JP3510547B2 - Method for producing resin-coated aluminum plate excellent in adhesion and workability - Google Patents

Method for producing resin-coated aluminum plate excellent in adhesion and workability

Info

Publication number
JP3510547B2
JP3510547B2 JP34670099A JP34670099A JP3510547B2 JP 3510547 B2 JP3510547 B2 JP 3510547B2 JP 34670099 A JP34670099 A JP 34670099A JP 34670099 A JP34670099 A JP 34670099A JP 3510547 B2 JP3510547 B2 JP 3510547B2
Authority
JP
Japan
Prior art keywords
resin film
aluminum plate
resin
temperature
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP34670099A
Other languages
Japanese (ja)
Other versions
JP2001162718A (en
Inventor
彰 田尻
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Sky Aluminum Corp
Original Assignee
Furukawa Sky Aluminum Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Sky Aluminum Corp filed Critical Furukawa Sky Aluminum Corp
Priority to JP34670099A priority Critical patent/JP3510547B2/en
Publication of JP2001162718A publication Critical patent/JP2001162718A/en
Application granted granted Critical
Publication of JP3510547B2 publication Critical patent/JP3510547B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Laminated Bodies (AREA)
  • Lining Or Joining Of Plastics Or The Like (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】この発明はアルミニウム板の
片面もしくは両面に熱可塑性樹脂フィルムをラミネート
してなる樹脂フィルム被覆アルミニウム板の製造方法に
関するものであり、特に厳しい加工を施しても樹脂フィ
ルムとアルミニウム板との密着性が低下せず、かつ樹脂
フィルム自体の加工性も優れた熱可塑性樹脂被覆アルミ
ニウム板の製造方法に関するものである。なお本明細書
においてアルミニウム板とは、純アルミニウム板だけで
はなく種々のアルミニウム合金板を含むものとする。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a resin film-covered aluminum plate obtained by laminating a thermoplastic resin film on one or both sides of an aluminum plate. The present invention relates to a method for producing a thermoplastic resin-coated aluminum plate which does not deteriorate in adhesion to the plate and has excellent processability of the resin film itself. In this specification, the aluminum plate includes not only a pure aluminum plate but also various aluminum alloy plates.

【0002】[0002]

【従来の技術】従来から、樹脂フィルムを金属板の片面
もしくは両面にラミネートした樹脂フィルム被覆金属板
は、電気部品、家具、内外装建材など、種々の分野で広
く使用されている。また最近では、VOCやCO2等の
排出量削減による環境保全の目的や、ポリエステルフィ
ルムの高いバリヤー性を利用して内容物の安定性や品質
の向上を図ることを目的として、飲料缶などの容器材料
にポリエステルフィルム被覆金属板が多用されるように
なっている。
2. Description of the Related Art Conventionally, a resin film-covered metal plate obtained by laminating a resin film on one side or both sides of a metal plate has been widely used in various fields such as electric parts, furniture, interior and exterior building materials. In recent years, for the purpose of environmental protection by reducing the emission of VOC and CO 2, etc., and for the purpose of improving the stability and quality of the contents by utilizing the high barrier property of polyester film, beverage cans, etc. Polyester film-coated metal plates are often used as container materials.

【0003】フィルムの構成として単一層のフィルムを
使用し加熱圧着する方法、融点の異なる2層の樹脂フィ
ルムを使用し加熱圧着する方法、あるいは金属板と樹脂
フィルムの間に接着剤層を介して被覆する方法などがあ
る。これらに用いられるアルミニウム板は耐食性やフィ
ルムとの密着性を向上させるため、アルカリ溶液または
酸溶液によるエッチング、リン酸クロメート処理、陽極
酸化処理、電解クロム酸処理等の前処理が行われるが、
リン酸クロメート処理が最も一般的に行われている。こ
れらの樹脂被覆金属板材は曲げ加工、絞り加工、しごき
加工、張出し加工など様々な成形加工が行われて製品と
なる。樹脂被覆アルミニウム板に関する実施例はまだ少
ないが、様々な用途で検討が行われている。
As a film constitution, a method of thermocompression bonding using a single layer film, a method of thermocompression bonding using two layers of resin films having different melting points, or an adhesive layer between a metal plate and a resin film is used. There is a method of coating. Aluminum plate used for these is to improve the corrosion resistance and the adhesion with the film, etching with an alkaline solution or an acid solution, phosphoric acid chromate treatment, anodizing treatment, pretreatment such as electrolytic chromic acid treatment is performed,
The chromate phosphate treatment is most commonly used. These resin-coated metal sheet materials are subjected to various forming processes such as bending, drawing, ironing, and overhanging to become products. Although there are still few examples of resin-coated aluminum plates, they are being studied for various applications.

【0004】[0004]

【発明が解決しようとする課題】上記したように、樹脂
被覆金属板は様々な成形加工が行われて製品となる。例
えばビールや炭酸飲料などの飲料缶に用いられるアルミ
ニウム絞りしごき缶は、一般に絞り加工、再絞り加工、
3回のしごき加工、ネッキング・フランジング加工によ
り成形される。加工度としては元板厚の60%以上にも
及ぶ薄肉化が行われる。しかしこの様な厳しい加工が行
われると、アルミニウム板と樹脂フィルムとの密着性が
低下し、加工の途中で剥離が発生することがある。また
最終製品まで加工できたとしても、密着性が弱いため耐
食性が悪く問題となる場合がある。また、アルミニウム
板と樹脂フィルムとの密着性はよくても、樹脂フィルム
自体の加工性が悪いと加工中に樹脂フィルムに亀裂が生
じたり破断が生じ、これも耐食性の悪化につながる。
As described above, the resin-coated metal plate is subjected to various forming processes to become a product. For example, aluminum drawn and ironed cans used for beverage cans such as beer and carbonated drinks are generally drawn, redrawn,
It is molded by ironing, necking and flanging three times. As for the degree of processing, the thickness is reduced to 60% or more of the original plate thickness. However, when such strict processing is performed, the adhesion between the aluminum plate and the resin film is reduced, and peeling may occur during the processing. Even if the final product can be processed, the adhesion may be weak and the corrosion resistance may be poor, causing a problem. In addition, even if the adhesion between the aluminum plate and the resin film is good, if the processability of the resin film itself is poor, the resin film may crack or break during processing, which also leads to deterioration in corrosion resistance.

【0005】[0005]

【課題を解決するための手段】このような課題を解決す
るため、本発明者等が鋭意実験・検討を重ねた結果、適
切な下地処理を施したアルミニウム板を適切な温度域に
加熱して熱可塑性樹脂フィルムを積層し、ラミネートロ
ールにより加圧した後、必要に応じて適切に調整された
温度域に樹脂フィルムを再加熱し、急速冷却することに
より、アルミニウム板と樹脂フィルムとの密着性を確保
でき、また樹脂フィルム自体の加工性も良好となること
を見出し、この発明をなすに至った。
[Means for Solving the Problems] In order to solve the above problems, the inventors of the present invention have conducted extensive experiments and studies, and as a result, heat an aluminum plate subjected to an appropriate undercoat treatment to an appropriate temperature range. Adhesion between the aluminum plate and the resin film by laminating the thermoplastic resin film, pressurizing it with a laminating roll, reheating the resin film to a temperature range appropriately adjusted as necessary, and rapidly cooling It was found that the resin film itself can be secured and the workability of the resin film itself is also improved, and the present invention has been accomplished.

【0006】具体的には、請求項1の発明は、脱脂処理
後のアルミニウム板に有機樹脂と金属イオンを含む水溶
液を乾燥後の皮膜総量で0.2〜3g/m2、皮膜中に
含まれる金属の量で5〜50mg/m2となるように塗
布・乾燥する下地処理工程、それに続く該アルミニウム
板を熱可塑性樹脂フィルムのガラス転移温度以上でかつ
融点(Tm)未満の範囲内の温度に加熱し、その範囲内
の温度のアルミニウム板の少なくとも一方の面に熱可塑
性樹脂フィルムを積層してラミネートロールにより加圧
する積層工程、それに続く急速に冷却する冷却工程とか
らなることを特徴とする密着性および加工性に優れた樹
脂被覆アルミニウム板の製造方法である。
Specifically, in the invention of claim 1, the aqueous solution containing the organic resin and the metal ions is contained in the aluminum plate after the degreasing treatment in a total amount of 0.2 to 3 g / m 2 after drying, in the film. The surface treatment step of applying and drying so that the amount of the metal to be applied is 5 to 50 mg / m 2, and the subsequent temperature within the range not lower than the glass transition temperature of the thermoplastic resin film and lower than the melting point (Tm). It is characterized by comprising a heating step, a step of laminating a thermoplastic resin film on at least one surface of an aluminum plate having a temperature within the range and pressurizing with a laminating roll, followed by a cooling step of rapidly cooling. It is a method for producing a resin-coated aluminum plate having excellent adhesion and workability.

【0007】また請求項2の発明は、積層工程と冷却工
程との間に、樹脂フィルムの温度が(Tm−50)℃以
上でかつ(Tm+30)℃以下の範囲内となるように加
熱する再加熱工程を付加することを特徴とする、請求項
1に記載の密着性および加工性に優れた樹脂被覆アルミ
ニウム板の製造方法である。
In the invention of claim 2, between the laminating step and the cooling step, the resin film is heated so that the temperature of the resin film is in the range of (Tm-50) ° C. or higher and (Tm + 30) ° C. or lower. The method for producing a resin-coated aluminum plate having excellent adhesiveness and workability according to claim 1, wherein a heating step is added.

【0008】さらに請求項3の発明は、2層以上の複層
構成の熱可塑性樹脂フィルムを用いる場合、積層工程の
アルミニウム板の温度を該板に接する接着層の樹脂フィ
ルムのガラス転移温度以上でかつ最外層の樹脂フィルム
の融点以下の温度とすることを特徴とする、請求項1あ
るいは2に記載の密着性および加工性に優れた樹脂被覆
アルミニウム板の製造方法である。
Furthermore, in the invention of claim 3, when a thermoplastic resin film having a multilayer structure of two or more layers is used, the temperature of the aluminum plate in the laminating step is not less than the glass transition temperature of the resin film of the adhesive layer in contact with the plate. The method for producing a resin-coated aluminum plate having excellent adhesion and workability according to claim 1 or 2, wherein the temperature is set to a temperature equal to or lower than the melting point of the resin film of the outermost layer.

【0009】そして請求項4の発明は、2層以上の複層
構成の熱可塑性樹脂フィルムを用いる場合、積層工程の
アルミニウム板の温度を該板に接する接着層の樹脂フィ
ルムのガラス転移温度以上でかつ最外層の樹脂フィルム
の融点以下の温度とし、かつ、再加熱工程の樹脂フィル
ムの温度をフィルムを構成する各層のうち最も高い樹脂
の融点(Tm1)に応じて、(Tm1−50)℃以上でか
つ(Tm1+30)℃以下に再加熱することを特徴とす
る、請求項1あるいは2に記載の密着性および加工性に
優れた樹脂被覆アルミニウム板の製造方法である。
According to the invention of claim 4, when a thermoplastic resin film having a multilayer structure of two or more layers is used, the temperature of the aluminum plate in the laminating step is not less than the glass transition temperature of the resin film of the adhesive layer in contact with the plate. And the temperature of the resin film of the outermost layer is lower than or equal to the melting point, and the temperature of the resin film in the reheating step is (Tm1−50) ° C. or higher according to the highest melting point (Tm1) of the layers constituting the film. The method for producing a resin-coated aluminum sheet having excellent adhesiveness and workability according to claim 1 or 2, characterized in that it is reheated to (Tm1 + 30) ° C or lower.

【0010】[0010]

【発明の実施の形態】図1の上段(A)に請求項2の発
明の方法を連続ラミネート方式によって実施するための
装置の概念的な構成を示し、図1の下段(B)にその装
置によりアルミニウム板に熱可塑性樹脂を連続的にラミ
ネートする際におけるアルミニウム板の温度および熱可
塑性樹脂の温度の推移を図1(A)に対応して示す。な
お図1は、樹脂フィルムをアルミニウム板の両面にラミ
ネートする場合の例について示す。また以下の説明で
は、先ず樹脂フィルムとして単層構成のものを用いてラ
ミネートする場合について、発明の全体構成を説明し、
その後に改めて複数層の構成の樹脂フィルムを用いる場
合について説明する。
BEST MODE FOR CARRYING OUT THE INVENTION The upper part (A) of FIG. 1 shows a conceptual structure of an apparatus for carrying out the method of the invention of claim 2 by a continuous laminating method, and the lower part (B) of FIG. The transition of the temperature of the aluminum plate and the temperature of the thermoplastic resin when continuously laminating the thermoplastic resin on the aluminum plate is shown in FIG. 1 (A). Note that FIG. 1 shows an example in which a resin film is laminated on both sides of an aluminum plate. Further, in the following description, the case where a resin film having a single-layer structure is used for laminating, the overall structure of the invention will be described.
After that, a case where a resin film having a plurality of layers is used will be described again.

【0011】図1(A)において、あらかじめ脱脂処理
し有機樹脂と金属イオンと酸とを含む水溶液を塗布・乾
燥する下地処理を施したアルミニウム板1は例えば予め
コイルとされており、そのコイル状のアルミニウム板1
は供給側リール3から連続的に繰出され、第1加熱手段
5を通過する間に、ラミネートすべき熱可塑性樹脂フィ
ルムの樹脂のガラス転移温度(Tg)以上、融点(T
m)未満の範囲内の温度T1に加熱される。続いてアル
ミニウム板1は上下一対のラミネートロール(加圧ロー
ル)7A,7B間に至る。このラミネートロール7A,
7Bの直前の位置では、ラミネートすべき熱可塑性樹脂
フィルム9A,9Bがアルミニウム板1の片面もしくは
両面(図示の例では両面)に連続的に供給され、ラミネ
ートロール7A,7Bにより加圧されてアルミニウム板
1の表面に貼り合わされる。ここまでの工程がこの発明
の方法における積層工程に相当する。
In FIG. 1 (A), an aluminum plate 1 which has been preliminarily degreased and preliminarily coated with an aqueous solution containing an organic resin, a metal ion and an acid and dried is formed into a coil, for example. Aluminum plate 1
Is continuously fed from the supply-side reel 3 and, while passing through the first heating means 5, the glass transition temperature (Tg) of the resin of the thermoplastic resin film to be laminated and the melting point (T
It is heated to a temperature T1 in the range below m). Subsequently, the aluminum plate 1 reaches between a pair of upper and lower laminating rolls (pressure rolls) 7A and 7B. This laminating roll 7A,
At the position immediately before 7B, the thermoplastic resin films 9A and 9B to be laminated are continuously supplied to one side or both sides (both sides in the illustrated example) of the aluminum plate 1 and are pressed by the laminating rolls 7A and 7B to be aluminum. It is attached to the surface of the plate 1. The steps so far correspond to the laminating step in the method of the present invention.

【0012】そして請求項2の場合は、次に、上述のよ
うにして熱可塑性樹脂が仮接着された状態でアルミニウ
ム板1は第2加熱手段11を通過し、その間に熱可塑性
樹脂フィルム9A,9Bは、(Tm−50)℃以上でか
つ(Tm+30)℃未満の温度T2に加熱される。この
工程がこの発明の方法における再加熱工程に相当する。
In the case of claim 2, the aluminum plate 1 then passes through the second heating means 11 in the state where the thermoplastic resin is temporarily adhered as described above, and the thermoplastic resin film 9A, 9B is heated to a temperature T2 of (Tm-50) ° C or higher and lower than (Tm + 30) ° C. This step corresponds to the reheating step in the method of the present invention.

【0013】この再加熱工程を経る場合、経ない場合の
いずれも、その後直ちにラミネートされたアルミニウム
板1は急速に冷却され巻取り側リール13に連続的に巻
取られる。
Whether or not this reheating step is performed, the laminated aluminum plate 1 is immediately cooled immediately thereafter and continuously wound on the winding side reel 13.

【0014】以上において下地処理工程は、本発明の最
も重要な工程である。すなわち、本発明者らは、脱脂処
理後、有機樹脂および金属イオンと酸とを含有する水溶
液を適正量塗布し乾燥する、塗布型の下地処理を行うこ
とが樹脂被覆アルミニウム板材の密着性および加工性を
向上させるもっとも適当な方法であることを見出し本発
明を完成させるに至った。
In the above, the base treatment step is the most important step of the present invention. That is, the inventors of the present invention can perform an application-type base treatment in which an appropriate amount of an organic resin and an aqueous solution containing a metal ion and an acid are applied and dried after the degreasing treatment. The inventors have found that it is the most suitable method for improving the properties and completed the present invention.

【0015】一般には、樹脂被覆前の下地処理としては
リン酸クロメート処理やリン酸ジルコニウム処理等の反
応型化成処理が行われる。しかしこれらの処理において
は、いずれも無機系の硬質皮膜が形成され、樹脂被覆処
理時の密着性には優れているものの加工時の密着性に劣
る欠点がある。この原因はアルミニウム板材が強加工を
受けたときに、これら無機系の硬質下地処理皮膜は加工
に追随できずに粉々に砕けて分散した形になり、樹脂フ
ィルムとアルミニウム板材の密着性が低下することによ
る。そこで本発明者が種々実験検討した結果、樹脂を含
有させ有機皮膜と無機皮膜とを複合させた塗布型の下地
処理を施すことが加工密着性を維持するために最も適当
な方法であることを見出した。樹脂を含有することによ
り、強加工を受けても無機皮膜のように砕けて分散する
ことが無く、加工後においても僅かな膜厚ではあるが均
一な皮膜として存在し、被覆される樹脂皮膜との密着性
を維持することができるのである。
In general, a reaction type chemical conversion treatment such as a chromate phosphate treatment or a zirconium phosphate treatment is carried out as a base treatment before coating with a resin. However, in each of these treatments, an inorganic hard film is formed, and although the adhesiveness during the resin coating treatment is excellent, the adhesiveness during processing is inferior. The reason for this is that when the aluminum plate material undergoes strong processing, these inorganic hard undercoating films cannot follow the processing and become shattered and dispersed, and the adhesion between the resin film and the aluminum plate material decreases. It depends. Then, as a result of various experiments conducted by the present inventor, it was found that applying a coating type base treatment containing a resin and a composite of an organic film and an inorganic film is the most suitable method for maintaining processing adhesion. I found it. By containing a resin, it does not crush and disperse like an inorganic film even when subjected to strong processing, and it exists as a uniform film with a slight film thickness even after processing, The adhesiveness of can be maintained.

【0016】下地処理剤としては、ポリアクリル酸、ア
クリル変性エポキシ、ウレタン変性エポキシ等の有機樹
脂またはこれらの共重合体樹脂に、Cr、Zr、Mg、
Ba、Fe、Ti、Li等の金属イオンの1種あるいは
2種以上、その他リン酸やフッ酸等のアルミニウム素地
と反応する酸を含有するものを用いる。ここで有機樹脂
中に含まれる水酸基含有モノマーのOH基を金属イオン
が酸化し、樹脂分子間の架橋を強化、緻密な皮膜を形成
しているものと思われる。また金属イオンによって酸化
されずに残存したOH基とリン酸等の相乗効果により被
覆樹脂との密着性が強固に確保されるものと考えられ
る。この様な有機樹脂と金属イオンと酸とを含有する水
溶液を乾燥後の皮膜総量で0.2〜3g/m2、皮膜中
に含まれるCrやZr等の金属の量で5〜50mg/m
2となるように塗布し乾燥する。皮膜総量で0.2mg
/m2、あるいは金属の量で5mg/m2より少ないと十
分な密着性や加工性、耐食性が得られない。また皮膜総
量で3g/m2、あるいは金属の量で50mg/m2を越
えて塗布しても効果が飽和するだけでなく、経済的でな
い。
As the surface treatment agent, organic resin such as polyacrylic acid, acrylic modified epoxy, urethane modified epoxy or the like, or a copolymer resin thereof, Cr, Zr, Mg,
A material containing one or more kinds of metal ions such as Ba, Fe, Ti, and Li and an acid that reacts with an aluminum substrate such as phosphoric acid and hydrofluoric acid is used. Here, it is considered that the metal ion oxidizes the OH group of the hydroxyl group-containing monomer contained in the organic resin, strengthens the cross-linking between resin molecules, and forms a dense film. Further, it is considered that the adhesiveness with the coating resin is firmly secured by the synergistic effect of the OH groups remaining without being oxidized by the metal ions and phosphoric acid. The total amount of the film after drying an aqueous solution containing such an organic resin, metal ions and an acid is 0.2 to 3 g / m 2 , and the amount of metals such as Cr and Zr contained in the film is 5 to 50 mg / m 2 .
Apply to 2 and dry. 0.2 mg in total amount of film
/ M 2 , or if the amount of metal is less than 5 mg / m 2 , sufficient adhesion, workability and corrosion resistance cannot be obtained. Further, even if the total coating amount exceeds 3 g / m 2 or the metal amount exceeds 50 mg / m 2 , the effect is saturated and it is not economical.

【0017】なお、圧延時に用いられた潤滑油を洗い落
とすことを第1の目的とし、つぎに板表面の酸化膜を取
り除き下地処理剤のなじみ性を良くすることを第2の目
的としてアルミニウム板材には下地処理に先立って、脱
脂処理を施しておく。脱脂工程では、酸性またはアルカ
リ性の脱脂液を用い脱脂する方法、またはアルカリによ
る脱脂と酸による脱脂を併用する方法により、アルミニ
ウム板表面をできるだけ活性化しておく。
The first purpose is to wash off the lubricating oil used during rolling, and then the second purpose is to remove the oxide film on the surface of the plate and improve the conformability of the surface treatment agent. Is subjected to degreasing treatment prior to the base treatment. In the degreasing step, the surface of the aluminum plate is activated as much as possible by a method of degreasing using an acidic or alkaline degreasing liquid, or a method of using both degreasing with alkali and degreasing with acid.

【0018】次に、積層工程は、アルミニウム板を加熱
してその片面もしくは両面に熱可塑性樹脂フィルムを積
層し、ラミネートロールにより加圧して熱可塑性樹脂フ
ィルムをアルミニウム板表面に仮接着する工程である
が、この積層工程においてアルミニウム板を加熱する目
的は、アルミニウム板に接する熱可塑性フィルムを軟化
させてラミネートロールによる加圧によりそのフィルム
をアルミニウム板に接着させることにある。この積層工
程の加熱温度T1が樹脂のガラス転移温度より低けれ
ば、樹脂フィルムの軟化が不充分となり、空気の巻込み
等によって樹脂フィルムがアルミニウム板表面に充分に
密着されないおそれがある。
Next, the laminating step is a step of heating an aluminum plate to laminate a thermoplastic resin film on one or both sides thereof, and applying pressure with a laminating roll to temporarily adhere the thermoplastic resin film to the surface of the aluminum plate. However, the purpose of heating the aluminum plate in this laminating step is to soften the thermoplastic film in contact with the aluminum plate and adhere the film to the aluminum plate by pressing with a laminating roll. If the heating temperature T1 in this laminating step is lower than the glass transition temperature of the resin, the resin film may be insufficiently softened, and the resin film may not be sufficiently adhered to the surface of the aluminum plate due to air entrainment or the like.

【0019】一方、加熱温度が高いほど高い密着力を得
ることができるが、樹脂の融点以上となれば樹脂フィル
ムが溶融してラミネートロールに付着してしまい、円滑
にラミネートできなくなる不都合が生じる。したがって
積層工程におけるアルミニウム板の加熱温度は、使用す
る樹脂フィルムを構成している樹脂のガラス転移温度以
上、融点未満の温度域とする必要がある。
On the other hand, the higher the heating temperature is, the higher the adhesion can be obtained. However, when the temperature is higher than the melting point of the resin, the resin film is melted and adheres to the laminating roll, which causes a problem that smooth laminating cannot be performed. Therefore, the heating temperature of the aluminum plate in the laminating step needs to be in the temperature range not lower than the glass transition temperature of the resin forming the resin film used and lower than the melting point.

【0020】なお積層工程においてアルミニウム板を加
熱するための加熱手段は特に限定されるものではなく、
ロール加熱方式、熱風加熱方式、赤外線加熱方式、通電
加熱方式、誘導加熱方式などのいずれの方式を適用して
も良い。但しこれらのうちでもロール加熱方式が温度分
布の均一化や効率化の点から最も適している。
The heating means for heating the aluminum plate in the laminating step is not particularly limited,
Any method such as a roll heating method, a hot air heating method, an infrared heating method, an electric heating method, and an induction heating method may be applied. However, among these, the roll heating method is most suitable from the viewpoint of uniform temperature distribution and efficiency.

【0021】ラミネートロールによる加圧時におけるロ
ールの表面温度は特に限定しないが、一般にはアルミニ
ウム板の温度より若干低い程度とすれば良い。またラミ
ネートロールによる加圧力も、特に限定されるものでは
ないが、一般には線圧で20N/cm以上が適当であ
る。ラミネートロールによる加圧力が線圧で20N/c
m未満では、充分な密着力が得られないおそれがある。
なお加圧力の上限も特に定めないが、装置が破損しない
程度の常識的な圧力とすれば良い。
The surface temperature of the roll at the time of pressurization by the laminating roll is not particularly limited, but in general, it may be slightly lower than the temperature of the aluminum plate. The pressure applied by the laminating roll is not particularly limited, but generally a linear pressure of 20 N / cm or more is suitable. 20 N / c linear pressure applied by the laminating roll
If it is less than m, sufficient adhesion may not be obtained.
The upper limit of the pressing force is not particularly limited, but may be a common sense pressure that does not damage the device.

【0022】積層工程の直後に後述する冷却工程に進ん
でも一定の密着性が得られるが、さらに良好な密着性を
得るためには請求項3のように積層工程と冷却工程との
間に再加熱工程を付加する。この、積層工程と冷却工程
との間に付加される再加熱工程は、前述のようにしてア
ルミニウム板表面に仮接着された熱可塑性樹脂フィルム
をその融点(Tm)に対し(Tm−50)℃〜(Tm+
30)℃の範囲内の温度に赤外線加熱方式により加熱す
るものである。
Even if the cooling step described below is performed immediately after the laminating step, a certain degree of adhesion can be obtained, but in order to obtain even better adhesion, re-adhesion between the laminating step and the cooling step is required in order to obtain even better adhesion. Add a heating step. In this reheating step added between the laminating step and the cooling step, the thermoplastic resin film temporarily adhered to the aluminum plate surface as described above has a melting point (Tm) of (Tm-50) ° C. ~ (Tm +
It is heated to a temperature within the range of 30) ° C. by an infrared heating system.

【0023】この再加熱工程における加熱の第1の目的
は、アルミニウム板表面に樹脂フィルムを充分な密着力
で接合させることにある。すなわち、積層工程で仮接着
された樹脂フィルムをさらに軟化溶融させることによ
り、アルミニウム板とフィルムとの間に巻込まれた空気
を、フィルム中を透過させることによって除去し、アル
ミニウム板表面のロール目やオイルピット等の微細な凹
部にフィルムの樹脂を侵入させて、フィルムをアルミニ
ウム板に強固に密着させることにある。
The first purpose of heating in this reheating step is to bond the resin film to the surface of the aluminum plate with sufficient adhesion. That is, by further softening and melting the resin film that has been temporarily adhered in the laminating step, the air trapped between the aluminum plate and the film is removed by permeating through the film, and the roll eyes and the aluminum plate surface are formed. The resin of the film is made to invade into minute recesses such as oil pits to firmly adhere the film to the aluminum plate.

【0024】また再加熱工程の加熱の第2の目的は、配
向結晶化した樹脂フィルムの配向を崩壊させ、フィルム
に良好な加工性を付与することにある。すなわち、一般
にラミネート用の樹脂フィルムとしては2軸延伸により
配向結晶化したフィルムを用いる場合が多く、その配向
結晶化したままの状態では充分な加工性を持たないた
め、最終的に得られた樹脂フィルム被覆アルミニウム板
をプレス加工する際に樹脂フィルムに亀裂が生じたり、
破断したりして、加工が困難となったりするおそれがあ
る。そこで充分な加工性を付与するため、加熱によって
配向を崩壊させる必要があるのである。
The second purpose of heating in the reheating step is to disrupt the orientation of the oriented and crystallized resin film and to impart good processability to the film. That is, as a resin film for lamination, a film that has been oriented and crystallized by biaxial stretching is generally used, and since the oriented crystallized state does not have sufficient processability, the resin finally obtained is obtained. When pressing the film-coated aluminum plate, cracks may occur in the resin film,
There is a risk that it will break and the processing will become difficult. Therefore, in order to impart sufficient processability, it is necessary to collapse the orientation by heating.

【0025】これらの目的のための再加熱工程での樹脂
フィルムの加熱温度としては、(Tm−50)℃以上、
(Tm+30)℃以下の範囲内とする必要がある。すな
わち、再加熱工程の樹脂フィルム加熱温度が(Tm−5
0)℃より低ければ、樹脂フィルムの軟化溶融が充分に
進行しないため高い密着力が得られず、そのため加工時
などに樹脂フィルムが剥離する恐れがあり、また樹脂フ
ィルムの配向の崩壊が充分ではないため加工性に劣り、
そのため加工時に樹脂フィルムに亀裂が生じたり、破断
したりして、加工が困難となったりするおそれがある。
したがって再加熱工程における樹脂フィルムの加熱温度
の下限は(Tm−50)℃とする。また加熱温度が(T
m+30)℃より高ければ、樹脂フィルムを構成してい
る分子構造の一部が分断されることがあり、その場合に
は加工時にフィルム表面に荒れが生じたり、亀裂が発生
したりするなど、加工性の低下を招き、また耐食性や耐
熱性も悪くなって、レトルト処理などの加熱を行なう場
合には樹脂フィルムの剥離や白化が生じることがあり、
したがって再加熱工程における樹脂フィルムの加熱温度
の上限は(Tm+30)℃とする。
The heating temperature of the resin film in the reheating step for these purposes is (Tm-50) ° C. or higher,
It must be within the range of (Tm + 30) ° C. or less. That is, the resin film heating temperature in the reheating step is (Tm-5
If the temperature is lower than 0) ° C., the softening and melting of the resin film does not proceed sufficiently so that high adhesion cannot be obtained, and therefore the resin film may be peeled off during processing and the orientation of the resin film is not sufficiently collapsed. It is inferior in workability because it is not
Therefore, the resin film may be cracked or broken during processing, which may make the processing difficult.
Therefore, the lower limit of the heating temperature of the resin film in the reheating step is (Tm-50) ° C. The heating temperature is (T
If the temperature is higher than m + 30) ° C., a part of the molecular structure constituting the resin film may be divided, and in that case, the film surface may be roughened or cracked during processing. In addition, the corrosion resistance and heat resistance of the resin film may deteriorate, and when heating such as retort treatment, peeling or whitening of the resin film may occur.
Therefore, the upper limit of the heating temperature of the resin film in the reheating step is (Tm + 30) ° C.

【0026】ここで、再加熱工程における加熱方式とし
ては、赤外線加熱方式を用いることが好ましい。すなわ
ち、一般に再加熱工程での加熱温度T2は、積層工程で
の加熱温度よりも高い温度に設定されることから、被覆
後のアルミニウム板の強度は再加熱工程における加熱温
度により決定されるのが通常である。一方アルミニウム
板はその軟化温度が鋼板などと比較して格段に低く、そ
のため再加熱工程での加熱によって強度が著しく低下す
るおそれがある。この強度低下は、既に述べたように被
覆板を飲料缶の如く高い耐圧強度が要求される用途に適
用する場合に特に不都合を招くことになる。したがって
再加熱工程の加熱温度は可及的に低いことが望ましい
が、再加熱工程の加熱温度が低ければ、前述のように樹
脂フィルムを充分に軟化溶融させることができず、また
樹脂フィルムの配向を崩壊させることが困難となり、そ
の結果充分な密着力、良好な加工性を得ることが困難と
なる。このようにアルミニウム板の強度低下の防止と、
樹脂フィルムの充分な密着力の確保および加工性の確保
とは、再加熱工程の加熱温度との関係で、互いに相反す
ることになる。このような相反する目的を克服するた
め、加熱方式として赤外線加熱方式を適用することが最
も適切である。
Here, as a heating method in the reheating step, it is preferable to use an infrared heating method. That is, since the heating temperature T2 in the reheating step is generally set to a temperature higher than the heating temperature in the laminating step, the strength of the coated aluminum plate is determined by the heating temperature in the reheating step. It is normal. On the other hand, the aluminum plate has a remarkably low softening temperature as compared with a steel plate and the like, and therefore, there is a possibility that the strength may be remarkably lowered by the heating in the reheating step. As described above, this decrease in strength causes a particular problem when the cover plate is applied to applications such as beverage cans that require high pressure resistance. Therefore, it is desirable that the heating temperature in the reheating step is as low as possible, but if the heating temperature in the reheating step is low, the resin film cannot be sufficiently softened and melted as described above, and the orientation of the resin film is It becomes difficult to disintegrate, and as a result, it becomes difficult to obtain sufficient adhesion and good workability. In this way, the prevention of the strength reduction of the aluminum plate,
Ensuring sufficient adhesion and processability of the resin film conflict with each other in relation to the heating temperature in the reheating step. In order to overcome such contradictory purposes, it is most appropriate to apply the infrared heating method as the heating method.

【0027】積層工程あるいは再加熱工程の後は、直ち
に熱可塑性樹脂のガラス転移温度以下に急冷する。ここ
で、冷却速度は40℃/秒以上、好ましく50℃/秒以
上とする。使用する樹脂の種類によって異なる結晶化温
度域を特に急冷する必要があるが結晶化温度域はガラス
転移温度より高温なのでガラス転移温度を目安に急冷す
れば良い。例えば一般のポリエステルの場合は200℃
からガラス転移温度までの温度域を急冷する。この温度
域を急冷しないと樹脂により不要な結晶化を招き、白化
や密着性の低下の原因となり好ましくない。
Immediately after the laminating step or the reheating step, the glass is rapidly cooled to a temperature not higher than the glass transition temperature of the thermoplastic resin. Here, the cooling rate is 40 ° C./sec or more, preferably 50 ° C./sec or more. The crystallization temperature range, which differs depending on the type of resin used, needs to be particularly rapidly cooled. However, since the crystallization temperature range is higher than the glass transition temperature, it may be rapidly cooled with the glass transition temperature as a guide. For example, 200 ° C for general polyester
To the glass transition temperature. Unless this temperature range is rapidly cooled, unnecessary crystallization is caused by the resin, which causes whitening and deterioration of adhesion, which is not preferable.

【0028】次にアルミニウム板の片面もしくは両面に
ラミネートされる熱可塑性樹脂フィルムとして、2種以
上の熱可塑性樹脂からなる複層構成のものが用いられて
いる場合、すなわち請求項3、請求項4の発明の方法の
場合について説明する。
Next, as a thermoplastic resin film laminated on one side or both sides of the aluminum plate, a multi-layered structure composed of two or more kinds of thermoplastic resins is used, that is, claims 3 and 4. The case of the method of the invention will be described.

【0029】樹脂フィルムとして複層構成のものを用い
る場合も、基本的なプロセスやその作用は前述の単層構
成の樹脂フィルムを用いた場合と同様であるが、積層工
程におけるアルミニウム板の加熱温度および再加熱工程
における樹脂フィルムの加熱温度を、樹脂フィルムを構
成する各層の樹脂に応じて定める必要がある。すなわ
ち、2層以上の複層構成の樹脂フィルムの場合、少なく
ともアルミニウム板に接する層は最終的にアルミニウム
板に接着されるべき層(以下これを接着層と記す)と、
最終的な被覆板において外面側に露出する層(以下これ
を最外層と記す)とが存在し、また3層以上の場合には
接着層と最外層との間に1以上の中間層が介在すること
になるが、積層工程におけるアルミニウム板の加熱温度
は接着層の樹脂のガラス転移温度および最外層の樹脂の
融点に応じて定め、一方再加熱工程における樹脂フィル
ムの加熱温度は各層の樹脂のうち最も融点が高い樹脂の
融点に応じて定める必要がある。
When the resin film having a multi-layer structure is used, the basic process and its operation are the same as those when the resin film having a single-layer structure is used, but the heating temperature of the aluminum plate in the laminating step is the same. And the heating temperature of the resin film in the reheating step needs to be determined according to the resin of each layer constituting the resin film. That is, in the case of a resin film having a multilayer structure of two or more layers, at least the layer in contact with the aluminum plate is a layer to be finally bonded to the aluminum plate (hereinafter referred to as an adhesive layer),
There is a layer exposed on the outer surface side (hereinafter referred to as the outermost layer) in the final coated plate, and in the case of three or more layers, one or more intermediate layers are interposed between the adhesive layer and the outermost layer. However, the heating temperature of the aluminum plate in the laminating step is determined according to the glass transition temperature of the resin of the adhesive layer and the melting point of the resin of the outermost layer, while the heating temperature of the resin film in the reheating step is the same as that of the resin of each layer. Of these, it is necessary to determine it according to the melting point of the resin having the highest melting point.

【0030】具体的には、先ず積層工程におけるアルミ
ニウム板の加熱温度は、接着層を構成している樹脂のガ
ラス転移温度以上であってしかも最外層を構成している
樹脂の融点未満の温度とする必要がある。すなわち、積
層工程における加熱温度が接着層の樹脂のガラス転移温
度よりも低ければ、接着層の樹脂の軟化が不充分となっ
て、空気の巻込み等により樹脂フィルムがアルミニウム
板表面に充分に密着されないおそれがある。一方積層工
程の加熱温度が最外層の樹脂の融点以上となれば、最外
層の樹脂が溶融してラミネートロールに付着してしま
い、円滑にラミネートできなくなるおそれがある。
Specifically, first, the heating temperature of the aluminum plate in the laminating step is equal to or higher than the glass transition temperature of the resin forming the adhesive layer and lower than the melting point of the resin forming the outermost layer. There is a need to. That is, if the heating temperature in the laminating process is lower than the glass transition temperature of the resin of the adhesive layer, the resin of the adhesive layer is not sufficiently softened, and the resin film is sufficiently adhered to the surface of the aluminum plate due to air inclusion. May not be performed. On the other hand, if the heating temperature in the laminating step is equal to or higher than the melting point of the resin of the outermost layer, the resin of the outermost layer melts and adheres to the laminating roll, which may result in a failure in smooth lamination.

【0031】なおこのように複数層構成の樹脂フィルム
を用いた場合の積層工程において、アルミニウム板に対
する樹脂フィルムの密着力をできるだけ高めるために
は、接着層の温度が融点に達して、接着層の樹脂が完全
に溶融した状態でラミネートロールにより加圧されるこ
とが望ましい。但し、最外層の樹脂の融点が接着層の樹
脂の融点と同等かまたはそれより低ければ、接着層の樹
脂が溶融した状態で最外層の樹脂も溶融した状態とな
り、その場合は最外層の樹脂がラミネートロールに付着
してしまう不都合が生じる。そこで最外層の樹脂として
は、その融点が接着層の樹脂の融点よりも低いものを選
択することが望ましい。そして積層工程の加熱では、前
述のように接着層を完全溶融させて密着力を高め、しか
も最外層の樹脂を溶融させないように、接着層の樹脂の
融点以上でかつ最外層の樹脂の融点より低い温度で加熱
することが望ましい。
In the laminating step using a resin film having a plurality of layers, the temperature of the adhesive layer reaches the melting point so that the adhesive strength of the resin film with respect to the aluminum plate is increased as much as possible. It is desirable that the resin be completely melted and pressed by a laminating roll. However, if the melting point of the resin of the outermost layer is equal to or lower than the melting point of the resin of the adhesive layer, the resin of the outermost layer is also melted in the state where the resin of the adhesive layer is melted, in which case the resin of the outermost layer is Adheres to the laminating roll. Therefore, it is desirable to select, as the resin of the outermost layer, one whose melting point is lower than that of the resin of the adhesive layer. Then, in the heating of the laminating step, as described above, the adhesive layer is completely melted to enhance the adhesion, and further, in order not to melt the resin of the outermost layer, it is higher than the melting point of the resin of the adhesive layer and higher than the melting point of the resin of the outermost layer. It is desirable to heat at a low temperature.

【0032】また複層構成の樹脂フィルムを用いた場合
の再加熱工程における加熱温度は、樹脂フィルムを構成
している複数層の各樹脂のうち、最も融点が高い樹脂の
融点をTm1とすれば、(Tm1−50)℃以上、(T
m1+30)℃以下とする必要がある。すなわち再加熱
工程における樹脂フィルムの加熱の目的は既に述べたよ
うにアルミニウム板表面に樹脂フィルムを充分な密着力
で接合させるだけではなく、配向結晶化した樹脂フィル
ムの配向を崩壊させてフィルムに良好な加工性を付与す
ることも重要であり、複層構成の樹脂フィルムの各層の
うち接着層については、積層工程での加熱により配向の
崩壊がある程度進んでいるが、接着層よりも融点の高い
層における配向の崩壊は未だ不充分であるから、再加熱
工程の加熱において、これらの層の配向を崩壊させて、
良好な加工性を持たせる必要がある。そこで複数層構成
の樹脂フィルムを用いた場合の再加熱工程における加熱
温度については、最も融点が高い層の融点Tm1を基準
として、(Tm1−50)℃以上、(Tm1+30)℃
の範囲内と定めたのである。
Further, the heating temperature in the reheating step in the case of using a resin film having a multilayer structure is such that, of the resins of a plurality of layers forming the resin film, the melting point of the resin having the highest melting point is Tm1. , (Tm1-50) ° C. or higher, (T
m1 + 30) ° C. or lower. That is, the purpose of heating the resin film in the reheating step is not only to bond the resin film to the surface of the aluminum plate with sufficient adhesive force as described above, but also to disintegrate the orientation of the oriented and crystallized resin film to form a good film. It is also important to provide various processability. Regarding the adhesive layer among the layers of the resin film having a multilayer structure, the orientation collapses to some extent due to heating in the laminating process, but the melting point is higher than that of the adhesive layer. Since the collapse of the orientation in the layers is still insufficient, the orientation of these layers is destroyed in the heating in the reheating step,
It is necessary to have good workability. Therefore, with respect to the heating temperature in the reheating step in the case of using a resin film having a multi-layer structure, (Tm1-50) ° C. or more and (Tm1 + 30) ° C. based on the melting point Tm1 of the layer having the highest melting point.
It was defined as within the range of.

【0033】なお複層構成の樹脂フィルムを用いる場合
における上記の加熱温度条件以外の発明の構成について
は、既に述べた単層構成の樹脂フィルムを用いた場合と
同様であり、その説明は省略する。
The constitution of the invention other than the above heating temperature condition in the case of using the resin film of the multi-layer constitution is the same as that of the case of using the resin film of the mono-layer constitution already described, and the explanation thereof will be omitted. .

【0034】熱可塑性樹脂フィルムとしては、ポリオレ
フィン系樹脂、ポリエステル系樹脂、ポリアミド系樹脂
等を主成分とした単層または複層の樹脂フィルム、これ
ら樹脂を2種以上ブレンドした樹脂フィルム、あるいは
共重合した樹脂フィルムなどを用いることができる。
The thermoplastic resin film may be a single-layer or multi-layer resin film containing a polyolefin resin, a polyester resin, a polyamide resin, etc. as a main component, a resin film obtained by blending two or more kinds of these resins, or a copolymer. A resin film or the like can be used.

【0035】[0035]

【実施例】実施例1(2層フィルム、再加熱工程無し) 板厚0.5mmの JIS A 5052合金圧延板
を、弱エッチングタイプのアルカリ脱脂液で脱脂後、下
地処理を施した。発明例に対しては、ポリアクリル酸系
の有機樹脂、リン酸、およびアンモニウムジルコニウム
カーボネートを配合した水溶液を塗布し、110℃で5
秒間乾燥する塗布型の下地処理を行った。塗布量は11
0℃で5秒間乾燥後の皮膜総量で0.5g/m2、Zr
量で10mg/m2とした。また比較例としてアンモニ
ウムジルコニウムカーボネートを減らした水溶液を用い
皮膜総量は同じでZr量が1mg/m2 の塗布型下地処
理を施したもの、Cr量で20mg/m2の通常の反応
型リン酸クロメート処理のものも準備した。
Example 1 (two-layer film, no reheating step) A JIS A 5052 alloy rolled plate having a plate thickness of 0.5 mm was degreased with a weak etching type alkaline degreasing solution and then subjected to a base treatment. For the invention examples, an aqueous solution containing a polyacrylic acid-based organic resin, phosphoric acid, and ammonium zirconium carbonate was applied, and the solution was heated at 110 ° C. for 5 hours.
A coating type base treatment for drying for 2 seconds was performed. Application amount is 11
0.5 g / m 2 of total amount of film after drying at 0 ° C. for 5 seconds, Zr
The amount was 10 mg / m 2 . In addition, as a comparative example, an aqueous solution containing reduced ammonium zirconium carbonate was used, the total coating amount was the same, and a Zr amount of 1 mg / m 2 was applied to the undercoating treatment, and a Cr amount of 20 mg / m 2 was an ordinary reactive chromate phosphate. I also prepared the treatment.

【0036】これらの下地処理板材に、接着層の樹脂と
してガラス転移温度72℃、融点215℃の厚さ3μm
のポリエステルを用い、外層の樹脂としてガラス転移温
度75℃、融点260℃の厚さ17μmのポリエステル
を用いて、合計厚さ20μmとした2層構造のポリエス
テルフィルムを、積層工程のアルミニウム板の加熱温度
T1を種々変えて被覆し、その直後冷却し樹脂被覆アル
ミニウム板を製造した。
On these under-treated plate materials, as a resin for the adhesive layer, a glass transition temperature of 72 ° C., a melting point of 215 ° C. and a thickness of 3 μm
The polyester film having a total thickness of 20 μm is used as a resin for the outer layer using a polyester having a glass transition temperature of 75 ° C. and a melting point of 260 ° C. and a thickness of 17 μm. Coating was performed by changing T1 in various ways, and immediately thereafter, cooling was performed to manufacture a resin-coated aluminum plate.

【0037】請求項3の条件に当てはめると、積層工程
のアルミニウム板の加熱温度T1は、72℃≦T1≦2
60℃となる。
When the condition of claim 3 is applied, the heating temperature T1 of the aluminum plate in the laminating step is 72 ° C. ≦ T1 ≦ 2.
It becomes 60 ° C.

【0038】冷却方法としては水冷と放冷を採用した。
水冷の冷却速度は120℃/秒、放冷の冷却速度は20
℃/秒であった。
Water cooling and cooling were adopted as the cooling method.
The cooling rate for water cooling is 120 ° C / sec, and the cooling rate for standing cooling is 20
C / sec.

【0039】こうして得られた樹脂被覆アルミニウム板
に模擬成形加工として30%の圧延加工を行い、樹脂フ
ィルムとアルミニウム板との密着性の指標として樹脂フ
ィルムの剥離発生の有無と、樹脂フィルム自体の加工性
の指標も兼ねてフィルム外観を調べた。密着性は、剥離
の全く無いものを○、一部でも剥離の生じたものは×と
した。フィルム外観は、白化も荒れも亀裂もないものを
○、白化・荒れ・亀裂のいずれかがあるものはそれぞれ
「白化」「荒れ」「亀裂」と表記した。またラミネート
後および30%圧延後の樹脂被覆アルミニウム板を、J
ISH 8681により24Hrのキャス試験を行い耐
食性の評価を行った。腐食の発生の無いものを○、僅か
でも腐食の発生が見られたものは×とした。表1に処理
条件と評価結果を示す。
The resin-coated aluminum plate thus obtained was subjected to a rolling process of 30% as a simulated forming process, and as a measure of the adhesion between the resin film and the aluminum plate, the presence or absence of peeling of the resin film and the processing of the resin film itself. The appearance of the film was examined also as an index of sex. The adhesiveness was evaluated as ◯ when there was no peeling and as × when there was some peeling. Regarding the appearance of the film, those having no whitening, roughening, or cracking were marked with ○, and those having any of whitening, roughening, and cracking were marked as “whitening”, “roughness”, and “cracks”, respectively. In addition, the resin-coated aluminum plate after lamination and after 30% rolling was
A 24 hour cast test was conducted by ISH 8681 to evaluate the corrosion resistance. The case where no corrosion occurred was rated as ○, and the case where even a slight amount of corrosion occurred was rated as ×. Table 1 shows the processing conditions and the evaluation results.

【0040】[0040]

【表1】 [Table 1]

【0041】供試材No.4、5は下地処理として通常
の反応型リン酸クロメート処理を行ったもので、ラミネ
ート後の密着性は良好でその結果耐食性が優れているも
のの、その後の加工時の密着性や加工後の耐食性が劣る
結果となった。供試材No.6は塗布型下地処理の金属
量が少なすぎる為、密着性と、耐食性が劣り、供試材N
o.7、8は放冷を採用した為、樹脂フィルムが若干白
化を生じ密着性、耐食性も悪い。また、供試材No.9
はT1温度が低すぎるため、密着性、加工性、耐食性が
劣る。一方、本発明例である供試材No.1、2、3は
良好な加工性、密着性および耐食性を示した。
Specimen No. Nos. 4 and 5 were subjected to the usual reaction type phosphoric acid chromate treatment as the base treatment, and although the adhesion after lamination was excellent and the corrosion resistance was excellent as a result, the adhesion during subsequent processing and the corrosion resistance after processing Was inferior. Specimen No. Sample No. 6 has poor adhesion and corrosion resistance because the amount of metal in the coating type base treatment is too small.
o. Since 7 and 8 employ cooling, the resin film is slightly whitened and the adhesion and corrosion resistance are poor. In addition, the sample material No. 9
Since the T1 temperature is too low, the adhesion, workability and corrosion resistance are poor. On the other hand, the test material No. Nos. 1, 2, and 3 showed good workability, adhesion, and corrosion resistance.

【0042】実施例2(単層フィルム、再加熱工程有
り) 板厚0.5mmのJIS A 3004合金からなるア
ルミニウム板を、弱エッチングタイプのアルカリ脱脂液
で脱脂後、下地処理を施した。発明例に対しては、ポリ
アクリル酸系の有機樹脂、弗化水素およびリン酸クロム
を配合した水溶液を塗布し、130℃で5秒間乾燥する
塗布型の下地処理を行った。塗布量は変化させたが、発
明例においては、皮膜総量で0.4、0.8、1.2g
/m2、乾燥後のCr量で10、20、30mg/m2
水準とした。また比較例としてリン酸クロムを減らした
水溶液を用いて皮膜総量は0.4g/m2、Cr量が1
mg/m2の塗布型下地処理を施したもの、Cr量で2
0mg/m2の通常の反応型リン酸クロメート化成処理
を施したものも準備した。
Example 2 (single-layer film, with reheating step) An aluminum plate made of JIS A 3004 alloy having a plate thickness of 0.5 mm was degreased with a weak etching type alkaline degreasing solution and then subjected to a base treatment. For the invention examples, an aqueous solution containing a polyacrylic acid-based organic resin, hydrogen fluoride and chromium phosphate was applied, and a coating type base treatment of drying at 130 ° C. for 5 seconds was performed. Although the coating amount was changed, in the invention examples, the total coating amount was 0.4, 0.8, and 1.2 g.
/ M 2 , and the amount of Cr after drying was set to levels of 10, 20, and 30 mg / m 2 . As a comparative example, an aqueous solution containing reduced chromium phosphate was used, and the total coating amount was 0.4 g / m 2 and the Cr amount was 1
A coating-type base treatment of mg / m 2 was applied, and the amount of Cr was 2
A product which had been subjected to a usual reaction type chromate phosphate conversion treatment of 0 mg / m 2 was also prepared.

【0043】これらの下地処理板材に、ガラス転移温度
80℃、融点264℃、厚さ20μmの単層構造のポリ
エチレンテレフタレートフィルムを、積層工程のアルミ
ニウム板の加熱温度T1および再加熱工程での樹脂フィ
ルムの温度T2を種々変えて被覆し、その直後冷却し樹
脂被覆アルミニウム板を製造した。
A polyethylene terephthalate film having a single layer structure having a glass transition temperature of 80 ° C., a melting point of 264 ° C., and a thickness of 20 μm was applied to these under-treated plate materials, the heating temperature T1 of the aluminum plate in the laminating step and the resin film in the reheating step. Was coated at various temperature T2, and immediately after that, the resin-coated aluminum plate was manufactured by cooling.

【0044】請求項2の条件に当てはめると、積層工程
のアルミニウム板の加熱温度T1は、80℃≦T1≦2
64℃、再加熱工程での樹脂フィルムの温度T2は、2
14℃≦T2≦294℃となる。
When the condition of claim 2 is applied, the heating temperature T1 of the aluminum plate in the laminating step is 80 ° C. ≦ T1 ≦ 2.
64 ° C, the temperature T2 of the resin film in the reheating step is 2
14 ° C. ≦ T2 ≦ 294 ° C.

【0045】冷却方法、模擬成形加工、評価方法は実施
例1と同じである。表2に処理条件と評価結果を示す。
The cooling method, the simulation molding process, and the evaluation method are the same as in the first embodiment. Table 2 shows the processing conditions and the evaluation results.

【0046】[0046]

【表2】 [Table 2]

【0047】供試材No.13,14は下地処理として
通常の従来の化成クロメート処理行ったものであり、ラ
ミネート後の密着性は良好でその結果耐食性が優れてい
るものの、その後の加工時の密着性、加工後の耐食性が
劣る結果となった。供試材No.17は塗布型下地処理
であるが塗布量が少なすぎるため、密着性、耐食性が劣
り、供試材No.18,19は放冷を採用したため、樹
脂フィルムが若干白化を生じ密着性、耐食性も悪い。ま
た、供試材No.20はT1温度が低すぎるため、密着
性、耐食性が劣り、供試材No.21はT2温度が低す
ぎるため、密着性、加工性、耐食性が劣り、供試材N
o.22はT2温度が高すぎたため、フィルムに荒れが
生じ耐食性が悪い。一方、本発明例である供試材No.
10,11,12,15,16は良好な加工性、密着性
および耐食性を示した。
Specimen No. Nos. 13 and 14 are those which have been subjected to the usual conventional chemical conversion chromate treatment as a base treatment, and although the adhesion after lamination is good and the corrosion resistance is excellent as a result, the adhesion during the subsequent processing and the corrosion resistance after the processing are excellent. The result was inferior. Specimen No. Sample No. 17 is a coating-type undercoating treatment, but the coating amount is too small, resulting in poor adhesion and corrosion resistance. Since Nos. 18 and 19 adopted cooling, the resin film was slightly whitened and the adhesion and corrosion resistance were poor. In addition, the sample material No. No. 20 has a T1 temperature that is too low, resulting in poor adhesion and corrosion resistance. Sample No. 21 has a poor T2 temperature and thus has poor adhesion, workability and corrosion resistance.
o. In No. 22, the T2 temperature was too high, so that the film was roughened and the corrosion resistance was poor. On the other hand, the test material No.
Nos. 10, 11, 12, 15, and 16 showed good workability, adhesion, and corrosion resistance.

【0048】実施例3(2層フィルム、再加熱工程有
り) 実施例2と同様の下地処理を行った板材に、接着層の樹
脂としてガラス転移温度72℃、融点215℃の厚さ5
μmのポリエステルを用い、外層の樹脂としてガラス転
移温度75℃、融点260℃の厚さ15μmのポリエス
テルを用いて、合計厚さ20μmとした2層構造のポリ
エステルフィルムを被覆し、積層工程のアルミニウム板
の加熱温度T1および再加熱工程での樹脂フィルムの温
度T2を種々変えて被覆し、その直後冷却し樹脂被覆ア
ルミニウム板を製造した。
Example 3 (two-layer film, with reheating step) A plate material subjected to the same base treatment as in Example 2 was used as a resin for the adhesive layer, having a glass transition temperature of 72 ° C. and a melting point of 215 ° C. and a thickness of 5.
An aluminum plate in a laminating step, in which a polyester film having a total thickness of 20 μm is coated with a polyester film having a thickness of 15 μm having a glass transition temperature of 75 ° C. and a melting point of 260 ° C. as an outer layer resin. Was coated at various heating temperatures T1 and T2 of the resin film in the reheating step, and immediately thereafter, a resin-coated aluminum plate was manufactured.

【0049】請求項4の条件に当てはめると、積層工程
のアルミニウム板の加熱温度T1は、72℃≦T1≦2
60℃、再加熱工程での樹脂フィルムの温度T2は、2
10℃≦T2≦290℃となる。
Applying to the condition of claim 4, the heating temperature T1 of the aluminum plate in the laminating step is 72 ° C. ≦ T1 ≦ 2.
60 ° C, the temperature T2 of the resin film in the reheating step is 2
10 ° C. ≦ T2 ≦ 290 ° C.

【0050】冷却方法、模擬成形加工、評価方法は実施
例1,2と同じである。表3に処理条件と評価結果を示
す。
The cooling method, the simulation molding process, and the evaluation method are the same as those in Examples 1 and 2. Table 3 shows the processing conditions and the evaluation results.

【0051】[0051]

【表3】 [Table 3]

【0052】供試材No.26,27は下地処理として
通常の従来の化成クロメート処理行ったものであり、ラ
ミネート後の密着性は良好でその結果耐食性が優れてい
るものの、その後の加工時の密着性、加工後の耐食性が
劣る結果となった。供試材No.30は塗布型下地処理
であるが塗布量が少なすぎるため、密着性、耐食性が劣
り、供試材No.31,32は放冷を採用したため、樹
脂フィルムが若干白化を生じ密着性、耐食性も悪い。ま
た、供試材No.33はT1温度が低すぎるため、密着
性、耐食性が劣り、供試材No.34はT2温度が低す
ぎるため、密着性、加工性、耐食性が劣り、供試材N
o.35はT2温度が高すぎるため、フィルムに荒れが
生じ耐食性が悪い。一方、本発明例である供試材No.
23,24,25,28,29は良好な加工性、密着性
および耐食性を示した。
Specimen No. Nos. 26 and 27 are those which have been subjected to the usual conventional chemical conversion chromate treatment as a base treatment, and although the adhesion after lamination is good and the corrosion resistance is excellent as a result, the adhesion during the subsequent processing and the corrosion resistance after the processing are excellent. The result was inferior. Specimen No. No. 30 is a coating type base treatment, but since the coating amount is too small, the adhesion and corrosion resistance are poor, and the test material No. Since the materials 31 and 32 are left to cool, the resin film is slightly whitened, and the adhesion and corrosion resistance are poor. In addition, the sample material No. No. 33 has a T1 temperature that is too low, resulting in poor adhesion and corrosion resistance. No. 34 has a poor T2 temperature and thus has poor adhesion, workability and corrosion resistance.
o. In No. 35, the T2 temperature is too high, so that the film is roughened and the corrosion resistance is poor. On the other hand, the test material No.
23, 24, 25, 28 and 29 showed good workability, adhesion and corrosion resistance.

【0053】[0053]

【発明の効果】この発明の方法によれば、アルミニウム
板に有機樹脂と金属イオンと酸とを含む水溶液を塗布・
乾燥する下地処理工程を設け、適切な温度での積層工程
を設けているため、樹脂フィルムの高い密着性、加工性
を得ることができる。したがってこの発明の方法によれ
ば、樹脂フィルムのアルミニウム板材との密着性が良好
でかつ樹脂フィルム自体の加工性も優れ、その結果耐食
性の良好な被覆アルミニウム板を確実かつ安定して得る
ことができる。
According to the method of the present invention, an aluminum plate is coated with an aqueous solution containing an organic resin, metal ions and an acid.
Since the base treatment step for drying and the laminating step at an appropriate temperature are provided, high adhesion and processability of the resin film can be obtained. Therefore, according to the method of the present invention, the adhesion of the resin film to the aluminum plate material is good and the processability of the resin film itself is excellent, and as a result, a coated aluminum plate having good corrosion resistance can be obtained reliably and stably. .

【図面の簡単な説明】[Brief description of drawings]

【図1】上段の(A)は請求項2の発明の方法を実施し
ている状況の概念的な構成の一例を示す略解図であり、
下段の(B)は(A)の構成に対応した各工程でのアル
ミニウム板および樹脂フィルムの温度推移を示す線図で
ある。
FIG. 1 (A) is a schematic diagram showing an example of a conceptual configuration of a situation in which the method of the invention of claim 2 is being carried out,
The lower part (B) is a diagram showing a temperature transition of the aluminum plate and the resin film in each step corresponding to the configuration of (A).

【符号の説明】[Explanation of symbols]

1 アルミニウム板 5 第1加熱手段 7A,7B ラミネートロール 9A,9B 熱可塑性樹脂フィルム 11 第2加熱手段(赤外線加熱方式) 1 Aluminum plate 5 First heating means 7A, 7B Laminating roll 9A, 9B thermoplastic resin film 11 Second heating means (infrared heating method)

───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.7,DB名) B32B 1/00 - 35/00 B29C 65/00 - 65/82 C23C 22/00 - 22/86 ─────────────────────────────────────────────────── ─── Continuation of front page (58) Fields surveyed (Int.Cl. 7 , DB name) B32B 1/00-35/00 B29C 65/00-65/82 C23C 22/00-22/86

Claims (4)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 脱脂処理後のアルミニウム板に有機樹脂
と金属イオンと酸とを含む水溶液を乾燥後の皮膜総量で
0.2〜3g/m2、皮膜中に含まれる金属の量で5〜
50mg/m2となるように塗布・乾燥する下地処理工
程、それに続く該アルミニウム板を熱可塑性樹脂フィル
ムのガラス転移温度以上でかつ融点(Tm)未満の範囲
内の温度に加熱し、その範囲内の温度のアルミニウム板
の少なくとも一方の面に熱可塑性樹脂フィルムを積層し
てラミネートロールにより加圧する積層工程、それに続
き熱可塑性樹脂フィルムのガラス転移温度以下に冷却速
度40℃/秒以上で急冷する冷却工程とからなることを
特徴とする密着性および加工性に優れた樹脂被覆アルミ
ニウム板の製造方法。
1. A degreasing-treated aluminum plate is dried with an aqueous solution containing an organic resin, metal ions, and an acid to give a total coating amount of 0.2 to 3 g / m 2 , and a metal amount contained in the coating is 5 to 5 g / m 2 .
A base treatment step of coating and drying so as to be 50 mg / m 2 , followed by heating the aluminum plate to a temperature above the glass transition temperature of the thermoplastic resin film and below the melting point (Tm), and within that range Laminating step in which a thermoplastic resin film is laminated on at least one surface of an aluminum plate at the temperature of 10 ° C. and pressure is applied by a laminating roll, followed by quenching at a cooling rate of 40 ° C./sec or more below the glass transition temperature of the thermoplastic resin film A method for producing a resin-coated aluminum plate having excellent adhesion and processability, which comprises the steps of:
【請求項2】 積層工程と冷却工程との間に、樹脂フィ
ルムの温度が(Tm−50)℃以上でかつ(Tm+3
0)℃以下の範囲内となるように加熱する再加熱工程を
付加することを特徴とする、請求項1に記載の密着性お
よび加工性に優れた樹脂被覆アルミニウム板の製造方
法。
2. The temperature of the resin film is (Tm-50) ° C. or higher and (Tm + 3) between the laminating step and the cooling step.
The method for producing a resin-coated aluminum sheet having excellent adhesion and workability according to claim 1, characterized in that a reheating step of heating to 0) ° C. or less is added.
【請求項3】 2層以上の複層構成の熱可塑性樹脂フィ
ルムを用いる場合、積層工程のアルミニウム板の温度を
該板に接する接着層の樹脂フィルムのガラス転移温度以
上でかつ最外層の樹脂フィルムの融点以下の温度とする
ことを特徴とする、請求項1あるいは2に記載の密着性
および加工性に優れた樹脂被覆アルミニウム板の製造方
法。
3. When a thermoplastic resin film having a multilayer structure of two or more layers is used, the temperature of the aluminum plate in the laminating step is equal to or higher than the glass transition temperature of the resin film of the adhesive layer in contact with the aluminum plate and the resin film of the outermost layer. 3. The method for producing a resin-coated aluminum plate having excellent adhesion and workability according to claim 1, wherein the temperature is not higher than the melting point of.
【請求項4】 2層以上の複層構成の熱可塑性樹脂フィ
ルムを用いる場合、積層工程のアルミニウム板の温度を
該板に接する接着層の樹脂フィルムのガラス転移温度以
上でかつ最外層の樹脂フィルムの融点以下の温度とし、
かつ、再加熱工程の樹脂フィルムの温度をフィルムを構
成する各層のうち最も高い樹脂の融点(Tm1)に応じ
て、(Tm1−50)℃以上でかつ(Tm1+30)℃以
下に再加熱することを特徴とする、請求項1あるいは2
に記載の密着性および加工性に優れた樹脂被覆アルミニ
ウム板の製造方法。
4. When using a thermoplastic resin film having a multilayer structure of two or more layers, the temperature of the aluminum plate in the laminating step is not less than the glass transition temperature of the resin film of the adhesive layer in contact with the plate and the resin film of the outermost layer. Below the melting point of
In addition, the temperature of the resin film in the reheating step may be reheated to (Tm1-50) ° C. or higher and (Tm1 + 30) ° C. or lower depending on the melting point (Tm1) of the highest resin among the layers constituting the film. Claim 1 or 2 characterized by
A method for producing a resin-coated aluminum plate having excellent adhesion and processability according to 1.
JP34670099A 1999-12-06 1999-12-06 Method for producing resin-coated aluminum plate excellent in adhesion and workability Expired - Fee Related JP3510547B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP34670099A JP3510547B2 (en) 1999-12-06 1999-12-06 Method for producing resin-coated aluminum plate excellent in adhesion and workability

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP34670099A JP3510547B2 (en) 1999-12-06 1999-12-06 Method for producing resin-coated aluminum plate excellent in adhesion and workability

Publications (2)

Publication Number Publication Date
JP2001162718A JP2001162718A (en) 2001-06-19
JP3510547B2 true JP3510547B2 (en) 2004-03-29

Family

ID=18385233

Family Applications (1)

Application Number Title Priority Date Filing Date
JP34670099A Expired - Fee Related JP3510547B2 (en) 1999-12-06 1999-12-06 Method for producing resin-coated aluminum plate excellent in adhesion and workability

Country Status (1)

Country Link
JP (1) JP3510547B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4537673B2 (en) * 2002-10-17 2010-09-01 新日本製鐵株式会社 Manufacturing method of laminated metal plate
JP2006264017A (en) * 2005-03-23 2006-10-05 Fuji Photo Film Co Ltd Lamination method of laminate and laminator therefor
JP4668063B2 (en) * 2005-12-28 2011-04-13 古河スカイ株式会社 Resin-coated aluminum plate and method for producing the same
JP2014005022A (en) * 2012-06-23 2014-01-16 Nippon Foil Mfg Co Ltd Press through pack
JP2017150012A (en) * 2016-02-22 2017-08-31 日本ペイント・サーフケミカルズ株式会社 Metal surface treatment agent

Also Published As

Publication number Publication date
JP2001162718A (en) 2001-06-19

Similar Documents

Publication Publication Date Title
JP2570841B2 (en) Laminated metal sheet
JPH04500185A (en) Laminate consisting of metal and polymer membranes
JP3510547B2 (en) Method for producing resin-coated aluminum plate excellent in adhesion and workability
JP2711947B2 (en) Method for producing resin-coated tin-plated steel sheet for thinned deep drawn cans with excellent processing corrosion resistance
JPH06155660A (en) Polyester resin coated metal panel excellent in hot water resistance
JP3125157B2 (en) Manufacturing method of resin coated steel sheet with excellent processing adhesion
JP4142959B2 (en) Method for producing thermoplastic resin-coated metal sheet
JP4056210B2 (en) Resin film laminated plated steel sheet, can using the same, and method for producing resin film laminated plated steel sheet
JP3826450B2 (en) Method for producing film-coated metal plate for can manufacturing process and method for producing printing can
JPH0631362A (en) Manufacture of multi-drawing can made of laminated steel sheet with high adhesion
JPH0780277B2 (en) Polyester resin-coated metal sheet excellent in workability and method for producing the same
JP2000153843A (en) Two-piece can body and its manufacture
JPH04105931A (en) Composite steel plate for eoe and preparation thereof
JPH05269920A (en) Resin coated steel panel for container excellent in processability, close adhesiveness, heat resistance and corrosion resistance and production thereof
JPH0286433A (en) Manufacture of can aluminum material having excellent antienamel feathering property and anticorrosion
JP4405301B2 (en) Polyester resin film coated metal plate with excellent galling resistance
JP2002178406A (en) Method for manufacturing thermoplastic resin film- coated aluminum plate having excellent strength, processability and adhesive properties
JP3041164B2 (en) Composite resin-coated metal sheet and method for producing the same
JP2002067222A (en) Thermoplastic resin film coated aluminum panel
JP3489167B2 (en) Two-piece drawn ironing can with excellent corrosion resistance and flavor resistance, and method for producing the same
JP2803837B2 (en) Manufacturing method of polyester resin film laminated steel sheet
JP3032154B2 (en) Thermoplastic resin-coated metal sheet excellent in moldability, manufacturing method and manufacturing apparatus
JP2000006979A (en) Polyester resin-coated aluminum seamless can and its manufacture
JP3056349B2 (en) Resin-coated metal plate and method of manufacturing the same
JP3301212B2 (en) Polyester composite film for metal lamination

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20031224

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20031225

R150 Certificate of patent or registration of utility model

Ref document number: 3510547

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090109

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100109

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130109

Year of fee payment: 9

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160109

Year of fee payment: 12

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees