。この場合、バッテリである程度放
電がされている場合はともかく、満充電時に回生制御が
行なわれるとバッテリが過充電となり、バッテリの寿命
低下や最悪の場合はバッテリの破損を招く。
In this way, on the assumption that the battery voltage fluctuates, measures are taken in accordance with the fluctuation, while the control drive motor is operated as a generator to regenerate electric power to the battery. In this case, regardless of whether the battery has been discharged to some extent, if the regenerative control is performed at the time of full charge, the battery will be overcharged, which will shorten the life of the battery and, in the worst case, damage the battery.

【0004】本発明は、上述の問題に鑑み満充電時での
過充電を防止した電気自動車駆動用モータの回生制御方
法の提供を目的とする。
The present invention has been made in view of the above problems, and an object thereof is to provide a regeneration control method for an electric vehicle drive motor, which prevents overcharging at the time of full charge.

【0005】[0005]

【課題を解決するための手段】上述の目的を達成する本
発明は、次の構成を特徴とする。 (1)バッテリがインバータを介してモータに接続され
る装置において、直流電圧検出手段に接続されて回生制
御時のバッテリ内部抵抗増加量を得るΔri演算器と、
このΔri演算器の出力にて回生トルク指令Tb * を得
る回生トルク制限回路と、この回生トルク制限回路にて
制御されてインバータゲート信号を得るモータ制御回路
と、を有する。 (2)(1)において、Δri演算器入力には直流電流
検出手段を有する。 (3)(1)において、回生トルク制御回路はΔriの
値に応じて回生トルク指令Tb * を得る。 (4)(1)又は(3)において、Δri演算器ではΔ
riの上昇率を得る。
The present invention which achieves the above object is characterized by the following constitution. (1) In a device in which a battery is connected to a motor via an inverter, a Δri calculator that is connected to a DC voltage detection means to obtain an increase amount of internal resistance of the battery during regeneration control,
It has a regenerative torque limiting circuit that obtains a regenerative torque command T b * from the output of this Δri computing unit, and a motor control circuit that is controlled by this regenerative torque limiting circuit to obtain an inverter gate signal. (2) In (1), a DC current detecting means is provided at the input of the Δri calculator. (3) In (1), the regenerative torque control circuit obtains the regenerative torque command T b * according to the value of Δri. (4) In (1) or (3), in the Δri calculator, Δ
Get the rate of rise of ri.

【0006】[0006]

【発明の実施の形態】ここで、発明の実施の形態を説明
するが、まず原理を説明する。図1はモータ駆動回路で
あり、モータ1、インバータ2、バッテリ3、内部抵抗
riからなる等価回路にあって回生動作時のバッテリ端
子電圧vdcは次式となる。 vdc=eo +ri・Idc ここでeo はバッテリ開放電圧、Idcは回生直流電流で
ある。そして、eo ,riはバッテリの充電状態により
変化する。
BEST MODE FOR CARRYING OUT THE INVENTION The embodiments of the present invention will be described below. First, the principle will be described. FIG. 1 shows a motor drive circuit, which is an equivalent circuit composed of a motor 1, an inverter 2, a battery 3, and an internal resistance ri, and a battery terminal voltage v dc during regenerative operation is given by the following equation. v dc = e o + ri · I dc where e o is the battery open circuit voltage and I dc is the regenerative DC current. Then, e o and ri change depending on the state of charge of the battery.

【0007】バッテリが満充電時において回生電流を流
すとき、端子電圧Vdcが大きく増加する。かかる状態を
図1の等価回路で考えるとき、上式のバッテリ満充電時
の開放電圧eo はほとんど変わることなく、見かけ上内
部抵抗riが増加する。バッテリ満充電時の開放電圧e
o と内部抵抗riは、バッテリの初期データにて予め求
められている。この結果、バッテリ満充電時に回生電流
を流して充電した場合の見かけ上の内部抵抗riの上昇
分Δriを求め、この上昇分Δriが規定値を越えた場
合に回生を中止することによりバッテリの過充電を防止
することができる。即ち、次式によりΔriを検出して
回生を中止すれば過充電を防止できる。 vdc=eo +(ri+Δri)Idc ここで、eo は満充電時のバッテリ開放電圧、riは満
充電時のバッテリ内部抵抗、Δriは満充電時に充電し
た場合の見かけ上の内部抵抗増加量である。
When a regenerative current flows when the battery is fully charged, the terminal voltage V dc greatly increases. When considering such a state with the equivalent circuit of FIG. 1, the open-circuit voltage e o when the battery is fully charged in the above equation hardly changes, and the internal resistance ri apparently increases. Open voltage e when the battery is fully charged
The o and the internal resistance ri are obtained in advance from the initial data of the battery. As a result, the increase Δri of the apparent internal resistance ri when the battery is fully charged and a regenerative current is charged is calculated, and when the increase Δri exceeds the specified value, the regeneration is stopped, and Charging can be prevented. That is, if Δri is detected by the following equation and the regeneration is stopped, overcharge can be prevented. v dc = e o + (ri + Δri) I dc where e o is the battery open voltage at full charge, ri is the battery internal resistance at full charge, Δri is the apparent internal resistance increase when fully charged. Is the amount.

【0008】かかる前提をふまえて図2に回路例、図3
にフローチャートを示す。図2においては、直流電圧
(バッテリ端子)vdcと直流電流Idcとを検出する手段
を有し、この手段をΔri演算器4に接続する。このΔ
ri演算器4では、次式の演算を行なう。 Δri=(vdc−eo −ri・Idc)/Idc Δri演算器4は、回生トルク制御回路5に接続され、
この回路5では回生トルク指令Tb * とΔriとを入力
して指令Tb * を出力するものであるが、Δriが規定
値αを越えたか否かを判断しΔriがα以上の場合指令
b * を零にして回生を中止し、Δriが規定値α以下
になったとき指令Tb * を生かして回生制御を行なう。
図中、6は指令Tb * と駆動トルク指令Ta * により制
御されインバータ2のゲート信号を作るモータ制御回路
であり、P.Pはエンコーダ等の回転検出器である。図
3は、Δriを求めた後、Δriがαより大きいか否か
判定し大きい場合はTb * を零、大きくない場合にはT
b * =Tb * として出力するフローを示している。
Based on this assumption, a circuit example shown in FIG. 2 and a circuit example shown in FIG.
Shows the flowchart. In FIG. 2, there is a means for detecting the DC voltage (battery terminal) v dc and the DC current I dc, and this means is connected to the Δri calculator 4. This Δ
The ri calculator 4 calculates the following equation. Δri = (v dc −e o −ri · I dc ) / I dc Δri The calculator 4 is connected to the regenerative torque control circuit 5,
The circuit 5 inputs the regenerative torque command T b * and Δri and outputs the command T b *. However, if Δri exceeds the specified value α, it is judged whether Δri is equal to or larger than the command value T. When b * is set to zero, the regeneration is stopped, and when Δri becomes equal to or less than the specified value α, the command T b * is used to perform the regeneration control.
In the figure, reference numeral 6 is a motor control circuit which is controlled by the command T b * and the drive torque command T a * to generate the gate signal of the inverter 2. P is a rotation detector such as an encoder. In FIG. 3, after obtaining Δri, it is determined whether Δri is larger than α, and if it is large, T b * is zero, and if not large,
The flow output as b * = Tb * is shown.

【0009】図2の例では直流電流Idcを検出する例を
示したが、図4では直流電流Idcを検出することなくΔ
riを求める方式を示している。モータの回生電力に着
目すると次式が得られる。 P=ωT ここで、Pは回生電力、Tは回生トルク、ωはモータ回
転角速度である。この場合、モータ及びインバータの損
失は、モータの回生電力Pに比べると小さく、無視す
る。ここにおいて、vdcは検出され、モータ回転トルク
は回生トルク指令Tb * を用いるとIdcは次式となる。 Idc=P/vdc=ωTb * /vdc この場合vdc、ωはモータ制御のために検出しているの
で、新たな検出器を備える必要がない。
[0009] In the example of FIG. 2 shows an example of detecting the DC current I dc, delta without detecting Figure 4, the DC current I dc
The method of obtaining ri is shown. Focusing on the regenerative power of the motor, the following equation is obtained. P = ωT Here, P is the regenerative electric power, T is the regenerative torque, and ω is the motor rotation angular velocity. In this case, the loss of the motor and the inverter is smaller than the regenerative electric power P of the motor and is ignored. Here, v dc is detected, I dc when the motor torque using a regenerative torque command T b * becomes the following equation. I dc = P / v dc = ωT b * / v dc In this case, since v dc and ω are detected for motor control, it is not necessary to provide a new detector.

【0010】したがって、図4に示すように直流電圧v
dcのみを検出する手段をΔri演算器4に接続すると共
に、このΔri演算器4には上式にてIdcを求めるため
回生トルク指令Tb * 及び角速度ωを入力するようにな
っている。この結果Idcの検出器は不要となり回生トル
ク制御回路5によりTb * が零かTb * の二者択一の値
を採りモータ制御回路6に指令を出すことができる。
Therefore, as shown in FIG. 4, the DC voltage v
A means for detecting only dc is connected to the Δri arithmetic unit 4, and the regenerative torque command T b * and the angular velocity ω are input to the Δri arithmetic unit 4 in order to obtain I dc by the above equation. Consequently detector I dc can issue a command to the motor control circuit 6 takes a value of T b * is zero or T b * of alternative by the regenerative torque control circuit 5 becomes unnecessary.

【0011】以上の説明においては、バッテリの内部抵
抗増加量Δriが規定値を越えたとき、過充電と判断し
て回生トルク指令Tb * を零としているが、この場合制
動力が大きく変化する。このため、Δriの大きさに応
じて図5に示すように回生トルク制限値Tb * を連続的
に制限することにより、制動力の大きな変動を防ぐこと
ができる。
In the above description, when the internal resistance increase amount Δri of the battery exceeds the specified value, it is judged that the battery is overcharged and the regenerative torque command T b * is set to zero, but in this case, the braking force greatly changes. . Therefore, by continuously limiting the regenerative torque limit value T b * as shown in FIG. 5 according to the magnitude of Δri, it is possible to prevent a large fluctuation in the braking force.

【0012】また、上記図2、図4、図5の例では、Δ
riが規定値を越えたとき過充電と判断しているが、Δ
riの大きさでなくΔriの変化(上昇率)が規定の上
昇率を越えることで過充電を判断することもできる。す
なわち、Δri演算器4の判定ブロックΔri>αを
(d・Δri)/dt>βとしてもよい。この場合、β
は規定の上昇率である。
In the examples shown in FIGS. 2, 4 and 5, Δ
When ri exceeds the specified value, it is judged as overcharge, but Δ
It is also possible to judge overcharging when the change (rate of increase) in Δri, not the magnitude of ri, exceeds the prescribed rate of increase. That is, the determination block Δri> α of the Δri calculator 4 may be (d · Δri) / dt> β. In this case β
Is the prescribed rate of increase.

【0013】[0013]

【発明の効果】以上説明したように回生制御時でのバッ
テリ内部抵抗を演算することにより、バッテリ満充電時
の回生制御による過充電を防止し、バッテリの劣化、破
損を防止できる。また、直流電流を検出することなく回
生トルク指令と角速度により演算を加えることでバッテ
リ内部抵抗を得ることができる。更には、制動力の大き
な変動なく過充電を防止できる。
As described above, by calculating the internal resistance of the battery during the regenerative control, it is possible to prevent overcharging due to the regenerative control when the battery is fully charged, and to prevent deterioration and damage of the battery. Further, the internal resistance of the battery can be obtained by adding the calculation based on the regenerative torque command and the angular velocity without detecting the direct current. Furthermore, overcharging can be prevented without significant fluctuations in braking force.

【図面の簡単な説明】[Brief description of drawings]

【図1】等価回路図。FIG. 1 is an equivalent circuit diagram.

【図2】一例のブロック図。FIG. 2 is a block diagram of an example.

【図3】図2のフローチャート。FIG. 3 is a flowchart of FIG.

【図4】他の例のブロック図。FIG. 4 is a block diagram of another example.

【図5】Δriを連続変化させる特性図。FIG. 5 is a characteristic diagram for continuously changing Δri.

【符号の説明】[Explanation of symbols]

1 モータ 2 インバータ 3 バッテリ 4 Δri演算器 5 回生トルク制限回路 6 モータ制御回路 1 motor 2 inverter 3 battery 4 Δri calculator 5 regenerative torque limiting circuit 6 Motor control circuit

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平7−67209(JP,A) 特開 平7−79534(JP,A) (58)調査した分野(Int.Cl.7,DB名) B60L 1/00 - 3/12 B60L 7/00 - 13/00 B60L 15/00 - 15/42 H02P 5/408 - 5/412 H02P 7/628 - 7/632 H02P 21/00 ─────────────────────────────────────────────────── ─── Continuation of front page (56) References JP-A-7-67209 (JP, A) JP-A-7-79534 (JP, A) (58) Fields investigated (Int.Cl. 7 , DB name) B60L 1/00-3/12 B60L 7/00-13/00 B60L 15/00-15/42 H02P 5/408-5/412 H02P 7/628-7/632 H02P 21/00

Claims (4)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 バッテリがインバータを介してモータに
接続される装置において、 直流電圧検出手段に接続されて回生制御時のバッテリ内
部抵抗増加量を得るΔri演算器と、 このΔri演算器の出力にて回生トルク指令Tb * を得
る回生トルク制限回路と、 この回生トルク制限回路にて制御されてインバータゲー
ト信号を得るモータ制御回路と、 を有することを特徴とする電気自動車駆動用モータの回
生制御装置。
1. A device in which a battery is connected to a motor via an inverter, and a Δri calculator connected to a DC voltage detecting means to obtain an increase amount of battery internal resistance during regeneration control, and an output of the Δri calculator. And a regenerative torque limiting circuit for obtaining a regenerative torque command T b * , and a motor control circuit for obtaining an inverter gate signal by being controlled by this regenerative torque limiting circuit. apparatus.
【請求項2】 Δri演算器入力には直流電流検出手段
を有する請求項1記載の電気自動車駆動用モータの回生
制御装置。
2. A regenerative control device for a motor for driving an electric vehicle according to claim 1, wherein the input of the Δri calculator has a DC current detecting means.
【請求項3】 回生トルク制御回路はΔriの値に応じ
て回生トルク指令T b * を得る請求項1記載の電気自動
車駆動用モータの回生制御装置。
3. The regenerative torque control circuit according to the value of Δri
Power regeneration torque command T b *The electric automatic according to claim 1, wherein
Regenerative control device for car drive motor.
【請求項4】 Δri演算器ではΔriの上昇率を得る
請求項1又は3に記載の電気自動車駆動用モータの回生
制御装置。
4. The regenerative control device for an electric vehicle drive motor according to claim 1, wherein the Δri calculator obtains the rate of increase of Δri.
JP25482795A 1995-10-02 1995-10-02 Regenerative controller for electric vehicle drive motor Expired - Lifetime JP3514004B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25482795A JP3514004B2 (en) 1995-10-02 1995-10-02 Regenerative controller for electric vehicle drive motor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25482795A JP3514004B2 (en) 1995-10-02 1995-10-02 Regenerative controller for electric vehicle drive motor

Publications (2)

Publication Number Publication Date
JPH0998508A JPH0998508A (en) 1997-04-08
JP3514004B2 true JP3514004B2 (en) 2004-03-31

Family

ID=17270419

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25482795A Expired - Lifetime JP3514004B2 (en) 1995-10-02 1995-10-02 Regenerative controller for electric vehicle drive motor

Country Status (1)

Country Link
JP (1) JP3514004B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3956796B2 (en) 2001-12-26 2007-08-08 アイシン・エィ・ダブリュ株式会社 Hybrid vehicle drive control apparatus, hybrid vehicle drive control method, and program thereof
JP4561616B2 (en) 2005-10-27 2010-10-13 トヨタ自動車株式会社 Motor drive system
JP2013210206A (en) * 2012-03-30 2013-10-10 Toyota Industries Corp On-vehicle battery charge state estimation device

Also Published As

Publication number Publication date
JPH0998508A (en) 1997-04-08

Similar Documents

Publication Publication Date Title
US5557181A (en) Brake control apparatus for electric motor vehicle
JP3330050B2 (en) Electric vehicle control device
US5804973A (en) Control device in an electric vehicle
JP3736933B2 (en) Electric vehicle control device
CN103348586B (en) DC-to-AC converter and inverter control method
JP3094745B2 (en) Hybrid vehicle power generation control device
US5497070A (en) Controller of an engine driven generator for an electric vehicle
US20100289452A1 (en) Power supply apparatus for vehicles
JPH0923512A (en) Controller for electric motor car
JP2002165303A (en) Charge-control device for battery of automobile
JP3767150B2 (en) Battery remaining capacity detection device
JP3505826B2 (en) Regenerative braking device for electric vehicles
JP3171217B2 (en) Power supply for motor drive
JPH06197406A (en) Controller for engine-driven generator for electric vehicle
JP3514004B2 (en) Regenerative controller for electric vehicle drive motor
JP2000166105A (en) Charged state controller for battery
JPH10257605A (en) Control apparatus for electric vehicle
JP5477101B2 (en) Fuel cell vehicle
JP3063441B2 (en) Control device for engine drive generator for electric vehicle
JPH07177751A (en) Power supply unit for motor
JPH10271695A (en) Battery residual capacity detector and generation controller of hybrid electric car
JP3628912B2 (en) Battery charge state detection device
JPH10164701A (en) Motor driving controller for electric vehicle
KR100448380B1 (en) Apparatus for charge and discharge current limit of hybrid electric vehicle and method thereof
JP3757321B2 (en) Electric vehicle power supply control method

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20031224

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040106

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080123

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090123

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100123

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110123

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120123

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130123

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140123

Year of fee payment: 10

EXPY Cancellation because of completion of term