JP3481962B2 - Method for manufacturing porous metal filter - Google Patents

Method for manufacturing porous metal filter

Info

Publication number
JP3481962B2
JP3481962B2 JP25885192A JP25885192A JP3481962B2 JP 3481962 B2 JP3481962 B2 JP 3481962B2 JP 25885192 A JP25885192 A JP 25885192A JP 25885192 A JP25885192 A JP 25885192A JP 3481962 B2 JP3481962 B2 JP 3481962B2
Authority
JP
Japan
Prior art keywords
metal
temperature
porous
metal oxide
oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP25885192A
Other languages
Japanese (ja)
Other versions
JPH05195110A (en
Inventor
邦好 高原
清 福浦
Original Assignee
マイクロリス・コーポレイション
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by マイクロリス・コーポレイション filed Critical マイクロリス・コーポレイション
Priority to JP25885192A priority Critical patent/JP3481962B2/en
Publication of JPH05195110A publication Critical patent/JPH05195110A/en
Application granted granted Critical
Publication of JP3481962B2 publication Critical patent/JP3481962B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は連続気泡性金属多孔体フ
ィルタの製造方法に関する。
FIELD OF THE INVENTION The present invention relates to a continuous foaming metals porous body off
It relates to a method for manufacturing a filter .

【0002】[0002]

【従来の技術】金属多孔体、セラミック多孔体等の連続
気泡多孔体には、半導体製造に使用される各種ガスや薬
剤溶液等のろ過に使用されるフィルタがあり、またその
内の金属多孔体には更に電池電極、水素吸蔵合金、その
他の用途がある。本発明は特に連続気泡金属多孔体に関
する。
2. Description of the Related Art Open-cell porous bodies such as metal porous bodies and ceramic porous bodies include filters used for filtering various gases and chemical solutions used in semiconductor manufacturing, and the metal porous bodies therein. Has further applications in battery electrodes, hydrogen storage alloys, and other applications. The present invention particularly relates to an open-cell metal porous body.

【0003】連続気泡多孔体に必要な条件は用途に依存
するので、一般的な条件を規定するのは困難であるが、
本発明で応用を意図している微細な粒子の流通が関係し
ている用途では、微細で且つ均一に分布した細孔を有す
ること、機械的に安定していること、細孔容積あるいは
空孔率が大きいこと等である。
Since the conditions required for an open-cell porous body depend on the application, it is difficult to specify general conditions.
In applications involving the distribution of fine particles intended for application in the present invention, having fine and uniformly distributed pores, mechanically stable, pore volume or pores The rate is high.

【0004】従来、連続気泡金属多孔体の製造には、粒
度の揃った金属粉末又は繊維を原料とし、それにバイン
ダーを加え、圧縮成形し、非酸化性雰囲気中で適当な温
度で処理して部分的に焼結する方法が試みられている。
(例えば山形県工業技術センター報告No.21、水木
外「工業材料」30巻、10号、第89−99頁(19
82)参照)。しかしながら、小さな粒径の金属粉末の
製造には、溶融金属のスプレーによる方法、線材の切断
とそれに続く粉砕等の方法等が行なわれるので(例え
ば、「金属便覧」の粉末製造の項、特開昭55−937
01号、同56−12559号、同56−52146号
参照)粉末が高価であるのみならず、粉末の表面積が大
きく発火の危険性が大きいので空気中で成形等の作業を
行なうことが困難である。そのため、製造には細心の注
意が要求され又コストがかさむ問題点がある。比較的大
きい粒径のものを使用すると微細な細孔は得られない。
Conventionally, in the production of an open-cell metal porous body, metal powder or fiber having a uniform particle size is used as a raw material, a binder is added thereto, compression molding is carried out, and the powder is treated at an appropriate temperature in a non-oxidizing atmosphere. The method of mechanically sintering has been tried.
(For example, Yamagata Prefectural Industrial Technology Center Report No. 21, Mizuki Soga "Industrial Materials" Vol. 30, No. 10, pp. 89-99 (19
82)). However, since a method of spraying a molten metal, a method of cutting a wire and subsequent pulverization, etc. are carried out for producing a metal powder having a small particle size (for example, in the section of powder production in "Handbook of Metals"), 55-937
No. 01, No. 56-12559, No. 56-52146) The powder is not only expensive, but the surface area of the powder is large and the risk of ignition is great, so that it is difficult to perform work such as molding in air. is there. Therefore, there is a problem that the manufacturing requires great care and the cost is high. Fine pores cannot be obtained by using a material having a relatively large particle size.

【0005】一方、連続気泡セラミック多孔体は、シェ
ディング(表面からの材料の剥脱)の問題があること、
支持体への取付に金属との溶接が出来ないこと等の欠点
があり、又フイルターへの応用では重要な空孔率が小さ
い問題もある。
On the other hand, the open-celled ceramic porous body has a problem of shedding (exfoliation of material from the surface),
There is a drawback in that it cannot be welded to a metal when it is attached to a support, and there is a problem that the porosity is small, which is important in application to a filter.

【0006】更に、多孔質高分子膜は広く使用されてい
るが、耐熱性が低く、強度も充分でなく、金属との溶接
が出来ないという問題点を有する。
Further, although porous polymer membranes are widely used, they have the problems that they have low heat resistance, insufficient strength, and cannot be welded to metals.

【0007】従来の連続気泡金属多孔体は上記の欠点が
あるが、セラミック多孔体に比して、シェディングの問
題がなく、金属との溶接が容易であり、一方多孔質高分
子膜に比して、耐熱性が高く、強度も充分なものが期待
でき、金属との溶接が容易である等の利点がある。そこ
で、本発明者らは鋭意研究の末従来の連続気泡金属多孔
体製造法に比して安定で容易な製造法を導くことが出来
た。
Although the conventional open-cell metal porous body has the above-mentioned drawbacks, it does not have the problem of shedding and is easy to be welded to a metal, as compared with the ceramic porous body, while it has a disadvantage in comparison with the porous polymer membrane. Then, it has advantages such as high heat resistance, sufficient strength, and easy welding with metal. Therefore, the inventors of the present invention have made earnest studies and have been able to derive a stable and easy manufacturing method as compared with the conventional method for manufacturing a porous metal porous body.

【0008】[0008]

【発明が解決しようとする課題】先に述べたように、従
来の金属粉末を焼結する方法は、原料コストが高く、製
造工程の制御が困難という問題がある。本発明はこれら
の欠点のない、新規な連続気泡金属多孔体フィルタを製
造する方法を提供することを発明の課題とする。より具
体的には、微細な孔径を有する連続気泡金属多孔体を提
供すること、又好ましくは空孔率の大きい連続気泡金属
多孔体を提供することが課題である。
As described above, the conventional method of sintering metal powder has a problem that the raw material cost is high and the control of the manufacturing process is difficult. It is an object of the present invention to provide a method for producing a novel open-cell metal porous filter which does not have these drawbacks. More specifically, it is an object to provide an open-cell metal porous body having a fine pore size, and preferably to provide an open-cell metal porous body having a large porosity.

【0009】[0009]

【課題を解決するための手段】本発明は、ニッケル酸化
物及びモリブデン酸化物より選択した金属酸化物の粉末
を樹脂バインダーとともに成形圧力30〜150Kg/
cm 2 で板形に成形し、空気中700〜1600℃で且
つ金属酸化物焼結体を生成しうる温度で4〜16時間
成して通気性の多孔質の還元可能な金属酸化物焼結体を
生成し、次いで600〜1000℃で且つ該金属酸化物
を構成する金属またはそれらの間の合金の融点以下の温
度で、還元雰囲気中で0.5〜6時間還元することを特
徴とする連続気泡性金属多孔体フィルタの製造方法を提
供する。本発明はまたニッケル酸化物及びモリブデン酸
化物より選択した金属酸化物の粉末を樹脂バインダーと
ともに成形圧力200〜2000Kg/cm2で円筒形
に成形し、空気中800〜1700℃で且つ金属酸化物
焼結体を生成しうる温度で4〜16時間焼成して通気性
の多孔質の還元可能な金属酸化物焼結体を生成し、次い
で600〜1000℃で且つ該金属酸化物を構成する金
属またはそれらの間の合金の融点以下の温度で、還元雰
囲気中で0.5〜6時間還元することを特徴とする連続
気泡性金属多孔体フィルタの製造方法を提供する。
The present invention is directed to nickel oxide.
And a powder of a metal oxide selected from molybdenum oxide together with a resin binder at a molding pressure of 30 to 150 kg /
cm 2 for forming into a plate shape , and calcination in air at 700 to 1600 ° C. for 4 to 16 hours at a temperature at which a metal oxide sintered body can be formed. A metal oxide sintered body is produced and then reduced in a reducing atmosphere for 0.5 to 6 hours at a temperature of 600 to 1000 ° C. and a temperature not higher than the melting point of the metal constituting the metal oxide or the alloy between them. There is provided a method for producing an open-celled porous metal filter characterized by the above. The present invention also relates to nickel oxide and molybdic acid.
A metal oxide powder selected from the compounds is molded into a cylindrical shape with a resin binder at a molding pressure of 200 to 2000 Kg / cm 2 , and the temperature is 800 to 1700 ° C. in air and at a temperature at which a metal oxide sintered body can be formed . Baking for 16 hours to produce a breathable, porous, reducible metal oxide sinter, then at a temperature of 600-1000 ° C. and below the melting point of the metal or the alloys between them. Then, there is provided a method for producing an open-celled metal porous filter, which comprises reducing in a reducing atmosphere for 0.5 to 6 hours .

【0010】本発明に従って還元される通気性の多孔質
金属酸化物焼結体は、NiO、Fe23 、CuO、C
oO、MoO3 等の金属酸化物の一種又は混合物であっ
て焼結して単独又は複合酸化物焼結体を生成し得る任意
の原料粉末を、ポリビニルアルコール、ブチラール樹
脂、アクリル等(例えば和光製PVA重合度2000、
和光社製PVA重合度500、ユニチカ製ポバールUM
R、第一工業製薬製セラモPB−15、共栄社油脂製オ
リコックスKC1720、いずれも商品名)のバインダ
ーと均一に混合し、金型等で所定の形状に成形し、次い
で空気中又は不活性雰囲気中で所定の温度及び時間焼結
することにより得られる。この方法によると所望形状の
焼結体を容易に得ることが出来るが、一般に細孔の孔径
及び多孔度は使用する原料粉末の種類、粒径、粒度分
布、バインダーの混合割合、焼成温度、及び焼成時間等
の各種の因子で決まるものであり、これらを適宜制御す
ることにより通気性の多孔質金属酸化物焼結体とするこ
とが出来る。この焼結体の形状は最終金属焼結体の形状
を規定するものであるが、周知のように酸化物粉末の成
形は極めて容易であり、焼結後にその形状は保存され
る。別法として、上記の金属酸化物粉末の成形体は直接
還元性雰囲気中で焼成される。これにより直接通気性で
多孔質の金属を得ることができる。
The air-permeable porous metal oxide sintered body reduced according to the present invention includes NiO, Fe 2 O 3 , CuO and C.
Any raw material powder which is one or a mixture of metal oxides such as oO and MoO 3 and which can be sintered to produce a single or composite oxide sintered body is prepared by using polyvinyl alcohol, butyral resin, acrylic resin (for example, Wako product). PVA polymerization degree 2000,
Wako PVA polymerization degree 500, Unitika Poval UM
R, Dai-ichi Kogyo Seiyaku Ceramo PB-15, Kyoeisha Yushi Yushi Oricox KC1720, all of which are trade names) and uniformly mixed and molded into a predetermined shape with a mold, and then in air or an inert atmosphere. It is obtained by sintering in a predetermined temperature and time. According to this method, it is possible to easily obtain a sintered body having a desired shape, but generally the pore size and porosity of the pores are the type of raw material powder used, the particle size, the particle size distribution, the mixing ratio of the binder, the firing temperature, and It is determined by various factors such as firing time, and by appropriately controlling these factors, a breathable porous metal oxide sintered body can be obtained. The shape of this sintered body defines the shape of the final metal sintered body, but as is well known, the molding of oxide powder is extremely easy and the shape is preserved after sintering. Alternatively, the above metal oxide powder compact is fired directly in a reducing atmosphere. This makes it possible to directly obtain a porous metal having air permeability.

【0011】次ぎに、金属酸化物成形体または金属酸化
物焼結体は水素ガス等の還元性雰囲気中で焼成される。
焼成温度及び焼成時間は金属酸化物焼結体の種類によっ
て異なる。一般に還元温度は還元されて得た金属が流動
して細孔を塞がないように金属酸化物焼結体の構成金属
の融点よりも低い所定の温度にする必要がある。
Next, the metal oxide compact or the metal oxide sintered body is fired in a reducing atmosphere such as hydrogen gas.
The firing temperature and firing time differ depending on the type of metal oxide sintered body. Generally, the reduction temperature needs to be a predetermined temperature lower than the melting point of the constituent metal of the metal oxide sintered body so that the metal obtained by the reduction does not flow and block the pores.

【0012】孔径と空孔容積は用途により変わり得るも
のであり、どれが最適ということは出来ないが、上記の
各種の条件を選択することで必要な細孔構造を得ること
が出来る。しかし、大きいところでは数μmから、小さ
いところでは従来の連続気泡金属多孔体よりもかなり小
さい0.5μm程度の細孔は容易に得られる。一般に、
小さな孔径を得るためには、バインダー濃度を小さくす
る、成形圧力を高くする、焼成温度を低くする、及び還
元温度を低くする。大きな孔径を得るにはこれらの条件
を逆にする。ただし、焼成温度と還元温度の影響は比較
的複雑で、ある温度を超えて上昇すると逆に孔径は小さ
くなる。
[0012] The pore diameter and the pore volume can vary depending on the application, and which is not optimal, but the required pore structure can be obtained by selecting the above various conditions. However, it is easy to obtain pores having a size of several μm in a large area and pores of about 0.5 μm in a small area, which are considerably smaller than those of conventional open-cell metal porous bodies. In general,
In order to obtain a small pore size, the binder concentration is decreased, the molding pressure is increased, the firing temperature is decreased, and the reduction temperature is decreased. Reverse these conditions to obtain large pore sizes. However, the effects of the calcination temperature and the reduction temperature are relatively complicated, and the pore diameter decreases when the temperature rises above a certain temperature.

【0013】[0013]

【実施例の説明】ニッケル円板焼結体の場合 酸化ニッケルを原料とする場合の条件は次ぎの通りであ
る。粉末状NiOに、ポリビニルアルコール(PVA)
8重量%の水溶液をNiOに対して約0〜25重量%と
なる量で添加して良く混合し、成形圧力約30〜100
Kg/cm2 を加えて直径70mm、厚さ約2mmに成
形し、約3日間自然乾燥し、次いで空気中約800〜1
600℃の温度で、約4〜16時間焼成して通気性多孔
質酸化物焼結体を得る。成形圧力は30Kg/cm2
最低の必要圧力であり、100Kg/cm2 は上限では
なく使用した装置の限界を表わすに過ぎない。したがっ
て、より大きい150Kg/cm2 といった成形圧力も
可能である。次ぎに、この焼結体を水素を通気しながら
約600〜800℃で、約0.5〜2時間還元処理す
る。
[Explanation of Examples] Case of Nickel Disc Sintered Body The conditions for using nickel oxide as a raw material are as follows. Polyvinyl alcohol (PVA) on powdered NiO
An 8 wt% aqueous solution was added to NiO in an amount of about 0 to 25 wt% and mixed well, and the molding pressure was about 30 to 100.
Kg / cm 2 was added to form a diameter of 70 mm and a thickness of about 2 mm, which was naturally dried for about 3 days, and then about 800 to 1 in air.
It is fired at a temperature of 600 ° C. for about 4 to 16 hours to obtain a breathable porous oxide sintered body. A molding pressure of 30 Kg / cm 2 is the minimum required pressure, and 100 Kg / cm 2 is not an upper limit but merely represents the limit of the equipment used. Therefore, higher molding pressures of 150 Kg / cm 2 are possible. Next, this sintered body is subjected to reduction treatment at about 600 to 800 ° C. for about 0.5 to 2 hours while ventilating hydrogen.

【0014】上記の条件では実験上若干の健全でない連
続気泡ニッケル焼結体が得られた他は、概して健全な製
品が得られた。従って、工程の制御及び管理により充分
工業的な実施が可能である。また孔径は1μ前後のもの
が容易に得られる。
Under the above conditions, a generally sound product was obtained, except that some unhealthy open-cell nickel sintered bodies were experimentally obtained. Therefore, industrial control is possible by controlling and controlling the process. Further, the pore size of about 1 μm can be easily obtained.

【0015】ニッケル円筒焼結体の場合 酸化ニッケルを原料とする場合の条件は次ぎの通りであ
る。粉末状NiOに、ポリビニルアルコール(PVA)
10重量%の水溶液をNiOに対して約0〜40重量%
となる量で添加して良く混合し、成形圧力約200〜2
000Kg/cm2 を加えて外径17〜23mm、厚さ
約2〜3mmの円筒形に成形し、約3日間自然乾燥し、
次いで空気中約1100〜1700℃の温度で、約4時
間焼成して通気性多孔質酸化物焼結体を得る。次ぎに、
この焼結体を水素を通気しながら約600〜1000℃
で、約0.5〜6時間還元処理する。円筒形に成形する
と健全な焼結体の収率は100%である。
Case of Nickel Cylindrical Sintered Body The conditions for using nickel oxide as a raw material are as follows. Polyvinyl alcohol (PVA) on powdered NiO
About 10 to 40% by weight of aqueous solution with respect to NiO
And add well and mix well, molding pressure approx. 200-2
000 kg / cm 2 was added to form a cylindrical shape having an outer diameter of 17 to 23 mm and a thickness of about 2 to 3 mm, and naturally dried for about 3 days,
Then, it is fired in air at a temperature of about 1100 to 1700 ° C. for about 4 hours to obtain a breathable porous oxide sintered body. Next,
About 600 to 1000 ° C while ventilating hydrogen through this sintered body
Then, reduction treatment is performed for about 0.5 to 6 hours. When molded into a cylindrical shape, the yield of sound sintered bodies is 100%.

【0016】以下に具体例を説明するが、平均孔径と空
気流量をCoulter Porometer(米国セ
ントポール所在TSI社製)を使用して測定した。空気
流量のデータは入口圧力1Kg/cm2 ゲージ及び差圧1Kg/
cm2 でとったもの。更に空孔率(porosity)を
重量、見掛け体積、及びNiの真比重を使用して算出し
た。又収率(健全率)での良品の定義は、孔径分布や空
気流量を測るためのホルダーに装着できる程度に歪みが
小さく、肉眼でひびが確認できないものである。焼結し
やすさの目安としての「収縮率」は酸化物を焼結したと
きの直径収縮率である。還元しやすさの目安として「減
量率」を使った。例えば酸化ニッケルの酸素がすべて放
出されたときの減量率は21.4%である。空孔率は酸
化物がすべて金属に還元されたと仮定して計算したもの
である。
A specific example will be described below. The average pore size and the air flow rate were measured using a Coulter Porometer (manufactured by TSI, St. Paul, USA). Air flow rate data is inlet pressure 1Kg / cm 2 gauge and differential pressure 1Kg / cm
Taken in cm 2 . Further, the porosity was calculated using the weight, the apparent volume, and the true specific gravity of Ni. In addition, the definition of a good product in terms of yield (soundness rate) is such that the distortion is small enough to be attached to a holder for measuring the pore size distribution and the air flow rate, and cracks cannot be visually confirmed. The "shrinkage rate" as a measure of the ease of sintering is the diameter shrinkage rate when the oxide is sintered. The "weight loss rate" was used as a measure of the ease of return. For example, the weight loss rate when all the oxygen of nickel oxide is released is 21.4%. The porosity is calculated by assuming that all oxides are reduced to metals.

【0017】実施例1(円板形) 上記条件のうち、表1の条件を用いて開放気泡多孔質金
属焼結体を製造した。NiOとPVAの混合物は粗粒を
除くために30メッシュの篩を使用した。なお、実施例
1から4まではPVAの量は8%水溶液とNiOとの重
量比で表した。
Example 1 (disc shape) An open-cell porous metal sintered body was manufactured under the conditions shown in Table 1 among the above conditions. The NiO and PVA mixture used a 30 mesh screen to remove coarse particles. In addition, in Examples 1 to 4, the amount of PVA was represented by a weight ratio of an 8% aqueous solution and NiO.

【0018】[0018]

【表1】 [Table 1]

【0019】得られた試料の収率は約50%強であっ
た。健全なものの焼成収縮率、還元減量、空孔率、平均
孔径、空気流量(リットル/min・cm2 /Kg・1
/cm2 )は表2の通りであった。
The yield of the obtained sample was about 50% or more. Firing shrinkage rate, reduction loss, porosity, average pore size, air flow rate (liter / min · cm 2 / Kg · 1)
/ Cm 2 ) was as shown in Table 2.

【0020】[0020]

【表2】 [Table 2]

【0021】表2から、平均孔径に対して十分な空気流
量が得られることがわかる。従ってフィルターの用途が
期待出来る。特に1μm以下のものは従来の市販金属フ
ィルターには存在しないものであり多くの用途が期待出
来る。なお、平均収率は約50%強であったので、焼成
・還元時の条件や炉の温度分布、試料の姿勢などの制御
で高収率で良品が得られる可能性が充分ある。酸化ニッ
ケルからの多孔質ニッケルの製造では1000℃以上で焼結
が、600 ℃以上で還元が、ともによく進行する。但し孔
径が小さいときの還元は600 ℃,0.5hrでは不足のようで
ある(No.5,8)。孔径分布、空気流量に最も大きな影響を
与えた要因はPVA比と成形圧であった。
From Table 2, it can be seen that a sufficient air flow rate can be obtained with respect to the average pore size. Therefore, the use of the filter can be expected. In particular, those having a thickness of 1 μm or less do not exist in conventional commercially available metal filters and many applications can be expected. Since the average yield was about 50% or more, there is a good possibility that a good product can be obtained with a high yield by controlling the conditions during firing / reduction, the temperature distribution in the furnace, the attitude of the sample, and the like. In the production of porous nickel from nickel oxide, both sintering proceeds well above 1000 ° C and reduction proceeds above 600 ° C. However, reduction with a small pore size seems insufficient at 600 ° C for 0.5 hr (No. 5, 8). The factors that most affected the pore size distribution and air flow rate were the PVA ratio and molding pressure.

【0022】実施例2(円板形) 焼成温度の影響を見るために焼成温度1600℃を採用
し表3の条件を使用した。なお30メッシュ篩下を使用
した。
Example 2 (disc shape) In order to see the influence of the firing temperature, a firing temperature of 1600 ° C. was adopted and the conditions of Table 3 were used. A 30 mesh sieve was used.

【0023】[0023]

【表3】 [Table 3]

【0024】平均収率は約75%であった。健全な試料
について測定した結果を表4に示す。
The average yield was about 75%. Table 4 shows the measurement results of the sound samples.

【0025】[0025]

【表4】 [Table 4]

【0026】表4によると、平均孔径に対して十分な空
気流量が得られることがわかる。また実施例1と同様に
平均孔径と空気流量はPVA比と成形圧の影響が大き
く、焼成温度の影響は小さかった。しかし、焼成温度に
は孔径−流量に対する要因として、他の要因はすべて孔
径が小さくなれば流量が小さくなるように作用するが、
実施例1と対照すると、温度は1150℃で孔径最小、流量
最大で、1000℃、1600℃の順で孔径は大きく、流量は小
さくなっている。焼成時の直径収縮率は実施例1よりも
やや大きい。つまり焼成温度が高いほど焼結性は良い。
PVA比も焼結性に影響があり、1/10のほうが1/4 より
も良い。還元性については800 ℃であっても30min は不
十分で、還元温度よりもむしろ還元時間の方が影響が大
きいことがわかった。
From Table 4, it can be seen that a sufficient air flow rate can be obtained with respect to the average pore size. Also, as in Example 1, the average pore diameter and the air flow rate were greatly influenced by the PVA ratio and the molding pressure, and the influence of the firing temperature was small. However, as for the firing temperature, as a factor for the pore diameter-flow rate, all other factors act so that the flow rate becomes smaller as the pore diameter becomes smaller,
In contrast to Example 1, the temperature was 1150 ° C., the minimum pore size was the minimum, and the maximum flow rate was 1000 ° C. and 1600 ° C. The diameter shrinkage rate during firing is slightly higher than that in Example 1. That is, the higher the firing temperature, the better the sinterability.
The PVA ratio also affects the sinterability, and 1/10 is better than 1/4. Regarding the reducibility, it was found that 30 minutes was insufficient even at 800 ℃, and the reduction time had a greater effect than the reduction temperature.

【0027】実施例3(円板形) 実施例1、2で孔径と流量への影響が大きかったPVA
比と成形圧について3水準での実験を行った。条件を表
5に示す。充填高さ(成形時の厚さ)とふるいメッシュ
の影響も調べた。
Example 3 (disc shape) PVA that had a large effect on the pore size and flow rate in Examples 1 and 2.
Three levels of experiments were carried out on the ratio and the molding pressure. The conditions are shown in Table 5. The effects of filling height (thickness at the time of molding) and sieving mesh were also investigated.

【0028】[0028]

【表5】 [Table 5]

【0029】得られた連続気泡金属焼結体の平均収率は
57%であった。健全なものを測定した結果を表6に示
す。
The average yield of the obtained open cell metal sintered body was 57%. Table 6 shows the results of measuring the sound ones.

【0030】[0030]

【表6】 [Table 6]

【0031】PVA比と成形圧の孔径、流量への影響は
実施例1、2と同様の傾向が見られた。充填高さは最終
試料の厚さに直接影響し、したがって流量への影響が大
きい。メッシュは流量に余り影響しなかった。PVA比
1/10以下、焼成温度1150℃の条件で直径収縮率はどれも
23%以上で、焼結性は良いと言える。減量率は理論値の
21.4%には遠いものもあり、600 ℃30min の還元ではや
はり不足のようである。孔径最小のサンプル7の還元性
が最も悪い。
The same tendency as in Examples 1 and 2 was observed in the influence of the PVA ratio and the molding pressure on the hole diameter and the flow rate. The fill height has a direct effect on the thickness of the final sample and therefore has a large effect on the flow rate. The mesh had little effect on the flow rate. PVA ratio
The diameter shrinkage rate is 1/10 or less and the firing temperature is 1150 ° C.
It can be said that the sinterability is good at 23% or more. Weight loss rate is theoretical
Some of them are far from 21.4%, and it seems that the reduction at 600 ℃ for 30 min is still insufficient. Sample 7 having the smallest pore size has the worst reducibility.

【0032】実施例4(円板形) PVA比を実施例3までにない表7の条件で実験した。Example 4 (disk shape) The PVA ratio was tested under the conditions of Table 7 not found in Example 3.

【0033】[0033]

【表7】 [Table 7]

【0034】平均収率は50%強であった。測定結果を
表8に示す
The average yield was a little over 50%. The measurement results are shown in Table 8.

【0035】[0035]

【表8】 [Table 8]

【0036】PVA比1/6 と1/4 の間で孔径−流量に大
きく影響することがわかった。直径収縮率は20%程度
で、他の実験と合わせて、焼成温度、時間が同じ時には
PVA比と直径収縮率がよい相関をもっていることがわ
かる。還元温度600 ℃でも1hr ならば減量率は約20%と
なった。
It was found that the PVA ratio between 1/6 and 1/4 had a great influence on the pore size-flow rate. The diameter shrinkage is about 20%, and it can be seen from the other experiments that the PVA ratio and the diameter shrinkage have a good correlation when the firing temperature and time are the same. Even if the reduction temperature was 600 ° C, the weight loss rate was about 20% for 1 hour.

【0037】他の金属及び合金の場合 実施例5(円板形) 様々な金属酸化物の混合系について、主に焼結性、還元
性を調べた。参照のため、使用する原料単独でのデータ
も取った。合金系について健全な金属焼結体の得られた
ものの製造条件を表9に、結果を表10に示す。ただし
全て30メッシュの篩下を使用し、又充填高さは3mm
に統一した。PVA比は成形しやすいところを選び、統
一しなかった。本例以降におけるPVA比は固形分%で
表した。焼成温度について、NiO 、Fe2O3 、CoO 、WO3
については融点が1300℃以上なので1150℃(炉の最高温
度)とした。Cu酸化物についてはCuO の融点が1000℃強
なので900 ℃とし、Cu2Oは1200℃強だが高温の酸化性雰
囲気でCuO に変化するのでAr雰囲気の1000℃とした。そ
の二者の焼結性、還元性を比較して、大差はなっかたが
CuO を混合系に使用した。Mo酸化物についてもMoO3
融点が低いので500〜600℃で24時間焼成とし、
MoO2は融点は高いが高温の酸化性雰囲気でMoO3に変わる
ので、Ar雰囲気の1100℃焼成とした。焼結性、還
元性とも原料によって大きく異なる。単独での焼結性の
良いのはNiO 、Fe2O3、 WO3、Cu2O、CuO であった。混合
系での焼結性は必ずしも単独での結果から予想されるも
のではなく、単独で良かったNiO、Fe23 の混合
物の焼結性は余り良くなく、単独では全く焼結しない例
えばCoO を使ったNiO-CoO と同程度の焼結性だった。Ni
O-MoO3系ではNiOの含有率の高いサンプルの1100℃焼
成では7.9 %の収縮を得たので、温度、圧力、雰囲気等
の条件を適当に選択することによりこの組成での焼結は
可能と思われる。単独での還元性については、だいたい
文献データ(例えば共立出版社「化学大辞典」(196
3)、日ソ通信社「酸化物便覧」(1970)等参照)
の通りの傾向が見られた。NiO 、CoO 、CuO は600 ℃で
充分に還元されるが、WO3,MoO3は1000℃が必要である。
Fe2O3 は文献からは600 ℃で充分と思われたが不充分だ
った。混合系での還元性は、その温度で単独の場合に還
元されたものだけ還元されているように見える。NiO-Fe
2O3 やNiO-WO3 は600 ℃では還元は不充分だったが800
℃ではよく還元された。MoO3-Cr2O3の場合には600 ℃で
はほとんど還元されず、1000℃でMoのみ還元される。
しかし、Cr2O3 は酸素分圧を低くしまた温度を高くする
ことで焼成できることが知られており(J.Am.Ce
ramic Soc.Vol62,No.3−4、第2
08−211頁)、また温度を高くするとにより水素還
元できることも知られている(日本金属学会誌第50
巻、第11号、第993−998頁)。合金系の平均収
率は試料により30〜100%で余り良くないものもあ
った。健全な良品について孔径、流量等を測定し表10
に示した。
In the case of other metals and alloys Example 5 (disk shape) The mixed system of various metal oxides was mainly examined for sinterability and reducibility. For reference, data for the raw material used alone was also taken. Table 9 shows the manufacturing conditions of the obtained metal sintered body having a good alloy system, and Table 10 shows the results. However, all sieves under 30 mesh are used, and the filling height is 3 mm.
Unified. The PVA ratio was chosen so that it was easy to mold and was not standardized. The PVA ratios in this example and thereafter are expressed in terms of solid content%. About firing temperature, NiO, Fe 2 O 3 , CoO, WO 3
Since the melting point is 1300 ° C or higher, it was set to 1150 ° C (maximum furnace temperature). For Cu oxide, the melting point of CuO is more than 1000 ° C, so it was set to 900 ° C. Since Cu 2 O is more than 1200 ° C, it changes to CuO in a high temperature oxidizing atmosphere, so it was set to 1000 ° C in Ar atmosphere. Comparing the sinterability and reducibility of the two, there is no big difference.
CuO was used in the mixed system. Since MoO 3 has a low melting point, Mo oxide should be fired at 500 to 600 ° C. for 24 hours.
MoO 2 has a high melting point but changes to MoO 3 in a high temperature oxidizing atmosphere, so firing was performed at 1100 ° C. in an Ar atmosphere. Both sinterability and reducibility differ greatly depending on the raw material. NiO, Fe 2 O 3 , WO 3 , Cu 2 O, and CuO had good sinterability alone. The sinterability in the mixed system is not necessarily expected from the results of singly, and the sinterability of the mixture of NiO and Fe 2 O 3 , which was good by itself, is not so good that it does not sinter alone. It was as sinterable as NiO-CoO using. Ni
With the O-MoO 3 system, a sample with a high NiO content obtained a 7.9% shrinkage when fired at 1100 ° C, so it is possible to sinter with this composition by appropriately selecting the conditions such as temperature, pressure and atmosphere. I think that the. Regarding the reducibility by itself, there are generally literature data (eg, Kyoritsu Publishing "Chemical Encyclopedia" (196
3), Nisso News Agency "Oxide Handbook" (1970), etc.)
The street tendency was seen. NiO, CoO 2, and CuO are sufficiently reduced at 600 ° C, but WO 3 and MoO 3 require 1000 ° C.
Fe 2 O 3 was found to be sufficient at 600 ° C from the literature, but it was insufficient. The reducibility in the mixed system appears to be reduced only at that temperature when reduced alone. NiO-Fe
Reduction of 2 O 3 and NiO-WO 3 was insufficient at 600 ℃, but 800
It was well reduced at ℃. In the case of MoO 3 —Cr 2 O 3 , it is hardly reduced at 600 ° C., and only Mo is reduced at 1000 ° C.
However, it is known that Cr 2 O 3 can be fired by lowering the oxygen partial pressure and raising the temperature (J. Am. Ce.
ramic Soc. Vol 62 , No. 3-4, second
It is also known that hydrogen can be reduced by increasing the temperature (pp. 08-211) (Journal of Japan Institute of Metals, No. 50).
Vol. 11, No. 993-998). The average yield of the alloy system was 30 to 100% depending on the sample, and some were not very good. Measure the hole diameter, flow rate, etc. for sound non-defective products.
It was shown to.

【0038】[0038]

【表9】 [Table 9]

【0039】[0039]

【表10】 [Table 10]

【0040】実施例6(円板) この例は成形体の直接還元の例(試料4)を示す。ニッ
ケル酸化物とモリブデン酸化物を、表11に示す条件で
焼成し、次いで還元した。得られた試料の測定結果を表
12に示す。減量率から見てニッケルだけでなく、モリ
ブデンも還元されている。なお、試料1〜3は空気中で
焼結体とし、次いで還元した例であるが、歪みが大きい
ので測定できなかった。
Example 6 (Disc) This example shows an example (Sample 4) of direct reduction of a molded body. Nickel oxide and molybdenum oxide were fired under the conditions shown in Table 11 and then reduced. Table 12 shows the measurement results of the obtained samples. Not only nickel but also molybdenum is reduced in terms of the weight loss rate. Samples 1 to 3 are examples of being made into a sintered body in air and then reduced, but it was not possible to measure because of the large strain.

【0041】[0041]

【表11】 [Table 11]

【0042】[0042]

【表12】 [Table 12]

【0043】実施例7(円筒形) 上記ニッケル円筒焼結体の場合の条件のうち、表13に
示した条件を使用して円筒体を製造した。すべての試料
が健全であった。測定結果を表14に示す。
Example 7 (Cylindrical) A cylindrical body was manufactured by using the conditions shown in Table 13 among the conditions in the case of the above nickel cylindrical sintered body. All samples were sound. The measurement results are shown in Table 14.

【0044】[0044]

【表13】 注:Aは乳鉢による。Bはスプレードライヤーによる。[Table 13] Note: A is for mortar. B is from a spray dryer.

【0045】[0045]

【表14】 [Table 14]

【0046】以上のように本発明によると、金属酸化物
の成形体から容易に通気性で多孔質の金属焼結体を製造
することができる。本発明の範囲内で多くの変形例が可
能なことは当業者には明らかであろう。
As described above, according to the present invention, a breathable and porous metal sintered body can be easily manufactured from a metal oxide molded body. It will be apparent to those skilled in the art that many variations are possible within the scope of the invention.

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平3−74823(JP,A) 特開 昭54−43109(JP,A) 特公 昭61−2737(JP,B1) 特公 昭61−40721(JP,B1) (58)調査した分野(Int.Cl.7,DB名) C22C 1/08 ─────────────────────────────────────────────────── --Continued from the front page (56) Reference JP-A-3-74823 (JP, A) JP-A-54-43109 (JP, A) JP-B-61-2737 (JP, B1) JP-B-61- 40721 (JP, B1) (58) Fields investigated (Int.Cl. 7 , DB name) C22C 1/08

Claims (4)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 ニッケル酸化物及びモリブデン酸化物よ
り選択した金属酸化物の粉末を樹脂バインダーとともに
成形圧力30〜150Kg/cm2で板形に成形し、空
気中700〜1600℃で且つ金属酸化物焼結体を生成
しうる温度で4〜16時間焼成して通気性の多孔質の還
元可能な金属酸化物焼結体を生成し、次いで600〜1
000℃で且つ該金属酸化物を構成する金属またはそれ
らの間の合金の融点以下の温度で、還元雰囲気中で0.
5〜6時間還元することを特徴とする連続気泡性金属多
孔体フィルタの製造方法。
1. A nickel oxide and a molybdenum oxide.
The powder of the selected metal oxide is molded into a plate shape with a resin binder at a molding pressure of 30 to 150 Kg / cm 2 , and the temperature is 700 to 1600 ° C. in air and the temperature at which a metal oxide sintered body can be formed is 4 to 16 Baking for hours to produce a breathable porous reducible metal oxide sintered body, then 600-1
000 ° C. and at a temperature below the melting point of the metal constituting the metal oxide or the alloy between them, in a reducing atmosphere .
A method for producing an open-celled porous metal filter, which comprises reducing for 5 to 6 hours .
【請求項2】 ニッケル酸化物及びモリブデン酸化物よ
り選択した金属酸化物の粉末を樹脂バインダーとともに
成形圧力200〜500Kg/cm2で円筒形に成形
し、空気中800〜1700℃で且つ金属酸化物焼結体
を生成しうる温度で4〜16時間焼成して通気性の多孔
質の還元可能な金属酸化物焼結体を生成し、次いで60
0〜1000℃で且つ該金属酸化物を構成する金属また
はそれらの間の合金の融点以下の温度で、還元雰囲気中
0.5〜6時間還元することを特徴とする連続気泡性
金属多孔体フィルタの製造方法。
2. A nickel oxide and a molybdenum oxide
The powder of the selected metal oxide is molded into a cylindrical shape with a resin binder at a molding pressure of 200 to 500 Kg / cm 2 , and the temperature is 800 to 1700 ° C. in air and at a temperature at which a metal oxide sintered body can be formed . Baking for 16 hours to produce a breathable porous reducible metal oxide sinter, then 60
An open-celled metal porous body which is reduced in a reducing atmosphere for 0.5 to 6 hours at a temperature of 0 to 1000 ° C. and a melting point of a metal constituting the metal oxide or an alloy between them. Filter manufacturing method.
【請求項3】 還元雰囲気は水素ガスである請求項1
は2に記載の連続気泡性金属多孔体フィルタの製造方
法。
Wherein the reducing atmosphere is also claim 1 is hydrogen gas
Is a method for producing an open-celled porous metal filter according to item 2 .
【請求項4】 樹脂バインダーがポリビニルアルコール
である請求項1〜のいずれかに記載の連続気泡性金属
多孔体フィルタの製造方法。
4. The open-celled metal porous body production method of filter according to any one of claims 1 to third resin binder is a polyvinyl alcohol.
JP25885192A 1991-09-04 1992-09-03 Method for manufacturing porous metal filter Expired - Fee Related JP3481962B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25885192A JP3481962B2 (en) 1991-09-04 1992-09-03 Method for manufacturing porous metal filter

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP25022091 1991-09-04
JP3-250220 1991-09-04
JP25885192A JP3481962B2 (en) 1991-09-04 1992-09-03 Method for manufacturing porous metal filter

Publications (2)

Publication Number Publication Date
JPH05195110A JPH05195110A (en) 1993-08-03
JP3481962B2 true JP3481962B2 (en) 2003-12-22

Family

ID=26539690

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25885192A Expired - Fee Related JP3481962B2 (en) 1991-09-04 1992-09-03 Method for manufacturing porous metal filter

Country Status (1)

Country Link
JP (1) JP3481962B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2002366309A1 (en) 2001-12-18 2003-06-30 Asahi Kasei Kabushiki Kaisha Metal oxide dispersion
JP2006162243A (en) * 2004-11-10 2006-06-22 Osaka Gas Co Ltd Gaseous hydrogen removing device
KR101235017B1 (en) * 2011-06-10 2013-02-21 한국기계연구원 Method of fabricating for nanoporous metal-form
US11919080B2 (en) * 2018-03-09 2024-03-05 Cellmo Materials Innovation, Inc. Method of making copper-nickel alloy foams

Also Published As

Publication number Publication date
JPH05195110A (en) 1993-08-03

Similar Documents

Publication Publication Date Title
KR960008888B1 (en) Porous metal bodies
JP3177096B2 (en) High efficiency metal membrane filter element and method of manufacturing the same
WO2006051939A1 (en) Titanium or titanium alloy sintered article of a sponge form excellent in compression strength
CN103397256B (en) The sintering Fe-Al base alloy porous material of resistance to high temperature oxidation and filtering element
US20030054154A1 (en) Method of making a porous green form and oxygen transport membrane
EP2442898B1 (en) Sintered porous material comprising particles of different average sizes
JPS5811497B2 (en) Ti↓-Al porous alloy and its manufacturing method
CN103397243B (en) The preparation method of sintering Fe-Al base alloy porous material
US10077214B2 (en) Sintered porous material and filter element using same
CN103397244B (en) The preparation method of the sintering Fe-Al base alloy porous material of resistance to high temperature oxidation
WO1993005190A1 (en) Process for producing porous metallic body
KR20200106970A (en) Titanium porous body and its manufacturing method
JPH02282442A (en) Aluminide structure
JP3481962B2 (en) Method for manufacturing porous metal filter
JP3566637B2 (en) Manufacturing method of sintered titanium filter
JPH07106289B2 (en) Metal filter manufacturing method
JPH01194914A (en) Metallic filter and manufacture thereof
JPH0667776B2 (en) A continuous pore glass sintered body having a large continuous pore volume, which is particularly suitable as a filter material for liquids and gases having a high permeation rate, and a method for producing the same.
RU2579713C2 (en) Method of producing of filtration material
JP2006283104A (en) Production method of metal porous material
JPH07238302A (en) Sintered titanium filter and production thereof
JPH0768114A (en) Metallic sintered filter and production thereof
JPH0760035A (en) Metal filter and production thereof
JPH0889731A (en) Filter made of metal powder and its production
JPH03267327A (en) Production of permeable membrane consisting of pd-ag sintered alloy

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20030225

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20030924

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081010

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091010

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees