JP3488611B2 - Cross flow fan - Google Patents

Cross flow fan

Info

Publication number
JP3488611B2
JP3488611B2 JP33749597A JP33749597A JP3488611B2 JP 3488611 B2 JP3488611 B2 JP 3488611B2 JP 33749597 A JP33749597 A JP 33749597A JP 33749597 A JP33749597 A JP 33749597A JP 3488611 B2 JP3488611 B2 JP 3488611B2
Authority
JP
Japan
Prior art keywords
blade
partition plate
cross flow
fan
flow fan
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP33749597A
Other languages
Japanese (ja)
Other versions
JPH10131886A (en
Inventor
博文 堀野
洋一郎 小林
朗 永守
悟 金野
義雄 池田
勉 広瀬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Carrier Corp
Original Assignee
Toshiba Carrier Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Carrier Corp filed Critical Toshiba Carrier Corp
Priority to JP33749597A priority Critical patent/JP3488611B2/en
Publication of JPH10131886A publication Critical patent/JPH10131886A/en
Application granted granted Critical
Publication of JP3488611B2 publication Critical patent/JP3488611B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Structures Of Non-Positive Displacement Pumps (AREA)

Description

【発明の詳細な説明】 【0001】 【産業上の利用分野】本発明は空気調和機の室内ファン
等に好適な横流ファンに係り、特に、モールド成型した
複数駒の多翼羽根車を軸方向に順次積み重ねて固着した
横流ファンに関する。 【0002】 【従来の技術】一般に、この種の横流ファンを室内ファ
ンとして組み込む空気調和機の一例としては図17に示
すものがある。これは室内機1の本体ケーシング2の前
面2aに、吸込グリル3と吹出グリル4とを図中上下に
配設し、これら吸込グリル3と吹出グリル4とをファン
ケーシング5内の通風路6により連通している。 【0003】そして、この通風路6には、室内側熱交換
器7の下流側に、室内ファンとして横流ファン8を配設
し、吸込グリル3から本体ケーシング2内へ吸い込んだ
室内空気を室内側熱交換器7で熱交換して、冷風または
暖風を横流ファン8により吹出グリル4から室内へ再び
送風して冷房または暖房するようになっている。 【0004】そして、この種の従来の横流ファン8は、
例えば図18に示すように左右一対の円板状の端板8
a,8b間に、ファン軸Oに対して平行をなす複数の長
尺翼8cを周方向に所要のピッチを置いて横架し、軸方
向中間部には環状の仕切板8dを軸方向に所要のピッチ
で並設している。 【0005】また、横流ファン8は図17で示すファン
ケーシング5とノーズ9と共に送風機を構成し、ノーズ
9とファンケーシング5と横流ファン8との隙間の付近
では吸込み部分と吹出し部分とに分かれている。特に、
この2箇所の隙間部分では横流ファン8の長尺翼8cに
対する流速方向が逆転するために大きな圧力変動が発生
し、送風騒音の主音源となっている。 【0006】この圧力変動による騒音は横流ファン8の
長尺翼8cの枚数×回転数の周波数と、その倍音の周波
数に大きなピークをもつ回転音Pa,Pbが図19
(A)の騒音波形Nに示すように発生し、圧力変動波形
が急峻であるために、これを基本波とする高調波(倍音
Pb)が発生し易いという特性がある。 【0007】なお、図19(A)は横流ファン8の寸法
が、例えば直径が88mm,全長が593mm,長尺翼8c
の枚数が35枚であり、長尺翼8cがファン軸Oと平行
であり、回転数20回/secで運転したときの送風機騒
音Nの分析図を示している。 【0008】そして、横流ファン8とノーズ9およびフ
ァンケーシング5との隙間は小さくするほど回転数当り
の風量が増える傾向にあるが、この部分での圧力変動も
大きくなるため、回転音Nが大きくなり、その高調波成
分も増える。この隙間はある程度までは小さい方が風量
の増分が大きいため同一風量時の騒音値が下がり、送風
性能が上がる傾向にあるが、あまりこの隙間を小さくす
ると回転音Nが相対的に大きくなり、耳障りがする等聴
感上も好ましくないため、これらの隙間はあまり小さく
できない。 【0009】また、長尺翼8cの長手方向がファン軸O
と平行に成形されている従来の横流ファン8を用いた送
風機では、横流ファン8と共に送風機を構成するノーズ
9,ファンケーシング5はファン軸Oと平行に構成され
ているため、1枚1枚の長尺翼8cはノーズ9およびフ
ァンケーシング5との各隙間付近を長尺翼8cの長さ方
向全体が同時に短時間で通過し、長尺翼8cの長さ分の
空間で同時に圧力変動が発生しようとするため、1枚の
長尺翼8cで発生する圧力変動の総和が大きく、波形の
歪みも大きいため高調波成分が多く発生し易かった(図
19(A))。この波形歪みは、ノーズ9,ファンケー
シング5と長尺翼8cの平行度によって大きく変化し、
高調波の数や大きさが変化し易い。すなわち長尺翼8c
をファン軸Oと平行に作った横流ファン8を用いた送風
機では、回転音Nの高調波成分に個体差が大きく発生し
易い。このような高調波は一般的に騒音に含まれると、
耳障りな音となり易い性質がある。また、風量を増すた
めノーズ9との隙間,ファンケーシング5との隙間を狭
めると、回転音Nが著しく大きくなるため、あまり隙間
を小さくできず、したがって、風量も増やすことができ
なかった。 【0010】そこで、実公昭59−39196号,実開
昭56−2092号,実開昭56−45196号の各公
報でそれぞれ記載された横流ファンは翼をファン軸Oに
対して非平行に形成することによって、圧力変動を連続
的に発生させて前記回転騒音Nを低減させることが提案
されている。 【0011】これを実現するためには、一般的に、図2
0で示す横流ファン10のように複数の長尺翼11を数
枚の円盤状の仕切板12に貫通させ、これら長尺翼11
を複数の仕切板12と左右一対の端板13a,13bと
に固定した後、ねじる外力を加えて塑性変形させるか、
あるいは、図21で示す横流ファン14のように、複数
の長尺翼15に外力を加えてねじった状態で複数の仕切
板16と左右一対の端板17a,17bとに固定してい
る。 【0012】また、実公昭59−19838号公報に記
載の横流ファンでは仕切板の片面上に、ファン軸に平行
な複数の翼を林立させ、他面に翼と同数の嵌合溝を設け
た多翼羽根車を用い、この多翼羽根車の翼の先端部を他
の多翼羽根車の仕切板上の嵌合溝に嵌合して連結し、1
本の横流ファンに組み立てているが、嵌合するために翼
を溝に押し込む際に、翼先端部を所定方向へひねるよう
に溝形状を設定している。 【0013】 【発明が解決しようとする課題】(1)しかしながら、
このように翼に外力を加えて変形させる従来の横流ファ
ンでは、翼材料内部に残留応力が大きく残り、寸法精度
を確保することが難しいために送風機の性能にばらつき
が発生し易い。また、このような残留応力を減らすため
には長時間のアニーリングが必要である。一方、翼材料
に応力を残さないようにするためには、翼自体を長手方
向に円弧状に形成する方法があるが、削成によれば材料
に無駄が生ずるうえに、削成工程が増える。 【0014】(2)また、実公昭59−39196号公
報記載の横流ファンでは長尺翼をねじった状態で成形し
た後、組み立ててゆくので、長尺翼の残留応力は少なく
て済むが、次の(3)の課題がある。 【0015】(3)一般的に、横流ファンに外部から衝
撃が加わると、翼と仕切板の接合部に応力が集中する。
そのため、その接合部で破壊変形が起こり易い性質があ
る。 【0016】したがって、長尺翼を仕切板の溝や穴に嵌
め込んで成型する場合は、翼と仕切板との接合手段とし
てカシメあるいは接着が考えられるが、いずれの方法で
も接合部分の強度・剛性は低く、比較的小さい外力の作
用でも接合部分の塑性変形が起こり易く、仕切板と翼と
の取付角度が変化してしまい易い。 【0017】さらに、ファン軸心に対する翼の形状、特
にファン軸心との非平行度を安定して製造することが難
しく、製造誤差が増大して送風性能にも大きなばらつき
を生じる。 【0018】また、このような従来のカシメ止め方式で
は工作性を上げるために、圧着点以外の部分に隙間を作
るのが通常であるが、横流ファンでは翼面に軸方向に気
流が生じ、この気流が仕切板に激しく衝突するので、こ
のカシメ用の隙間に軸方向の気流が流れ込み、笛吹き音
が生じるという課題がある。 【0019】(4)実公昭59−19838号公報記載
の横流ファンは、翼の溶着溝を擂鉢状に形成しておき、
翼の溶着時にねじるように構成しており、翼の長さ違い
の製品を容易に製造することが可能であるが、一旦成形
した翼を組み立てる際に外力を加えてねじり変形させる
ので、上記(1)と同様の課題が生じる。 【0020】そこで本発明はこのような事情を考慮して
なされたもので、その目的は、低騒音で高効率、かつ翼
形状やファン長の変更が容易で信頼性が高く、安価な横
流ファン並びにその製造方法および装置を提供すること
にある。 【0021】 【課題を解決するための手段】本発明は前記課題を解決
するために次のように構成される。 【0022】本願の請求項1に記載の発明(以下、第1
の発明という)は、円板状または環状の仕切板の一面
に、複数の翼を環状に配して所定のねじれ角度で傾斜さ
せて一体に立設する一方、この仕切板の他面に複数の翼
の先端部を嵌入させて固着する嵌合凹部を形成して1駒
の多翼羽根車を一体に成形し、これら複数駒の多翼羽根
車同士を軸方向に順次配列し、その軸方向で隣り合う
翼羽根車の一方の前記各翼先端部を前記嵌合凹部内に嵌
入して固着することにより複数駒の多翼羽根車同士を軸
方向に一体に連結すると共に、軸方向で隣り合う多翼羽
根車同士を、軸心回りに所定角度ずらす所定の駒ずれ角
により連結し、前記ねじれ角を前記駒ずれ角よりも小さ
く設定したことを特徴とする。 【作用】複数駒の 多翼羽根車を軸方向に順次積み重ねて
固着して横流ファンを一体に形成するので、製造が簡単
かつ安価である上に、その多翼羽根車の積層数を適宜選
択することによりファン軸長の変更が容易である。しか
も、多翼羽根車同士を周方向に適宜ずらす、いわゆる
ずれの設定が容易であり、翼形状も任意に設定すること
ができる。 【0023】そして、複数の翼を、仕切板の一面に傾斜
して立設することによりファン軸に対して非平行に形成
しているので、この翼を有する横流ファンとノーズとフ
ァンケーシングの間隙で発生する圧力を連続的に変動さ
せることができる。このために、横流ファンの回転音を
低減することができる。 【0024】また、各翼と仕切板とを一体に成形するの
で、これら翼と仕切板との取付角度の精度を安定的に向
上させて送風性能のばらつきを低減することができる上
に、各翼を仕切板にカシメ止めする必要がないので、翼
のねじれ角度を大きくとることができる上に、仕切板に
カシメ止め用の間隙を設ける必要がないので、この間隙
に気流が流入して発生する笛吹き音を防止することがで
きる。 【0025】 【実施例】以下、本発明の実施例を図1〜図16に基づ
いて説明する。なお、図1〜図16中、同一または相当
部分には同一符号を付している。 【0026】図1は本発明の一実施例の全体構成の斜視
図、図2は図1の分解斜視図、図3(A),(B)は図
1の詳細斜視図であり、これらの図において、横流ファ
ン21は、例えば図17で示す空気調和機の室内機1に
室内ファンとして組み込む場合等に好適な横流ファンで
あり、左右一対の端板22,23間に、横断面が円弧状
の複数の翼24を同心状に環状に配すると共に、所定角
度傾斜させて横架固着しており、各翼24の軸方向中間
部には環状(リング状)の仕切板25を軸方向に所要の
ピッチで配設しており、ファン軸O周りに回転すること
により軸方向に送風するようになっている。 【0027】横流ファン21は図2に示すように一体成
形の複数駒の多翼羽根車26を軸方向に順次同心状に固
着してなり、図2中右端の多翼羽根車26の端板23は
円板状または環状の仕切板25の外面に、図示しないモ
ータ等の回転軸を止めねじ等により着脱自在に結合せし
めるボス部27を同心状に一体、または一体的に形成し
ている。 【0028】一方、図2中、左端の端板22は、その図
中右隣の多翼羽根車26の各翼24の先端部を各嵌合溝
22a内に嵌入固着せしめるものであり、その外面中央
部には同心状に軸28を一体、または一体的に突設して
いる。 【0029】そして、各多翼羽根車26は図2,図4に
示すように環状の仕切板25の一面に、隣り合う多翼羽
根車26の各翼24の先端部をそれぞれ嵌入させて固着
する円弧状の嵌合凹部25aを形成する一方、仕切板2
5の他面には、複数の翼24を周方向に所要の取付ピッ
チを置いて射出成型等により一体に立設している。 【0030】各翼24はその横断面形状が回転方向に対
して前向きに傾斜する円弧状をなし、その回転方向前縁
24aが回転方向へファン軸Oに対して所定角度直線的
に傾斜するように仕切板25に一体にモールド成形され
ている。但し、図5に示すように各翼24を、その回転
方向前縁24bが曲線的に傾斜するように一体に成形し
てもよい。 【0031】また、各翼24は底面図の図6とその部分
拡大図の図7に示すように、その横断面の厚さを仕切板
25側の根元部24cから翼先端部24dへ向けて次第
に薄くなるように先細に形成すると共に、翼根元部24
cと翼先端部24dの両前縁部(外周縁部)同士を結ぶ
前縁24aの外形線に接する接線Loと、翼先端部24
d前縁からファン軸Oに垂下した垂線Soとがなす角度
θoが90°以上(θo≧90°)であり、しかも、翼
根元部24cと翼先端部24dの両後縁部(内周縁部)
同士を結ぶ後縁24eの外形線に接する接線Liと、翼
根元部24c後縁からファン軸Oに垂下した垂線Siと
がなす角度θiが90°以上(θi≧90°)になるよ
うに形成されている。 【0032】そして、図8,図9に示すように横流ファ
ン21は軸方向で隣り合う各多翼羽根車26を、例えば
回転方向へ所定の駒ずれ角29でずらして、順次同心状
に連結固着している。 【0033】この場合、各翼24は、その前縁部24a
の先端が図9中破線で示す垂線よりも回転方向へねじれ
角30だけ角度傾斜して仕切板25に形成されており、
このねじれ角30は上述の駒ずれ角29よりも小さい値
に設定されている。 【0034】また、図10に示すように各多翼羽根車2
6は、各仕切板25上の各翼24の周方向の取付ピッチ
を例えば3種類Pa,Pb,Pc以上に設定している。 【0035】次に、前記多翼羽根車26を、例えば射出
成形により一体に形成した後、金型(成形型)から抜き
出す方法および装置について説明する。 【0036】従来、射出成形品を、例えば金型の上型か
ら分離した下型より抜き出す場合は、図11に示すよう
に複数の平行ノックピン31を多翼羽根車26の仕切板
25の下面に突き当てて押し上げる方法が考えられる
が、この方法では、各翼24が仕切板25に対して所定
角度傾斜しているために、金型から簡単に抜き出すこと
ができず、無理に抜こうとすれば、翼24等が破損して
しまう。 【0037】そこで、本発明者らは、多翼羽根車26
を、その回転軸回りに各翼24の傾斜方向へ回転させな
がら金型より抜き出す方法を提案し、そのためのエジェ
クタ装置を発明した。 【0038】図12はそのエジェクタ装置32の一例の
要部斜視図であり、これは軸心回りに回転するエジェク
タシャフト33にカム構造によってスキューカムプレー
ト34を連動自在に設け、エジェクタシャフト33を回
転させながら上下動させるようになっている。エジェク
タシャフト33の上端部上にはエジェクタブロック35
を連結している。 【0039】エジェクタブロック35は図13にも示す
ように、例えば図示しない上下に分離可能の金型の上金
型が下金型36から分離されたときに、その下金型36
の中心孔36aから上方へ突出して多翼羽根車26をそ
の軸心回りに回転させながら下金型36から上方へ抜き
出すものであり、円盤上の台座37を有する。 【0040】この台座37は、多翼羽根車26の成形時
には下金型36と共に、多翼羽根車26の仕切板25の
一部を形成し、この台座37の円形の突部37aは仕切
板25の中心孔25bを形成する。 【0041】また、突部37aの外周部上面上には、図
14でも示すように仕切板25の内面(下面)に、例え
ば矩形状の突部25cを係脱自在に嵌入せしめる嵌合凹
部37bがそれぞれ形成され、台座37の回転時に、回
転しながら多翼羽根車26を持ち上げる際に、確実に多
翼羽根車26が台座37に追随するようになっている。
なお、仕切板25の各突部25cは図15で示すように
円孔25dでもよく、この場合は、各円孔25dに係脱
自在に嵌合する突部をエジェクタブロック36に突設す
る必要がある。 【0042】したがって、この多翼羽根車26を製造す
る場合は、まず、図示しない金型の上金型と下金型36
および台座37を合せて形成される空間に樹脂材料が射
出されて多翼羽根車26が成形される。 【0043】その後、上金型が下金型から分離し、エジ
ェクタシャフト33が多翼羽根車26を下金型から排出
するように可動する。その際、スキューカムプレート3
4によってエジェクタシャフト33が図中矢印Aの方向
へ回転する。これに伴って、エジェクタブロック35お
よび台座37も回転し、これに成形された多翼羽根車2
6の仕切板25も回転することになる。したがって、多
翼羽根車26は回転しながら下金型36から抜け出る。 【0044】次に、まず、本実施例による騒音低減効果
を図19(B)〜(E)に基づいて説明する。なお、図
19(B)〜(E)は、従来例の騒音分布を示す同図
(A)の実験データを得た実験方法と同一の条件により
行なった結果を示している。つまり、横流ファンの寸法
と翼24の枚数、単位時間当りの回転数を従来例実験と
同一にしている。 【0045】まず、本実施例は図1等に示すように各翼
24をファン軸Oに対して傾斜させて非平行に形成して
いるので、横流ファン21と、図17で示すノーズ9お
よびファンケーシング5との間隙で発生する圧力が連続
的に変動する。このために、駒ずれ角29を設けず、さ
らに、各翼24の周方向設置ピッチを等間隔にした場合
でも、図19(B)に示すように回転音ピーク値Pa
と、その倍音ピーク値Pbとを共に低減することができ
る。 【0046】また、翼24をファン軸Oに対して傾斜さ
せると共に、駒ずれ角29を設けた場合には、仕切板2
5を挟んで隣り合う翼24で発生する音圧波を、駒ずれ
29により相互に打ち消し合うように位相差をつける
ことができるので、翼24の傾斜形状によって低減させ
た回転音の全体を、図19(C)に示すように、さらに
一段と低減することができる。 【0047】さらに、複数の翼24の周方向の取付ピッ
チを複数種類Pa〜Pc設定したので、駒ずれ角29を
設けない場合でも、図19(D)に示すように各翼24
の傾斜形状により低減した回転音Nのピーク周波数成分
を分散させることができ、耳障り感を低減して聴感を改
善することができる。 【0048】また、複数の翼24の周方向の取付ピッチ
を複数種類Pa〜Pc設定すると共に、駒ずれ角29を
設ける場合は、図19(E)に示すように各翼24の傾
斜形状により低減した回転音Nをさらに一段と低減し、
しかも、残った翼ピッチ音の周波数成分を分散させるこ
とができ、耳障り感を改善して聴感を改善することがで
きる。 【0049】そして、本実施例は、仕切板25と各翼2
4とを一体成形した多翼羽根車26の複数駒を軸方向に
連結固着したので、その駒数を適宜調整することによ
り、横流ファン21全体の長さの変更が容易である上
に、駒ずれ角29を適宜選択することにより翼24の形
状変更も非常に容易であり、製造コストを低減すること
ができる。 【0050】また、多翼羽根車26は翼24と仕切板2
5とを一体成形したので、次の諸効果がある。 【0051】(1)翼24を従来例のように後加工でひ
ねる必要がなく、残留歪みが生じないので、翼24と仕
切板25の強度を向上させることができる上に、翼24
と仕切板25との取付角度等の部品寸法の精度を安定し
て向上させることができるので、送風性能のばらつきを
低減することができる。 【0052】(2)翼24のねじれ角30を従来の手法
以上に大きくとれ、大幅な騒音低減が図れる。これに対
して図20で示す従来のカシメ構造の横流ファン10で
は、前記したようにねじれ角を大きく取ると、カシメ強
度が落ちる。そこで、翼11に歪みが大きく残らないよ
うにするためには、平板を円弧状にカットしなければな
らず、材料に無駄が生じるという課題がある。 【0053】(3)仕切板25付近で従来生じた笛吹き
音等の異常音が生じない。つまり、横流ファン21では
翼24面上で軸方向の流れが必ず生じるため、仕切板2
5に気流が激しく衝突する特性がある。このため、従来
のカシメ方式では工作性を上げるために、圧着点以外の
部分に隙間を作るのが通常であった。しかし、この隙間
には軸方向の気流が流れ込み、笛吹き音が生じるという
問題があったが、本実施例では、仕切板25には貫通す
る隙間がないので、これが原因となる笛吹音等の異常音
は殆ど発生しない。 【0054】そして、射出成形後、多翼羽根車26を、
その軸心回りに回転させながら下金型36から抜き出す
ので、この多翼羽根車26を型から引き抜く際の摩擦力
を低減することができ、引抜が容易となる上に、成形性
が良好となる。また、各翼24を先細形状に形成してい
るので、金型からの引抜を一段と容易にすることができ
る。 【0055】さらに、各翼24の前,後縁部24a,2
4eの接線Lo,Liと、ファン軸Oの垂線So,Si
とでなす角度θoを、共に90°以上に設定しているの
で、多翼羽根車26を金型から回転させながら引き抜く
際に、各翼24の前,後縁部24a,24eが型に触れ
なくなり、多翼羽根車26の応力を低減して強度を高め
ると共に、型の摩耗が減少して型寿命が延びる。 【0056】なお、前記実施例では、仕切板25の一面
に翼24を一体に立設した場合について説明したが、本
発明はこれに限定されるものではなく、例えば図16で
示す横流ファン41のように環状の仕切板42の両面
に、複数の翼43をそれぞれ一体に立設してもよい。 【0057】 【発明の効果】以上説明したように本発明は、複数駒
多翼羽根車を軸方向に順次積み重ねて固着して横流ファ
ンを一体に形成するので、製造が簡単かつ安価である上
に、その多翼羽根車の積層数を適宜選択することにより
ファン軸長の変更が容易である。しかも、多翼羽根車同
士を周方向に適宜ずらす、いわゆる駒ずれの設定が容易
であり、そのために、翼形状も任意に設定することがで
きる。 【0058】そして、複数の翼を、仕切板の一面に傾斜
して立設することによりファン軸に対して非平行に形成
しているので、この翼を有する横流ファンとノーズとフ
ァンケーシングの間隙で発生する圧力を連続的に変動さ
せることができるから、横流ファンの回転音を低減する
ことができる。 【0059】また、各翼と仕切板とを一体に成形するの
で、これら翼と仕切板との取付角度の精度を安定的に向
上させて送風性能のばらつきを低減することができる上
に、各翼を仕切板にカシメ止めする必要がないので、翼
のねじれ角を大きくとることができる上に、仕切板にカ
シメ止め用の間隙を設ける必要がないので、この間隙に
気流が流入して発生する笛吹き音を防止することができ
る。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a cross flow fan suitable for an indoor fan or the like of an air conditioner, and particularly to a molded fan .
A number of multi-blade impellers were stacked in the axial direction and fixed.
About the cross flow fan. 2. Description of the Related Art FIG. 17 shows an example of an air conditioner which generally incorporates such a cross flow fan as an indoor fan. In this configuration, a suction grill 3 and a blow grill 4 are disposed vertically on the front surface 2a of a main body casing 2 of the indoor unit 1, and the suction grill 3 and the blow grill 4 are connected by a ventilation path 6 in a fan casing 5. Communicating. In the ventilation path 6, a cross flow fan 8 as an indoor fan is disposed downstream of the indoor heat exchanger 7, and indoor air sucked from the suction grill 3 into the main body casing 2 is supplied to the indoor side. The heat exchanger 7 exchanges heat, and cool air or warm air is blown again from the outlet grill 4 into the room by the cross flow fan 8 to perform cooling or heating. A conventional cross flow fan 8 of this type is
For example, as shown in FIG.
a, 8b, a plurality of long blades 8c, which are parallel to the fan axis O, are laid horizontally at a required pitch in the circumferential direction, and an annular partition plate 8d is provided in the axial middle portion in the axial direction. They are juxtaposed at the required pitch. The cross flow fan 8 forms a blower together with the fan casing 5 and the nose 9 shown in FIG. 17, and is divided into a suction portion and a blow portion near the gap between the nose 9, the fan casing 5 and the cross flow fan 8. I have. In particular,
In these two gaps, a large pressure fluctuation occurs because the direction of the flow velocity with respect to the long blades 8c of the cross flow fan 8 is reversed, and it is a main sound source of the blowing noise. The noise due to the pressure fluctuation is represented by the frequency of the number of long blades 8c of the cross flow fan 8 times the number of rotations, and the rotation sounds Pa and Pb having large peaks in the frequency of the overtones in FIG.
As shown in the noise waveform N of (A), since the pressure fluctuation waveform is steep, there is a characteristic that a harmonic (overtone Pb) having this as a fundamental wave is easily generated. FIG. 19A shows the dimensions of the cross flow fan 8, for example, a diameter of 88 mm, a total length of 593 mm, and a long blade 8c.
Is an analysis diagram of the fan noise N when the number of the blades is 35, the long blade 8c is parallel to the fan shaft O, and is operated at a rotation speed of 20 times / sec. [0010] The smaller the gap between the cross flow fan 8 and the nose 9 and the fan casing 5 is, the more the air volume per rotation speed tends to increase. However, the pressure fluctuation in this portion also increases, and the rotation noise N increases. And its harmonic components also increase. To a certain extent, the smaller the gap, the larger the increase in air volume, so the noise value at the same air volume tends to decrease and the air blowing performance tends to increase. These gaps cannot be made very small because they are not desirable from the viewpoint of hearing, such as flaking. The longitudinal direction of the long blade 8c is the fan axis O.
In the conventional blower using the cross flow fan 8 formed in parallel with the fan, the nose 9 and the fan casing 5 that constitute the blower together with the cross flow fan 8 are formed in parallel with the fan axis O, so that each fan is formed one by one. In the long blade 8c, the entire length of the long blade 8c passes through the vicinity of each gap between the nose 9 and the fan casing 5 at the same time in a short time, and pressure fluctuation occurs simultaneously in a space corresponding to the length of the long blade 8c. Therefore, the sum of the pressure fluctuations generated by one long blade 8c is large and the waveform distortion is large, so that many harmonic components are likely to be generated (FIG. 19A). This waveform distortion changes greatly depending on the parallelism of the nose 9, the fan casing 5, and the long blade 8c.
The number and magnitude of harmonics are apt to change. That is, the long wing 8c
In the blower using the cross flow fan 8 formed in parallel with the fan axis O, a large individual difference is likely to occur in the harmonic component of the rotation sound N. When such harmonics are generally included in noise,
It has the property of easily causing harsh sounds. Also, if the gap between the nose 9 and the fan casing 5 is narrowed to increase the air volume, the rotation noise N is significantly increased , so that the gap cannot be reduced much, and therefore the air volume cannot be increased. The cross-flow fans described in Japanese Utility Model Publication Nos. 59-39196, 56-2092 and 56-45196, respectively, have their blades formed non-parallel to the fan axis O. It has been proposed to reduce the rotational noise N by continuously generating pressure fluctuations. In order to realize this, generally, FIG.
A plurality of long blades 11 penetrate through several disk-shaped partition plates 12 like a cross flow fan 10 indicated by a reference numeral 0.
Is fixed to the plurality of partition plates 12 and the pair of left and right end plates 13a and 13b, and then plastically deformed by applying an external twisting force,
Alternatively, as in a cross flow fan 14 shown in FIG. 21, a plurality of long blades 15 are fixed to a plurality of partition plates 16 and a pair of left and right end plates 17a, 17b while being twisted by applying an external force to the plurality of long blades 15. Further, in the cross flow fan described in Japanese Utility Model Publication No. 59-19838, a plurality of blades parallel to the fan axis are provided on one side of a partition plate, and the same number of fitting grooves as the number of blades are provided on the other side. Using a multi-blade impeller, the tips of the blades of this multi-blade impeller are fitted into mating grooves on the partition plate of another multi-blade impeller and connected.
Although it is assembled into a cross flow fan, the groove shape is set so that the blade tip is twisted in a predetermined direction when the blade is pushed into the groove for fitting. Problems to be Solved by the Invention (1) However,
As described above, in the conventional cross-flow fan that deforms the wing by applying an external force, a large residual stress remains inside the wing material, and it is difficult to secure dimensional accuracy, so that the performance of the blower tends to vary. Further, long-time annealing is required to reduce such residual stress. On the other hand, there is a method in which the blade itself is formed in an arc shape in the longitudinal direction in order to prevent the stress from remaining in the blade material. However, the cutting causes waste in the material and increases the cutting process. . (2) In the cross-flow fan described in Japanese Utility Model Publication No. 59-39196, the long blade is formed in a twisted state and then assembled, so that the residual stress of the long blade can be reduced. There is a problem (3). (3) Generally, when an external impact is applied to the cross flow fan, stress is concentrated on the joint between the blade and the partition plate.
Therefore, there is a property that destructive deformation easily occurs at the joint. Therefore, when the long wing is molded by fitting it into the groove or hole of the partition plate, caulking or bonding can be considered as a joining means of the wing and the partition plate. The rigidity is low, the plastic deformation of the joint is likely to occur even with the action of a relatively small external force, and the mounting angle between the partition plate and the wing tends to change. Further, it is difficult to stably manufacture the shape of the blade with respect to the fan axis, particularly the degree of non-parallelism with the fan axis, and the manufacturing error increases, resulting in a large variation in air blowing performance. In such a conventional caulking method, a gap is usually formed at a portion other than the crimping point in order to improve workability. However, in a cross flow fan, an airflow is generated in the blade surface in an axial direction. Since this airflow violently collides with the partition plate, there is a problem that an axial airflow flows into the caulking gap and a whistling sound is generated. (4) In the cross flow fan described in Japanese Utility Model Publication No. 59-19838, the welding grooves of the blades are formed in a mortar shape.
The wings are configured to be twisted at the time of welding, and it is possible to easily manufacture products having different wing lengths. However, when assembling the wings once formed, the wings are subjected to torsional deformation by applying an external force. The same problem as 1) occurs. The present invention has been made in view of such circumstances, and has as its object to provide a low-noise, high-efficiency, easy-to-change blade shape and fan length, high reliability, and an inexpensive cross flow fan. And a method and an apparatus for manufacturing the same. The present invention is configured as follows to solve the above-mentioned problems. The invention described in claim 1 of the present application (hereinafter referred to as the first invention)
On the one surface of a disk-shaped or annular partition plate, a plurality of wings are arranged in an annular shape, inclined at a predetermined twist angle , and integrally erected, while a plurality of blades are arranged on the other surface of the partition plate. Wings
A multi-blade impeller of one frame is integrally formed by forming a fitting concave portion into which the leading end of the multi-blade impeller is fitted and fixed, and the multi-blade impellers of these plural frames are sequentially arranged in the axial direction . Each of the blade tips of one of the multi-blade impellers adjacent in the axial direction is fitted in the fitting recess.
By inserting and fixing, multiple pieces of multi-blade impellers
Multi-blade feathers that are integrally connected in the direction and are adjacent in the axial direction
A predetermined piece shift angle that shifts the root wheels by a predetermined angle around the axis.
And the torsion angle is smaller than the piece shift angle.
It is characterized by having been set well. A plurality of pieces of multi-blade impellers are sequentially stacked in the axial direction and fixed to form a cross flow fan integrally. Therefore, the production is simple and inexpensive, and the number of stacked multi-blade impellers is appropriately selected. This makes it easy to change the fan shaft length. In addition, a so-called piece that appropriately shifts the multi-blade impellers in the circumferential direction.
The deviation can be easily set, and the wing shape can be set arbitrarily. [0023] Then, a plurality of blades, since the non-parallel with respect to the fan axis by projecting while inclined on one side of the partition plate, clearance transverse fan and nose and a fan casing having the wings Can be varied continuously. For this reason, the rotation noise of the cross flow fan can be reduced. Further, since each wing and the partition plate are formed integrally, the accuracy of the mounting angle between these wings and the partition plate can be stably improved to reduce the variation in the blowing performance, and furthermore, It is not necessary to caulk the wings to the partition plate, so that the torsion angle of the wings can be increased, and there is no need to provide a gap for caulking in the partition plate. Can prevent whistling noises
Wear. Embodiments of the present invention will be described below with reference to FIGS. 1 to 16, the same or corresponding parts are denoted by the same reference numerals. FIG. 1 is a perspective view of the overall structure of one embodiment of the present invention, FIG. 2 is an exploded perspective view of FIG. 1, and FIGS. 3 (A) and 3 (B) are detailed perspective views of FIG. In the figure, a cross flow fan 21 is a cross flow fan suitable for, for example, being incorporated as an indoor fan into the indoor unit 1 of the air conditioner shown in FIG. 17, and has a circular cross section between a pair of left and right end plates 22 and 23. A plurality of arc-shaped wings 24 are concentrically arranged in an annular shape, are fixed at a predetermined angle, and are fixed horizontally. An annular (ring-shaped) partition plate 25 is provided at an intermediate portion of each wing 24 in the axial direction. Are arranged at a required pitch, and are rotated around the fan axis O to blow air in the axial direction. As shown in FIG. 2, the cross flow fan 21 has a plurality of integrally formed multi-blade impellers 26 which are sequentially and concentrically fixed in the axial direction, and an end plate of the multi-blade impeller 26 at the right end in FIG. Numeral 23 is formed on the outer surface of a disk-shaped or annular partitioning plate 25 concentrically integrally or integrally with a boss 27 for detachably connecting a rotating shaft of a motor or the like (not shown) with a set screw or the like. On the other hand, the left end plate 22 in FIG. 2 is for fitting the tip of each blade 24 of the multi-blade impeller 26 on the right side in the drawing into each fitting groove 22a and fixing it. A shaft 28 is integrally or concentrically protruded from the center of the outer surface. Each of the multi-blade impellers 26 is fixed by fitting the tip of each of the blades 24 of the adjacent multi-blade impeller 26 to one surface of an annular partition plate 25 as shown in FIGS. While forming the arcuate fitting concave portion 25a, the partition plate 2
A plurality of blades 24 are integrally provided upright on the other surface by injection molding or the like at a required mounting pitch in the circumferential direction. Each wing 24 has an arc shape whose cross section is inclined forward with respect to the rotation direction, and its front edge 24a in the rotation direction is inclined linearly at a predetermined angle with respect to the fan axis O in the rotation direction. And molded integrally with the partition plate 25. However, as shown in FIG. 5, each wing 24 may be integrally formed so that its leading edge 24b in the rotational direction is curvedly inclined. As shown in FIG. 6 of a bottom view and FIG. 7 of a partially enlarged view of each wing 24, the thickness of the cross section is changed from the root 24c on the partition plate 25 side to the wing tip 24d. The taper is formed so as to be gradually thinner, and the blade root portion 24 is formed.
c and a tangent line Lo contacting the outer shape of the leading edge 24a connecting the leading edges (outer peripheral edges) of the wing tip 24d, and the wing tip 24
d The angle θo formed by the vertical line So hanging down from the front edge to the fan axis O is 90 ° or more (θo ≧ 90 °), and both the rear edges (the inner peripheral edge) of the blade root portion 24c and the blade tip portion 24d. )
An angle θi formed between a tangent line Li contacting the outer shape of the trailing edge 24e connecting the two and a perpendicular line Si hanging from the trailing edge of the blade root portion 24c to the fan axis O is formed so as to be 90 ° or more (θi ≧ 90 °). Have been. Then, as shown in FIGS. 8 and 9, the cross flow fan 21 sequentially concentrically connects the multi-blade impellers 26 adjacent in the axial direction by, for example, a predetermined piece shift angle 29 in the rotational direction. It is stuck. In this case, each wing 24 has a leading edge 24a.
9 is formed on the partition plate 25 at a tilt angle of 30 degrees in the rotation direction from the perpendicular shown by the broken line in FIG.
The torsion angle 30 is set to a value smaller than the above-mentioned piece shift angle 29. As shown in FIG. 10, each multiblade impeller 2
In No. 6, the circumferential mounting pitch of each blade 24 on each partition plate 25 is set to, for example, three types Pa, Pb, Pc or more. Next, a method and an apparatus for integrally forming the multi-blade impeller 26 by, for example, injection molding and then extracting it from a mold (mold) will be described. Conventionally, when an injection-molded product is extracted from a lower mold separated from an upper mold of a mold, for example, a plurality of parallel knock pins 31 are attached to the lower surface of the partition plate 25 of the multi-blade impeller 26 as shown in FIG. A method of abutting and pushing up is conceivable, but in this method, since each wing 24 is inclined at a predetermined angle with respect to the partition plate 25, the wings 24 cannot be easily pulled out from the mold, and if it is forcibly pulled out. If this happens, the wings 24 and the like will be damaged. Therefore, the present inventors have proposed a multi-blade impeller 26.
And extracting it from the mold while rotating the blade around the rotation axis in the direction of inclination of each blade 24, and invented an ejector device for that. FIG. 12 is a perspective view of an essential part of an example of the ejector device 32. A skew cam plate 34 is provided on an ejector shaft 33 rotating around an axis by a cam structure so as to be able to move freely, and the ejector shaft 33 is rotated. It is designed to move up and down while moving. An ejector block 35 is provided on the upper end of the ejector shaft 33.
Are linked. As shown in FIG. 13, for example, when an upper mold (not shown) that can be separated vertically is separated from a lower mold 36, the ejector block 35 is provided with the lower mold 36.
The multi-blade impeller 26 is protruded upward from the center hole 36a, and is pulled out from the lower mold 36 while rotating the multi-blade impeller 26 around its axis, and has a pedestal 37 on a disk. The pedestal 37 forms a part of the partition plate 25 of the multi-blade impeller 26 together with the lower mold 36 when the multi-blade impeller 26 is formed. The circular projection 37 a of the pedestal 37 is formed by a partition plate. 25 center holes 25b are formed. On the upper surface of the outer periphery of the projection 37a, as shown in FIG. 14, a fitting recess 37b into which, for example, a rectangular projection 25c is removably fitted into the inner surface (lower surface) of the partition plate 25. Are formed, and when the pedestal 37 rotates, the multi-blade impeller 26 surely follows the pedestal 37 when the multi-blade impeller 26 is lifted while rotating.
Note that each projection 25c of the partition plate 25 may be a circular hole 25d as shown in FIG. 15, and in this case, it is necessary to project a projection that engages with the circular hole 25d so as to be detachable from the ejector block 36. There is. Therefore, when manufacturing the multi-blade impeller 26, first, the upper mold and the lower mold 36 (not shown) are used.
Then, the resin material is injected into a space formed by combining the pedestal 37 and the multi-blade impeller 26 is formed. Thereafter, the upper die is separated from the lower die, and the ejector shaft 33 moves so as to discharge the multi-blade impeller 26 from the lower die. At that time, the skew cam plate 3
4 causes the ejector shaft 33 to rotate in the direction of arrow A in the figure. Along with this, the ejector block 35 and the pedestal 37 also rotate, and the multi-blade impeller 2
6 also rotates. Therefore, the multi-blade impeller 26 comes out of the lower mold 36 while rotating. Next, the noise reduction effect of the present embodiment will be described with reference to FIGS. 19 (B) to 19 (E) show the results obtained under the same conditions as the experimental method for obtaining the experimental data of FIG. 19A showing the noise distribution of the conventional example. That is, the dimensions of the cross flow fan, the number of blades 24, and the number of rotations per unit time are the same as those in the conventional example. First, in this embodiment, as shown in FIG. 1 and the like, each blade 24 is formed non-parallel by being inclined with respect to the fan axis O, so that the cross flow fan 21 and the nose 9 shown in FIG. The pressure generated in the gap with the fan casing 5 varies continuously. For this reason, even when the frame shift angle 29 is not provided and the pitch of the wings 24 in the circumferential direction is set at equal intervals, as shown in FIG.
And its overtone peak value Pb can be reduced. When the blades 24 are inclined with respect to the fan axis O and a piece shift angle 29 is provided, the partition plate 2
The sound pressure waves generated by blade 24 adjacent across the 5, frame displacement
Since the phase difference can be made so as to cancel each other out by the angle 29, the whole rotation sound reduced by the inclined shape of the blade 24 can be further reduced as shown in FIG. . Further, since a plurality of types of mounting pitches Pa to Pc in the circumferential direction of the plurality of blades 24 are set, even when the piece shift angle 29 is not provided, as shown in FIG.
It is possible to disperse the peak frequency component of the rotation sound N reduced by the inclined shape of, and reduce the unpleasant sensation and improve the audibility. When a plurality of types of the mounting pitches Pa to Pc in the circumferential direction of the plurality of blades 24 are set and the piece shift angle 29 is provided, the inclination shape of each blade 24 as shown in FIG. The reduced rotation noise N is further reduced,
In addition, the frequency component of the remaining wing pitch sound can be dispersed, so that the unpleasant sensation can be improved and the audibility can be improved. In this embodiment, the partition plate 25 and each wing 2
Since the plurality of pieces of the multi-blade impeller 26 formed integrally with each other are connected and fixed in the axial direction, the overall length of the cross flow fan 21 can be easily changed by appropriately adjusting the number of pieces. By appropriately selecting the shift angle 29, it is very easy to change the shape of the blade 24, and the manufacturing cost can be reduced. The multi-blade impeller 26 is composed of the blade 24 and the partition plate 2.
5 are integrally formed, the following effects can be obtained. (1) The blade 24 does not need to be twisted by post-processing as in the conventional example, and no residual distortion occurs. Therefore, the strength of the blade 24 and the partition plate 25 can be improved, and the blade 24 can be improved.
It is possible to stably improve the accuracy of component dimensions such as the mounting angle between the partition and the partition plate 25, so that it is possible to reduce variations in air blowing performance. (2) The torsion angle 30 of the blade 24 can be made larger than that of the conventional method, so that the noise can be significantly reduced. On the other hand, in the cross-flow fan 10 of the conventional crimping structure shown in FIG. 20, when the twist angle is increased as described above, the crimping strength decreases. Therefore, in order to prevent a large amount of distortion from remaining on the wing 11, the flat plate must be cut in an arc shape, and there is a problem that the material is wasted. (3) No abnormal sound such as a whistling sound conventionally generated near the partition plate 25 is generated. In other words, since the axial flow always occurs on the surface of the blade 24 in the cross flow fan 21, the partition plate 2
5 has a characteristic that the airflow violently collides. For this reason, in the conventional caulking method, a gap is usually formed in a portion other than the crimping point in order to improve workability. However, there is a problem that the airflow in the axial direction flows into this gap and a whistling sound is generated. However, in this embodiment, since there is no gap that penetrates through the partition plate 25, this causes a whistling sound or the like. Almost no abnormal sound is generated. After the injection molding, the multi-blade impeller 26 is
Since the multi-blade impeller 26 is extracted from the lower mold 36 while being rotated about its axis, the frictional force when the multi-blade impeller 26 is pulled out from the mold can be reduced, so that the pull-out becomes easy and the moldability is improved. Become. Further, since each wing 24 is formed in a tapered shape, pulling out from the mold can be further facilitated. Further, the front and rear edges 24a, 2
4e, the tangent lines Lo and Li of the fan shaft O and the perpendicular lines So and Si of the fan shaft O.
Are set to 90 ° or more, so that when the multi-blade impeller 26 is pulled out while rotating from the mold, the front and rear edges 24a, 24e of each blade 24 touch the mold. As a result, the stress of the multi-blade impeller 26 is reduced to increase the strength, and the wear of the mold is reduced, thereby extending the life of the mold. In the above-described embodiment, the case where the blades 24 are integrally provided on one surface of the partition plate 25 has been described. However, the present invention is not limited to this. For example, the cross flow fan 41 shown in FIG. A plurality of blades 43 may be integrally provided on both surfaces of the annular partition plate 42 as described above. As described above, the present invention is simple and inexpensive to manufacture because the cross flow fan is integrally formed by sequentially stacking and fixing a plurality of pieces of multi-blade impellers in the axial direction. In addition, the axial length of the fan can be easily changed by appropriately selecting the number of stacked multi-blade impellers. In addition, it is easy to set a so-called frame shift in which the multi-blade impellers are appropriately shifted in the circumferential direction, and therefore, the blade shape can be arbitrarily set. Since the plurality of blades are formed non-parallel to the fan axis by being erected on one surface of the partition plate, the gap between the cross flow fan having the blades, the nose and the fan casing is provided. Can continuously fluctuate, the rotational noise of the cross flow fan can be reduced. Further, since each wing and the partition plate are integrally formed, the accuracy of the mounting angle between these wings and the partition plate can be stably improved, and the variation in the air blowing performance can be reduced. Since it is not necessary to caulk the wings to the partition plate, the torsion angle of the wings can be increased, and there is no need to provide a gap for caulking in the partition plate. Can prevent whistling noise
You.

【図面の簡単な説明】 【図1】本発明に係る横流ファンの一実施例の斜視図。 【図2】図1で示す実施例の分解斜視図。 【図3】(A),(B)は図1の各詳細拡大図。 【図4】図2で示す多翼羽根車の一例の斜視図。 【図5】図2で示す多翼羽根車の他の一例の斜視図。 【図6】図4の底面図。 【図7】図6の要部拡大図。 【図8】図1で示す実施例の横流ファンの駒ずれ角を示
す斜視図。 【図9】図8で示す駒ずれ角とねじれ角を示す要部拡大
斜視図。 【図10】図6で示す多翼羽根車の翼取付ピッチを示す
底面図。 【図11】図2等で示す一体成形の多翼羽根車を従来の
平行ノックピンにより金型より抜け出す方法を示す要部
拡大斜視図。 【図12】図2等で示す多翼羽根車を型から抜け出すた
めのエジェクタ装置の斜視図。 【図13】図12で示すエジェクタブロックにより図2
等で示す多翼羽根車を下金型から抜け出す状態を示す斜
視図。 【図14】図13で示す多翼羽根車の部分拡大斜視図。 【図15】図13で示す多翼羽根車の変形例の部分拡大
斜視図。 【図16】本発明の他の実施例の一部切欠分解斜視図。 【図17】従来の空気調和機における室内機の一例の縦
断面図。 【図18】図17で示す従来の横流ファンの斜視図。 【図19】(A)は図18で示す従来の横流ファンの回
転音の分布図、(B)〜(E)は図1等で示す本発明の
各実施例の回転音の分布図。 【図20】従来の他の横流ファンの斜視図。 【図21】図20で示す横流ファンの分解斜視図。 【符号の説明】 21,41 横流ファン 22,23 端板 24,43 翼 24a 翼前縁(直線) 24b 翼前縁(曲線) 24c 翼根元部 24d 翼先端部 25 仕切板 25a 円弧状嵌合凹部 25b 中心孔 26 多翼羽根車 27 ボス部 28 軸 29 駒ずれ角 30 ねじれ角 31 平行ノックピン 32 カム式エジェクタ装置 33 エジェクタシャフト 34 スキューカムプレート 35 エジェクタブロック 36 下金型 37 台座 37a 円形突部 37b 嵌合凹部
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a perspective view of one embodiment of a cross flow fan according to the present invention. FIG. 2 is an exploded perspective view of the embodiment shown in FIG. FIGS. 3A and 3B are detailed enlarged views of each of FIGS. FIG. 4 is a perspective view of an example of the multi-blade impeller shown in FIG. 2; FIG. 5 is a perspective view of another example of the multi-blade impeller shown in FIG. 2; FIG. 6 is a bottom view of FIG. 4; FIG. 7 is an enlarged view of a main part of FIG. 6; FIG. 8 is a perspective view showing a piece shift angle of the cross flow fan of the embodiment shown in FIG. 1; FIG. 9 is an enlarged perspective view of a main part showing a piece shift angle and a twist angle shown in FIG. 8; FIG. 10 is a bottom view showing the blade mounting pitch of the multi-blade impeller shown in FIG. 6; FIG. 11 is an enlarged perspective view of a main part showing a method for pulling out the integrally molded multi-blade impeller shown in FIG. 2 and the like from a mold using a conventional parallel knock pin. FIG. 12 is a perspective view of an ejector device for removing the multiblade impeller shown in FIG. 2 and the like from a mold. FIG. 13 shows an ejector block shown in FIG.
FIG. 7 is a perspective view showing a state in which the multi-blade impeller shown in FIG. 14 is a partially enlarged perspective view of the multi-blade impeller shown in FIG. FIG. 15 is a partially enlarged perspective view of a modified example of the multi-blade impeller shown in FIG. FIG. 16 is an exploded perspective view with a part cut away according to another embodiment of the present invention. FIG. 17 is a longitudinal sectional view of an example of an indoor unit in a conventional air conditioner. 18 is a perspective view of the conventional cross flow fan shown in FIG. 19A is a distribution diagram of rotation noise of the conventional cross flow fan shown in FIG. 18, and FIGS. 19B to 19E are distribution diagrams of rotation noise of each embodiment of the present invention shown in FIG. FIG. 20 is a perspective view of another conventional cross flow fan. FIG. 21 is an exploded perspective view of the cross flow fan shown in FIG. 20; [Description of Signs] 21, 41 Cross-flow fans 22, 23 End plates 24, 43 Blade 24a Blade leading edge (straight) 24b Blade leading edge (curve) 24c Blade root 24d Blade tip 25 Partition plate 25a Arc-shaped fitting recess 25b Center hole 26 Multi-blade impeller 27 Boss part 28 Shaft 29 Frame offset angle 30 Twist angle 31 Parallel knock pin 32 Cam type ejector device 33 Ejector shaft 34 Skew cam plate 35 Ejector block 36 Lower die 37 Base 37a Circular protrusion 37b fit Recess

───────────────────────────────────────────────────── フロントページの続き (72)発明者 金野 悟 静岡県富士市蓼原336番地 株式会社東 芝 富士工場内 (72)発明者 池田 義雄 静岡県富士市蓼原336番地 株式会社東 芝 富士工場内 (72)発明者 広瀬 勉 静岡県富士市蓼原336番地 株式会社東 芝 富士工場内 (56)参考文献 実開 昭63−166697(JP,U) 実開 平5−17198(JP,U) 実開 平1−160196(JP,A) 実公 昭59−19838(JP,Y1) 実公 昭59−39196(JP,Y1) (58)調査した分野(Int.Cl.7,DB名) F04D 17/04 F04D 29/30 ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Satoru Kanno 336 Tatehara, Fuji City, Shizuoka Prefecture Inside the Toshiba Fuji Factory (72) Inventor Yoshio Ikeda 336 Tatehara Field, Fuji City, Shizuoka Prefecture Toshiba Fuji Factory ( 72) Inventor Tsutomu Hirose 336 Tatehara, Fuji City, Shizuoka Prefecture Toshiba Corporation Inside the Fuji Plant (56) References Japanese Utility Model 1988-16697 (JP, U) Japanese Utility Model 5-117198 (JP, U) Japanese Utility Model 1-160196 (JP, A) Jiko 59-19838 (JP, Y1) Jiko 59-39196 (JP, Y1) (58) Fields investigated (Int. Cl. 7 , DB name) F04D 17/04 F04D 29/30

Claims (1)

(57)【特許請求の範囲】 【請求項1】 円板状または環状の仕切板の一面に、複
数の翼を環状に配して所定のねじれ角度で傾斜させて一
体に立設する一方、この仕切板の他面に複数の翼の先端
部を嵌入させて固着する嵌合凹部を形成して1駒の多翼
羽根車を一体に成形し、これら複数駒の多翼羽根車同士
を軸方向に順次配列し、その軸方向で隣り合う多翼羽根
車の一方の前記各翼先端部を前記嵌合凹部内に嵌入して
固着することにより複数駒の多翼羽根車同士を軸方向に
一体に連結すると共に、軸方向で隣り合う多翼羽根車同
士を、軸心回りに所定角度ずらす所定の駒ずれ角により
連結し、前記ねじれ角を前記駒ずれ角よりも小さく設定
したことを特徴とする横流ファン。
(57) [Claim 1] A plurality of wings are arranged in an annular shape on one surface of a disk-shaped or annular partition plate, and are inclined at a predetermined twist angle to be integrally erected . The other side of this partition plate has multiple wing tips
A multi-blade impeller of one frame is integrally formed by forming a fitting concave portion into which the portion is fitted and fixed, and the multi-blade impellers of the plurality of frames are sequentially arranged in the axial direction, and are adjacent to each other in the axial direction. Each of the blade tips of one of the multi-blade impellers is fitted into the fitting recess.
By fixing, multiple pieces of multi-blade impellers are
Multi-blade impellers that are connected together and are adjacent in the axial direction
Is shifted by a predetermined angle around the axis.
Connect and set the torsion angle smaller than the piece shift angle
Cross flow fan, characterized in that it has.
JP33749597A 1997-12-08 1997-12-08 Cross flow fan Expired - Lifetime JP3488611B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP33749597A JP3488611B2 (en) 1997-12-08 1997-12-08 Cross flow fan

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP33749597A JP3488611B2 (en) 1997-12-08 1997-12-08 Cross flow fan

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP6187575A Division JP2799143B2 (en) 1994-08-09 1994-08-09 Apparatus and method for manufacturing multi-blade impeller for cross-flow fan

Publications (2)

Publication Number Publication Date
JPH10131886A JPH10131886A (en) 1998-05-19
JP3488611B2 true JP3488611B2 (en) 2004-01-19

Family

ID=18309197

Family Applications (1)

Application Number Title Priority Date Filing Date
JP33749597A Expired - Lifetime JP3488611B2 (en) 1997-12-08 1997-12-08 Cross flow fan

Country Status (1)

Country Link
JP (1) JP3488611B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4583095B2 (en) 2004-07-27 2010-11-17 東芝キヤリア株式会社 Cross flow fan
JP2006329098A (en) * 2005-05-27 2006-12-07 Daikin Ind Ltd Cross flow fan
JP4549416B2 (en) * 2008-10-22 2010-09-22 シャープ株式会社 Cross-flow fan, blower and impeller molding machine
JP5030115B2 (en) * 2010-02-16 2012-09-19 シャープ株式会社 Cross-flow fan, blower and impeller molding machine
JP5041446B2 (en) * 2010-02-16 2012-10-03 シャープ株式会社 Cross-flow fan, blower and impeller molding machine
CN110206757A (en) * 2019-06-28 2019-09-06 宁波奥克斯电气股份有限公司 A kind of through-flow fan blade and air conditioner
CN114526261B (en) * 2022-02-23 2024-04-02 浙江得业电机科技有限公司 Impeller with high-low curved surface structure

Also Published As

Publication number Publication date
JPH10131886A (en) 1998-05-19

Similar Documents

Publication Publication Date Title
JP2799143B2 (en) Apparatus and method for manufacturing multi-blade impeller for cross-flow fan
JP3107711B2 (en) Cross flow fan
JP3092554B2 (en) Centrifugal blower, method for manufacturing the same, and air conditioner equipped with the centrifugal blower
JP3995010B2 (en) Impeller of multiblade blower and method of manufacturing the same
JP6063619B2 (en) Centrifugal fan
JP2002156128A (en) Turbo fan for air conditioner
EP2549117A1 (en) Fan, metallic mold, and fluid delivery device
JP5796165B2 (en) Impeller, electric blower using the impeller, and electric vacuum cleaner using the electric blower
WO2010047242A1 (en) Molding machine for following-through fan, blower and blade wheel
JP2005120877A (en) Transverse flow blower and blade for the same
JP3488611B2 (en) Cross flow fan
JP2988897B2 (en) Cross flow fan
JP5187353B2 (en) Cross-flow fan and air conditioner equipped with the same
JP3465878B2 (en) Method of manufacturing cross flow fan and multi-blade impeller
CN102022349A (en) Blowing fan and blower using the same
JP3668782B2 (en) Blower fan and manufacturing method thereof
JP5041446B2 (en) Cross-flow fan, blower and impeller molding machine
JP5030115B2 (en) Cross-flow fan, blower and impeller molding machine
JP4649972B2 (en) Blower and air conditioner equipped with it
JP6179819B2 (en) Air conditioner
JP4775867B1 (en) Fan, molding die and fluid feeder
JP2003035293A (en) Impeller for centrifugal blower and centrifugal blower equipped therewith
KR0155503B1 (en) Manufacturing device of multiple impeller for cross current fan
JP2012202263A (en) Impeller for sirocco fan and sirocco fan
GB2324836A (en) A method of manufacturing a transverse fan having moulded impeller components

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081031

Year of fee payment: 5

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081031

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091031

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091031

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101031

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111031

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121031

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121031

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131031

Year of fee payment: 10

EXPY Cancellation because of completion of term