JP3497212B2 - Method for producing sintered metal powder - Google Patents

Method for producing sintered metal powder

Info

Publication number
JP3497212B2
JP3497212B2 JP24375693A JP24375693A JP3497212B2 JP 3497212 B2 JP3497212 B2 JP 3497212B2 JP 24375693 A JP24375693 A JP 24375693A JP 24375693 A JP24375693 A JP 24375693A JP 3497212 B2 JP3497212 B2 JP 3497212B2
Authority
JP
Japan
Prior art keywords
metal powder
sintering furnace
vacuum
compact
powder compact
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP24375693A
Other languages
Japanese (ja)
Other versions
JPH0770609A (en
Inventor
潤 稲橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Olympus Corp
Original Assignee
Olympus Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Olympus Corp filed Critical Olympus Corp
Priority to JP24375693A priority Critical patent/JP3497212B2/en
Publication of JPH0770609A publication Critical patent/JPH0770609A/en
Application granted granted Critical
Publication of JP3497212B2 publication Critical patent/JP3497212B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Powder Metallurgy (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は金属粉末焼結体の製造方
法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a metal powder sintered body.

【0002】[0002]

【従来の技術】粉末冶金の製造に於いて、金属粉末を所
定形状に成形する場合、金型成形、静水圧成形、ホット
プレス、テープ成形、押出成形、鋳込成形、金属粉末射
出成形等の各種の方法が知られている。例えば、特開昭
56−123302号公報では、金属粉末と有機結合剤
とを混練し、成形型で圧縮して予備成形体を得た後、こ
の予備成形体を焼結している。
2. Description of the Related Art In the production of powder metallurgy, when metal powder is molded into a predetermined shape, it is possible to use metal mold molding, hydrostatic molding, hot pressing, tape molding, extrusion molding, casting molding, metal powder injection molding, etc. Various methods are known. For example, JP
In Japanese Patent Laid-Open No. 56-123302 , a metal powder and an organic binder are kneaded and compressed by a molding die to obtain a preform, and then the preform is sintered.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、上記い
ずれの方法で製造したとしても、焼結後の金属粉末焼結
体は多孔質にかわりなく、機械的強度は溶製材に比較し
て弱く、しかも表面が滑らかではない肌が荒い状態であ
る。すなわち、一定体積に対する表面積が溶製材に比べ
て極めて大きくなっている。このような状態において
は、よく知られているように表面積の増大が耐食性の劣
化の原因となる。従って、金属粉末焼結体の耐食性は溶
製材の同一形状のものに比して極めて悪いという問題が
あった。本発明は上記事情に鑑みてなされたものであっ
て、金属粉末焼結体の耐食性を向上させて製造すること
ができる方法を提供することを目的とする。
However, whichever method is used, the metal powder sintered body after sintering is not porous but its mechanical strength is weaker than that of the ingot material. The surface is not smooth and the skin is rough. That is, the surface area for a given volume is extremely larger than that of the ingot material. In such a state, as is well known, an increase in surface area causes deterioration of corrosion resistance. Therefore, there is a problem that the corrosion resistance of the metal powder sintered body is extremely poor compared with that of the ingot having the same shape. The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a method capable of producing a metal powder sintered body with improved corrosion resistance.

【0004】[0004]

【課題を解決するための手段および作用】本発明の金属
粉末焼結体の製造方法は、焼結以前の金属粉末の成形体
表面に当該成形体の主たる組成元素以外の元素を、成形
体の配置した雰囲気圧力を負圧にした状態で被覆し、前
記成形体の焼結時に焼結炉内の雰囲気圧力を負圧にした
状態で当該被覆層を金属粉末中の元素と反応させること
により表面保護膜に加熱変化させることを特徴とする。
また、本発明の金属粉末焼結体の製造方法は、焼結以前
の金属粉末の成形体表面に当該成形体の主たる組成元素
以外の元素をイオン注入し、前記成形体の焼結時に焼結
炉内の雰囲気圧力を負圧にした状態で当該イオン注入層
を金属粉末中の元素と反応させることにより表面保護膜
に加熱変化させることを特徴とする。
Means and Actions for Solving the Problems In the method for producing a metal powder sintered body of the present invention, an element other than the main composition element of the green body is added to the surface of the metal powder green body before sintering. The surface is obtained by reacting the coating layer with an element in the metal powder in a state where the atmosphere pressure in the sintering furnace is set to a negative pressure when the formed body is sintered while the atmosphere pressure is set to a negative pressure. It is characterized in that the protective film is changed by heating.
In addition, the method for producing a metal powder sintered body of the present invention is a method of ion-implanting an element other than the main compositional elements of the green body into the surface of the green metal powder body before sintering, and sintering the green body during sintering. The present invention is characterized in that the ion-implanted layer is reacted with an element in the metal powder in a state where the atmospheric pressure in the furnace is set to a negative pressure, so that the surface protective film is heated and changed.

【0005】上記方法では、金属粉末の成形体に被着し
た被覆層またはイオン注入層が焼結時の熱により金属粉
末中の元素と反応することで金属酸化膜、金属窒化膜ま
たはセラミックス膜などの表面保護膜に変化して焼結体
表面を覆うため、焼結体の耐食性が向上する。
In the above method, the coating layer or the ion-implanted layer adhered to the metal powder compact reacts with the elements in the metal powder due to the heat generated during sintering, whereby a metal oxide film, a metal nitride film, a ceramic film, etc. Since the surface protective film is changed to cover the surface of the sintered body, the corrosion resistance of the sintered body is improved.

【0006】[0006]

【実施例1】図1は本発明の実施例1に用いられる真空
蒸着装置1を示す。この真空蒸着装置1は真空ポンプ
(図示省略)に接続される排気口2が側面部分に設けら
れ、内部には金属粉末を成形した成形体13が載置され
る設置台14が設けられている。この設置台14の上部
には加熱ヒータ4が配置され、この加熱ヒータ4のヒー
タ端子3が真空蒸着装置1の底部を貫通して抜き出され
ている。
Embodiment 1 FIG. 1 shows a vacuum vapor deposition apparatus 1 used in Embodiment 1 of the present invention. This vacuum vapor deposition apparatus 1 is provided with an exhaust port 2 connected to a vacuum pump (not shown) on a side surface portion, and inside is provided with an installation stand 14 on which a compact 13 formed of metal powder is placed. . A heater 4 is arranged above the installation table 14, and a heater terminal 3 of the heater 4 penetrates the bottom of the vacuum vapor deposition apparatus 1 and is extracted.

【0007】図2はこの真空蒸着装置1での処理の後に
使用される真空焼結炉6を示し、金属粉末の成形体13
が載置される設置台15が内部に設けられ、側面部分に
は排気口7が設けられている。排気口7は排気バルブ1
1とリークバルブ12とに分岐しており、排気バルブ1
1に真空ポンプ(図示省略)が接続されている。また設
置台15の周囲には加熱ヒータ9が設けられ、この加熱
ヒータ9のヒータ端子8が真空焼結炉6の天井を貫通し
て抜き出されている。
FIG. 2 shows a vacuum sintering furnace 6 used after the processing in the vacuum vapor deposition apparatus 1, in which a metal powder compact 13 is formed.
An installation table 15 on which the is mounted is provided inside, and an exhaust port 7 is provided on a side surface portion. Exhaust port 7 is exhaust valve 1
1 and a leak valve 12, and an exhaust valve 1
A vacuum pump (not shown) is connected to 1. A heater 9 is provided around the installation table 15, and a heater terminal 8 of the heater 9 penetrates the ceiling of the vacuum sintering furnace 6 and is extracted.

【0008】上記構成において、平均粒度120μmの
SUS304からなるステンレス鋼の粉末成形体13を
真空蒸着装置1の設置台14上に載置すると共に、加熱
ヒータ4に金属線材16を取り付ける。金属線材16は
粉末成形体13を構成する組成元素以外の金属が選択さ
れ、本実施例ではクロム線材が使用されている。この状
態で排気口2から真空ポンプにより真空蒸着装置1内を
排気し、雰囲気圧力を1.3×10-1Pa(1.0×1
-3Torr)とする。その後、加熱ヒータ4に通電し
てクロム線材からクロムを蒸発させ、クロムを粉末成形
体13の表面に蒸着する。
In the above structure, a stainless steel powder compact 13 made of SUS304 having an average particle size of 120 μm is placed on the installation base 14 of the vacuum vapor deposition apparatus 1, and the metal wire 16 is attached to the heater 4. For the metal wire rod 16, a metal other than the composition elements forming the powder compact 13 is selected, and a chrome wire rod is used in this embodiment. In this state, the inside of the vacuum vapor deposition apparatus 1 is evacuated from the exhaust port 2 with a vacuum pump, and the atmospheric pressure is 1.3 × 10 −1 Pa (1.0 × 1).
0 -3 Torr). After that, the heater 4 is energized to evaporate chromium from the chromium wire rod and deposit chromium on the surface of the powder compact 13.

【0009】この蒸着後の粉末成形体13を真空焼結炉
6の設置台15上に移動する。そして排気バルブ11を
開放し、排気口7から真空ポンプで真空焼結炉6を排気
し、雰囲気圧力を1.3×10-2Pa(1.0×10-4
Torr)にする。その後、加熱ヒータ9に通電し、真
空焼結炉6を昇温速度120℃/Hで加熱し、真空焼結
炉6内部の温度が1300℃になるまで昇温し、この温
度を2時間保持する。その後、加熱ヒータ9への通電を
終了し、真空焼結炉6を放冷し、金属粉末焼結体を得
る。
The powder compact 13 after the vapor deposition is moved onto the installation base 15 of the vacuum sintering furnace 6. Then, the exhaust valve 11 is opened, the vacuum sintering furnace 6 is exhausted from the exhaust port 7 with a vacuum pump, and the atmospheric pressure is 1.3 × 10 −2 Pa (1.0 × 10 −4).
Torr). After that, the heater 9 is energized to heat the vacuum sintering furnace 6 at a temperature rising rate of 120 ° C./H, the temperature inside the vacuum sintering furnace 6 is raised to 1300 ° C., and this temperature is maintained for 2 hours. To do. After that, the energization of the heater 9 is terminated and the vacuum sintering furnace 6 is allowed to cool to obtain a metal powder sintered body.

【0010】このような本実施例において、真空蒸着装
置1内での蒸着処理により粉末成形体13の表面にはク
ロム膜が被着されている。そして、このクロム膜は真空
焼結炉6内での真空焼結の加熱時に、活性化され、粉末
成形体を構成するSUS304の酸素と反応する。これ
によりクロム膜は酸化されて、緻密な酸化クロム(Cr
)膜となる。従って、最終の金属粉末焼結体の表面
には酸化クロム膜が形成されるため、耐食性が極めて向
上する。
In this embodiment, a chromium film is deposited on the surface of the powder compact 13 by the vapor deposition process in the vacuum vapor deposition apparatus 1. Then, this chromium film is activated and reacts with oxygen of SUS304 constituting the powder compact during heating in vacuum sintering in the vacuum sintering furnace 6. As a result, the chromium film is oxidized, and dense chromium oxide (Cr
It becomes an O 2 ) film. Therefore, since the chromium oxide film is formed on the surface of the final metal powder sintered body, the corrosion resistance is extremely improved.

【0011】[0011]

【実施例2】図3は本発明の実施例2に用いられるスパ
ッタリング装置21を示し、排気口22とガス導入口2
3とが側面部分に設けられ、排気口22が真空ポンプ
に、ガス導入口23がアルゴンガスボンベ(いずれも図
示省略)にそれぞれ接続されている。またスパッタリン
グ装置21の天井部分には陰極24が、底面部分には陽
極25が配置されて対向しており、陽極25上に粉末成
形体29が載置される。
Second Embodiment FIG. 3 shows a sputtering apparatus 21 used in a second embodiment of the present invention, in which an exhaust port 22 and a gas inlet port 2 are provided.
3 and 3 are provided in the side surface portion, the exhaust port 22 is connected to a vacuum pump, and the gas introduction port 23 is connected to an argon gas cylinder (both not shown). Further, the cathode 24 is arranged on the ceiling part of the sputtering device 21 and the anode 25 is arranged on the bottom part so as to face each other, and the powder compact 29 is placed on the anode 25.

【0012】図4は本実施例に用いられる真空焼結炉6
を示し、図2と同一の要素には同一の符号を付してあ
る。本実施例の真空焼結炉6は側面部分にバルブ28を
有するガス導入口27が設けられ、このガス導入口27
が窒素ガスボンベ(図示省略)に接続されている。
FIG. 4 shows a vacuum sintering furnace 6 used in this embodiment.
2 and the same elements as those in FIG. 2 are denoted by the same reference numerals. The vacuum sintering furnace 6 of this embodiment is provided with a gas inlet 27 having a valve 28 on the side surface, and the gas inlet 27 is provided.
Is connected to a nitrogen gas cylinder (not shown).

【0013】上記構成において、平均粒度18μmのF
e−4wt%Niの金属粉末により粉末成形体29を成
形し、スパッタリング装置21の陽極25上に載置す
る。一方、陰極24にはこの粉末成形体29の組成元素
以外の元素であるシリコン(Si)をターゲット26と
して取り付ける。この状態で排気口22から真空ポンプ
を用いてスパッタリング装置21内を排気し、雰囲気圧
力を1.33×10−3Pa(1.0×10−5Tor
r)にする。その後、真空ポンプを停止し、ガス導入口
23からアルゴンガスを導入し雰囲気圧力を1.33×
10Pa(1.0×10−2Torr)にする。その
後、陰極24,陽極25間に電圧を印加し、粉末成形体
29表面にシリコン層を形成する。
In the above structure, F having an average particle size of 18 μm
A powder compact 29 is molded with a metal powder of e-4 wt% Ni and placed on the anode 25 of the sputtering device 21. On the other hand, silicon (Si), which is an element other than the composition element of the powder compact 29, is attached to the cathode 24 as a target 26. In this state, the inside of the sputtering apparatus 21 is evacuated from the exhaust port 22 using a vacuum pump, and the atmospheric pressure is 1.33 × 10 −3 Pa (1.0 × 10 −5 Tor).
r). After that, the vacuum pump is stopped, argon gas is introduced from the gas introduction port 23, and the atmospheric pressure is set to 1.33 ×.
To 10 0 Pa (1.0 × 10 -2 Torr). After that, a voltage is applied between the cathode 24 and the anode 25 to form a silicon layer on the surface of the powder compact 29.

【0014】このシリコン層が形成された粉末成形体2
9を真空焼結炉6内の設置台15上に移載し、排気バル
ブ11を開放し、真空ポンプで真空焼結炉6内を排気
し、雰囲気圧力を1.33×10 −3 Pa(1.0×1
−5 Torr)にする。その後、加熱ヒータ9に通電
し、真空焼結炉6内を昇温速度145℃/Hで加熱す
る。真空焼結炉6内が1000℃になった時点でバルブ
28を開放し、ガス導入口27から窒素ガスを真空焼結
炉6内に導入し、雰囲気圧力を1.33×10 Pa
(1.0×10 −2 Torr)とする。この状態で加熱
を続け、真空焼結炉6内を1200℃まで昇温し、3時
間保持する。そして、加熱ヒータ9の通電を終了し、真
空焼結炉6を放冷し、金属粉末焼結体を得る。このよう
な本実施例では、スパッタリングにより形成された粉末
成形体表面のシリコン層は真空焼結炉内での加熱により
活性化され、この活性化されたシリコンと高温状態で導
入された窒素ガスが反応し、Si膜が粉末成形体
表面に形成される。これにより最終の金属粉末焼結体の
表面にSi膜が形成されるので、耐食性が著しく
向上する。しかもスパッタリングによりシリコン層を形
成するので緻密なSi膜を形成することができ
る。
Powder compact 2 having this silicon layer formed
9 was placed on the installation table 15 in the vacuum sintering furnace 6, the exhaust valve 11 was opened, the vacuum sintering furnace 6 was evacuated by a vacuum pump, and the atmospheric pressure was 1.33 × 10 −3 Pa ( 1.0 x 1
0 to -5 Torr). Then, the heater 9 is energized to heat the inside of the vacuum sintering furnace 6 at a temperature rising rate of 145 ° C./H. When the temperature in the vacuum sintering furnace 6 reached 1000 ° C., the valve 28 was opened, nitrogen gas was introduced into the vacuum sintering furnace 6 through the gas inlet 27, and the atmospheric pressure was 1.33 × 10 0 Pa.
(1.0 × 10 −2 Torr) . Heating is continued in this state, the temperature inside the vacuum sintering furnace 6 is raised to 1200 ° C., and the temperature is maintained for 3 hours. Then, the heating heater 9 is de-energized and the vacuum sintering furnace 6 is allowed to cool to obtain a metal powder sintered body. In this example, the silicon layer on the surface of the powder compact formed by sputtering is activated by heating in a vacuum sintering furnace, and the activated silicon and nitrogen gas introduced at high temperature are By reaction, a Si 3 N 4 film is formed on the surface of the powder compact. As a result, a Si 3 N 4 film is formed on the surface of the final metal powder sintered body, so that the corrosion resistance is significantly improved. Moreover, since the silicon layer is formed by sputtering, a dense Si 3 N 4 film can be formed.

【0015】[0015]

【実施例3】図5は本発明の実施例3に使用されるイオ
ン注入装置31を示し、陽極32と陰極33とが対向配
置され、陰極33の下方に粉末成形体34が載置される
設置台35が配置されている。設置台35は陰極33と
電気的に接続されるものである。本実施例では、平均粒
度8μmのSKH粉末成形体34を設置台35上に載置
し、陽極32、陰極33に電圧を印加して、粉末成形体
34にシリコンイオンを注入する。
Third Embodiment FIG. 5 shows an ion implantation apparatus 31 used in a third embodiment of the present invention, in which an anode 32 and a cathode 33 are arranged to face each other, and a powder compact 34 is placed below the cathode 33. An installation table 35 is arranged. The installation table 35 is electrically connected to the cathode 33. In this embodiment, a SKH powder compact 34 having an average particle size of 8 μm is placed on a mounting table 35, a voltage is applied to the anode 32 and the cathode 33, and silicon ions are injected into the powder compact 34.

【0016】その後、実施例1と同様の真空焼結炉6を
用い、その設置台上に粉末成形体34を移載し、排気口
7から真空焼結炉6内を排気し、雰囲気圧力を1.33
×10-2Pa(1.0×10-4Torr)にし、加熱ヒ
ータ9に通電し、真空焼結炉6内を昇温速度105℃/
Hで昇温させる。真空焼結炉6内の温度が1355℃に
なった時点で2時間保持する。
Thereafter, the same vacuum sintering furnace 6 as in Example 1 was used, the powder compact 34 was transferred onto the installation table, the inside of the vacuum sintering furnace 6 was evacuated from the exhaust port 7, and the atmospheric pressure was adjusted. 1.33
The temperature is set to × 10 -2 Pa (1.0 × 10 -4 Torr), the heater 9 is energized, and the temperature inside the vacuum sintering furnace 6 is raised to 105 ° C /
Heat with H. When the temperature in the vacuum sintering furnace 6 reaches 1355 ° C., it is held for 2 hours.

【0017】この加熱により、イオン注入したシリコン
が活性化される。また、粉末成形体34を構成している
SKH10粉末中の炭素も活性化され、このシリコンと
炭素が反応し、SiC層を形成する。このSiC層の被
着により耐食性が著しく向上する。
This heating activates the ion-implanted silicon. Further, the carbon in the SKH10 powder forming the powder compact 34 is also activated, and this silicon reacts with the carbon to form a SiC layer. The adhesion of the SiC layer significantly improves the corrosion resistance.

【0018】[0018]

【実施例4】本実施例では、まず平均粒度15μmのS
PM30(山陽特殊製鋼株式会社製)の粉末成形体を成
形する。この粉末成形体に使用したSPM30はCrが
4wt%、Moが5wt%,Wが6wt%,Coが7w
t%、残部がFeの組成からなるクロム−モリブデン鋼
である。そして、この粉末成形体の表面に真空蒸着によ
りアルミニウムを蒸着する。その後、雰囲気圧力1.3
3×10-2Pa(1.0×10-4Torr)、昇温速度
150℃/Hで昇温し、1290℃で2時間保持する。
この加熱により粉末成形体表面のアルミニウムが活性化
され、粉末成形体を構成しているSPM30粉末中の酸
素と反応し、酸化アルミニウム(AlO,AlO2 ,A
2 3 )膜が形成され、耐食性が向上する。
[Embodiment 4] In this embodiment, first, S having an average particle size of 15 μm is used.
A powder compact of PM30 (manufactured by Sanyo Special Steel Co., Ltd.) is molded. The SPM30 used in this powder compact was 4 wt% Cr, 5 wt% Mo, 6 wt% W, and 7 w Co.
It is a chromium-molybdenum steel having a composition of t% and the balance of Fe. Then, aluminum is vapor-deposited on the surface of the powder compact by vacuum vapor deposition. After that, the atmospheric pressure is 1.3
The temperature is raised at 3 × 10 −2 Pa (1.0 × 10 −4 Torr) at a rate of temperature rise of 150 ° C./H and kept at 1290 ° C. for 2 hours.
By this heating, aluminum on the surface of the powder compact is activated and reacts with oxygen in the SPM30 powder forming the powder compact, and aluminum oxide (AlO, AlO 2 , A
The l 2 O 3 ) film is formed, and the corrosion resistance is improved.

【0019】また、本実施例では上記アルミニウムの被
膜を有するSPM30の粉末成形体を焼結中において、
1040℃で窒素ガスを真空焼結炉内に導入し、128
5℃で3時間保持し、AlN層を形成させた。これによ
っても、耐食性が向上した。
Further, in this embodiment, during the sintering of the powder compact of SPM30 having the above-mentioned aluminum coating,
Nitrogen gas was introduced into the vacuum sintering furnace at 1040 ° C.
It hold | maintained at 5 degreeC for 3 hours, and formed the AlN layer. This also improved the corrosion resistance.

【0020】[0020]

【発明の効果】以上のとおり本発明は、金属粉末の成形
体に所定の元素を被膜またはイオン注入し、焼結時にこ
れらの被覆膜、イオン注入膜を金属酸化膜、金属窒化
膜、セラミックス膜などの表面保護膜に変化させるた
め、金属粉末焼結体の耐食性が著しく向上する。
As described above, according to the present invention, a predetermined element is coated or ion-implanted into a molded body of metal powder, and these coating films and ion-implanted films are sintered at the time of sintering to a metal oxide film, a metal nitride film, a ceramics. Since it is changed to a surface protective film such as a film, the corrosion resistance of the metal powder sintered body is significantly improved.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例1に使用される真空蒸着装置の
断面図。
FIG. 1 is a sectional view of a vacuum vapor deposition device used in Example 1 of the present invention.

【図2】本発明の実施例1に使用される真空焼結炉の断
面図。
FIG. 2 is a sectional view of a vacuum sintering furnace used in Example 1 of the present invention.

【図3】実施例2に使用されるスパッタリング装置の断
面図。
FIG. 3 is a cross-sectional view of a sputtering device used in Example 2.

【図4】実施例2に使用される真空焼結炉の断面図。FIG. 4 is a sectional view of a vacuum sintering furnace used in Example 2.

【図5】実施例3に使用されるイオン注入装置の断面
図。
FIG. 5 is a cross-sectional view of an ion implantation apparatus used in Example 3.

【符号の説明】[Explanation of symbols]

1 真空蒸着装置 6 真空焼結炉 13 粉末成形体 1 Vacuum deposition equipment 6 Vacuum sintering furnace 13 Powder compact

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 焼結以前の金属粉末の成形体表面に当該
成形体の主たる組成元素以外の元素を、成形体の配置し
た雰囲気圧力を負圧にした状態で被覆し、 前記成形体の焼結時に焼結炉内の雰囲気圧力を負圧にし
た状態で当該被覆層を金属粉末中の元素と反応させるこ
とにより表面保護膜に加熱変化させることを特徴とする
金属粉末焼結体の製造方法。
1. The surface of a molded body of metal powder before sintering is coated with an element other than the main compositional elements of the molded body in a state where the atmospheric pressure in which the molded body is arranged is negative, and the molded body is baked. A method for producing a metal powder sintered body, characterized in that the coating layer is reacted with an element in the metal powder to change the heat to a surface protective film under a negative pressure in the sintering furnace during binding. .
【請求項2】 焼結以前の金属粉末の成形体表面に当該
成形体の主たる組成元素以外の元素をイオン注入し、 前記成形体の焼結時に焼結炉内の雰囲気圧力を負圧にし
た状態で当該イオン注入層を金属粉末中の元素と反応さ
せることにより表面保護膜に加熱変化させることを特徴
とする金属粉末焼結体の製造方法。
2. An element other than the main compositional elements of the compact is ion-implanted into the surface of the compact of the metal powder before sintering, and the atmospheric pressure in the sintering furnace is made negative when the compact is sintered. A method for producing a metal powder sintered body, characterized in that in the state, the ion-implanted layer is reacted with an element in the metal powder to change it into a surface protective film by heating.
JP24375693A 1993-09-03 1993-09-03 Method for producing sintered metal powder Expired - Fee Related JP3497212B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24375693A JP3497212B2 (en) 1993-09-03 1993-09-03 Method for producing sintered metal powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24375693A JP3497212B2 (en) 1993-09-03 1993-09-03 Method for producing sintered metal powder

Publications (2)

Publication Number Publication Date
JPH0770609A JPH0770609A (en) 1995-03-14
JP3497212B2 true JP3497212B2 (en) 2004-02-16

Family

ID=17108523

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24375693A Expired - Fee Related JP3497212B2 (en) 1993-09-03 1993-09-03 Method for producing sintered metal powder

Country Status (1)

Country Link
JP (1) JP3497212B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6899838B2 (en) * 2002-07-12 2005-05-31 Becton, Dickinson And Company Method of forming a mold and molding a micro-device
CN107498040A (en) * 2017-09-11 2017-12-22 重庆市九瑞粉末冶金有限责任公司 A kind of sintering furnace for field of powder metallurgy

Also Published As

Publication number Publication date
JPH0770609A (en) 1995-03-14

Similar Documents

Publication Publication Date Title
US4886639A (en) Construction elements produced by powder metallurgy
CN110668821B (en) Method for preparing MAX phase ceramic under no pressure
US6723274B1 (en) High-purity low-resistivity electrostatic chucks
JP3497212B2 (en) Method for producing sintered metal powder
JPS6357392B2 (en)
JPH0348242B2 (en)
JP3828434B2 (en) Sintered silicon monoxide and method for producing the same
JP2587476B2 (en) Manufacturing method of silicon nitride molded product
JPS6116747B2 (en)
US3450574A (en) Method of coating refractory wares with magnesia
JP4023774B2 (en) Heat-resistant jig
EP0409197A1 (en) Method for impregnating a melt into a porous body
JPH0741803A (en) Production of metal powder sintered body
JPH05155651A (en) Production of indium oxide-base sintered body and of oxide sintered body
EP3995234B1 (en) Method for producing oxidation-resistant alloy
JP3830302B2 (en) Nitride ceramic firing jig
JP2764669B2 (en) Manufacturing method of sintered aluminum porous material
JPH0323630B2 (en)
JP2004002938A (en) Target material for sputtering or ion plating and method of producing the same
JPH07207305A (en) Setter for sintering rare earth magnet
JPH0274531A (en) Mold for molding optical elements
JPS59217675A (en) Silicon nitride reaction sintered body composite material and manufacture
JPH0446513B2 (en)
JP2004315352A (en) Heat-resistant coating member
JPH07102303A (en) Sintering method of powder compacted body

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20030422

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20031104

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071128

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081128

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091128

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101128

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees