JP3510430B2 - Thermoelectric converter - Google Patents

Thermoelectric converter

Info

Publication number
JP3510430B2
JP3510430B2 JP23439096A JP23439096A JP3510430B2 JP 3510430 B2 JP3510430 B2 JP 3510430B2 JP 23439096 A JP23439096 A JP 23439096A JP 23439096 A JP23439096 A JP 23439096A JP 3510430 B2 JP3510430 B2 JP 3510430B2
Authority
JP
Japan
Prior art keywords
thermoelectric conversion
conversion element
element group
heat absorption
heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP23439096A
Other languages
Japanese (ja)
Other versions
JPH1079532A (en
Inventor
文雄 久野
日出男 渡辺
Original Assignee
株式会社エコ・トゥエンティーワン
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社エコ・トゥエンティーワン filed Critical 株式会社エコ・トゥエンティーワン
Priority to JP23439096A priority Critical patent/JP3510430B2/en
Publication of JPH1079532A publication Critical patent/JPH1079532A/en
Application granted granted Critical
Publication of JP3510430B2 publication Critical patent/JP3510430B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2321/00Details of machines, plants or systems, using electric or magnetic effects
    • F25B2321/02Details of machines, plants or systems, using electric or magnetic effects using Peltier effects; using Nernst-Ettinghausen effects
    • F25B2321/021Control thereof
    • F25B2321/0212Control thereof of electric power, current or voltage

Landscapes

  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、例えば冷蔵庫や冷
凍庫などに使用される熱電変換装置に係り、特に熱電変
換素子群を複数段に積層したカスケード構造を有する熱
電変換装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a thermoelectric conversion device used in, for example, a refrigerator or a freezer, and more particularly to a thermoelectric conversion device having a cascade structure in which thermoelectric conversion element groups are stacked in a plurality of stages.

【0002】[0002]

【従来の技術】例えば冷蔵庫などに使用する熱電変換装
置において、熱電変換素子の吸熱流Qabは素子自体の
熱電変換特性が決まれば、図12に示すように素子に流
す電流値(電力)によって変化し、電流値を上げていく
とあるところで吸熱流の最大値Qab(max)となる
電流条件I(max)が得られ、それ以上電流値を上げ
ても吸熱流はかえって減少する傾向がある。
2. Description of the Related Art In a thermoelectric conversion device used in, for example, a refrigerator, the endothermic flow Qab of a thermoelectric conversion element changes depending on the current value (electric power) supplied to the element as shown in FIG. However, when the current value is increased, the current condition I (max) that gives the maximum value Qab (max) of the endothermic flow is obtained at a certain point, and even if the current value is further increased, the endothermic flow tends to decrease rather.

【0003】そして熱電変換素子の吸熱流Qabと素子
の両端につく温度差ΔTは、図13に示すようにほぼ反
比例の関係にある。つまり、熱電変換素子の熱電変換特
性、素子形状、素子数などが一定の場合、つまり特定の
熱電変換素子を使用して吸熱流を設定したときには、熱
電変換素子の吸熱側と放熱側の温度差ΔTは一義的に決
まる。
The heat absorption flow Qab of the thermoelectric conversion element and the temperature difference ΔT at both ends of the element are in an inversely proportional relationship as shown in FIG. That is, when the thermoelectric conversion characteristics, the element shape, the number of elements, etc. of the thermoelectric conversion element are constant, that is, when the heat absorption flow is set using a specific thermoelectric conversion element, the temperature difference between the heat absorption side and the heat radiation side of the thermoelectric conversion element. ΔT is uniquely determined.

【0004】そのため例えば冷蔵や冷凍などの用途で温
度差ΔTを大きくつけ、しかもある程度の吸熱能力を維
持するため、従来より図14に示すように熱電変換素子
を複数段重ねたカスケード構造が採用されている。
Therefore, in order to increase the temperature difference ΔT in applications such as refrigeration and freezing, and to maintain a certain amount of heat absorption capability, a cascade structure in which a plurality of thermoelectric conversion elements are stacked is conventionally employed as shown in FIG. ing.

【0005】図15〜図17は従来のカスケード構造を
有する熱電変換装置の概略構成図で、図中の51は上段
の熱電変換素子群、52は下段の熱電変換素子群、53
aは吸熱側基板、53bは放熱側基板、54は電極、5
5は電源、56は上段の熱電変換素子群51と下段の熱
電変換素子群52を電気的に接続するリード体である。
15 to 17 are schematic configuration diagrams of a conventional thermoelectric conversion device having a cascade structure. In the figures, 51 is an upper thermoelectric conversion element group, 52 is a lower thermoelectric conversion element group, and 53.
a is a heat absorption side substrate, 53b is a heat radiation side substrate, 54 is an electrode, 5
Reference numeral 5 is a power source, and reference numeral 56 is a lead body for electrically connecting the upper thermoelectric conversion element group 51 and the lower thermoelectric conversion element group 52.

【0006】図15のタイプは、上段の熱電変換素子群
51と下段の熱電変換素子群52は同じ大きさの熱電変
換素子を使用して、同じ間隔で配置され、上段の熱電変
換素子群51の個数が下段の熱電変換素子群52の約1
/3前後と少なく、従って吸熱側基板53aの大きさは
放熱側基板53bよりも小さい。
In the type shown in FIG. 15, the upper thermoelectric conversion element group 51 and the lower thermoelectric conversion element group 52 are arranged at the same intervals by using thermoelectric conversion elements of the same size, and the upper thermoelectric conversion element group 51 is arranged. Is about 1 of the thermoelectric conversion element group 52 in the lower stage.
The size of the heat absorption side substrate 53a is smaller than that of the heat radiation side substrate 53b.

【0007】図16のタイプは、基本的には前記図15
のタイプと同じであるが、上段の熱電変換素子群51の
間隔を大きくとって分散配置され、従って吸熱側基板5
3aの大きさも放熱側基板53bとほぼ同じである。
The type shown in FIG. 16 is basically the same as that shown in FIG.
The type of the heat absorbing side substrate 5 is the same as that of the heat absorbing side substrate 5
The size of 3a is almost the same as that of the heat dissipation side substrate 53b.

【0008】図17のタイプは、上段の熱電変換素子群
51の大きさを下段の熱電変換素子52より細くして、
素子数は上下同数にしている。
In the type shown in FIG. 17, the size of the upper thermoelectric conversion element group 51 is made smaller than that of the lower thermoelectric conversion element 52,
The number of elements is the same vertically.

【0009】なお、図15ないし図17のものは、全て
単一の電源55を使用しており、この電源55で上段の
熱電変換素子群51と下段の熱電変換素子群52の両方
を駆動していた。
All of FIGS. 15 to 17 use a single power source 55, and this power source 55 drives both the upper thermoelectric conversion element group 51 and the lower thermoelectric conversion element group 52. Was there.

【0010】[0010]

【発明が解決しようとする課題】ところで前記従来の熱
電変換装置は、所望の吸熱量(温度差ΔT)を得るため
に大きな投入消費電力が必要であり、そのためにランニ
ングコストが高くつくという欠点を有している。本発明
者らはこの点について種々検討した結果、上下段の熱電
変換素子群を直列に接続して同じ電流値で駆動している
ことに起因していることを見出した。
By the way, the conventional thermoelectric conversion device requires a large amount of input power consumption in order to obtain a desired heat absorption amount (temperature difference ΔT), which results in a high running cost. Have As a result of various studies on this point, the present inventors have found that this is due to the fact that the upper and lower thermoelectric conversion element groups are connected in series and driven at the same current value.

【0011】本発明は、このような従来技術の欠点を解
消し、性能的に優れ、投入消費電力が少なくてランニン
グコストの低い熱電変換装置を提供することを目的とす
るものである。
An object of the present invention is to solve the above-mentioned drawbacks of the prior art and to provide a thermoelectric conversion device which is excellent in performance, consumes less power, and has a low running cost.

【0012】[0012]

【課題を解決するための手段】前記目的を達成するた
め、第1の本発明は、P型半導体チップならびにN型半
導体チップと電極とを備えて、その電極によって直列に
接続された熱電変換素子群を複数段に積層したカスケー
ド構造を有する熱電変換装置において、前記熱電変換素
子群が吸熱側熱電変換素子群と放熱側熱電変換素子群を
有し、前記吸熱側熱電変換素子群に吸熱側電源が接続さ
れ、前記放熱側熱電変換素子群に放熱側電源が接続され
て、放熱側熱電変換素子群に流れる電流密度が吸熱側熱
電変換素子群に流れる電流密度よりも大になるように前
記吸熱側電源と放熱側電源により吸熱側熱電変換素子群
と放熱側熱電変換素子群が個別に駆動されることを特徴
とするものである。第2の本発明は、P型半導体チップ
ならびにN型半導体チップと電極とを備えて、その電極
によって直列に接続された熱電変換素子群を複数段に積
層したカスケード構造を有する熱電変換装置において、
前記熱電変換素子群が吸熱側熱電変換素子群と放熱側熱
電変換素子群を有し、前記吸熱側熱電変換素子群ならび
に放熱側熱電変換素子群にそれぞれ接続される2出力が
可能な1つの電源を設け、放熱側熱電変換素子群に流れ
る電流密度が吸熱側熱電変換素子群に流れる電流密度よ
りも大になるように前記2出力が可能な1つの電源によ
り吸熱側熱電変換素子群と放熱側熱電変換素子群が個別
に駆動されることを特徴とするものである。第3の本発
明は、P型半導体チップならびにN型半導体チップと電
極とを備えて、その電極によって直列に接続された熱電
変換素子群を複数段に積層したカスケード構造を有する
熱電変換装置において、前記熱電変換素子群が吸熱側熱
電変換素子群と放熱側熱電変換素子群を有し、前記吸熱
側熱電変換素子群ならびに放熱側熱電変換素子群にそれ
ぞれ接続される電源を設け、前記吸熱側熱電変換素子群
とそれに接続される電源の出力との間に抵抗が挿入され
て、放熱側熱電変換素子群に流れる電流密度が吸熱側熱
電変換素子群に流れる電流密度よりも大になるように前
記電源により吸熱側熱電変換素子群と放熱側熱電変換素
子群が個別に駆動されることを特徴とするものである。
In order to achieve the above object, the first aspect of the present invention provides a P-type semiconductor chip and an N-type semiconductor chip.
It is equipped with a conductor chip and electrodes, and is connected in series by the electrodes.
In a thermoelectric conversion device having a cascade structure in which connected thermoelectric conversion element groups are stacked in a plurality of stages, the thermoelectric conversion element group has a heat absorption side thermoelectric conversion element group and a heat radiation side thermoelectric conversion element group, and the heat absorption side thermoelectric conversion The heat absorption side power source is connected to the element group, the heat radiation side power source is connected to the heat radiation side thermoelectric conversion element group, and the current density flowing in the heat radiation side thermoelectric conversion element group is higher than the current density flowing in the heat absorption side thermoelectric conversion element group. As described above, the heat absorption side power source and the heat radiation side power source individually drive the heat absorption side thermoelectric conversion element group and the heat radiation side thermoelectric conversion element group. The second invention is a P-type semiconductor chip.
And an electrode including an N-type semiconductor chip and an electrode
In a thermoelectric conversion device having a cascade structure in which a plurality of thermoelectric conversion element groups connected in series by
The thermoelectric conversion element group has a heat absorption side thermoelectric conversion element group and a heat radiation side thermoelectric conversion element group, and one power source capable of two outputs respectively connected to the heat absorption side thermoelectric conversion element group and the heat radiation side thermoelectric conversion element group And a heat-absorbing side thermoelectric conversion element group and a heat-radiating side are provided by one power source capable of the two outputs so that the current density flowing through the heat-dissipating side thermoelectric conversion element group becomes higher than the current density flowing through the heat-absorbing side thermoelectric conversion element group. The thermoelectric conversion element groups are individually driven. A third aspect of the present invention relates to a P-type semiconductor chip and an N-type semiconductor chip
In a thermoelectric conversion device having a cascade structure in which a plurality of thermoelectric conversion element groups connected in series by electrodes are laminated, the thermoelectric conversion element group includes a heat absorption side thermoelectric conversion element group and a heat radiation side thermoelectric conversion. A power supply connected to the heat absorption side thermoelectric conversion element group and the heat radiation side thermoelectric conversion element group is provided, and a resistance is provided between the heat absorption side thermoelectric conversion element group and the output of the power supply connected thereto. The heat-absorbing-side thermoelectric conversion element group and the heat-radiating-side thermoelectric conversion element group are individually inserted by the power source so that the current density flowing through the heat-radiating side thermoelectric conversion element group becomes larger than the current density flowing through the heat-absorption side thermoelectric conversion element group. It is characterized by being driven to.

【0013】[0013]

【発明の実施の形態】本発明は前述したように、熱電変
換素子群を複数段に積層したカスケード構造を有する熱
電変換装置において、各段の熱電変換素子群に供給する
電流密度が異なるように構成することにより、各段の熱
電変換素子群に応じてその機能を十分に発揮することが
できる。そのため性能的に優れ、投入消費電力が少なく
てランニングコストの低い熱電変換装置を提供すること
が可能となる。
BEST MODE FOR CARRYING OUT THE INVENTION As described above, in the present invention, in a thermoelectric conversion device having a cascade structure in which thermoelectric conversion element groups are stacked in a plurality of stages, the current density supplied to each stage of the thermoelectric conversion element groups is different. With the configuration, the function can be sufficiently exhibited depending on the thermoelectric conversion element group at each stage. Therefore, it is possible to provide a thermoelectric conversion device that is excellent in performance, has low input power consumption, and low running cost.

【0014】次に本発明の実施の形態を図とともに説明
する。図1は、本発明の具体例1における熱電変換装置
の概略構成図である。
Next, an embodiment of the present invention will be described with reference to the drawings. FIG. 1 is a schematic configuration diagram of a thermoelectric conversion device in Example 1 of the present invention.

【0015】図中の1は吸熱側基板、2は上段吸熱側電
極、3はP型半導体チップならびにN型半導体チップか
らなる吸熱側熱電変換素子群、4は上段放熱側電極、5
は中間基板、6は下段吸熱側電極、7はP型半導体チッ
プならびにN型半導体チップからなる放熱側熱電変換素
子群、8は下段放熱側電極、9は放熱側基板である。前
記基板1,5,9は、例えば表面にアルマイト薄膜を形
成したアルミニウムやアルミナセラミックなどから構成
されている。
In the figure, 1 is a heat absorption side substrate, 2 is an upper heat absorption side electrode, 3 is a heat absorption side thermoelectric conversion element group consisting of P-type semiconductor chips and N-type semiconductor chips, 4 is an upper heat radiation side electrode, 5
Is an intermediate substrate, 6 is a lower heat absorption side electrode, 7 is a heat radiation side thermoelectric conversion element group including P-type semiconductor chips and N type semiconductor chips, 8 is a lower heat radiation side electrode, and 9 is a heat radiation side substrate. The substrates 1, 5 and 9 are made of, for example, aluminum or alumina ceramic having an alumite thin film formed on the surface thereof.

【0016】この図に示すように中間基板5を介して2
段のカスケード構造になっており、この具体例も以下に
述べる他の具体例も、吸熱側熱電変換素子群3と放熱側
熱電変換素子群7のチップの寸法ならびに使用個数が同
一になっている。
As shown in FIG.
It has a cascaded structure of stages, and in this specific example and other specific examples described below, the size and the number of chips of the heat absorption side thermoelectric conversion element group 3 and the heat radiation side thermoelectric conversion element group 7 are the same. .

【0017】本具体例の場合、電源10が吸熱側電源1
0aと放熱側電源10bに分かれており、吸熱側電源1
0aにより吸熱側熱電変換素子群3が電流密度I1 (例
えば93A/cm2 )で、放熱側電源10bにより放熱
側熱電変換素子群7が電流密度I2 (例えば200A/
cm2 )で、それぞれ個別に駆動され、放熱側の電流密
度I2 の方が吸熱側の電流密度I1 よりも大きく設定さ
れている(I2 >I1)。
In the case of this example, the power source 10 is the heat absorption side power source 1.
0a and heat radiation side power source 10b, and heat absorption side power source 1
0a, the heat absorption side thermoelectric conversion element group 3 has a current density I1 (eg 93 A / cm2), and the heat radiation side power supply 10b causes the heat radiation side thermoelectric conversion element group 7 to have a current density I2 (eg 200 A / cm2)
The current density I2 on the heat radiation side is set to be larger than the current density I1 on the heat absorption side (I2> I1).

【0018】図2は、本発明に係る熱電変換装置と従来
のものの特性を比較して示す図である。すなわち本発明
に係る熱電変換装置の吸熱側熱電変換素子群と放熱側熱
電変換素子群は同一の半導体チップを同数使用し、すな
わち吸熱段と放熱段のチップ数の比を1:1とし、吸熱
側熱電変換素子群に対して93A/cm2 の電流密度に
なるように電流を流し、個別の電源を使用して放熱側熱
電変換素子群に対しては200A/cm2 の電流密度に
なるように電流を流した。
FIG. 2 is a diagram showing a comparison between the characteristics of the thermoelectric conversion device according to the present invention and the conventional one. That is, the heat absorption side thermoelectric conversion element group and the heat radiation side thermoelectric conversion element group of the thermoelectric conversion device according to the present invention use the same number of the same semiconductor chips, that is, the ratio of the number of chips at the heat absorption stage to that at the heat radiation stage is 1: 1. A current is supplied to the side thermoelectric conversion element group so that the current density is 93 A / cm2, and a current is supplied to the heat radiation side thermoelectric conversion element group using an individual power source so that the current density is 200 A / cm2. Shed.

【0019】一方、比較例としての従来の熱電変換装置
は、吸熱側熱電変換素子群として前記本発明に係る熱電
変換装置と同一の半導体チップを同数使用し、放熱側熱
電変換素子群は吸熱側の3倍、すなわち吸熱段と放熱段
のチップ数の比を1:3とし、吸熱側熱電変換素子群と
放熱側熱電変換素子群を直列に接続し、200A/cm
2 の電流密度になるように電流を流した。
On the other hand, the conventional thermoelectric conversion device as a comparative example uses the same number of semiconductor chips as the thermoelectric conversion device group according to the present invention as the heat absorption side thermoelectric conversion device group, and the heat radiation side thermoelectric conversion device group has the heat absorption side. 3 times, that is, the ratio of the number of chips in the heat absorption stage and the number of chips in the heat radiation stage is 1: 3, the heat absorption side thermoelectric conversion element group and the heat radiation side thermoelectric conversion element group are connected in series, and 200 A / cm
The current was applied so that the current density was 2.

【0020】そしてこの両熱電変換装置の各温度差ΔT
とCOPとの関係を図2に示した。図中の線Aは本発明
に係る熱電変換装置、線Bは従来の熱電変換装置の特性
を示す線で、この図から明らかなように同じ温度差ΔT
であると本発明に係る熱電変換装置の方がCOPが高
く、このことは本発明に係る熱電変換装置の方が熱電変
換特性に優れていることを示す。言い換えれば、投入消
費電力が少なくても所望の温度差を得ることができ、結
局、ランニングコストの低減が図れる。
The temperature difference ΔT between the two thermoelectric converters
The relationship between COP and COP is shown in FIG. Line A in the figure is a line showing the characteristics of the thermoelectric conversion device according to the present invention, and line B is a line showing the characteristics of the conventional thermoelectric conversion device.
Then, the thermoelectric conversion device according to the present invention has a higher COP, which means that the thermoelectric conversion device according to the present invention has superior thermoelectric conversion characteristics. In other words, it is possible to obtain a desired temperature difference even if the input power consumption is small, and eventually the running cost can be reduced.

【0021】図3は、本発明に係る熱電変換装置におい
て上下に同一寸法の熱電変換素子(1.4mm角で高さ
1.6mm)を使用した場合の上下の素子数の比を放熱
段(下段)素子数/吸熱段(上段)素子数で表し、単位
面積当たり同一吸熱量(温度差60℃で8.7W)を得
るための熱電変換装置への投入消費電力(縦軸)と前記
素子数の比(横軸)との関係を示す特性図である。なお
図中の点線は、従来の熱電変換装置(放熱段素子数/吸
熱段素子数=3)の投入消費電力(85W)のラインで
ある。
FIG. 3 shows the ratio of the numbers of upper and lower elements when the thermoelectric conversion elements (1.4 mm square and height 1.6 mm) having the same size are used in the thermoelectric conversion device according to the present invention. Power consumption to the thermoelectric conversion device (vertical axis) for obtaining the same heat absorption amount per unit area (8.7 W at a temperature difference of 60 ° C.) and the number of elements (lower stage) / heat absorption stage (upper stage) It is a characteristic view which shows the relationship with the number ratio (horizontal axis). The dotted line in the figure is the input power consumption (85 W) of the conventional thermoelectric conversion device (the number of heat radiating stage elements / the number of heat absorbing stage elements = 3).

【0022】この図から明らかなように同じ吸熱量を得
ようとしたとき、放熱段素子数/吸熱段素子数の値、す
なわち吸熱側熱電変換素子群のトータル断面積(Sc)
に対する放熱側熱電変換素子群のトータル断面積(S
h)の比率(Sh)/(Sc)を調整することで投入消
費電力が変わり、特に放熱段素子数/吸熱段素子数の値
〔(Sh)/(Sc)〕が0.8〜1.9の範囲では投
入電力は80W未満で済み、好ましくは0.9〜1.
8、さらに好ましくは1〜1.4の範囲に規制すると投
入電力の低減効果がさらに高くなる。
As is clear from this figure, when the same amount of heat absorption is to be obtained, the value of the number of heat radiating stage elements / the number of heat absorbing stage elements, that is, the total cross-sectional area (Sc) of the heat absorbing side thermoelectric conversion element group
The total cross-sectional area (S
The input power consumption is changed by adjusting the ratio (Sh) / (Sc) of (h), and in particular, the value [(Sh) / (Sc)] of the number of heat radiating stage elements / the number of heat absorbing stage elements is 0.8 to 1. In the range of 9, the input power is less than 80 W, preferably 0.9-1.
If it is regulated within the range of 8, and more preferably within the range of 1 to 1.4, the effect of reducing the input power is further enhanced.

【0023】図4は本発明の具体例2に係る熱電変換装
置の概略構成図で、前記具体例1と相違する点は、電流
密度が異なる2出力が可能な電源10を用いた点であ
る。
FIG. 4 is a schematic configuration diagram of a thermoelectric conversion device according to a second embodiment of the present invention. The difference from the first embodiment is that a power source 10 capable of two outputs having different current densities is used. .

【0024】図5は本発明の具体例3に係る熱電変換装
置の概略構成図で、前記具体例2と相違する点は、電源
供給回路の途中に抵抗R(固定抵抗または可変抵抗)を
挿入した点である。
FIG. 5 is a schematic configuration diagram of a thermoelectric conversion device according to a third embodiment of the present invention. The difference from the second embodiment is that a resistor R (fixed resistor or variable resistor) is inserted in the middle of the power supply circuit. That is the point.

【0025】図6は本発明の具体例4に係る熱電変換装
置の概略構成図で、前記具体例1と相違する点は、放熱
側熱電変換素子群7または(ならびに)吸熱側熱電変換
素子群3(本具体例では放熱側熱電変換素子群7のみ)
を複数に分割して、分割した熱電変換素子群どうしを並
列に接続成した点である。
FIG. 6 is a schematic configuration diagram of a thermoelectric conversion device according to a fourth embodiment of the present invention. The difference from the first embodiment is that the heat dissipation side thermoelectric conversion element group 7 or (and the heat absorption side thermoelectric conversion element group). 3 (in this specific example, only the radiation side thermoelectric conversion element group 7)
Is divided into a plurality, and the divided thermoelectric conversion element groups are connected in parallel.

【0026】図7は本発明の具体例5に係る熱電変換装
置の概略構成図で、前記具体例1と相違する点は、カス
ケード構造を有する複数の熱電変換装置を使用し、吸熱
側熱電変換素子群3または放熱側熱電変換素子群7(本
具体例では吸熱側熱電変換素子群3)を直列に接続し、
放熱側熱電変換素子群7または吸熱側熱電変換素子群3
(本具体例では放熱側熱電変換素子群7)を並列に接続
した点である。
FIG. 7 is a schematic block diagram of a thermoelectric conversion device according to a fifth embodiment of the present invention. The difference from the first embodiment is that a plurality of thermoelectric conversion devices having a cascade structure are used and the heat absorption side thermoelectric conversion is performed. The element group 3 or the heat radiation side thermoelectric conversion element group 7 (in this specific example, the heat absorption side thermoelectric conversion element group 3) is connected in series,
Radiation side thermoelectric conversion element group 7 or heat absorption side thermoelectric conversion element group 3
The point is that the heat-radiating side thermoelectric conversion element group 7 in this example is connected in parallel.

【0027】図8は本発明の具体例6に係る熱電変換装
置の概略構成図で、吸熱側熱電変換素子群3または放熱
側熱電変換素子群7(本具体例では吸熱側熱電変換素子
群3)に、基板を使用しないスケルトンタンプ熱電変換
素子を使用した例である。
FIG. 8 is a schematic configuration diagram of a thermoelectric conversion device according to a sixth embodiment of the present invention. The heat absorption side thermoelectric conversion element group 3 or the heat radiation side thermoelectric conversion element group 7 (in this specific example, the heat absorption side thermoelectric conversion element group 3). ) Is an example of using a skeleton tamper thermoelectric conversion element that does not use a substrate.

【0028】図9は本発明の具体例7に係る熱電変換装
置の概略構成図で、吸熱側熱電変換素子群3と放熱側熱
電変換素子群7に、基板を使用しないスケルトンタンプ
熱電変換素子を使用した例である。
FIG. 9 is a schematic configuration diagram of a thermoelectric conversion device according to a seventh embodiment of the present invention. In the heat absorption side thermoelectric conversion element group 3 and the heat radiation side thermoelectric conversion element group 7, a skeleton tamper thermoelectric conversion element that does not use a substrate is provided. This is an example of use.

【0029】図10は本発明の具体例8に係る熱電変換
装置の概略構成図で、上下両面に基板を有する同一の熱
電変換素子群を重ね合わせてスケルトン構造にした例で
ある。
FIG. 10 is a schematic configuration diagram of a thermoelectric conversion device according to Example 8 of the present invention, which is an example in which the same thermoelectric conversion element group having substrates on both upper and lower surfaces is superposed to form a skeleton structure.

【0030】図11は本発明の具体例9に係る熱電変換
装置の概略構成図で、放熱側熱電変換素子群7のチップ
の高さが吸熱側熱電変換素子群3のチップの高さよりも
低いものを使用した例である。
FIG. 11 is a schematic configuration diagram of a thermoelectric conversion device according to Example 9 of the present invention, in which the chip height of the heat radiation side thermoelectric conversion element group 7 is lower than the chip height of the heat absorption side thermoelectric conversion element group 3. It is an example of using a thing.

【0031】なお、具体例2〜9においても、前記
〔(Sh)/(Sc)〕は0.8〜1.9の範囲、好ま
しくは0.9〜1.8、さらに好ましくは1〜1.4の
範囲に規制され、さらに放熱側の電流密度I2 の方が吸
熱側の電流密度I1 よりも大きく設定されている(I2
>I1 )。
Also in specific examples 2 to 9, the above [(Sh) / (Sc)] is in the range of 0.8 to 1.9, preferably 0.9 to 1.8, and more preferably 1-1. The current density I2 on the heat radiation side is set to be larger than the current density I1 on the heat absorption side (I2
> I1).

【0032】前記実施の形態で述べたように、各段に用
いる熱電変換素子が同一の寸法であったりまたその使用
個数が同一であると、各段の熱電変換素子群が製造し易
く、量産に適している。
As described in the above embodiment, if the thermoelectric conversion elements used in each stage have the same size or the number of used thermoelectric conversion elements is the same, it is easy to manufacture the thermoelectric conversion element group in each stage and mass production is performed. Suitable for

【0033】各具体例では2段のカスケード構造を示し
たが、本発明はこれに限定されるものではなく、3段以
上のカスケード構造にも適用可能である。この場合、各
段に供給する電流密度をそれぞれ個別に異ならしめるこ
ともできるし、また、例えば吸熱側の熱電変換素子群と
中間段の熱電変換素子群は同じ電流密度で、放熱側の熱
電変換素子群はそれらよりも大きい電流密度にしたり、
あるいは中間段の熱電変換素子群と放熱側の熱電変換素
子群の電流密度を吸熱側の熱電変換素子群へ供給する電
流密度よりも大きくすることも可能である。
Although each specific example shows a two-stage cascade structure, the present invention is not limited to this, and is applicable to a cascade structure of three or more stages. In this case, the current densities supplied to the respective stages can be made different from each other, and, for example, the thermoelectric conversion element group on the heat absorption side and the thermoelectric conversion element group on the intermediate stage have the same current density, and the thermoelectric conversion elements on the heat radiation side are The device group may have a higher current density than those,
Alternatively, the current densities of the thermoelectric conversion element group on the intermediate stage and the thermoelectric conversion element group on the heat radiation side can be made higher than the current density supplied to the thermoelectric conversion element group on the heat absorption side.

【0034】前記実施の形態では熱電変換装置を電子冷
却に使用する場合について説明したが、本発明はこれに
限定されるものではなく、熱電変換装置を電子加熱また
は電子冷却と電子加熱が兼用できるものにも適用可能で
ある。
In the above embodiment, the case where the thermoelectric conversion device is used for electronic cooling has been described, but the present invention is not limited to this, and the thermoelectric conversion device can be used for electronic heating or electronic cooling and electronic heating. It can also be applied to things.

【0035】[0035]

【発明の効果】本発明は前述したように、熱電変換素子
群を複数段に積層したカスケード構造を有する熱電変換
装置において、各段の熱電変換素子群に流れる電流密度
が異なるように構成することにより、各段の熱電変換素
子群に応じてその機能を十分に発揮することができる。
そのため性能的に優れ、投入消費電力が少なくてランニ
ングコストの低い熱電変換装置を提供することが可能と
なる。
As described above, the present invention provides a thermoelectric conversion device having a cascade structure in which a plurality of thermoelectric conversion element groups are stacked, and the current density flowing in each stage of the thermoelectric conversion element groups is increased.
By configuring so that they are different from each other, the function can be sufficiently exerted depending on the thermoelectric conversion element group at each stage.
Therefore, it is possible to provide a thermoelectric conversion device that is excellent in performance, has low input power consumption, and low running cost.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の具体例1に係る熱電変換装置の概略構
成図である。
FIG. 1 is a schematic configuration diagram of a thermoelectric conversion device according to a first example of the present invention.

【図2】本発明に係る熱電変換装置と従来のものの、C
OPと温度差との関係を示す特性図である。
FIG. 2 shows a thermoelectric conversion device according to the present invention and a conventional one, which are C
It is a characteristic view which shows the relationship between OP and a temperature difference.

【図3】放熱段素子数/吸熱段素子数の値と投入消費電
力の関係を示す特性図である。
FIG. 3 is a characteristic diagram showing the relationship between the value of the number of heat radiating stage elements / the number of heat absorbing stage elements and the input power consumption.

【図4】本発明の具体例2に係る熱電変換装置の概略構
成図である。
FIG. 4 is a schematic configuration diagram of a thermoelectric conversion device according to a second specific example of the present invention.

【図5】本発明の具体例3に係る熱電変換装置の概略構
成図である。
FIG. 5 is a schematic configuration diagram of a thermoelectric conversion device according to specific example 3 of the present invention.

【図6】本発明の具体例4に係る熱電変換装置の概略構
成図である。
FIG. 6 is a schematic configuration diagram of a thermoelectric conversion device according to specific example 4 of the present invention.

【図7】本発明の具体例5に係る熱電変換装置の概略構
成図である。
FIG. 7 is a schematic configuration diagram of a thermoelectric conversion device according to specific example 5 of the present invention.

【図8】本発明の具体例6に係る熱電変換装置の概略構
成図である。
FIG. 8 is a schematic configuration diagram of a thermoelectric conversion device according to specific example 6 of the present invention.

【図9】本発明の具体例7に係る熱電変換装置の概略構
成図である。
FIG. 9 is a schematic configuration diagram of a thermoelectric conversion device according to specific example 7 of the present invention.

【図10】本発明の具体例8に係る熱電変換装置の概略
構成図である。
FIG. 10 is a schematic configuration diagram of a thermoelectric conversion device according to specific example 8 of the present invention.

【図11】本発明の具体例9に係る熱電変換装置の概略
構成図である。
FIG. 11 is a schematic configuration diagram of a thermoelectric conversion device according to specific example 9 of the present invention.

【図12】熱電変換装置へ供給する電流値と吸熱量との
関係を示す特性図である。
FIG. 12 is a characteristic diagram showing a relationship between a current value supplied to a thermoelectric conversion device and a heat absorption amount.

【図13】吸熱量と温度差との関係を示す特性図であ
る。
FIG. 13 is a characteristic diagram showing a relationship between a heat absorption amount and a temperature difference.

【図14】カスケード構造を有する熱電変換装置の特長
を説明するための図である。
FIG. 14 is a diagram for explaining the features of a thermoelectric conversion device having a cascade structure.

【図15】従来の熱電変換装置の1例を示す概略構成図
である。
FIG. 15 is a schematic configuration diagram showing an example of a conventional thermoelectric conversion device.

【図16】従来の熱電変換装置の他の例を示す概略構成
図である。
FIG. 16 is a schematic configuration diagram showing another example of a conventional thermoelectric conversion device.

【図17】従来の熱電変換装置のさらに他の例を示す概
略構成図である。
FIG. 17 is a schematic configuration diagram showing still another example of a conventional thermoelectric conversion device.

【符号の説明】[Explanation of symbols]

1 吸熱側基板 2 上段吸熱側電極 3 吸熱側熱電変換素子群 4 上段放熱側電極 5 中間基板 6 下段吸熱側電極 7 放熱側熱電変換素子群 8 下段放熱側電極 9 放熱側基板 10 電源 10a 吸熱側電源 10b 放熱側電源 1 Heat absorption side substrate 2 Upper heat absorbing side electrode 3 Heat absorption side thermoelectric conversion element group 4 Upper radiating side electrode 5 Intermediate board 6 Lower heat absorption side electrode 7 Radiation side thermoelectric conversion element group 8 Lower heat dissipation side electrode 9 Heat dissipation side substrate 10 power supplies 10a Heat absorption side power supply 10b Radiating side power supply

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平8−236820(JP,A)   ─────────────────────────────────────────────────── ─── Continued front page       (56) Reference JP-A-8-236820 (JP, A)

Claims (11)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 P型半導体チップならびにN型半導体チ
ップと電極とを備えて、その電極によって直列に接続さ
れた熱電変換素子群を複数段に積層したカスケード構造
を有する熱電変換装置において、前記熱電変換素子群が
吸熱側熱電変換素子群と放熱側熱電変換素子群を有し、
前記吸熱側熱電変換素子群に吸熱側電源が接続され、前
記放熱側熱電変換素子群に放熱側電源が接続されて、放
熱側熱電変換素子群に流れる電流密度が吸熱側熱電変換
素子群に流れる電流密度よりも大になるように前記吸熱
側電源と放熱側電源により吸熱側熱電変換素子群と放熱
側熱電変換素子群が個別に駆動されることを特徴とする
熱電変換装置。
1. A P-type semiconductor chip and an N-type semiconductor chip.
And an electrode and connected in series by the electrode.
In a thermoelectric conversion device having a cascade structure in which the thermoelectric conversion element group is laminated in a plurality of stages, the thermoelectric conversion element group has a heat absorption side thermoelectric conversion element group and a heat radiation side thermoelectric conversion element group,
A heat absorption side power source is connected to the heat absorption side thermoelectric conversion element group, a heat radiation side power source is connected to the heat radiation side thermoelectric conversion element group, and a current density flowing in the heat radiation side thermoelectric conversion element group flows in the heat absorption side thermoelectric conversion element group. A thermoelectric conversion device characterized in that the heat absorption side power source and the heat radiation side power source individually drive the heat absorption side thermoelectric conversion element group and the heat radiation side thermoelectric conversion element group so as to be higher than the current density.
【請求項2】 P型半導体チップならびにN型半導体チ
ップと電極とを備えて、その電極によって直列に接続さ
れた熱電変換素子群を複数段に積層したカスケード構造
を有する熱電変換装置において、前記熱電変換素子群が
吸熱側熱電変換素子群と放熱側熱電変換素子群を有し、
前記吸熱側熱電変換素子群ならびに放熱側熱電変換素子
群にそれぞれ接続される2出力が可能な1つの電源を設
け、放熱側熱電変換素子群に流れる電流密度が吸熱側熱
電変換素子群に流れる電流密度よりも大になるように前
記2出力が可能な1つの電源により吸熱側熱電変換素子
群と放熱側熱電変換素子群が個別に駆動されることを特
徴とする熱電変換装置。
2. A P-type semiconductor chip and an N-type semiconductor chip
And an electrode and connected in series by the electrode.
In a thermoelectric conversion device having a cascade structure in which the thermoelectric conversion element group is laminated in a plurality of stages, the thermoelectric conversion element group has a heat absorption side thermoelectric conversion element group and a heat radiation side thermoelectric conversion element group,
A single power source capable of two outputs, which is connected to the heat absorption side thermoelectric conversion element group and the heat radiation side thermoelectric conversion element group, is provided, and the current density flowing in the heat radiation side thermoelectric conversion element group is the current flowing in the heat absorption side thermoelectric conversion element group. A thermoelectric conversion device, wherein the heat-absorption-side thermoelectric conversion element group and the heat-radiation-side thermoelectric conversion element group are individually driven by one power source capable of the two outputs so as to be higher than the density.
【請求項3】 P型半導体チップならびにN型半導体チ
ップと電極とを備えて、その電極によって直列に接続さ
れた熱電変換素子群を複数段に積層したカスケード構造
を有する熱電変換装置において、前記熱電変換素子群が
吸熱側熱電変換素子群と放熱側熱電変換素子群を有し、
前記吸熱側熱電変換素子群ならびに放熱側熱電変換素子
群にそれぞれ接続される電源を設け、前記吸熱側熱電変
換素子群とそれに接続される電源の出力との間に抵抗が
挿入されて、放熱側熱電変換素子群に流れる電流密度が
吸熱側熱電変換素子群に流れる電流密度よりも大になる
ように前記電源により吸熱側熱電変換素子群と放熱側熱
電変換素子群が個別に駆動されることを特徴とする熱電
変換装置。
3. A P-type semiconductor chip and an N-type semiconductor chip
And an electrode and connected in series by the electrode.
In a thermoelectric conversion device having a cascade structure in which the thermoelectric conversion element group is laminated in a plurality of stages, the thermoelectric conversion element group has a heat absorption side thermoelectric conversion element group and a heat radiation side thermoelectric conversion element group,
A power source connected to each of the heat absorption side thermoelectric conversion element group and the heat radiation side thermoelectric conversion element group is provided, and a resistance is inserted between the heat absorption side thermoelectric conversion element group and the output of the power source connected thereto, and the heat radiation side The heat absorption side thermoelectric conversion element group and the heat radiation side thermoelectric conversion element group are individually driven by the power source so that the current density flowing in the thermoelectric conversion element group becomes higher than the current density flowing in the heat absorption side thermoelectric conversion element group. Characteristic thermoelectric conversion device.
【請求項4】 請求項1ないし3記載のいずれかにおい
て、前記吸熱側熱電変換素子群のトータル断面積(S
c)に対する放熱側熱電変換素子群のトータル断面積
(Sh)の比率(Sh)/(Sc)が、0.8〜1.9
の範囲に規制されていることを特徴とする熱電変換装
置。
4. The total cross-sectional area (S) of the heat absorption side thermoelectric conversion element group according to any one of claims 1 to 3.
The ratio (Sh) / (Sc) of the total cross-sectional area (Sh) of the heat radiation side thermoelectric conversion element group to c) is 0.8 to 1.9.
A thermoelectric conversion device characterized by being regulated within the range.
【請求項5】 請求項ないし3記載のいずれかにおい
て、前記各段に用いる熱電変換素子が同一の寸法を有し
ていることを特徴とする熱電変換装置。
5. The thermoelectric conversion device according to claim 1 , wherein the thermoelectric conversion elements used in each of the stages have the same dimensions.
【請求項6】 請求項5記載において、前記各段に用い
る熱電変換素子の数が同一であることを特徴とする熱電
変換装置。
6. The thermoelectric conversion device according to claim 5, wherein the number of thermoelectric conversion elements used in each of the stages is the same.
【請求項7】 請求項1または2記載において、前記吸
熱側熱電変換素子群または(ならびに)放熱側熱電変換
素子群が複数のグループに分割され、各分割熱電変換素
子群が電源との間で並列接続されていることを特徴とす
る熱電変換装置。
7. The heat absorption side thermoelectric conversion element group or (and) the heat radiation side thermoelectric conversion element group is divided into a plurality of groups according to claim 1 or 2 , and each divided thermoelectric conversion element group is connected to a power source. A thermoelectric conversion device, which is connected in parallel.
【請求項8】 請求項1または2記載において、前記カ
スケード構造を有する熱電変換装置が複数設けられ、そ
の複数の熱電変換装置の吸熱側熱電変換素子群どうしが
直列に接続されていることを特徴とする熱電変換装置。
8. The method of claim 1 or 2, characterized in that the thermoelectric conversion device having a cascade structure is provided with a plurality of, endothermic-side thermoelectric conversion element group each other of the plurality of thermoelectric conversion devices are connected in series And a thermoelectric converter.
【請求項9】 請求項1または2記載において、前記カ
スケード構造を有する熱電変換装置が複数設けられ、そ
の複数の熱電変換装置の吸熱側熱電変換素子群どうしが
並列に接続されていることを特徴とする熱電変換装置。
9. The method of claim 1 or 2, wherein the thermoelectric conversion device having a cascade structure is provided with a plurality, characterized in that the heat absorption side thermoelectric conversion element group each other of the plurality of thermoelectric conversion devices are connected in parallel And a thermoelectric converter.
【請求項10】 請求項1または2記載において、前記
カスケード構造を有する熱電変換装置が複数設けられ、
その複数の熱電変換装置の放熱側熱電変換素子群どうし
が直列に接続されていることを特徴とする熱電変換装
置。
10. The method of claim 1, wherein the thermoelectric conversion device is provided with a plurality having the cascade structure,
A thermoelectric conversion device in which the heat radiation side thermoelectric conversion element groups of the plurality of thermoelectric conversion devices are connected in series.
【請求項11】 請求項1または2記載において、前記
カスケード構造を有する熱電変換装置が複数設けられ、
その複数の熱電変換装置の放熱側熱電変換素子群どうし
が並列に接続されていることを特徴とする熱電変換装
置。
11. The method of claim 1, wherein the thermoelectric conversion device is provided with a plurality having the cascade structure,
A thermoelectric conversion device, wherein the heat dissipation side thermoelectric conversion element groups of the plurality of thermoelectric conversion devices are connected in parallel.
JP23439096A 1996-09-04 1996-09-04 Thermoelectric converter Expired - Fee Related JP3510430B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23439096A JP3510430B2 (en) 1996-09-04 1996-09-04 Thermoelectric converter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23439096A JP3510430B2 (en) 1996-09-04 1996-09-04 Thermoelectric converter

Publications (2)

Publication Number Publication Date
JPH1079532A JPH1079532A (en) 1998-03-24
JP3510430B2 true JP3510430B2 (en) 2004-03-29

Family

ID=16970256

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23439096A Expired - Fee Related JP3510430B2 (en) 1996-09-04 1996-09-04 Thermoelectric converter

Country Status (1)

Country Link
JP (1) JP3510430B2 (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005001946A1 (en) * 2003-06-30 2005-01-06 Da Vinci Co., Ltd. Peltier element and production method therefor
JP4622577B2 (en) * 2005-02-23 2011-02-02 株式会社Ihi Cascade module for thermoelectric conversion
JP5532688B2 (en) * 2009-06-04 2014-06-25 富士通株式会社 Interposer, semiconductor device and electronic device
JP4770973B2 (en) * 2009-09-25 2011-09-14 ダイキン工業株式会社 Heat exchanger
CN102356305A (en) 2010-05-27 2012-02-15 松下电器产业株式会社 Thermoelectric conversion device, radiation detector, and radiation detection method using same
KR101047478B1 (en) * 2011-02-08 2011-07-07 한국기계연구원 Method for manufacturing thermoelectric module and thermoelectric module using the same
CN104115294B (en) * 2012-02-27 2016-11-23 Kelk株式会社 Electrothermal module, thermoelectric generating device and thermoelectric generator
JP6859257B2 (en) * 2014-10-09 2021-04-14 コンソルツィオ デルタ ティ リサーチ 3D integrated thermoelectric generator operating in an out-of-plane heat flux configuration with internal voids and heat conduction path adjustment vias
CN109065698A (en) * 2018-08-16 2018-12-21 东北大学 Using the two-stage semiconductor thermoelectric module of optimal thermoelectric arm height
KR102436204B1 (en) * 2021-02-18 2022-08-25 최병규 Appratus for testing semiconductor device

Also Published As

Publication number Publication date
JPH1079532A (en) 1998-03-24

Similar Documents

Publication Publication Date Title
US4859250A (en) Thermoelectric pillow and blanket
US5156004A (en) Composite semiconductive thermoelectric refrigerating device
US9601677B2 (en) Thermoelectric (TE) devices/structures including thermoelectric elements with exposed major surfaces
US6410971B1 (en) Thermoelectric module with thin film substrates
US5022928A (en) Thermoelectric heat pump/power source device
CN100592542C (en) Multilevel semiconductor cascade refrigeration element and refrigeration thermopile
US8997502B2 (en) Thermoelectric assembly for improved airflow
JP3510430B2 (en) Thermoelectric converter
US20060201161A1 (en) Cooling device for electronic component using thermo-electric conversion material
US20110100407A1 (en) Thermoelectric composite semiconductor
CN103000799A (en) Cold end and hot end separated type thermoelectric refrigeration semiconductor technology
US9082928B2 (en) Next generation thermoelectric device designs and methods of using same
TWI620354B (en) Thermoelectric conversion device having insulating diamond-like film, method for making the same and thermoelectric conversion module
JPH09181362A (en) Flexible thermoelectric device and cooler/heater employing it
JPH11307826A (en) Thermionic module
JPWO2018042708A1 (en) Thermoelectric conversion device and electronic device
KR20180029409A (en) Thermoelectric element
JP3467891B2 (en) Multi-stage electronic cooler
JPH04101472A (en) Cooler
JP2003179273A (en) Thermoelectric converting device
CN108447974B (en) Inclined thermoelectric element and inclined thermoelectric assembly composed of same
JP2004281451A (en) Thermoelectric conversion element
JP2000150971A (en) Pulse drive thermo module
JP4288927B2 (en) Multistage thermoelectric module
KR200222502Y1 (en) A heat pipe-integrated thermoelectric device

Legal Events

Date Code Title Description
A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20031225

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080109

Year of fee payment: 4

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090109

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100109

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110109

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110109

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120109

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130109

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130109

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees