JP3486585B2 - Method and apparatus for cultivating carnivorous snails - Google Patents

Method and apparatus for cultivating carnivorous snails

Info

Publication number
JP3486585B2
JP3486585B2 JP28643399A JP28643399A JP3486585B2 JP 3486585 B2 JP3486585 B2 JP 3486585B2 JP 28643399 A JP28643399 A JP 28643399A JP 28643399 A JP28643399 A JP 28643399A JP 3486585 B2 JP3486585 B2 JP 3486585B2
Authority
JP
Japan
Prior art keywords
carnivorous
parent
water
shell
juveniles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP28643399A
Other languages
Japanese (ja)
Other versions
JP2001103860A (en
Inventor
康男 小泊
Original Assignee
芙蓉海洋開発株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 芙蓉海洋開発株式会社 filed Critical 芙蓉海洋開発株式会社
Priority to JP28643399A priority Critical patent/JP3486585B2/en
Publication of JP2001103860A publication Critical patent/JP2001103860A/en
Application granted granted Critical
Publication of JP3486585B2 publication Critical patent/JP3486585B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A40/00Adaptation technologies in agriculture, forestry, livestock or agroalimentary production
    • Y02A40/80Adaptation technologies in agriculture, forestry, livestock or agroalimentary production in fisheries management
    • Y02A40/81Aquaculture, e.g. of fish

Landscapes

  • Farming Of Fish And Shellfish (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】この発明は、肉食性巻き貝
類、詳しくは、バイ(俗称「バイ貝」という)を始めと
するエゾバイ科の肉食性巻き貝およびアカニシを始めと
するアクキガイ科の肉食性巻き貝等を養殖する方法、な
らびに、これに用いる装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to carnivorous snails, more particularly carnivorous snails of the family Spermidae including bait (commonly known as "bai shellfish") and carnivorous snails of the mussel family such as Akanishi. The present invention relates to a method for cultivating fish etc. and an apparatus used for the method.

【0002】[0002]

【従来の技術】貝類には、肉食性および藻食性の種類が
あることが知られている。具体的には、バイを始めとす
るエゾバイ科の肉食性巻き貝およびアカニシを始めとす
るアクキガイ科の肉食性巻き貝等である。巻き貝類に関
する養殖技術として従来から知られているのは、主に藻
食性貝類についてのものである。
2. Description of the Related Art It is known that shellfish include carnivorous and algae-eating types. Specific examples thereof include carnivorous snails belonging to the family Shrimpidae such as bait and carnivorous snails belonging to the family Acrididae such as akanishi. Conventionally known aquaculture techniques for snails are mainly algae-eating shellfish.

【0003】一方、バイに代表される肉食性巻き貝につ
いての大量養殖技術は、産業的および実用的にいまだ確
立されておらず、従来から試験研究機関、例えば、鳥取
県水産試験場および千葉県水産試験場等において種苗生
産、蓄養、飼育等が試験的に実施されている段階であ
る。
On the other hand, the mass-culture technology for carnivorous snails represented by Bai has not yet been established industrially and practically, and has been a testing and research institution such as Tottori Prefectural Fisheries Experimental Station and Chiba Prefectural Fisheries Experimental Station. Seed production, farming, breeding, etc. are being conducted on a trial basis.

【0004】以下に、従来試験的に行なわれているバイ
の養殖方法(水槽での掛け流し法)について説明する。
図8〜10は、その養殖装置を示す図面である。
Hereinafter, a method for cultivating a bait (a method of pouring in a water tank), which has been conventionally tested, will be described.
8 to 10 are drawings showing the aquaculture device.

【0005】まず、親貝の蓄養から説明する。First, the cultivation of parent shellfish will be described.

【0006】採卵用親貝は、漁獲された天然成貝を使用
する。図8に示すように、採卵用親貝5をFRP水槽か
らなる親貝蓄養水槽6内に収容し、1回転/時(1hou
r)の換水率およびエアレーションを保って流水式で蓄
養する。エアレーションは、エアストーンを備える給気
装置によって行う(図示せず:図9参照)。4は飼育
水、10はオーバーフローによる排水口、17は排水口
10に設けられた流出防止用ネットである。飼育水温は
自然海水温とし、餌は魚の切り身を親貝の体重の1〜3
%を目安に1日2回与える。
[0006] As the parent shellfish for egg collection, a natural adult shellfish that has been caught is used. As shown in FIG. 8, the egg-collecting parent shellfish 5 is housed in the parent shellfish culture water tank 6 composed of an FRP water tank, and one rotation / hour (1 hou
Keep the water exchange rate and aeration of r) and cultivate with running water. The aeration is performed by an air supply device equipped with an air stone (not shown: see FIG. 9). Reference numeral 4 is breeding water, 10 is a drainage port due to overflow, and 17 is an outflow prevention net provided in the drainage port 10. The breeding water temperature is the natural seawater temperature, and the feed is fish fillets of 1 to 3 times the weight of the parent shellfish.
Give 2 times a day as a guide.

【0007】次に、産卵および採卵について説明する。Next, spawning and egg collection will be described.

【0008】産卵期に、塩化ビニール製パイプ、塩化ビ
ニール製波板や石綿製角型スレートの単体(いずれも長
さ50cm程度)を、採卵用基質として親貝産卵用の蓄
養水槽6内に配置し、自然産卵によって卵嚢が付着した
基質を定期的(最長1週間以内)に取り出し、卵嚢を剥
ぎ取って採卵する。
During the spawning season, a vinyl chloride pipe, a vinyl chloride corrugated sheet, and an asbestos square slate (each about 50 cm in length) are placed in the culture water tank 6 for spawning as a substrate for egg production. Then, the substrate to which the egg sac is attached by natural spawning is regularly taken out (within a maximum of one week), the egg sac is peeled off, and eggs are collected.

【0009】次に、孵化について説明する。Next, hatching will be described.

【0010】図9に示すように、採卵された卵嚢は、孵
化水槽(FRP水槽)8内の上部に設けられた目合1.
0mmのネットによって構成された孵化用網籠7に収容
し、止水、または、3回転/日(1day)程度までの緩
い換水、および、緩いエアレーションを施して、孵化ま
で20日程度の前記緩い流水式飼育で静置する。13は
給気用エアーストーンである。孵化水槽8からのオーバ
ーフローに際し、目合0.5mm浮遊幼生流出防止用ネ
ット(ミュラーガーゼ)15を排水口10に取り付け、
孵化した浮遊幼生が流出しないように配慮する。
As shown in FIG. 9, the egg sac that has been collected has a mesh 1. mesh provided in an upper portion of a hatching water tank (FRP water tank) 8.
It is housed in a hatching net basket 7 made up of a 0 mm net, and water is stopped, or a gentle replacement of water is performed up to about 3 revolutions / day (1 day), and aeration is applied, and the looseness is about 20 days until hatching. Let it stand in running water. 13 is an air stone for air supply. At the time of overflow from the hatching water tank 8, a mesh for preventing floating larvae outflow (Muller gauze) 15 with a mesh size of 0.5 mm is attached to the drainage port 10,
Care should be taken to prevent the hatching floating larvae from flowing out.

【0011】次に、稚貝の蓄養を説明する。Next, the cultivation of juveniles will be described.

【0012】図10に示すように、浮遊期を経て幼生の
着底を確認後、孵化して卵嚢から出た幼生を孵化用網籠
7から種苗蓄養水槽(FRP水槽)9に移す。孵化して
卵嚢から出た幼生は、無給餌の緩い換水および緩いエア
レーションの流水式飼育条件下で、幼生が流出しないよ
うに排水口10に目合0.5mmのネット(ミュラーガ
ーゼ)16を取付けた種苗蓄養水槽9内に1週間程度置
き、着底稚貝14となり次第給餌蓄養を開始する。飼育
水温は自然海水温である。
As shown in FIG. 10, after confirming the bottom of the larvae after the floating period, the larvae that have hatched and emerged from the egg sac are transferred from the hatching net cage 7 to the seedling cultivation water tank (FRP water tank) 9. The larvae that hatched and came out of the egg sac were fitted with a net (Muller gauze) 16 with a mesh size of 0.5 mm at the drainage port 10 so that the larvae would not flow out under the conditions of running water-free feeding with loose feed water and loose aeration. It is placed in the seed and seedling water tank 9 for about one week, and the feeding and cultivation is started as soon as the bottom larvae 14 are reached. The breeding water temperature is the natural seawater temperature.

【0013】着底後は給餌も始まる関係から、および、
水質悪化を防ぐ意味からも、注水量を1回転/時程度に
増量し、エアレーションを充分に施すとともに、給餌前
にはホース式サイフォン11(飼育水交換装置)を用い
て残餌の除去等底掃除を行う。サイフォン11で飼育水
ごと吸い出し、サイフォンの排水はザル12(漉し器)
で受けて、残餌のみ分別し、残餌とともに種苗が流失す
ることを防ぐ。サイフォンによる掃除の際、注水および
エアレーションは停止する。掃除および給餌が終了した
後に、注水およびエアレーションを再開する。
[0013] After the landing, the feeding also starts, and
In order to prevent deterioration of water quality, increase the amount of water injection to about 1 turn / hour, perform aeration sufficiently, and use a hose type siphon 11 (feeding water exchange device) to remove residual food etc. before feeding. Do the cleaning. The siphon 11 sucks out all the breeding water, and the siphon drainage is a colander 12 (strainer).
In order to prevent the seeds and seedlings from being washed away with the leftover food, only the leftover food is separated. Irrigation and aeration cease during siphon cleaning. After cleaning and feeding, restart watering and aeration.

【0014】給餌開始時に与えるアミエビはミンチ状に
細かくしこれを10日間程度、その後は、ミンチ状アミ
エビおよびザク切り状アミエビを混ぜ、これを5日間程
度与え、以後、徐々にザク切りの比率を高めていく。給
餌開始日から50日目頃にはエビを切り刻まず丸ごと与
えて、その後、成長に伴ない徐々に餌を魚の切り身に移
行して行き、親貝の蓄養と同様の蓄養内容とする。1才
以上の稚貝になれば親貝と同じ給餌とする。いずれの餌
の場合も、給餌回数は基本的に1日2回とする。
[0014] Ami shrimp to be given at the start of feeding are minced into fine pieces, and this is mined for about 10 days. After that, minced shrimp and chopped shrimp are mixed and given for about 5 days. To raise. Approximately 50 days after the start of feeding, shrimp are not chopped and given whole, and then the feed is gradually transferred to the fish fillet as it grows, and the content of farming is similar to that of parent shellfish. Feeding the same age as the parent oysters if younger than 1 year old. For any food, the number of feedings is basically twice a day.

【0015】稚貝の収容密度は、殻高3mm程度の個体
で1万個/m2、殻高15mm程度の個体で5000個
/m2、殻高30mm程度の個体で3500個/m2を目
安とする。
The storage density of juveniles is 10,000 / m 2 for individuals with a shell height of about 3 mm, 5000 / m 2 for individuals with a shell height of about 15 mm, and 3500 / m 2 for individuals with a shell height of about 30 mm. Use as a guide.

【0016】夏季の高水温期には自然海水温で、冬季の
低水温期には、ボイラを用いた熱交換によって加温して
16〜17℃を保持し、飼育水の水温低下を抑制して成
長が停滞しないようにする。
During the high water temperature period of summer, the natural seawater temperature is maintained, and during the low water temperature period of winter, the temperature is kept at 16 to 17 ° C. by heat exchange using a boiler to suppress the decrease in the water temperature of the breeding water. So that growth does not stagnate.

【0017】[0017]

【発明が解決しようとする課題】上述した従来の方法で
は、夏季の高水温期の水質悪化だけでなく、冬季に飼育
水に適した加温の効果を維持しつつ、飼育水の交換が滞
らない限界のところで流水飼育を行っている。その為
に、残餌およびバイの***により飼育環境が悪化する危
険が常に存在した。
According to the above-mentioned conventional method, not only the water quality deteriorates in the high water temperature period of summer, but also the exchange of breeding water is delayed while maintaining the effect of heating suitable for breeding water in winter. They are kept in running water at the limit. Therefore, there was always a risk that the rearing environment would be deteriorated due to excretion of residual food and food.

【0018】バイの食性が前述の通り肉食性で、飼料と
して鮮魚、冷凍魚の切り身およびアミエビ等を与える為
に、上述したような従来の単純な流水式(掛け流し式)
の蓄養水槽では、残餌および***物(以下、「残餌等」
という)が停滞している場所とバイの生息場所とがどち
らも水槽の底で同一場所となり、残餌等とバイ飼育環境
との分離が難しく、残餌等による水質悪化の影響を直接
受けることとなる。そのため、日常の飼育管理において
は、水質悪化による飼育環境への負荷、悪影響を極力少
なくするため、残餌等の処理に細心の注意が必要であ
り、給餌後、残餌等を取り除くため、水槽の底の掃除を
頻繁に実施することが必要である。更に、換水量の調節
も頻繁に求められる。このような飼育環境管理は、人手
のみの管理では多大な労力が必要である。そして、この
ような飼育管理が不充分であれば、即座に斃死が起こ
り、生残率の低下の原因となる。斃死しない程度の環境
悪化であっても成長の低下が見られる。
The eating habit of the bait is carnivorous as described above, and in order to provide fresh fish, frozen fish fillets and Ami shrimp as feed, the conventional simple running water system (overflow system) as described above.
In the farm water tank, the remaining food and excrement (hereinafter referred to as "remaining food, etc."
That is, the place where the food is stagnant and the habitat of the bait are both the same place at the bottom of the aquarium, and it is difficult to separate the leftover food from the environment for rearing the bait, and the leftover food etc. directly affects the water quality. Becomes Therefore, in daily breeding management, in order to minimize the impact on the breeding environment due to deterioration of water quality and adverse effects, it is necessary to pay close attention to the treatment of residual food, etc. It is necessary to frequently clean the bottom of the. Further, it is frequently required to adjust the amount of exchanged water. This kind of breeding environment management requires a great deal of labor if it is managed manually. If such breeding management is insufficient, death will occur immediately, which will cause a decrease in the survival rate. Even if the environment does not die, the growth will decrease.

【0019】上記の問題が起こるのは、肉食性貝類の飼
育において魚肉やアミエビ等を飼料として与えことによ
る残餌や飼料からの溶出および***物等による水質の悪
化に対する工夫がなされていないためである。
The above-mentioned problems occur because no measures have been taken against the deterioration of water quality due to leftover feed, elution from feed, excrement, etc. by feeding fish meat, Ami shrimp, etc. as feed in breeding carnivorous shellfish. is there.

【0020】従って、この発明の目的は、上述の問題点
を解決し、充分な成長を遂げた品質の良好な肉食性巻き
貝を、生残率を低下させることなく、従来よりも簡便な
管理労力によって得ることができる、肉食性巻き貝の養
殖方法および装置を提供することにある。
Therefore, an object of the present invention is to solve the above-mentioned problems and to carry out sufficient management labor of a carnivorous snail of good quality that has achieved sufficient growth, without lowering the survival rate. It is intended to provide a method and an apparatus for cultivating carnivorous snails that can be obtained by.

【0021】[0021]

【課題を解決するための手段】請求項1記載の肉食性巻
き貝の養殖方法は、種苗蓄養水槽内の上部に、稚貝が落
下しない網目を有する稚貝用網籠を設け、前記稚貝用網
籠内に肉食性巻き貝の親貝の産卵により卵嚢が付着した
基質を配置し、孵化した稚貝を前記稚貝用網籠内で蓄養
することに特徴を有するものである。
The method for cultivating carnivorous snails according to claim 1, wherein a net cage for fry shells having a mesh for preventing fry shells from falling is provided in the upper part of the seedling water tank. It is characterized in that a substrate to which an egg sac is attached by laying a parent shell of carnivorous snails is placed in a net cage, and the hatched juveniles are cultivated in the juvenile net cage.

【0022】請求項2記載の方法は、親貝蓄養水槽内の
上部に、親貝が落下しない網目を有する親貝用網籠を設
け、および、種苗蓄養水槽内の上部に、稚貝が落下しな
い網目を有する稚貝用網籠を設け、前記親貝用網籠に肉
食性巻き貝の親貝を収容し、前記親貝用網籠に基質を配
置して親貝に産卵せしめ、卵嚢が付着した前記基質を前
記親貝用網籠から前記稚貝用網籠内に移し、孵化した稚
貝を前記稚貝用網籠内で蓄養することに特徴を有するも
のである。
According to the method of claim 2, a net shell for parent shells having a mesh that prevents the parent shells from falling is provided in the upper part of the parent shell water storage tank, and juvenile shells are dropped in the upper part of the seedling water storage tank. A net cage for juvenile shells having a mesh is provided, a parent shell of carnivorous conch is housed in the parent shell net cage, a substrate is placed in the parent shell net cage, and the parent shell is allowed to lay eggs, and an egg sac is attached. The above substrate is transferred from the parent shell net basket to the juvenile net basket, and the hatched juveniles are cultivated in the juvenile net basket.

【0023】請求項3記載の方法は、稚貝の成長に応じ
て前記稚貝用網籠を交換して前記稚貝が落下しない限度
で網目を拡大して行くことに特徴を有するものである。
The method according to claim 3 is characterized in that the net cage for the juveniles is replaced according to the growth of the juveniles to expand the meshes to the extent that the juveniles do not fall. .

【0024】請求項4記載の方法は、稚貝蓄養中に前記
種苗蓄養水槽内の底部の飼育水を所定期間毎に交換する
とともに空気供給を行うことに特徴を有するものであ
る。
The method according to claim 4 is characterized in that, during the juvenile cultivation, the breeding water at the bottom of the seedling cultivation water tank is exchanged at predetermined intervals and air is supplied.

【0025】請求項5記載の方法は、前記肉食性巻き貝
は、エゾバイ科の肉食性巻き貝またはアクキガイ科の肉
食性巻き貝であることに特徴を有するものである。
The method according to claim 5 is characterized in that the carnivorous snail is a carnivorous snail of the Ezobai family or a carnivorous snail of the Mussel family.

【0026】請求項6記載の肉食性巻き貝の養殖装置
は、親貝蓄養水槽と、前記親貝蓄養水槽内の上部に設け
られた、親貝および基質を収容するための、親貝が落下
しない網目を有する親貝用網籠と、種苗蓄養水槽と、前
記種苗蓄養水槽内の上部に設けられた、親貝の産卵によ
り卵嚢が付着した基質を収容し種苗を蓄養するための、
稚貝が落下しない網目を有する稚貝用網籠とを備えるこ
とに特徴を有するものである。
In the carnivorous conch aquaculture apparatus according to the present invention, the parent shellfish water storage tank and the parent shellfish for accommodating the parent shellfish and the substrate provided in the upper portion of the parent shellfish water storage tank do not fall. A net basket for parent shellfish having a mesh, a seedling water tank, and an upper part of the seedwater tank, for accommodating a substrate to which an egg sac is attached by spawning of a parent shellfish for stocking seedlings,
The present invention is characterized in that it is provided with a net cage for juveniles that has a mesh that prevents juveniles from falling.

【0027】請求項7記載の装置は、前記稚貝用網籠
は、稚貝の成長に応じて前記稚貝が落下しない限度で網
目を拡大するために交換可能となっていることに特徴を
有するものである。
The apparatus according to claim 7 is characterized in that the net cage for fry shells is replaceable in order to expand the mesh as long as the fry shells do not drop as the fry shells grow. I have.

【0028】請求項8記載の装置は、前記種苗蓄養水槽
は、前記種苗蓄養水槽内の底部の飼育水を所定期間毎に
交換する飼育水交換装置および給気装置を備えることに
特徴を有するものである。
The apparatus according to claim 8 is characterized in that the seedling water tank comprises a breeding water exchange device and an air supply device for exchanging the breeding water at the bottom of the seedwater storage water tank at predetermined intervals. Is.

【0029】請求項9記載の装置は、前記肉食性巻き貝
は、エゾバイ科の肉食性巻き貝またはアクキガイ科の肉
食性巻き貝であることに特徴を有するものである。
An apparatus according to a ninth aspect is characterized in that the carnivorous snail is a carnivorous snail of the Ezobidae family or a carnivorous conch of the Mussel family.

【0030】我々は、上述の課題を解決するために鋭意
研究を重ねた。その結果、バイ等の肉食性巻き貝の種苗
生産、蓄養、稚貝飼育の経験から、蓄養水槽内で、残餌
および***物による水質悪化部位と種苗蓄養部位とを極
力分離することが重要と考え、孵化以後の種苗の蓄養に
網籠を用いた養殖を導入することにより、残餌等と種苗
との分離を図ることができ、蓄養環境が良化することを
知見した。この発明は、上記知見に基づいてなされたも
のである。
We have conducted extensive studies to solve the above problems. As a result, from the experience of seedling production, farming, and juvenile breeding of carnivorous snails such as bait, it is considered important to separate as much as possible the seedling farming site and the water quality deterioration site due to residual food and excrement in the farming water tank. It was found that by introducing aquaculture using net cages for the cultivation of seedlings after hatching, it is possible to separate the residual feed and the seedlings and improve the cultivation environment. This invention was made based on the above findings.

【0031】上記に述べたように、従来は、幼生の着底
後孵化用網籠から出して種苗蓄養水槽に移し水槽の底で
種苗(稚貝)を蓄養していたが、蓄養は生餌を与える飼
育であるため水槽内の水質が悪化し、種苗蓄養水槽内の
底部の飼育水を定期的に交換しても種苗の生残率が落ち
る。本発明は、種苗蓄養水槽の上部に設けた稚貝用網籠
によって稚貝の飼育を行うことにより、稚貝は残餌等の
停滞する水槽の底の部分と分離されるので成長が良好と
なり生残率を上げることができる。稚貝が成長するに従
い殻高および餌、***物が大きくなるので、成長に応じ
て稚貝用網籠を交換して、稚貝が落下しない限度で網目
を拡大し、残餌および***物が落下し易くする。
As described above, conventionally, after the larvae have bottomed out, they were taken out from the hatching net basket and transferred to the seedling cultivation water tank to cultivate seedlings (larvae) at the bottom of the water tank. The water quality in the aquarium deteriorates due to the feeding, and the survival rate of the seedlings drops even if the breeding water at the bottom of the seed culture tank is regularly replaced. The present invention, by breeding juveniles by a juvenile net cage provided at the top of the seedling water tank, the juveniles are separated from the stagnant bottom of the aquarium such as leftover feed, resulting in good growth. The survival rate can be increased. As the larva grows, the shell height, food and excrement increase, so change the net cage for the larva according to the growth and expand the mesh to the extent that the larva does not fall, and leave the residual food and excrement. Make it easy to fall.

【0032】使用する網籠は小割り式籠とし、小割り式
籠の単体は、ステンレス製の枠材と樹脂製のネットで構
成するとよい。
It is preferable that the net basket used is a small split basket, and the single small split basket is composed of a stainless steel frame material and a resin net.

【0033】小割り式籠の単体を、種苗生産、蓄養およ
び養殖に使用するFRP水槽の大きさおよび水槽数に応
じて必要数用意して、一連の作業に用いる。
A required number of small split baskets are prepared according to the size and number of FRP water tanks used for seedling production, cultivation and aquaculture, and used for a series of operations.

【0034】まず、採卵用親貝(漁獲された天然成貝)
を雌雄比1:1の割合でFRP水槽内に設置した小割り
式籠に収容し、1回転/時(1hour)の換水率の流水式
飼育を保つと共に、エアレーションを充分に施して蓄養
する。
First, the parent shellfish for egg collection (natural adult shellfish caught)
Are housed in a split-type basket installed in the FRP water tank at a ratio of 1: 1 of male and female, and the running water breeding with a water exchange rate of 1 rotation / hour (1 hour) is maintained, and aeration is sufficiently performed for cultivation.

【0035】飼育水温は自然海水温、餌は魚の切り身を
体重の1〜3%を目安に1日2回与える。
The breeding water temperature is the natural seawater temperature, and the feed is fish fillets twice a day with 1 to 3% of the body weight as a guide.

【0036】産卵期に塩化ビニール製パイプ(直径25
0mm位)を半円形にしたもの、または、石綿製山型ス
レート(1辺120〜130mm)単体(共に長さ30
cm位)を採卵基質として蓄養水槽内に設置して、ボイ
ラを熱源とする熱交換による加温を施した砂濾過海水
(水温24〜25℃)で産卵を誘発させ、卵嚢が付着し
た基質を定期的(最長1週間)に回収および交換する。
Vinyl chloride pipe (diameter 25
A semi-circular shape of 0 mm) or a mountain slate made of asbestos (120 to 130 mm on each side) (both length 30)
(cm) is installed in the water tank as an egg collection substrate, and the egg-laying is induced by sand-filtered seawater (water temperature 24 to 25 ° C) that is heated by heat exchange using the boiler as a heat source, and the substrate to which the egg sac adheres is removed. Collect and replace regularly (up to 1 week).

【0037】回収した採卵基質は、FRP水槽内に設置
した小割り式籠に目合0.5mmのネットで出来た網籠
を更に併せたものに収容して、3回転/日程度の緩い換
水をシャワー式で行うと同時に緩いエアレーションを施
して、浮遊幼生の卵嚢からの孵出までボイラを熱源する
熱交換による加温を施した砂濾過海水(水温24〜25
℃)を用いた緩い流水式飼育で、積算温度に換算して3
90日℃を基準に静置する。
The collected egg-collecting substrate was housed in a small-divided basket installed in the FRP water tank and a net basket made of a net having a mesh size of 0.5 mm. The sand filtration seawater (water temperature 24 to 25) which is heated by heat exchange that heats the boiler from the egg sacs of floating larvae to hatching
(3) in a gentle running-water-type breeding system that uses 3)
Let stand at 90 ° C for 90 days.

【0038】孵化した幼生は、無給餌の緩い換水(3回
転/日程度)および緩いエアレーションの流水式飼育条
件下で1週間程度置き、着底稚貝となり次第給餌飼育を
開始する。
The hatched larvae are left for about one week under running-fed breeding conditions of non-feeding, gently changing water (about 3 revolutions / day) and loose aeration, and feeding and feeding are started as soon as the larvae have settled.

【0039】着底後は給餌が始まる為に、水質悪化を防
ぐ意味で注水量を1回転/時程度に増量し、エアレーシ
ョンを充分に施すと共に、給餌前にはサイフォンを用い
て残餌および***物の除去のために底掃除を行う。
Since feeding starts after landing, the amount of water injection is increased to about 1 rotation / hour to prevent deterioration of water quality, aeration is sufficiently performed, and siphon is used to feed and excrete residual feed before feeding. Clean the bottom to remove things.

【0040】この際、給水およびエアレーションは止め
て行う。
At this time, water supply and aeration are stopped.

【0041】底掃除のサイフォンの排水は漉し器で受け
て、残餌および***物と共に種苗が流失することを防
ぐ。
The drainage of the siphon for cleaning the bottom is received by a strainer to prevent the seedlings from being washed away together with the residual food and excrement.

【0042】掃除および給餌が終了した後に、注水およ
びエアレーションを再開する。
After cleaning and feeding are completed, water injection and aeration are restarted.

【0043】給餌開始時に与えるアミエビはミンチ状に
細かくして10日間程度、その後ミンチ状アミエビとザ
ク切り状アミエビを混ぜて5日間程度とし、徐々にザク
切り状アミエビの比率を高めて行き、50日目頃にはエ
ビを切り刻まず丸で与える。
Ami shrimp to be given at the start of feeding are minced into fine pieces for about 10 days, and then minced ami shrimp and zaku shredded shrimp are mixed for about 5 days to gradually increase the ratio of zaku shredded shrimp. Around the day, shrimp are not chopped and given as a circle.

【0044】その後、成長に伴い徐々に餌を魚の切り身
に移行して行き、親貝の蓄養と同様の飼育内容とする。
After that, the food is gradually transferred to the fish fillet as it grows, and the breeding contents are the same as the breeding of the parent shellfish.

【0045】いずれの餌の場合も、給餌回数は基本的に
1日2回とする。
In any case, the number of feedings is basically twice a day.

【0046】殻高20mm程度に成長した時点で目合
0.5mmの網籠部分を外して、小割り式籠単体を単独
で用いた蓄養、養殖に移行する。
When the shell height has grown to about 20 mm, the net cage having a mesh size of 0.5 mm is removed, and the cultivation and aquaculture are carried out by using the split type cage alone.

【0047】蓄養親貝および殻高20mm以上の種苗
は、従来方式と同等の収容密度30kg/m2(殻高5
0mmの親貝で1000個/m2、殻高40mm程度の
個体で2000個/m2、殻高20mm程度の個体でも
4000個/m2)を限度として収容する。
For the parent shellfish and the seedlings with a shell height of 20 mm or more, the storage density of 30 kg / m 2 (shell height of 5
A maximum of 1000 pieces / m 2 for 0 mm parent shells, 2000 pieces / m 2 for individuals with a shell height of about 40 mm, and 4000 pieces / m 2 for individuals with a shell height of about 20 mm are stored.

【0048】種苗が成長すると共に、種苗のサイズ(殻
高)が均一なるように間引きおよび分槽を行い、それに
応じて小割り式籠単体数を増やして行く。
As seedlings grow, the thinning and dividing tanks are performed so that the seedlings have a uniform size (shell height), and the number of small split cages is increased accordingly.

【0049】小割り式籠単体による蓄養および養殖の際
は、毎給餌前に注水およびエアレーションを止め単体を
水槽から取り出して、水槽底をサイフォンを用いて清掃
し、残餌および***物を除去する。
In the case of farming and aquaculture with a small-sized split basket alone, water injection and aeration are stopped before each feeding, the single body is taken out of the water tank, and the bottom of the water tank is cleaned using a siphon to remove residual food and excrement. .

【0050】底掃除終了後、単体をFRP水槽内に戻し
て給餌を行い、注水およびエアレーションを再開する。
After the bottom cleaning is completed, the unit is returned to the FRP water tank for feeding, and water injection and aeration are restarted.

【0051】着底以降の飼育、蓄養および養殖は、ボイ
ラを熱源とする熱交換による加温を施した砂濾過海水
(水温23〜24℃)を、単独または自然水温の砂濾過
海水と混合して用いることとして、冬季の低水温期も飼
育海水の水温低下を抑制(水温16〜17℃)して成長
の停滞を抑える。
For breeding, farming, and aquaculture after the bottom of the soil, the sand-filtered seawater (water temperature 23 to 24 ° C.) that has been heated by heat exchange using the boiler as a heat source is used alone or mixed with sand-filtered seawater having a natural water temperature. It is also used for suppressing the stagnation of growth by suppressing a decrease in the water temperature of breeding seawater (water temperature 16 to 17 ° C.) even in the low water temperature period of winter.

【0052】[0052]

【発明の実施の形態】次に、この発明の実施の形態を図
面を参照しながら説明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Next, embodiments of the present invention will be described with reference to the drawings.

【0053】図1は、この発明の実施の形態に係る稚貝
用網籠を有するバイの蓄養水槽を示す平面図、図2は側
面断面図である。
FIG. 1 is a plan view showing a bai farm water tank having a juvenile shell net basket according to an embodiment of the present invention, and FIG. 2 is a side sectional view.

【0054】種苗蓄養水槽1はFRP水槽からなってい
る。網籠は小割り式の網籠(以下、「小割り式籠」とい
う)2からなっている。小割り式籠2は、蓄養水槽1内
の上部に、吊具3により吊られて取り外し容易に設けら
れている。使用する小割り式籠2は、ステンレス製の枠
材2aと目合1.0mmの樹脂製のネット2bとによっ
て構成されている。小割り式籠2の単体を、種苗生産、
蓄養および飼育に使用する蓄養水槽1の大きさおよび水
槽数に応じて必要数用意し、一連の作業に用いる。
The seedling water tank 1 is an FRP water tank. The net basket is composed of small split net baskets (hereinafter referred to as "small split baskets") 2. The small split type basket 2 is provided above the inside of the water storage tank 1 by being suspended by the suspenders 3 so as to be easily removed. The small split basket 2 used is composed of a stainless steel frame member 2a and a resin net 2b having a mesh of 1.0 mm. Seed production from the small split basket 2
Prepare a necessary number according to the size and the number of water tanks 1 used for farming and breeding, and use them for a series of operations.

【0055】まず、FRP水槽からなる親貝蓄養水槽内
の上部に親貝用網籠を設ける。親貝蓄養水槽は、種苗蓄
養水槽1とは別の水槽である。採卵用親貝(漁獲された
天然成貝)を親貝用網籠(小割り式籠2と目合が同規格
のものでよい)内に収容し、1回転/時の換水率と給気
装置によるエアレーションを保って流水式で蓄養する。
飼育水温は自然海水温とし、餌は魚の切り身を親貝の体
重の1〜3%を目安に1日2回与える。
First, a net shell for a parent shell is provided in the upper portion of the parent shell water storage tank which is an FRP water tank. The parent shellfish water storage tank is a water tank different from the seed and seedling water storage tank 1. The egg-collecting shellfish (caught natural adult shellfish) is housed in the shellfish net cage (the same size as the small split cage 2 may be of the same standard), and the water exchange rate per revolution and air supply It keeps aeration by the device and cultivates by running water.
The breeding water temperature is the natural seawater temperature, and the feed is fish fillets twice a day with 1 to 3% of the weight of the parent shellfish as a guide.

【0056】産卵期に塩化ビニール製パイプを半円形に
したものまたは石綿製山型スレートの単体(ともに長さ
30cm程度)を、採卵用基質として親貝を収容した親
貝用網籠内に配置し、ボイラを熱源とする熱交換によっ
て飼育水を加温し(24〜25℃)、産卵を誘発する。
そして、卵嚢が付着した基質を定期的(原則として週1
回、最長1週間以内)に回収し、新しい基質と交換す
る。なお、親貝の蓄養および基質による産卵は、従来の
技術で述べたように蓄養水槽で行ってもよい。
During the spawning period, a vinyl chloride pipe with a semicircular shape or a single piece of asbestos mountain slate (both having a length of about 30 cm) is placed in a net shell for a parent shell containing parent shells as a substrate for egg collection. Then, the breeding water is heated by heat exchange using the boiler as a heat source (24 to 25 ° C.) to induce spawning.
Then, the substrate to which the egg sac is attached is regularly (in principle, once a week).
Once, within a week) and replace with new substrate. The stocking of the parent shellfish and the spawning by the substrate may be performed in a stocking water tank as described in the conventional art.

【0057】この時期には、種苗蓄養水槽1内の小割り
式籠2に目合0.5mmのネット(ミューラーガーゼ)
からなる網籠(図示せず)を更に重ね合せて二重にして
おく(以下、「小割り式籠(二重)」という)。親貝用
網籠から回収した卵嚢が付着している基質を、この小割
り式籠2(二重)に収容する。そして、3回転/日程度
の緩い換水をシャワー式によって行い、同時に緩いエア
レーションを施し、浮遊幼生が卵嚢から孵出するまでボ
イラを熱源とする熱交換による加温海水(24〜25
℃)を用いた緩い流水式飼育で、積算温度に換算して3
90日℃を基準に静置する。
At this time, a net with a mesh of 0.5 mm (mueller gauze) was placed in the small basket 2 in the seedling water tank 1.
A net basket (not shown) consisting of is further stacked to make a double layer (hereinafter, referred to as a “small split type basket (double layer)”). The substrate to which the egg sac collected from the net cage for parent shells is attached is housed in this small split cage 2 (double). Then, about 3 revolutions / day of gentle water exchange is performed by a shower method, and at the same time, a slow aeration is applied, and warm seawater (24 to 25
(3) in a gentle running-water-type breeding system that uses 3)
Let stand at 90 ° C for 90 days.

【0058】孵化した浮遊幼生は、無給餌の緩い換水、
且つ、緩いエアレーションの流水式飼育条件下で1週間
程度置き、着底稚貝となり次第、給餌飼育を開始する。
小割り式籠2(二重)内に給餌された餌の残餌および稚
貝の***物は籠の目合から種苗蓄養水槽1の底に落下す
る。
The hatched floating larvae were fed with loose fed water,
In addition, it is left for about one week under running aeration-type breeding conditions with gentle aeration, and feeding breeding is started as soon as the larvae on the bottom are laid.
The remaining bait and the excrement of juveniles fed into the small-sized cage 2 (double) fall to the bottom of the seedling water tank 1 from the mesh of the cage.

【0059】稚貝が小割り式籠2(二重)に着底後は、
給餌が始まる関係から、水質悪化を防ぐ意味で注水量を
1回転/時程度に増量し、エアレーションを充分に施す
とともに、給餌前にはサイフォン(飼育水交換装置)
(図10参照)を用いて種苗蓄養水槽1の底部の飼育水
を吸い出して掃除を実施し水槽1の底にある残餌および
***物を除去する。このような水槽底の掃除をサイフォ
ンによって実施するときは、注水およびエアレーション
は停止する。掃除および給餌が終了した後に、注水およ
びエアレーションを再開する。
After the juveniles have landed on the small split type basket 2 (double),
Due to the fact that feeding starts, the amount of water injection is increased to about 1 revolution / hour to prevent deterioration of water quality, sufficient aeration is performed, and siphon (feeding water exchange device) is used before feeding.
(See FIG. 10), the breeding water at the bottom of the seed culture water tank 1 is sucked and cleaned to remove residual food and excrement at the bottom of the water tank 1. When performing such cleaning of the bottom of the aquarium with a siphon, water injection and aeration are stopped. After cleaning and feeding, restart watering and aeration.

【0060】また、サイフォンによる排水を漉し器で受
け、残餌とともに種苗(稚貝)が流失することを防いで
もよい。稚貝が落下しないように小割り式籠2(二重)
を用いるので、種苗が落下する確立は低いが、落下する
可能性もあるので上記漉し器を設ける。
The siphon drainage may be received by a strainer to prevent the seedlings (juveniles) from being washed away together with the remaining bait. Small split basket 2 (double) to prevent juveniles from falling
Since it is unlikely that seeds and seedlings will fall, there is a possibility that they will fall, so the above strainer is installed.

【0061】給餌開始時に与えるアミエビは、ミンチ状
に細かくして10日間程度、その後、ミンチ状アミエビ
およびザク切り状アミエビを混ぜて5日間程度とし、徐
々にザク切り状アミエビの比率を高めて行き50日目頃
にエビを切り刻まず丸ごと与える。その後、稚貝の成長
に伴い徐々に餌を魚の切り身に移行して行き、親貝の蓄
養と同様の飼育内容とする。いずれの餌の場合も、給餌
回数は基本的に1日2回とする。
Ami shrimp to be given at the start of feeding should be minced into fine pieces for about 10 days, and then minced and shredded shrimp should be mixed for about 5 days to gradually increase the ratio of zripped shrimp. Around the 50th day, give the whole shrimp without chopping. After that, the feed is gradually transferred to the fish fillets as the juveniles grow, and the breeding contents are the same as the breeding of the parent shellfish. For any food, the number of feedings is basically twice a day.

【0062】稚貝の成長に応じて稚貝が落下しない限度
で網目を拡大する。本実施の形態では、稚貝が殻高20
mm程度に成長した時点で、小割り式籠2(二重)から
目合0.5mmのネットを取り外し、小割り式籠2単体
による蓄養に移行する。
The mesh is expanded as long as the juveniles do not fall according to the growth of the juveniles. In the present embodiment, juveniles have a shell height of 20.
When it grows to about mm, the net with mesh size of 0.5 mm is removed from the small split basket 2 (double), and the split split basket 2 is transferred to a single farm.

【0063】稚貝が殻高20mm程度に成長し小割り式
籠2単体による蓄養、飼育を開始するときは、給餌前
に、注水およびエアレーションを止めた後、小割り式籠
2単体を種苗蓄養水槽1から取出し、水槽1の底をサイ
フォンを用いて清掃し、残餌および***物を除去する。
そして、水槽1の底の掃除が終了後、取り出した小割り
式籠2単体を水槽1内に戻し、給餌を開始し、注水およ
びエアレーションを再開する。
When juveniles grow to a shell height of about 20 mm and start cultivation and rearing with the split-type cage 2 alone, after stopping water injection and aeration before feeding, the split-type cage 2 alone is cultivated with seedlings. It is taken out of the aquarium 1, and the bottom of the aquarium 1 is cleaned with a siphon to remove residual food and excrement.
After the bottom of the water tank 1 is cleaned, the small split basket 2 alone is returned to the water tank 1, feeding is started, and water injection and aeration are restarted.

【0064】種苗(稚貝)が成長するとともに、種苗の
サイズが均一になる様に間引き、分槽を行って水槽1を
増やし、それに応じて小割り式籠2単体の個数を増やし
て行く。小割り式籠2の収容量は、蓄養親貝および殻高
20mm以上の種苗は、収容密度30kg/m2を限度
とする。なお、収容密度30kg/m2は、殻高50m
mの親貝で約1000個/m2、殻高20mm程度の個
体では約4000個/m2となる。
As seedlings (juveniles) grow, the seedlings are thinned so that the size of seedlings becomes uniform, and the water tank 1 is increased by dividing tanks, and accordingly the number of the small split type cages 2 is increased. The storage capacity of the small-sized basket 2 is limited to a storage density of 30 kg / m 2 for farmed parent shellfish and seedlings having a shell height of 20 mm or more. The storage density of 30 kg / m 2 is 50 m of shell height.
It is about 1000 pieces / m 2 for m parent shells, and about 4000 pieces / m 2 for individuals with a shell height of about 20 mm.

【0065】着底以後の蓄養および飼育は、ボイラを熱
源とする熱交換による加温海水(23〜24℃)を、単
独または自然海水と混合して用いることとして、冬季の
低水温期も飼育水の水温低下を抑制して16〜17℃を
保持し、成長が停滞しないようにする。
For the cultivation and rearing after landing, warm seawater (23 to 24 ° C.) by heat exchange using a boiler as a heat source is used alone or in combination with natural seawater, and it is reared even in the low water temperature season in winter. The decrease in water temperature is suppressed to maintain 16 to 17 ° C. to prevent the growth from stagnating.

【0066】[0066]

【実施例】次に、この発明の実施例を図面を参照しなが
ら説明する。
Embodiments of the present invention will now be described with reference to the drawings.

【0067】本発明装置および方法によってバイの養殖
を実施し、半年間の個体の成長および生残を調査した。
比較のため、[従来の技術]で述べた、親貝蓄養水槽、
孵化水槽および稚貝蓄養水槽を使用する掛け流し法によ
って同種類のバイの養殖を実施し、従来技術1、2とし
た。調査は、飼育開始時(9月)と終了時(翌年3月)
における、成長(殻高)および生残個体数を比較するこ
とによって行った。その結果を表1および図3、4に示
す。併せて、蓄養、養殖における飼育水の平均水温を図
5に、取水海水、水槽上層および水槽下層における水質
の計測結果を表2に、および、アンモニア分析値の平均
値を図6に、酸素飽和度の平均値を図7に、それぞれ示
す。
Culture of bait was carried out by the apparatus and method of the present invention, and the growth and survival of individuals for half a year were investigated.
For comparison, the parent shellfish aquarium described in [Prior Art],
The same type of bait was cultivated by a free-flowing method using a hatching water tank and a juvenile shell water storage tank, and the prior arts 1 and 2 were obtained. The survey is at the start of breeding (September) and at the end of breeding (March next year)
By comparing the growth (shell height) and the number of survivors. The results are shown in Table 1 and FIGS. In addition, Fig. 5 shows the average water temperature of the breeding water in farming and aquaculture, Table 2 shows the measurement results of the water quality in the intake seawater, the upper layer of the aquarium and the lower layer of the aquarium, and Fig. 6 shows the average value of the ammonia analysis values, and the oxygen saturation. The average values of degrees are shown in FIG. 7, respectively.

【0068】[0068]

【表1】 [Table 1]

【0069】[0069]

【表2】 [Table 2]

【0070】各年度の飼育方法における成長は、横軸に
計測月、縦軸に殻高平均値をmm単位で取って図示およ
び比較した。
The growth in each breeding method in each year is shown and compared by taking the measurement month on the horizontal axis and the shell height average value on the vertical axis in mm units.

【0071】貝の殻高平均値は螺旋状の両端の間(殻の
最も尖った部位から最下部までの長軸方向)の長さを5
0個体分計測した結果の平均値とした。
The average height of shells of the shellfish is 5 between the ends of the spiral (longitudinal direction from the sharpest point to the bottom of the shell).
The average value of the results obtained by measuring 0 individuals was used.

【0072】従来技術1の結果では、9月には13.4
mmで飼育を開始した種苗が、11月に16.3mm、
1月に17.7mm、最終的に3月に17.9mmに成
長した。
The result of the prior art 1 is 13.4 in September.
The seeds and seedlings that started breeding in mm were 16.3 mm in November,
It grew to 17.7 mm in January and finally to 17.9 mm in March.

【0073】従来技術2の結果では、9月に10.6m
mで飼育を開始した種苗が11月に14.4mm、1月
に16.4mm、最終的には3月に16.9mmに成長
した。
The result of Prior Art 2 is 10.6 m in September.
The seeds and seedlings that started to grow at 1 m grew to 14.4 mm in November, 16.4 mm in January, and finally 16.9 mm in March.

【0074】一方、本発明による結果では、9月に8.
4mmで飼育を開始した種苗が11月に12.1mm、
1月に15.9mm、最終的には3月に21.7mmに
成長した。
On the other hand, according to the result of the present invention, it was confirmed that the result of
Seed and seedling that started breeding at 4 mm was 12.1 mm in November,
It grew to 15.9 mm in January and finally to 21.7 mm in March.

【0075】従来技術1、2におけるバイの成長量は、
3月の飼育終了時までに4.5〜6.3mmで冬季の低
水温の時期における成長の停滞があった。本発明を用い
ることで水質悪化を招くことなく加温を充分に施すと同
時に、成長に応じて種苗を収容する小割り式籠数を増や
し、籠1個当たりの収容量を調整することで、常に単位
面積当たり飼育密度の均一化を図ることが可能であるこ
とが分かる。
In the prior arts 1 and 2, the growth amount of the bye is
By the end of March rearing, the growth was stagnant at 4.5 to 6.3 mm during the low water temperature in winter. By using the present invention to sufficiently heat without deteriorating the water quality, at the same time, increase the number of small split type cages for accommodating seedlings according to growth, and adjust the accommodating amount per cage, It is understood that it is possible to always make the breeding density uniform per unit area.

【0076】また、単位面積当たり飼育密度の均一化に
よって、投餌した飼料を種苗に万遍なく行き渡らせるよ
うに出来ることで、摂餌の均一化が図られ通年安定した
成長を維持することが可能となることが分かる。
Further, by homogenizing the breeding density per unit area, it is possible to evenly disperse the fed feed to seeds and seedlings, so that uniform feeding can be achieved and stable growth can be maintained all year round. It turns out that it will be possible.

【0077】このような改良の結果により、本発明では
飼育開始から3月の飼育終了時までに種苗が13.3m
mも成長した。
As a result of such improvement, in the present invention, seedlings of 13.3 m were produced from the start of breeding to the end of breeding in March.
m also grew.

【0078】次に、各年度の飼育方法における生残は、
横軸に計測月、縦軸に生残個体数を取って図示し、比較
した。
Next, the survival in the breeding method of each year is
The horizontal axis shows the measurement month, and the vertical axis shows the number of surviving individuals.

【0079】成長と同様に生残結果について比較する
と、従来技術1による結果では、9月に35000個体
収容して飼育を開始した種苗が、11月に30000個
体、1月に27000個体、最終的に3月に25000
個体生残し、取り上げ時点の生残率は71.4%となっ
た。
Comparing the survival results in the same manner as the growth, in the result of the prior art 1, the seedlings containing 35,000 individuals in September and starting to be raised were 30,000 in November, 27,000 in January, and finally At 25,000 in March
The survival rate at the time of picking up the individual was 71.4%.

【0080】また、従来技術2による結果では、9月に
120000個体収容して飼育を開始した種苗が、11
月に80000個体、1月に50000個体、最終的に
3月に39000個体生残し、取り上げ時点の生残率は
32.5%となった。
Further, according to the result of the prior art 2, the seeds and seedlings in which 120,000 individuals were housed in September and started to be raised were 11
The survival rate at the time of picking up was 32.5%, with 80000 individuals a month, 50,000 individuals in January, and finally 39000 individuals in March.

【0081】一方、本発明による結果では、9月に14
4000個体収容して飼育を開始した種苗が、11月に
143000個体、1月には141500個体、最終的
に3月に141000個体生残し、取り上げ時点の生残
率は97.9%となった。
On the other hand, according to the results of the present invention,
The seeds and seedlings containing 4000 individuals and started to be reared survived 143,000 in November, 141500 in January, and finally 141,000 in March, and the survival rate at the time of picking up was 97.9%. .

【0082】このように生残においても、従来技術1、
2では32.5〜71.4%で、飼育開始時の個体数が
充分に多い場合でも最終的に生残する個体数はある程度
限られていた。本発明を用いることで水質悪化を招くこ
となく加温を充分に施すと同時に、成長に応じて種苗を
収容する小割り式籠数を増やし、籠1個当たりの収容量
を調整することで、常に単位面積当たり飼育密度の均一
化を図ることが可能になることが分かる。
As described above, even in survival, the conventional technique 1,
2 was 32.5 to 71.4%, and even when the number of individuals at the start of breeding was sufficiently large, the number of individuals who survived was limited to some extent. By using the present invention to sufficiently heat without deteriorating the water quality, at the same time, increase the number of small split type cages for accommodating seedlings according to growth, and adjust the accommodating amount per cage, It can be seen that it is possible to always make the breeding density uniform per unit area.

【0083】また、単位面積当たり飼育密度の均一化に
よって、投餌した飼料を種苗に万遍なく行き渡らせるよ
うに出来ることで、摂餌の均一化が図られ高い生残を維
持することが可能となる。
Further, by homogenizing the breeding density per unit area, the fed feed can be evenly distributed to the seeds and seedlings, so that the feeding can be homogenized and high survival can be maintained. Becomes

【0084】このような改良の結果により、本発明では
飼育開始から3月の飼育終了時までに、種苗が97.9
%生残した。
As a result of such improvement, in the present invention, 97.9 seedlings were produced from the start of breeding to the end of breeding in March.
% Survived.

【0085】飼育海水の水質は、アンモニア態窒素量お
よび酸素飽和度を測定し、それぞれアンモニア態窒素量
は横軸に飼育方法、縦軸に窒素量をmg/L単位で、酸
素飽和度は横軸に飼育方法、縦軸に飽和度を%単位で取
って図示し、比較した。
The water quality of the breeding seawater was measured by measuring the amount of ammonia nitrogen and the degree of oxygen saturation. The amount of ammonia nitrogen in the horizontal axis represents the breeding method, the amount of nitrogen in the vertical axis represents the amount of nitrogen in mg / L, and the oxygen saturation represents the horizontal axis. The axis is the breeding method, and the vertical axis is the saturation in% units.

【0086】それぞれアンモニア態窒素量はインドフェ
ノール法による比色分析、酸素飽和度は隔膜系ガルバニ
電池式の隔膜電極法で測定した。
The ammonia nitrogen content was measured by a colorimetric analysis by the indophenol method, and the oxygen saturation was measured by a diaphragm galvanic cell diaphragm electrode method.

【0087】アンモニア態窒素量について、飼育方法お
よび測定位置の違いによる比較をすると、従来技術1で
は取水海水で0.2mg/L、飼育水槽上層で0.3m
g/L、飼育水槽下層で1.4mg/Lであった。
Regarding the amount of ammonia nitrogen, when comparing the difference in breeding method and measurement position, in Prior Art 1, 0.2 mg / L in intake seawater and 0.3 m in upper layer of breeding aquarium.
g / L, 1.4 mg / L in the lower layer of the breeding aquarium.

【0088】また、従来技術2では取水海水で0.2m
g/L、飼育水槽上層で0.6mg/L、飼育水槽下層
で2.8mg/Lであった。
In the prior art 2, the intake seawater is 0.2 m.
g / L, 0.6 mg / L in the upper layer of the breeding aquarium, and 2.8 mg / L in the lower layer of the breeding aquarium.

【0089】一方、本発明では、取水海水で0.2mg
/L、飼育水槽上層で0.4mg/L、飼育水槽下層で
1.8mg/Lであった。
On the other hand, in the present invention, 0.2 mg of intake seawater is used.
/ L, 0.4 mg / L in the upper layer of the breeding aquarium, and 1.8 mg / L in the lower layer of the breeding aquarium.

【0090】また、酸素飽和度について、飼育方法およ
び測定位置の違いによる比較をすると、従来技術1では
取水海水で90%、飼育水槽上層で84%、飼育水槽下
層で75%であった。
Further, when comparing the oxygen saturation depending on the breeding method and the measurement position, it was 90% in the intake seawater, 84% in the breeding aquarium upper layer, and 75% in the breeding aquarium lower layer in the prior art 1.

【0091】また、従来技術2では、取水海水で92
%、飼育水槽上層で82%、飼育水槽下層で71%であ
った。
In the prior art 2, the intake seawater is 92
%, 82% in the upper layer of the breeding aquarium, and 71% in the lower layer of the breeding aquarium.

【0092】一方、本発明では取水海水で91%、飼育
水槽上層で86%、飼育水槽下層で76%であった。
On the other hand, in the present invention, the intake seawater was 91%, the breeding water tank upper layer was 86%, and the breeding water tank lower layer was 76%.

【0093】飼育水槽における水質項目の比較結果から
も、従来技術1、2におけるバイ飼育では、特に水槽下
層における残餌および***物の蓄積およびその除去が不
充分になりがちとなることに起因する、アンモニアの蓄
積と酸素飽和度の低下が起こりがちであったが、本発明
を用いて底掃除の簡便化を図ることで、残餌および***
物の蓄積を軽減および防止することが可能となり、環境
悪化がバイに与える負荷および影響を軽減することがで
きることが分かる。
The comparison results of the water quality items in the breeding aquariums also result from the fact that the by-breeding in the prior arts 1 and 2 tends to result in insufficient accumulation and removal of residual food and excrement particularly in the lower layers of the aquarium. , Accumulation of ammonia and decrease in oxygen saturation tended to occur, but by facilitating bottom cleaning using the present invention, it becomes possible to reduce and prevent accumulation of residual food and excrement, It can be seen that it is possible to reduce the load and impact of environmental deterioration on the motorcycle.

【0094】水槽底掃除を含む日常飼育管理には、従来
技術で1回当たり作業員2人で1.5時間、1日2回
(6人・時間/日)必要であったが。本発明を用いるこ
とで1回当たり作業員1人で1時間、1日2回(2人・
時間/日)に効率化を図ることが可能となり、水槽底掃
除を含む日常飼育管理における省力化を図ることができ
ることが分かる。
In the conventional breeding management including cleaning of the bottom of the aquarium, the conventional technique required two workers for 1.5 hours and twice a day (6 persons.hour / day). By using the present invention, one worker per time for 1 hour, twice a day (2 people
It can be seen that it is possible to improve efficiency in time / day) and to save labor in daily breeding management including cleaning of the bottom of the aquarium.

【0095】実施例の結果から、従来技術1は、開始時
飼育個体数が3.5万個体と少ない飼育で、生残率71.
4%となるものの、12万個体と多い従来技術2では生
残率32.5%と生残率が急減したが、本発明によれ
ば、従来技術2(12万個体)を上回る14.4万個体
の開始時飼育個体数の飼育においても、生残率97.9
%と極めて良好な飼育が達成され、また、種苗の成長に
ついても、本発明は、従来技術1、2よりも飼育開始時
の殻高が小さいにもかかわらず、飼育終了時には従来技
術1、2よりも殻高が上回り、成長面からも本発明が優
れていることがわかる。
From the results of the examples, in the prior art 1, the number of individuals bred at the start was as small as 35,000, and the survival rate was 71.
Although it is 4%, the survival rate has rapidly decreased to 32.5% in the conventional technique 2 with a large number of 120,000 individuals, but according to the present invention, it exceeds the conventional technique 2 (120,000 individuals) by 14.4. Survival rate of 97.9 even in the breeding of 10,000 individuals at the start
%, Extremely good breeding was achieved, and regarding the growth of seeds and seedlings, the present invention, even though the shell height at the start of breeding was smaller than that of the conventional techniques 1 and 2, the conventional techniques 1 and 2 at the end of breeding. It is understood that the present invention is superior in terms of growth, since the shell height is higher than that.

【0096】[0096]

【発明の効果】以上説明したように、この発明によれ
ば、バイ等の肉食性巻き貝の養殖において、水槽の底か
ら所定高さ上方の位置に設けられた網籠{小割り式籠
(二重、単体)}を、採卵から孵化、稚貝蓄養および飼
育までの一連の工程を通して用いることにより、従来技
術と比較して次に挙げる項目において改善が見られる有
用な効果がもたらされる。
As described above, according to the present invention, when cultivating carnivorous snails such as a bait, a net cage {divided cage (two Heavy, simple substance)} through a series of steps from egg collection to hatching, juvenile shellfish cultivation, and rearing, brings about useful effects in which the following items are improved as compared with the prior art.

【0097】 蓄養水槽の底の水質悪化が生じ易い環
境と、巻き貝の生息環境とを切り離すことが可能とな
り、種苗の成長を促進し、環境悪化による斃死を抑える
ことができる。
It is possible to separate the environment in which the water quality at the bottom of the farm water tank is likely to deteriorate from the habitat of snails, promote the growth of seeds and seedlings, and prevent death due to environmental deterioration.

【0098】 日常の飼育管理において、これまでは
蓄養水槽の底の掃除排水中に、残餌および***物ととも
に種苗(稚貝)が一緒に排出されてくる可能性が高く、
排水は漉し器で必ず受けていたが、本発明によれば、網
籠(小割り式籠)が上部にあり、更に、これを水槽から
取り出すことにより単体そのものを水槽から取り上げる
ことができ、確実且つ簡便に残餌および***物のみを掃
除できる。
In the daily management of breeding, until now, there is a high possibility that seedlings (fry) will be discharged together with residual food and excrement in the cleaning drainage of the bottom of the farm water tank.
The drainage was always received by the strainer, but according to the present invention, there is a net basket (divided type basket) in the upper part, and further, by taking this out from the water tank, the unit itself can be picked up from the water tank. And, it is possible to easily clean only the leftover food and excrement.

【0099】 成長に伴う蓄養水槽の移動や切り替え
を行う場合、これまではその都度、全個体数を水槽内か
ら取り出して行っていたが、本発明によれば基本的に網
籠(小割り式籠)の目合を切り替えて行くことで対応可
能となり、水槽移動における省力化が図れる。
When moving or switching the farm water tank along with the growth, until now, the total number of individuals has been taken out from the water tank each time, but according to the present invention, basically, the net basket (small division type) is used. This can be handled by switching the meshes of baskets, and labor can be saved when moving the water tank.

【0100】 成長に伴なう間引きを行う場合、これ
まではその都度、全個体数を水槽内から取り出し、選別
および分槽を行っていたが、本発明によれば基本的に網
籠(小割り式籠)単体の数を増やして行くことで対応可
能となり、間引き選別における省力化が図れる。
In the case of thinning out with growth, the total number of individuals was taken out from the aquarium for sorting and sorting every time, but according to the present invention, basically, a net basket (small This will be possible by increasing the number of split type baskets (single type baskets) alone, and labor can be saved in thinning and sorting.

【図面の簡単な説明】[Brief description of drawings]

【図1】この発明の実施の形態に係る網籠(小割り式
籠)を有するバイの蓄養水槽を示す平面図である。
FIG. 1 is a plan view showing a bait water storage tank having a net basket (divided basket) according to an embodiment of the present invention.

【図2】この発明の実施の形態に係る網籠(小割り式
籠)を有するバイの蓄養水槽を示す側面断面図である。
FIG. 2 is a side cross-sectional view showing a by-product culture water tank having a net basket (divided basket) according to the embodiment of the present invention.

【図3】この発明の実施例に係る個体の成長の調査結果
を示すグラフである。
FIG. 3 is a graph showing the results of a survey on the growth of individuals according to an example of the present invention.

【図4】この発明の実施例に係る生残個体数の調査結果
を示すグラフである。
FIG. 4 is a graph showing the results of a survey on the number of surviving individuals according to an example of the present invention.

【図5】この発明の実施例に係る飼育水の平均水温を示
すグラフである。
FIG. 5 is a graph showing an average water temperature of breeding water according to an example of the present invention.

【図6】この発明の実施例に係る飼育水の水質の計測結
果をアンモニア分析値平均で示すグラフである。
FIG. 6 is a graph showing the results of measuring the water quality of breeding water according to an example of the present invention, as an average of ammonia analysis values.

【図7】この発明の実施例に係る飼育水の水質の計測結
果を酸素飽和度平均で示すグラフである。
FIG. 7 is a graph showing the results of measurement of water quality of breeding water according to an example of the present invention as an average oxygen saturation.

【図8】従来のバイの養殖装置を示す側面図でバイの親
貝蓄養と給餌状況を示している。
FIG. 8 is a side view showing a conventional bait aquaculture apparatus, showing the parent shellfish cultivation and feeding status of the bait.

【図9】従来のバイの養殖装置を示す側面図で孵化水槽
による孵化の状況を示している。
FIG. 9 is a side view showing a conventional bait aquaculture device, showing the state of hatching by a hatching aquarium.

【図10】従来のバイの養殖装置を示す側面図で種苗蓄
養水槽による稚貝の飼育と給餌状況を示している。
[Fig. 10] Fig. 10 is a side view showing a conventional bait aquaculture apparatus, and shows rearing and feeding of juveniles in a seedling water tank.

【符号の説明】[Explanation of symbols]

1 種苗蓄養水槽 2 小割り式籠 3 吊具 4 飼育水 5 親貝 6 親貝蓄養水槽 7 孵化用網籠 8 孵化水槽 9 種苗蓄養水槽 10 排水口 11 サイフォン 12 ザル 13 エアーストーン 14 稚貝 15 ネット(ミュラーガーゼ) 16 ネット(ミュラーガーゼ) 17 ネット 1 seedling water tank 2 small baskets 3 suspenders 4 Breeding water 5 Parent shellfish 6 Parent shellfish water tank 7 Hatching nets 8 hatching tank 9 seedling water tank 10 drain 11 siphon 12 monkeys 13 Air Stone 14 fry 15 Net (Muller Gauze) 16 Net (Muller Gauze) 17 net

───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.7,DB名) A01K 61/00 ─────────────────────────────────────────────────── ─── Continuation of front page (58) Fields surveyed (Int.Cl. 7 , DB name) A01K 61/00

Claims (9)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 種苗蓄養水槽内の上部に、稚貝が落下し
ない網目を有する稚貝用網籠を設け、前記稚貝用網籠内
に肉食性巻き貝の親貝の産卵により卵嚢が付着した基質
を配置し、孵化した稚貝を前記稚貝用網籠内で蓄養する
ことを特徴とする肉食性巻き貝の養殖方法。
1. A net cage for juveniles having a mesh that does not allow juveniles to fall is provided in the upper part of the seedling water tank, and an egg sac is attached to the juveniles by the spawning of the parent shell of carnivorous snails. A method for cultivating carnivorous snails, which comprises arranging a substrate and culturing hatched juveniles in the juvenile net cage.
【請求項2】 親貝蓄養水槽内の上部に、親貝が落下し
ない網目を有する親貝用網籠を設け、および、種苗蓄養
水槽内の上部に、稚貝が落下しない網目を有する稚貝用
網籠を設け、前記親貝用網籠に肉食性巻き貝の親貝を収
容し、前記親貝用網籠に基質を配置して親貝に産卵せし
め、卵嚢が付着した前記基質を前記親貝用網籠から前記
稚貝用網籠内に移し、孵化した稚貝を前記稚貝用網籠内
で蓄養することを特徴とする肉食性巻き貝の養殖方法。
2. A parent shell net basket having a mesh that prevents the parent shell from falling is provided in the upper portion of the parent shell water storage tank, and a juvenile shell having a mesh that does not allow the young shell to fall in the upper portion of the seedling cultivation water tank. A net basket is provided, and the parent shell of the carnivorous snail is housed in the parent shell net basket, and the substrate is placed in the parent shell net basket to cause the parent shell to lay eggs, and the substrate with the egg sac attached is used as the parent shell. A method for cultivating carnivorous snails, which comprises transferring from a net cage for shellfish into the net cage for fry shells and culturing the hatched fry shells in the net cage for fry shells.
【請求項3】 稚貝の成長に応じて前記稚貝用網籠を交
換して前記稚貝が落下しない限度で網目を拡大して行く
請求項1または2記載の肉食性巻き貝の養殖方法。
3. The method for cultivating carnivorous snails according to claim 1 or 2, wherein the net cage for the juveniles is replaced by expanding the nets so that the juveniles do not fall in accordance with the growth of the juveniles.
【請求項4】 稚貝蓄養中に前記種苗蓄養水槽内の底部
の飼育水を所定期間毎に交換するとともに空気供給を行
う請求項1、2または3記載の肉食性巻き貝の養殖方
法。
4. The method for cultivating carnivorous snails according to claim 1, 2 or 3, wherein during the juvenile cultivation, the breeding water at the bottom of the seedling cultivation water tank is exchanged at predetermined intervals and air is supplied.
【請求項5】 前記肉食性巻き貝は、エゾバイ科の肉食
性巻き貝またはアクキガイ科の肉食性巻き貝である請求
項1、2、3または4記載の肉食性巻き貝の養殖方法。
5. The method for cultivating a carnivorous snail according to claim 1, 2, 3 or 4, wherein the carnivorous snail is a carnivorous snail of the family Shrimpidae or a carnivorous snail of the family Acrididae.
【請求項6】 親貝蓄養水槽と、前記親貝蓄養水槽内の
上部に設けられた、親貝および基質を収容するための、
親貝が落下しない網目を有する親貝用網籠と、種苗蓄養
水槽と、前記種苗蓄養水槽内の上部に設けられた、親貝
の産卵により卵嚢が付着した基質を収容し種苗を蓄養す
るための、稚貝が落下しない網目を有する稚貝用網籠と
を備えることを特徴とする肉食性巻き貝の養殖装置。
6. A parent shell water storage tank, and an upper portion of the parent shell water storage tank for accommodating parent shells and substrates,
A net basket for parent shells having a mesh that prevents the parent shells from falling, a seedling water tank, and a substrate provided with an egg sac attached to the eggshell of the parent shell, which is provided in the upper part of the seedwater tank, to store seedlings. And a net cage for juveniles that has a mesh that prevents juveniles from falling.
【請求項7】 前記稚貝用網籠は、稚貝の成長に応じて
前記稚貝が落下しない限度で網目を拡大するために交換
可能となっている請求項6記載の肉食性巻き貝の養殖装
置。
7. The carnivorous snail aquaculture according to claim 6, wherein the juvenile shell net cage is replaceable in order to expand the meshes as long as the juvenile shells do not drop as the juvenile shells grow. apparatus.
【請求項8】 前記種苗蓄養水槽は、前記種苗蓄養水槽
内の底部の飼育水を所定期間毎に交換する飼育水交換装
置および給気装置を備える請求項6または7記載の肉食
性巻き貝の養殖装置。
8. The carnivorous snail aquaculture according to claim 6, wherein the seedling water tank comprises a breeding water exchange device and an air supply device for exchanging the breeding water at the bottom of the seedwater culture water tank at predetermined intervals. apparatus.
【請求項9】 前記肉食性巻き貝は、エゾバイ科の肉食
性巻き貝またはアクキガイ科の肉食性巻き貝である請求
項6、7または8記載の肉食性巻き貝の養殖装置。
9. The carnivorous conch cultivating apparatus according to claim 6, wherein the carnivorous conch is a carnivorous conch of the lobster family or a carnivorous conch of the mussel family.
JP28643399A 1999-10-07 1999-10-07 Method and apparatus for cultivating carnivorous snails Expired - Fee Related JP3486585B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28643399A JP3486585B2 (en) 1999-10-07 1999-10-07 Method and apparatus for cultivating carnivorous snails

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28643399A JP3486585B2 (en) 1999-10-07 1999-10-07 Method and apparatus for cultivating carnivorous snails

Publications (2)

Publication Number Publication Date
JP2001103860A JP2001103860A (en) 2001-04-17
JP3486585B2 true JP3486585B2 (en) 2004-01-13

Family

ID=17704334

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28643399A Expired - Fee Related JP3486585B2 (en) 1999-10-07 1999-10-07 Method and apparatus for cultivating carnivorous snails

Country Status (1)

Country Link
JP (1) JP3486585B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103404465A (en) * 2013-08-22 2013-11-27 河南牧业经济学院 Viscous breeding fish fry hatching mesh and hatching method
CN103404465B8 (en) * 2013-08-22 2016-05-18 河南牧业经济学院 Viscid egg fry hatching mesh sheet and hatching method
CN105994092A (en) * 2016-07-22 2016-10-12 广西壮族自治区水产引育种中心 Semi-submersible viscous roe universal incubation method and device

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7114461B2 (en) * 2004-09-28 2006-10-03 Winterlab Limited Method for raising aquatic animals
JP4635172B2 (en) * 2006-08-16 2011-02-16 独立行政法人国際農林水産業研究センター Shrimp breeding and health management system for indoor shrimp production
JP5068693B2 (en) * 2008-05-14 2012-11-07 東亜建設工業株式会社 Shellfish larvae and juvenile shellfish breeders and breeding devices
JP5068694B2 (en) * 2008-05-22 2012-11-07 東亜建設工業株式会社 Shellfish breeding method and breeding ground
JP2012157294A (en) * 2011-02-01 2012-08-23 Yanmar Co Ltd Method of culturing infaunal bivalve and culture device therefor
CN102742524B (en) * 2012-04-23 2013-10-09 浙江海洋学院 Fry breeding method for thais luteostoma
CN103229735B (en) * 2013-04-07 2014-07-23 福建省水产研究所 Method for estimating survival rate of babylonia lutosa in sea area
KR101428489B1 (en) * 2014-02-25 2014-08-13 경상북도(수산자원개발연구소) Apparatus for inducing childbirth of marsh snail and method for inducing childbirth of marsh snail using the same
CN105191838A (en) * 2015-08-27 2015-12-30 张家港鸿蚓生物科技有限公司 Margarya farming method
ES2930074T3 (en) * 2017-12-01 2022-12-05 Benchmark Genetics Iceland Hf Aquaculture method for the production of salmon eggs

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103404465A (en) * 2013-08-22 2013-11-27 河南牧业经济学院 Viscous breeding fish fry hatching mesh and hatching method
CN103404465B (en) * 2013-08-22 2016-03-16 河南牧业经济学院 Viscid egg fry hatching mesh sheet and hatching m
CN103404465B8 (en) * 2013-08-22 2016-05-18 河南牧业经济学院 Viscid egg fry hatching mesh sheet and hatching method
CN105994092A (en) * 2016-07-22 2016-10-12 广西壮族自治区水产引育种中心 Semi-submersible viscous roe universal incubation method and device
CN105994092B (en) * 2016-07-22 2018-10-02 广西壮族自治区水产引育种中心 The general hatching method of semi-submersible type viscous roes

Also Published As

Publication number Publication date
JP2001103860A (en) 2001-04-17

Similar Documents

Publication Publication Date Title
CN101637136B (en) Method for breeding juvenile mussel of hyriopsis schlegeli
CN104160993B (en) The artificial breeding method of a kind of Paracobitis variegates fry
KR20180047631A (en) Controlling method of the time of sea cucumber artificial seed production through management of parents sea cucumbers in land farm
JP3486585B2 (en) Method and apparatus for cultivating carnivorous snails
KR101302657B1 (en) A water tank for faming red-sea cucumber and farming method using the same
CN106942103B (en) Artificial seedling raising method for cucurbit snails
US3158135A (en) Method for raising bass and frogs
CN107211934A (en) Tilapia mossambica cage culture
CN113349117A (en) Method and device for ecologically breeding rapana venosa in pond
JPH05336860A (en) Method for allowing loach to spawn and grow and its device
CN105766733A (en) Bionic water grass
Joseph et al. Captive seed production of pearl spot in backyard hatcheries
Congrove et al. A practical manual for remote setting in Virginia
CN107223598A (en) A kind of age knife long-tailed anchovy pond tandem ecology breeds cultural method
JP2020178616A (en) Culture method of short-neck clam
Lutz et al. Bullfrog culture
Sarma et al. Management in seed production of golden mahseer, Tor putitora in hatchery conditions
CN103688881A (en) Cultivation method for pelteobagrus fulvidraco summerlings fish fries
CN108834947B (en) Polyculture method of saury, river crab and freshwater shrimp
CN116806749B (en) Artificial propagation method for odontobutis obscura
Marichamy Crab farming potential in India
CN113207780A (en) Seedling cultivation and feeding habit domestication system and feeding habit trainer
Lazur et al. Golden shiner culture: a reference profile
CN115956533A (en) Outdoor pond for natural overwintering of cynoglossus semilaevis and polyculture method
Nammalwar et al. Prospects of grouper culture in India

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees