JP3503202B2 - Inverter for driving induction motor - Google Patents

Inverter for driving induction motor

Info

Publication number
JP3503202B2
JP3503202B2 JP18080394A JP18080394A JP3503202B2 JP 3503202 B2 JP3503202 B2 JP 3503202B2 JP 18080394 A JP18080394 A JP 18080394A JP 18080394 A JP18080394 A JP 18080394A JP 3503202 B2 JP3503202 B2 JP 3503202B2
Authority
JP
Japan
Prior art keywords
induction motor
value
inverter
motor
current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP18080394A
Other languages
Japanese (ja)
Other versions
JPH0833396A (en
Inventor
和浩 野中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yaskawa Electric Corp
Original Assignee
Yaskawa Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yaskawa Electric Corp filed Critical Yaskawa Electric Corp
Priority to JP18080394A priority Critical patent/JP3503202B2/en
Publication of JPH0833396A publication Critical patent/JPH0833396A/en
Application granted granted Critical
Publication of JP3503202B2 publication Critical patent/JP3503202B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Control Of Ac Motors In General (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、巻取機やクレーンの横
走行などに採用される汎用インバータを用いた汎用誘導
電動機の駆動システムにおいて、振動を無くしショック
レスにする電動機制御の方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for controlling an electric motor which eliminates vibration and is shockless in a drive system for a general-purpose induction motor using a general-purpose inverter that is used for lateral running of a winder or a crane.

【0002】[0002]

【従来の技術】従来技術としての汎用インバータを用い
た汎用誘導電動機の振動ショックレス制御方法は、大凡
次のように分けられる。 高スリップモータを用いる。 ベクトル制御インバータやVS[Variable Speed c
oupling ]モータを使用し、速度アンプの応答(トルク
応答)を遅くする。 汎用インバータでV( 出力電圧) /f( 周波数) 比
を小さくし、モータの出力トルクを弱める。
2. Description of the Related Art A vibration shockless control method for a general-purpose induction motor using a general-purpose inverter as a conventional technique can be roughly classified as follows. Use a high slip motor. Vector control inverter and VS [Variable Speed c
oupling] Use a motor to slow down the speed amplifier response (torque response). Use a general-purpose inverter to reduce the V (output voltage) / f (frequency) ratio and weaken the motor output torque.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、上記の
各手段についてはそれぞれ問題点がある。すなわち、
につては、モータが特殊になり、高価で既設の設備には
適用ができない。さらに、モータの効率が悪くなり、そ
れを駆動するインンバータの容量が大きくなる。また、
速い応答が必要な時例えば加減速時に対応できない。
に関しては、モータ及び駆動設備が専用になり、複雑・
高価で既設の設備に適用できない。では、モータの効
率が悪くなると共に、発熱が増加するため、負荷率を下
げる必要があり、かつインバータ容量が増大する。ここ
において、本発明は、インバータが持つ高効率性・高ト
ルク性を損なうことなく、振動やショックを無くすと共
に、システムはコストの低い汎用インバータと汎用誘導
電動機の組み合わせに成る適切な制御方法を提供するこ
とを目的とする。
However, each of the above means has its own problems. That is,
However, since the motor is special, it is expensive and cannot be applied to existing equipment. Further, the efficiency of the motor becomes poor, and the capacity of the inverter which drives the motor becomes large. Also,
When a fast response is required, for example, acceleration / deceleration cannot be handled.
As for the motor and drive equipment,
It is expensive and cannot be applied to existing equipment. Then, since the efficiency of the motor is deteriorated and the heat generation is increased, it is necessary to reduce the load factor and the inverter capacity is increased. Here, the present invention provides an appropriate control method in which the system is a combination of a low-cost general-purpose inverter and a general-purpose induction motor while eliminating vibration and shock without impairing the high efficiency and high torque of the inverter. The purpose is to do.

【0004】[0004]

【課題を解決するための手段】上記問題点を解決するた
めに、本発明は、汎用インバータと汎用誘導電動機を用
いた可変速システムにおいて、前記電動機のトルク・電
流と回転数との特性カーブがそれぞれトルク・電流の増
加に伴い回転数は略直線的に減少する比例関係にあると
共に、前記電動機の電流検出信号を基に前記インバータ
の入力段に備える周波数指令回路に、電流検出信号に対
応した補正を加えて、運転制御する汎用インバータを用
いた汎用誘導電動機の振動ショックレス制御方法であ
り、また電動機に流れる電流の実効値を電流検出信号と
し、この電流検出信号に制御系の応答時間を掛ける時定
数回路を経た値から、無負荷電流分信号値を差し引いた
値と、外部から設定される滑り量調整信号とをそれぞ
れ、滑り量演算回路へ導入し、前記電動機の速度を設定
する周波数指令から、滑り量演算回路出力を減算して補
正した周波数指令により、インバータを駆動する前項に
記載の汎用インバータを用いた汎用誘導電動機の振動シ
ョックレス制御方法であり、さらに電流検出信号に制御
系の応答時間を掛ける時定数回路出力から無負荷電流分
信号値を差し引いたトルク分信号aに、外部から設定さ
れる滑り量調整信号bと、予め設定した係数kをそれぞ
れ掛算し、k・a・bを出力する滑り量演算回路である
前項に記載の汎用インバータを用いた汎用誘導電動機の
振動ショックレス制御方法であり、さらにまた設定され
る前記周波数指令にソフトスタータを経由させてから先
の補正を行い、滑り量演算回路出力にリミッタをかける
と共に、このリミッタ出力を必要に応じてオンまたはオ
フする前項に記載の汎用インバータを用いた汎用誘導電
動機の振動ショックレス制御方法である。
In order to solve the above problems, the present invention provides a variable speed system using a general-purpose inverter and a general-purpose induction motor, in which a characteristic curve of torque / current and rotation speed of the electric motor is Each of them has a proportional relationship in which the rotational speed decreases substantially linearly as the torque / current increases, and the frequency command circuit provided in the input stage of the inverter based on the current detection signal of the electric motor corresponds to the current detection signal. This is a vibration shockless control method for a general-purpose induction motor that uses a general-purpose inverter for operation control with correction.The effective value of the current flowing in the motor is used as the current detection signal, and the response time of the control system is added to this current detection signal. The value obtained by subtracting the no-load current component signal value from the value that has passed through the time constant circuit and the slip amount adjustment signal that is set from the outside are respectively sent to the slip amount calculation circuit. The vibration shockless control of the general-purpose induction motor using the general-purpose inverter described in the preceding paragraph that drives the inverter with the frequency command corrected by subtracting the slip amount calculation circuit output from the frequency command that sets the speed of the electric motor. In addition, the torque amount signal a obtained by subtracting the no-load current component signal value from the output of the time constant circuit that multiplies the current detection signal by the response time of the control system, the slip amount adjustment signal b externally set, and the preset value The vibration shockless control method for a general-purpose induction motor using the general-purpose inverter described in the preceding paragraph, which is a slip amount calculation circuit that multiplies each of the above-mentioned coefficients k and outputs k · a · b, and further sets the frequency. The command is passed through the soft starter and the previous correction is performed to limit the slip amount calculation circuit output. A vibration shockless control method of the generic induction motor using a general-purpose inverter according to on or preceding turning off.

【0005】[0005]

【作用】本発明はこのような方法であるから、インバー
タドライブの基本特性を損なうことなく、振動やショッ
クを無くすことが可能となり、制御系の運転調整に対す
る信頼性と安全性が向上する。
Since the present invention is such a method, it is possible to eliminate vibrations and shocks without impairing the basic characteristics of the inverter drive, and the reliability and safety of the operation adjustment of the control system are improved.

【0006】[0006]

【実施例】前述の従来手段の各問題点を解決するため
に、本発明は、次の基本的概念に基づく手段から成り立
つ。まず、高スリップモータつまり高抵抗モータを使用
して振動やショックを無くす手段を、制御的にこれと同
じ作用を行うようにモータの負荷が重くなるとスリップ
も大きく増す状態を素早く作り出せば同等となる。ま
た、汎用誘導電動機のトルクと電流の間には、無負荷電
流分を差し引くとほぼ比例関係が成り立つ。そこで、汎
用インバータの入力段の電流検出信号によりモータの負
荷率を推定し、それに反比例させてインバータの周波数
指令を素早く低減させれば良い。なお、インバータのV
/fパターンは何ら変更する必要はなく、今まで通り周
波数指令に応じた電圧を出力すれば良い。以下、本発明
の実施例を図面に基づいて説明する。図1は、本発明の
一実施例における汎用インバータによる汎用誘導電動機
の駆動回路の全体の構成を示すブロック図である。図1
において、1は汎用誘導電動機、2は汎用誘導電動機1
により稼働する負荷、3は汎用誘導電動機1に流れる電
流を検出する電流検出器[変流器CT1,CT2 ]、4は
2相の検出線電流から3相の線電流を演算し変換する2
相/3相変換器、5は瞬時値から実効値を算出する実効
値換算器、6は実効値換算器5から出力された電流検出
信号、7はパルス幅変調器[図2参照]75からの出力周
波数で駆動される汎用インバータ、8 は平滑な直流に調
整するコンデンサから成る平滑回路、9 は交流を直流に
変換するダイオード等から成るコンバータ、10は例えば
3相[R,S,T]商用交流電源である。図2は、本発
明の一実施例での主要回路を構成する部分を示すブロッ
ク図である。先ず第1のPWM制御信号として、負荷2
をどのような速度で稼働させるかに応じて、周波数指令
[速度設定]回路71に与えられる周波数指令がソフトス
タータ72に入り、ここで急峻な立ち上がり立ち下がりの
変化を避けた緩やかな始動・停止を行う信号に調整して
第1の減算器73へ入力する。次いで、図1の実効値換算
器5から出力された電流検出信号6に、この制御系の時
定数(制御系の応答時間)を持たせるために、第1の時
定数回路61を経由させて一方の演算信号として、第2の
減算器64へ入力する。定電圧源Vccの電圧を分圧した可
変抵抗RH1,・62から電動機1の無負荷電流(励磁電
流)63が、他方の演算信号として減算器64へ入力して、
先の一方の演算信号から他方の演算信号を減算して、こ
こで電動機1のトルク分に相当する電流信号aとなる。
このトルク分に相当する電流信号aは、定電圧源Vcc
電圧を分圧した可変抵抗RH2 ・65からの滑り量調整信
号b・66と共に、滑り量演算回路67に与えられ、ここで
予め設定された係数kとの間で3者が掛算されたk×a
×bが、滑り量が付加された補正信号となり、過大な補
正を避けるためにリミッタ回路68を経由させて、オン/
オフするスイッチ69を介して、第2のPWM制御信号と
して、減算器74へ入力する。なお、リミッタ回路68は所
謂インパクトな過度的急峻な制御変化を回避するための
手段であり、制限値以上のときは飽和値一杯の補正に止
まるようにている。また、スイッチ69はここでは図示し
ていないが、必要に応じてこのショックレス制御のオン
/オフを選択する手段からの操作により、二者択一的に
選択され、オフ側にすれば通常の汎用インバータと同じ
高速トルク応答、高速度精度モータ駆動となる。無負荷
電流調整器RH1 ・62と滑り量調整器RH2・65は、無
負荷電流値と滑り量をそれぞれ外部から調整する[換算
された電圧]信号作成手段である。そして、減算器73に
おいて第1のPWM制御信号[ソフトスタータ72出力]
から第2のPWM制御信号[リミッタ回路68出力]を減
算補正して、第2の時定数回路74を経由することでさら
なる制御系全体の時定数の調整を行なった後、PWM75
を介してインバータ7を駆動する。このようにして、イ
ンバータ7の出力側に設けた電流検出器2[CT1,CT
2]の信号より、汎用誘導電動機IM ・1の3相分の瞬
時電流を演算した後、電流の実効値を求めてから、検出
電流信号に時定数をかけた後、無負荷電流分62を減算器
63で減算し、有効電流( トルク分電流) 信号aを得てお
り、その後、滑り量調整器RH2 ・65によって設定され
た滑り量調整信号bを導入し、滑り量演算回路67におい
て、有効電流分信号aに対して電動機IM ・1を滑らせ
る量[係数k×a×b]を演算し、ソフトスタータ72の
出力から滑り量[k・a・b]を減算器73において減算
している。図4に表すように、従来のシステムでの電動
機のトルク・電流−電動機回転数特性はT0a, I0a、T
0b, I0b、T0c, I0c、T0d, I0d……として、各回転
数範囲毎のカーブで示される。しかるに図3に示すよう
に、本発明のシステムでの電動機のトルク・電流−電動
機回転数特性はT1,I1 に変更・改善され、特性曲線の
傾きが緩やかになるため振動やショックが無くなる。た
だし、図3と図4の縦軸・横軸のスケールは全く同一に
して、各特性曲線をプロットしている。
BEST MODE FOR CARRYING OUT THE INVENTION In order to solve the problems of the above-mentioned conventional means, the present invention comprises means based on the following basic concept. First, if a high slip motor, that is, a high resistance motor, is used to eliminate vibrations and shocks, and if the load on the motor becomes heavier so that the slip also increases significantly, it will be equivalent. . Further, between the torque and the current of the general-purpose induction motor, a substantially proportional relationship is established by subtracting the no-load current component. Therefore, it suffices to estimate the load factor of the motor from the current detection signal of the input stage of the general-purpose inverter and inversely proportionally estimate the load factor of the motor to quickly reduce the frequency command of the inverter. In addition, V of the inverter
It is not necessary to change the / f pattern at all, and it is sufficient to output the voltage according to the frequency command as before. Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is a block diagram showing the overall configuration of a drive circuit for a general-purpose induction motor using a general-purpose inverter in one embodiment of the present invention. Figure 1
In, 1 is a general-purpose induction motor, 2 is a general-purpose induction motor 1
Loaded by 3 is a current detector [current transformers CT 1 and CT 2 ] for detecting the current flowing in the general-purpose induction motor 1, and 4 is a three-phase line current calculated and converted from a two-phase detected line current. Two
Phase / three-phase converter, 5 is an RMS converter that calculates the RMS value from the instantaneous value, 6 is the current detection signal output from the RMS converter 5, 7 is a pulse width modulator [see FIG. 2] 75 , A general-purpose inverter driven at the output frequency of 8, a smoothing circuit composed of a capacitor for adjusting to a smooth direct current, a converter composed of a diode or the like for converting an alternating current into a direct current, 10 a three-phase [R, S, T] It is a commercial AC power supply. FIG. 2 is a block diagram showing a portion that constitutes a main circuit in one embodiment of the present invention. First, as the first PWM control signal, the load 2
The frequency command given to the frequency command [speed setting] circuit 71 enters into the soft starter 72 according to the speed at which the motor is operated, where a gentle start / stop that avoids sharp changes in the rising and falling edges is performed. And input to the first subtractor 73. Next, in order to make the current detection signal 6 output from the effective value converter 5 of FIG. 1 have the time constant of this control system (response time of the control system), it is passed through the first time constant circuit 61. As one operation signal, it is input to the second subtractor 64. The no-load current (exciting current) 63 of the electric motor 1 is input to the subtractor 64 as the other operation signal from the variable resistors RH 1 and 62 that divide the voltage of the constant voltage source V cc .
The other operation signal is subtracted from the one operation signal to obtain the current signal a corresponding to the torque of the electric motor 1.
Current signal a corresponding to this torque component, together with slip amount adjustment signal b · 66 from the variable resistor RH 2 · 65 obtained by dividing the voltage of the constant voltage source V cc min, given slip amount calculating circuit 67, where K × a obtained by multiplying the coefficient k set in advance by 3
Xb is a correction signal to which a slip amount is added, and is turned on / off via a limiter circuit 68 to avoid excessive correction.
The second PWM control signal is input to the subtractor 74 via the switch 69 that is turned off. The limiter circuit 68 is a means for avoiding so-called impactful and excessively steep control changes, and when the limit value or more is exceeded, the correction of the saturated value is stopped. Although not shown here, the switch 69 is selectively selected by the operation of the means for selecting ON / OFF of the shockless control as necessary, and if it is set to the OFF side, it is a normal switch. It has the same high-speed torque response and high-speed precision motor drive as a general-purpose inverter. No-load current regulator RH 1 · 62 and slip regulator RH 2 · 65 is a [converted voltage] signal producing means for adjusting the no-load current value and the slippage from the outside, respectively. Then, in the subtractor 73, the first PWM control signal [soft starter 72 output]
After the second PWM control signal [output of the limiter circuit 68] is subtracted and corrected from, and the time constant of the entire control system is further adjusted by passing through the second time constant circuit 74, the PWM75
The inverter 7 is driven via. In this way, the current detector 2 [CT 1 , CT provided on the output side of the inverter 7
From the signal of the 2] After calculating the instantaneous current of the three phases of a general purpose induction motor I M · 1, from seeking effective value of the current, after applying the time constant detection current signal, no-load current component 62 Subtractor
Subtracted at 63, it was given an active current (torque current) signal a, then introduced the set slip adjustment signal b by slip regulator RH 2 · 65, the slip amount calculation circuit 67, the effective An amount [coefficient k × a × b] of sliding the electric motor I M · 1 with respect to the current component signal a is calculated, and the slip amount [k · a · b] is subtracted from the output of the soft starter 72 by the subtractor 73. ing. As shown in FIG. 4, the torque / current-motor speed characteristics of the motor in the conventional system are T 0a , I 0a , T
0b , I0b , T0c , I0c , T0d , I0d ... Are shown by curves for each rotational speed range. However, as shown in FIG. 3, the torque / current-motor speed characteristic of the motor in the system of the present invention is changed / improved to T 1 and I 1 , and the slope of the characteristic curve becomes gentle, so that vibration and shock are eliminated. . However, the scales of the vertical and horizontal axes of FIGS. 3 and 4 are exactly the same, and the characteristic curves are plotted.

【0007】[0007]

【発明の効果】以上述べたように本発明によれば、次の
効果がある。インバータが持つ高効率性,高トルク性を
損なうこと無く、振動やショックを無くすことが可能で
ある。安価な汎用インバータと汎用誘導電動機が使用可
能となり、既設のモータでも適用可能である。外部から
インバータに信号を入力することにより、モータのスリ
ップ量を自由に変更可能であり、また加減速時などは本
機能をキャンセルし、応答時間を早めることも可能であ
る。かくして、汎用インバータによる汎用誘導電動機の
駆動システムにおいて、常に確立した手法による、振動
とショックを除去した電動機運転が可能という特段の効
果を奏することができる。
As described above, the present invention has the following effects. It is possible to eliminate vibration and shock without impairing the high efficiency and high torque of the inverter. Inexpensive general-purpose inverters and general-purpose induction motors can be used, and existing motors can also be applied. It is possible to freely change the slip amount of the motor by inputting a signal to the inverter from the outside, and it is also possible to cancel this function during acceleration / deceleration and speed up the response time. Thus, in a drive system for a general-purpose induction motor using a general-purpose inverter, it is possible to achieve a particular effect that it is possible to operate a motor with vibrations and shocks removed by a method that has always been established.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例における汎用インバータによ
る汎用誘導電動機の駆動回路の全体の構成を示すブロッ
ク図
FIG. 1 is a block diagram showing the overall configuration of a drive circuit for a general-purpose induction motor using a general-purpose inverter in one embodiment of the present invention.

【図2】本発明の一実施例の主要回路を構成する部分を
示すブロック図
FIG. 2 is a block diagram showing a part that constitutes a main circuit of one embodiment of the present invention.

【図3】本発明の一実施例のシステムにおける電動機の
トルク・電流−電動機回転数特性図
FIG. 3 is a torque / current-motor rotation speed characteristic diagram of the motor in the system of the embodiment of the present invention.

【図4】従来のシステムの電動機のトルク・電流−電動
機回転数特性図
[Fig. 4] Torque / current-motor rotation speed characteristic diagram of a conventional system motor

【符号の説明】[Explanation of symbols]

1 汎用誘導電動機 2 負荷 3 電流検出器[変流器CT1,CT2 ] 4 2相/3相変換器 5 実効値換算器 6 電流検出信号 7 パルス幅変調器[PWM] 8 平滑回路 9 コンバータ 10 3相[R,S,T]商用交流電源 61,74 時定数回路 62,65 可変抵抗器[RH1,RH2 ] 63 無負荷電流信号 64,73 減算器 66 滑り量調整信号 67 滑り量演算回路[(予め設定した係数k)×(トル
ク分電流信号分a)×(滑り量調整信号分b)の演算を
する回路] 68 リミッタ回路 69 スイッチ 71 周波数指令[速度設定]回路 72 ソフトスタータ 75 パルス幅変調器[PWM] T1,I1 本発明の電動機トルク・電流の回転数特性を
示す曲線 T0a, I0a、T0b, I0b、T0c, I0c、T0d, I0d
来の電動機トルク・電流の回転数特性を表す各曲線
1 General-purpose induction motor 2 Load 3 Current detector [Current transformer CT 1 , CT 2 ] 4 Two-phase / 3-phase converter 5 RMS value converter 6 Current detection signal 7 Pulse width modulator [PWM] 8 Smoothing circuit 9 Converter 10 Three-phase [R, S, T] Commercial AC power supply 61,74 Time constant circuit 62,65 Variable resistor [RH 1 , RH 2 ] 63 No load current signal 64,73 Subtractor 66 Sliding amount adjustment signal 67 Sliding amount Calculation circuit [Circuit for calculating (predetermined coefficient k) x (torque current signal a) x (slip amount adjustment signal b)] 68 Limiter circuit 69 Switch 71 Frequency command [speed setting] circuit 72 Soft starter 75 Pulse Width Modulator [PWM] T 1 , I 1 Curves T 0a , I 0a , T 0b , I 0b , T 0c , I 0c , T 0d , I 0d showing the motor torque / current rotation speed characteristics of the present invention. Each curve representing the conventional motor torque / current speed characteristics

───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.7,DB名) H02P 5/408 - 5/412 H02P 7/628 - 7/632 H02P 21/00 ─────────────────────────────────────────────────── ─── Continuation of front page (58) Fields surveyed (Int.Cl. 7 , DB name) H02P 5/408-5/412 H02P 7/628-7/632 H02P 21/00

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】周波数指令値に基づいて誘導電動機を駆動
する誘導電動機駆動用インバータにおいて、前記誘導電
動機を流れる電流検出値から前記誘導電動機トルク、ま
たは負荷率を推定する推定手段と、 所定の調整値を設定する設定手段と、 前記推定手段による推定値と、前記設定手段による調整
値とを入力とし、前記推定値と前記調整値との乗算値
に、所定のゲイン定数値を乗じて得た周波数補正量を出
力する補正量決定手段と、 前記周波数指令値を前記周波数補正量で減算する減算手
段を備え、 前記減算手段からの出力に基づいて、前記誘導電動機を
駆動することを特徴とする誘導電動機駆動用インバー
タ。
1. An induction motor is driven based on a frequency command value.
In an inverter for driving an induction motor,
From the detected value of the current flowing through the motive, the induction motor torque,
Alternatively, an estimation means for estimating the load factor, a setting means for setting a predetermined adjustment value, an estimation value by the estimation means, and an adjustment value by the setting means are input, and the estimation value and the adjustment value are The multiplication value is provided with a correction amount determination unit that outputs a frequency correction amount obtained by multiplying the gain constant value by a predetermined value, and a subtraction unit that subtracts the frequency command value by the frequency correction amount, and an output from the subtraction unit is provided. An inverter for driving an induction motor, which drives the induction motor based on the above.
【請求項2】周波数指令値に基づいて誘導電動機を駆動
する誘導電動機駆動用インバータにおいて、 前記誘導電動機を流れる電流検出値から前記誘導電動機
トルク、または負荷率を推定する推定手段と、 所定の調整値を設定する設定手段と、 前記推定手段による推定値と、前記設定手段による調整
値とを入力とし、周波数補正量を出力する補正量決定手
段と、前記周波数指令値を前記周波数補正量で減算する減算手
段と、 前記補正量決定手段と前記減算手段との間に、リミッタ
手段を備え、 前記減算手段からの出力に基づいて、前記誘導電動機を
駆動することを特徴とする誘導電動機駆動用インバー
タ。
2. An induction motor is driven based on a frequency command value.
In the inverter for driving the induction motor, the induction motor is detected from the detected value of the current flowing through the induction motor.
A correction amount for inputting the estimation means for estimating the torque or the load factor, the setting means for setting a predetermined adjustment value, the estimated value by the estimation means, and the adjustment value by the setting means, and outputting the frequency correction amount. Deciding means and subtraction means for subtracting the frequency command value by the frequency correction amount
An inverter for driving an induction motor , comprising: a step , a limiter means between the correction amount determination means and the subtraction means, and driving the induction motor based on an output from the subtraction means.
JP18080394A 1994-07-07 1994-07-07 Inverter for driving induction motor Expired - Lifetime JP3503202B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18080394A JP3503202B2 (en) 1994-07-07 1994-07-07 Inverter for driving induction motor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18080394A JP3503202B2 (en) 1994-07-07 1994-07-07 Inverter for driving induction motor

Publications (2)

Publication Number Publication Date
JPH0833396A JPH0833396A (en) 1996-02-02
JP3503202B2 true JP3503202B2 (en) 2004-03-02

Family

ID=16089624

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18080394A Expired - Lifetime JP3503202B2 (en) 1994-07-07 1994-07-07 Inverter for driving induction motor

Country Status (1)

Country Link
JP (1) JP3503202B2 (en)

Also Published As

Publication number Publication date
JPH0833396A (en) 1996-02-02

Similar Documents

Publication Publication Date Title
JP3435104B2 (en) Apparatus and method for generating braking torque in an AC drive
JPS638683B2 (en)
EP0536569A2 (en) AC motor control apparatus and control apparatus of electric rolling stock using the same
JPH1066385A (en) Inverter controller
JP3503202B2 (en) Inverter for driving induction motor
JP2861418B2 (en) Torque limiting method and control method for induction motor
JP4144446B2 (en) Power converter
JPH088722B2 (en) Electric differential drive
JP3554798B2 (en) Electric car control device
JPH11187700A (en) Controller of induction motor
JP3646480B2 (en) Inverter control method
JPH0341029B2 (en)
JPH033472B2 (en)
JP3507235B2 (en) Inverter device for driving induction motor
JPH027241B2 (en)
JPH11235075A (en) Flat linear induction motor
JP3313139B2 (en) Current control device for AC motor
JP3276220B2 (en) AC motor control method
JP3323901B2 (en) Control device for linear motor electric vehicle
JP3064638B2 (en) Control device for VVVF inverter
JP2914106B2 (en) Induction motor control device
JPH0530747B2 (en)
JPH0467407B2 (en)
JPH0213555B2 (en)
JPS61161974A (en) Regenerative controller of ac motor

Legal Events

Date Code Title Description
A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20031201

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081219

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091219

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091219

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101219

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101219

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111219

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121219

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131219

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141219

Year of fee payment: 11

EXPY Cancellation because of completion of term