JP3473115B2 - Acceleration sensor - Google Patents

Acceleration sensor

Info

Publication number
JP3473115B2
JP3473115B2 JP17483394A JP17483394A JP3473115B2 JP 3473115 B2 JP3473115 B2 JP 3473115B2 JP 17483394 A JP17483394 A JP 17483394A JP 17483394 A JP17483394 A JP 17483394A JP 3473115 B2 JP3473115 B2 JP 3473115B2
Authority
JP
Japan
Prior art keywords
insulating substrate
acceleration sensor
portions
support
mass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP17483394A
Other languages
Japanese (ja)
Other versions
JPH0815308A (en
Inventor
昌弥 田村
義宏 小中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Murata Manufacturing Co Ltd
Original Assignee
Murata Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Murata Manufacturing Co Ltd filed Critical Murata Manufacturing Co Ltd
Priority to JP17483394A priority Critical patent/JP3473115B2/en
Publication of JPH0815308A publication Critical patent/JPH0815308A/en
Application granted granted Critical
Publication of JP3473115B2 publication Critical patent/JP3473115B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Pressure Sensors (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、例えば自動車等の運動
体の加速度を検出するのに用いて好適な加速度センサに
関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an acceleration sensor suitable for detecting the acceleration of a moving body such as an automobile.

【0002】[0002]

【従来の技術】一般に、車両等の加速度や回転方向を検
出するのに用いられる加速度センサには、電極間の静電
容量を利用して検出するものがあり、例えば特開平3−
94169号公報および特開昭62−232171号等
によって知られている。
2. Description of the Related Art Generally, there is an acceleration sensor used to detect the acceleration and the rotation direction of a vehicle or the like, which uses electrostatic capacitance between electrodes to detect the acceleration.
It is known from Japanese Patent Application No. 94169 and Japanese Patent Application Laid-Open No. 62-232171.

【0003】しかし、これらの加速度センサは、固定部
と可動部との電極間の有効面積が小さくその離間寸法が
大きいために、検出感度が小さくなり高感度の加速度検
出を行うことができなかった。
However, in these acceleration sensors, since the effective area between the electrodes of the fixed portion and the movable portion is small and the distance between them is large, the detection sensitivity becomes small and it is not possible to perform highly sensitive acceleration detection. .

【0004】一方、例えば特開平4−115165号公
報に記載の加速度センサ(以下、「他の従来技術」とい
う)では、固定電極および可動電極をくし状電極を用
い、電極間の有効面積を大きくして検出感度を向上させ
るようになっている。
On the other hand, for example, in the acceleration sensor disclosed in Japanese Patent Laid-Open No. 4-115165 (hereinafter, referred to as "other prior art"), the fixed electrode and the movable electrode use comb-shaped electrodes to increase the effective area between the electrodes. Then, the detection sensitivity is improved.

【0005】そして、この他の従来技術による加速度セ
ンサは、一端がベースに固定され他端が水平方向に振動
可能な重りとなった片持梁を、該片持梁に一体形成され
た可動側のくし状電極部と、該可動側のくし状電極部と
非接触でかみ合わされた固定側のくし状電極部を有し、
前記ベースに固定された固定側くし状電極部とから構成
され、前記重りに加速度が加わったときに、可動側のく
し状電極部と固定側のくし状電極部との有効面積を変化
させ、この変化を静電容量として検出し、加速度に応じ
た検出信号を得るものである。
In another acceleration sensor according to the prior art, a cantilever having one end fixed to a base and the other end serving as a weight capable of horizontally vibrating is integrally formed with the cantilever. A comb-shaped electrode portion, and a fixed-side comb-shaped electrode portion that is engaged with the movable-side comb-shaped electrode portion in a non-contact manner,
Composed of a fixed side comb-shaped electrode portion fixed to the base, when acceleration is applied to the weight, changing the effective area of the movable side comb-shaped electrode portion and the fixed side comb-shaped electrode portion, This change is detected as a capacitance and a detection signal corresponding to the acceleration is obtained.

【0006】しかし、この他の従来技術では、シリコン
のエッチング加工技術を利用して各くし状電極部を形成
するときに、シリコンの一端面からのみエッチング処理
を施し、シリコンを貫通させ固定電極と可動電極とを分
離形成している。このときに各電極部間の離間寸法を小
さくすると、シリコンが貫通しにくく、シリコンの他側
面部位で各電極部が接触してしまうことがあり、各電極
部間の離間寸法を小さくすることができないという欠点
がある。
However, in other conventional techniques, when each comb-shaped electrode portion is formed by utilizing the silicon etching processing technique, the etching process is performed only from one end surface of the silicon to penetrate the silicon to form a fixed electrode. The movable electrode is formed separately. At this time, if the distance between the electrode portions is reduced, it is difficult for silicon to penetrate, and the electrode portions may come into contact with the other side surface portion of the silicon. Therefore, it is possible to reduce the distance between the electrode portions. There is a drawback that you cannot do it.

【0007】即ち、シリコンウェハの厚さは数百μmの
ものが通常使用され、この厚さをそのまま各電極部の厚
さ寸法とすると、先の理由により離間寸法を小さくする
ことが困難となる。一方、始めから厚さが数10μm程
度に形成されたシリコンウェハを用いることも考えられ
るが、この場合にはシリコンウェハの強度が弱く、運搬
時に破損してしまう。
That is, a silicon wafer having a thickness of several hundreds of μm is usually used, and if this thickness is used as it is as the thickness dimension of each electrode portion, it is difficult to reduce the separation dimension for the above reason. . On the other hand, it is possible to use a silicon wafer having a thickness of about several tens of μm from the beginning, but in this case, the strength of the silicon wafer is weak and the silicon wafer is damaged during transportation.

【0008】そこで、上述した従来技術の問題を解決す
るために、本発明者達は先に図20ないし図30に示す
如き加速度センサおよびその製造方法を検討した(以
下、「先行技術」という)。
Therefore, in order to solve the above-mentioned problems of the prior art, the present inventors have previously examined the acceleration sensor and the manufacturing method thereof as shown in FIGS. 20 to 30 (hereinafter referred to as "prior art"). .

【0009】図中、1は加速度センサ、2は該加速度セ
ンサ1の基台をなす例えば強化ガラス(商品名パイレッ
クスガラス)等によって板状に形成された絶縁基板とし
てのガラス基板を示し、該ガラス基板2上には後述する
固定部5,5および可動部7が形成されている。また、
該ガラス基板2には図22に示すように、矩形状の凹部
3が形成され、該凹部3の四隅には左,右方向に延びる
4個の補助凹部3A,3A,…が形成されている。ま
た、該凹部3上に位置した可動部7の梁9,質量部10
および可動側くし状電極11はガラス基板2と離間し
て、矢示A方向に変位可能になっている。4,4,…は
電極パターンを示し、該各電極パターン4は固定部5と
可動部7からの信号を外部に導出するものである。
In the figure, reference numeral 1 denotes an acceleration sensor, 2 denotes a glass substrate as an insulating substrate formed in a plate shape by, for example, tempered glass (trade name Pyrex glass) or the like which forms the base of the acceleration sensor 1. Fixed parts 5, 5 and a movable part 7, which will be described later, are formed on the substrate 2. Also,
As shown in FIG. 22, a rectangular recess 3 is formed in the glass substrate 2, and four auxiliary recesses 3A, 3A, ... That extend in the left and right directions are formed at the four corners of the recess 3. . In addition, the beam 9 and the mass portion 10 of the movable portion 7 located on the concave portion 3
The movable comb-shaped electrode 11 is separated from the glass substrate 2 and is displaceable in the arrow A direction. Reference numerals 4, 4, ... Denote electrode patterns, and each of the electrode patterns 4 guides signals from the fixed portion 5 and the movable portion 7 to the outside.

【0010】5,5は低抵抗(抵抗率ρ:0.01〜
0.02〔Ωcm〕)の単結晶シリコンによるシリコンウ
ェハ(図示せず)をエッチング加工することにより分離
形成された固定部を示し、該各固定部5は、前記ガラス
基板2の左,右に離間して該ガラス基板2に固着され、
かつ該各固定部5にはそれぞれ対向する内側面に複数
(例えば5枚)の薄板状の電極板6A,6A,…が突出
形成され、該各電極板6Aは固定電極としての固定側く
し状電極6を構成している。
5 and 5 have low resistance (resistivity ρ: 0.01 to
0.02 [Ωcm]) shows a fixed part formed separately by etching a silicon wafer (not shown) made of single crystal silicon. Each fixed part 5 is located on the left and right of the glass substrate 2. Separated and fixed to the glass substrate 2,
Further, a plurality of (for example, five) thin plate-like electrode plates 6A, 6A, ... Are projectingly formed on the inner surfaces of the respective fixing portions 5 facing each other, and each of the electrode plates 6A has a fixed-side comb shape as a fixed electrode. The electrode 6 is configured.

【0011】7は低抵抗を有するシリコン板により形成
された可動部を示し、該可動部7は、前記ガラス基板2
の前,後に離間してガラス基板2に固着され、角柱状に
形成された支持部8,8と、該各支持部8に4個の梁
9,9,…を介して支持され、前記各固定部5の間に配
設された質量部10と、該質量部10から左,右方向に
それぞれ突出形成された複数(例えば5枚)の薄板状の
電極板11A,11A,…を有する可動側くし状電極1
1,11とから構成され、前記各梁9は質量部10を矢
示A方向に変位させるように薄板状に形成されている。
そして、前記各可動側くし状電極11の各電極板11A
は前記各固定側くし状電極6の各電極板6Aと微小隙間
を介して互いに対向するようになっている。
Reference numeral 7 denotes a movable portion formed of a silicon plate having a low resistance, and the movable portion 7 is the glass substrate 2
Before and after being separated from each other and fixed to the glass substrate 2 and formed into a prismatic shape, and the supporting portions 8 are supported by the supporting portions 8 via four beams 9, 9 ,. A movable unit having a mass unit 10 disposed between the fixed units 5 and a plurality (for example, five) of thin plate-shaped electrode plates 11A, 11A, ... Side comb electrode 1
1 and 11, each beam 9 is formed in a thin plate shape so as to displace the mass portion 10 in the arrow A direction.
Then, each electrode plate 11A of each movable side comb-shaped electrode 11
Are opposed to the electrode plates 6A of the fixed-side comb-shaped electrodes 6 with a minute gap therebetween.

【0012】なお、前記可動部7の各支持部8は梁9の
伸長方向に向けて棒状に形成されているから、該各支持
部8の下側面8A,8A(図22,23参照)がガラス
基板2と接合する接合部となり、その面積は広い接合面
積となっている。
Since each support portion 8 of the movable portion 7 is formed in a bar shape in the extending direction of the beam 9, the lower side surfaces 8A and 8A of each support portion 8 (see FIGS. 22 and 23) are formed. It becomes a bonding portion that is bonded to the glass substrate 2, and its area is a wide bonding area.

【0013】次に、図26ないし図30に先行技術によ
る加速度センサ1の製造方法について述べる。
Next, a method of manufacturing the acceleration sensor 1 according to the prior art will be described with reference to FIGS.

【0014】まず、図26中で、21は低抵抗(抵抗率
ρ:0.01〜0.02〔Ωcm〕)を有する単結晶の
(110)シリコン板を示し、該シリコン板21は例え
ば直径7.5〜15.5(cm),厚さ300(μm)
程度の円板状のシリコンウェハとして形成されている。
そして、該シリコン板21の両側面には減圧CVD法に
よって窒化膜22,23を形成した後に、一側面に位置
した窒化膜22は、フォトリソ技術を用いて固定部5と
可動部7とを分離形成するための溝24となる部分をパ
ターニングして、前記溝24以外の部分をマスキングす
る。
First, in FIG. 26, 21 indicates a single crystal (110) silicon plate having a low resistance (resistivity ρ: 0.01 to 0.02 [Ωcm]), and the silicon plate 21 has, for example, a diameter. 7.5-15.5 (cm), thickness 300 (μm)
It is formed as a circular disk-shaped silicon wafer.
Then, after the nitride films 22 and 23 are formed on both side surfaces of the silicon plate 21 by the low pressure CVD method, the nitride film 22 located on one side surface separates the fixed portion 5 and the movable portion 7 by using the photolithography technique. The portion to be the groove 24 for forming is patterned to mask the portion other than the groove 24.

【0015】次に、前記シリコン板21の一側面に固定
部5と可動部7と分離して形成するための溝24以外の
部分をマスキングした後に、第1のエッチング工程で
は、アルカリ水溶液でシリコン板21の一側面から異方
性エッチングを施し、図27のように所定深さの溝24
を形成する。
Next, after masking a portion other than the groove 24 for separately forming the fixed portion 5 and the movable portion 7 on one side surface of the silicon plate 21, in the first etching step, silicon is applied with an alkaline aqueous solution. Anisotropic etching is performed from one side surface of the plate 21 to form a groove 24 having a predetermined depth as shown in FIG.
To form.

【0016】さらに、図28では、シリコン板21の両
面に形成された窒化膜22,23をRIE(リアクティ
ブイオンエッチング)又は、熱リン酸でエッチング除去
する。
Further, in FIG. 28, the nitride films 22 and 23 formed on both surfaces of the silicon plate 21 are removed by RIE (reactive ion etching) or hot phosphoric acid.

【0017】一方、接合工程では、図29のように予め
凹部3と各電極パターン4を形成したガラス基板2とシ
リコン板21を陽極接合法により接合する。
On the other hand, in the bonding step, the glass substrate 2 on which the concave portions 3 and the electrode patterns 4 are formed in advance and the silicon plate 21 are bonded by the anodic bonding method as shown in FIG.

【0018】さらに、図30に示す第2のエッチング工
程では、シリコン板21とガラス基板2との接合面の反
対側となるシリコン板21の他側面から、RIEまたは
湿式エッチングにより溝24が貫通するまでエッチング
を施し、固定部5と可動部7とを分離形成する。なお、
可動部7では支持部8,8のみがガラス基板2上に固着
され、梁9,9、質量部10および可動側くし状電極1
1は前記凹部3上に位置しているから、該質量部10等
はガラス基板2と離間し、質量部10は各梁9のばね力
により矢示A方向に変位可能な状態で支持されている。
Further, in the second etching step shown in FIG. 30, the groove 24 is penetrated by RIE or wet etching from the other side surface of the silicon plate 21, which is the opposite side of the bonding surface between the silicon plate 21 and the glass substrate 2. Etching is performed until the fixed portion 5 and the movable portion 7 are formed separately. In addition,
In the movable part 7, only the supporting parts 8 and 8 are fixed on the glass substrate 2, and the beams 9 and 9, the mass part 10 and the movable side comb-shaped electrode 1 are provided.
Since 1 is located on the concave portion 3, the mass portion 10 and the like are separated from the glass substrate 2, and the mass portion 10 is supported by the spring force of each beam 9 so as to be displaceable in the arrow A direction. There is.

【0019】このように構成される加速度センサ1は、
外部から矢示A方向に加速度が加わると、質量部10が
各支持部8に対し各梁9を介して変位し、可動側くし状
電極11の各電極板11Aが固定側くし状電極6の各電
極板6Aに対して近接または離間するので、このときの
離間寸法の変位を静電容量の変化として外部の図示しな
い信号処理回路に出力し、該信号処理回路ではこの静電
容量の変化に基づき前記加速度に応じた信号を出力す
る。
The acceleration sensor 1 thus constructed is
When an acceleration is applied from the outside in the direction of arrow A, the mass portion 10 is displaced with respect to each support portion 8 through each beam 9, and each electrode plate 11A of the movable side comb-shaped electrode 11 of the fixed side comb-shaped electrode 6. Since each electrode plate 6A is approached or separated from the other electrode plate 6A, the displacement of the spacing dimension at this time is output to an external signal processing circuit (not shown) as a change in capacitance, and the signal processing circuit changes the capacitance. Based on the acceleration, a signal corresponding to the acceleration is output.

【0020】そして、この加速度センサ1では、可動側
くし状電極11と固定側くし状電極6の各電極板11
A,6A間で静電容量の変化として加速度を検出してお
り、該各電極板11A,6Aはそれぞれ電気的に並列接
続されているから、各電極板11A,6A間の静電容量
をそれぞれ加算した値となる静電容量として加速度を検
出でき、検出感度を高め、加速度の検出精度を向上させ
ることができる。
In this acceleration sensor 1, the electrode plates 11 of the movable side comb-shaped electrode 11 and the fixed side comb-shaped electrode 6 are provided.
Acceleration is detected as a change in electrostatic capacitance between A and 6A, and the electrode plates 11A and 6A are electrically connected in parallel. Acceleration can be detected as an electrostatic capacitance having an added value, detection sensitivity can be increased, and acceleration detection accuracy can be improved.

【0021】[0021]

【発明が解決しようとする課題】ところで、上述した先
行技術における加速度センサ1の製造方法にあっては、
シリコン板とガラス基板を接合するときには一般的に陽
極接合法を用いるようになっている。
By the way, in the method of manufacturing the acceleration sensor 1 in the above-mentioned prior art,
When joining a silicon plate and a glass substrate, the anodic bonding method is generally used.

【0022】ここで、この陽極接合法について説明する
と、図29に示すように、シリコン板21とガラス基板
2とを位置合わせした後に密着させ、約400℃の温度
中で電圧を約1000V印加するもので、このときガラ
ス基板2中のアルカリイオンがシリコン板21と接合す
る面の反対面に移動し、シリコン板21とガラス基板2
との境界面近傍には空間電荷層が形成される。そして、
この空間電荷層によりシリコン板21とガラス基板2と
の間で大きな静電引力が発生し、この結果強固な密着を
起して、シリコン板21とガラス基板2との境界面が化
学結合となり接合が完了するようになっている。
The anodic bonding method will now be described. As shown in FIG. 29, the silicon plate 21 and the glass substrate 2 are aligned and brought into close contact with each other, and a voltage of about 1000 V is applied at a temperature of about 400.degree. At this time, the alkali ions in the glass substrate 2 move to the surface opposite to the surface that joins with the silicon plate 21, and the silicon plate 21 and the glass substrate 2
A space charge layer is formed near the boundary surface between and. And
Due to this space charge layer, a large electrostatic attractive force is generated between the silicon plate 21 and the glass substrate 2, and as a result, strong adhesion is caused, and the boundary surface between the silicon plate 21 and the glass substrate 2 becomes a chemical bond to bond. Is to be completed.

【0023】このように、陽極接合法においては、両方
の板(シリコン板21とガラス基板2)を400℃に加
熱した状態で接合するに際して、シリコンとガラスとは
熱膨張係数が異なっているから、室温に冷却された状態
では、シリコン板21内とガラス基板2内にそれぞれ内
部応力が発生する。
As described above, in the anodic bonding method, when both plates (silicon plate 21 and glass substrate 2) are bonded while being heated to 400 ° C., silicon and glass have different thermal expansion coefficients. In the state of being cooled to room temperature, internal stress is generated in each of the silicon plate 21 and the glass substrate 2.

【0024】そして、例えば、シリコンとガラスの場合
(ガラスに商品名パイレックスガラス#7740を用
い、400℃で接合した場合)には、接合後にシリコン
側に引張り応力が発生する。即ち、上述の加速度センサ
1の場合には、支持部8はガラス基板2の左,右方向に
接合されているため、図21の矢示x,x,…のような
引張り応力(内部応力)が左,右方向に発生し、この引
張り応力は支持部8を介して梁9に作用する。そして、
該梁9では前後方向のばね定数を変化させ、質量部10
の動きを規制する。この結果、各梁9のばね定数が変化
することにより、質量部10に加わる加速度の検出感度
を大幅に低下させるという問題がある。
Then, for example, in the case of silicon and glass (when Pyrex glass # 7740 (trade name) is used for glass and they are bonded at 400 ° C.), tensile stress is generated on the silicon side after bonding. That is, in the case of the acceleration sensor 1 described above, since the supporting portion 8 is joined to the left and right directions of the glass substrate 2, tensile stress (internal stress) as indicated by arrows x, x, ... Occurs in the left and right directions, and this tensile stress acts on the beam 9 via the support portion 8. And
In the beam 9, the spring constant in the front-back direction is changed so that the mass portion 10
Regulate the movement of. As a result, there is a problem that the detection sensitivity of the acceleration applied to the mass portion 10 is significantly reduced due to the change of the spring constant of each beam 9.

【0025】さらに、加速度センサ1の使用環境の温度
が変化すると、上述した理由によって各梁9のばね定数
が引張り応力によって変化するため、環境温度変化に対
しても検出感度が変動するという問題がある。
Further, when the temperature of the environment in which the acceleration sensor 1 is used changes, the spring constant of each beam 9 changes due to the tensile stress for the above-mentioned reason, so that there is a problem in that the detection sensitivity also fluctuates even when the environmental temperature changes. is there.

【0026】本発明は上述した従来技術による問題に鑑
みなされたもので、本発明は温度変化に対しても高精度
な加速度検出を行うことのできる加速度センサを提供す
ることを目的としている。
The present invention has been made in view of the above-mentioned problems of the prior art, and an object of the present invention is to provide an acceleration sensor capable of performing highly accurate acceleration detection even with temperature changes.

【0027】[0027]

【課題を解決するための手段】上述した課題を解決する
ために、本発明の加速度センサは、絶縁基板と、該絶縁
基板の表面陽極接合されたシリコン板をエッチング加
工することにより互いに分離して形成された固定部と可
動部とを備え、該固定部には固定電極を一体に形成し、
前記可動部は絶縁基板上に離間して固着された一対の
支持部と、該各支持部にそれぞれ連結され加速度の検出
方向と直交する方向に延びる梁と、該各梁を介して前記
各支持部間で連結され、加速度が作用したときに該加速
度に応じて検出方向に変位する質量部と、該質量部に形
成され前記固定部の固定電極との間で該質量部の変位方
向に微小隙間を介して対向するように設けられた可動電
極とから形成している。
In order to solve the above-mentioned problems, an acceleration sensor of the present invention separates an insulating substrate and a silicon plate anodically bonded to the surface of the insulating substrate from each other by etching. A fixed part and a movable part formed by forming a fixed electrode integrally with the fixed part,
The movable part is a pair of support parts that are fixedly spaced on an insulating substrate, and the movable parts are respectively connected to the support parts to detect acceleration.
A beam extending in a direction orthogonal to the direction, a mass portion connected between the support portions via the respective beams, and displacing in a detection direction according to the acceleration when an acceleration acts, and formed on the mass portion. to form a movable electrode provided so as to face each other with a small gap in the direction of displacement of the mass portion between the fixed electrode before Symbol fixing unit.

【0028】そして、請求項1の発明が採用する構成の
特徴は、前記支持部は前記絶縁基板に接合され接合
部と、該接合部を挟んで前記梁の伸長方向の両側にそれ
ぞれ設けられ前記絶縁基板から離間した状態にある非接
合部とからなり、前記梁は絶縁基板から離間した状態
で前記支持部の各非接合部に連結される支持部端と、該
各支持部端の間に位置して前記質量部に連結される質量
部端とから構成し、前記質量部は、前記絶縁基板の表面
と平行な面に沿って前記検出方向に変位する構成とし
ことにある。
[0028] The feature of the configuration in which the invention of claim 1 is employed, the support portion, said a joint portion joined to the insulating substrate, it on both sides of the extending direction of the beam across the the joint portion
Each of the beams is provided with a non-bonded portion that is separated from the insulating substrate , and the beam includes a support portion end that is connected to each non-bonded portion of the support portion in a state that the beam is spaced from the insulating substrate. The mass part is located between the ends of the supporting part and is connected to the mass part, and the mass part is the surface of the insulating substrate.
It is configured to be displaced in the detection direction along a plane parallel to .

【0029】また、請求項2の発明では、前記絶縁基板
には前記支持部の非接合部、梁および質量部を該絶縁基
板から離間するための凹部を形成し、該凹部内には前記
各支持部の接合部が接合する接合用突出部を設けたこと
にある。
Further, in the invention of claim 2, a recess is formed in the insulating substrate for separating the non-joint portion of the supporting portion, the beam and the mass portion from the insulating substrate, and each of the recesses is formed in the recess. The reason for this is that the joining protrusion to which the joining portion of the support portion is joined is provided.

【0030】さらに、請求項3の発明では、前記支持部
の接合部は前記絶縁基板上で分離している一対の固着部
から形成したことにある。
Further, in the invention of claim 3, the joint portion of the supporting portion is formed by a pair of fixing portions separated on the insulating substrate.

【0031】さらにまた、請求項4の発明では、前記支
持部の接合部と非接合部との間には腕部を設けたことに
ある。
Furthermore, in the invention of claim 4, an arm portion is provided between the joint portion and the non-joint portion of the support portion.

【0032】一方、請求項5の発明では、前記支持部の
接合部は前記絶縁基板上で分離している一対の固着部か
ら形成し、該各固着部には該固着部を前記非接合部と連
結するための腕部をそれぞれ設けたことにある。
On the other hand, in the invention of claim 5, the joint portion of the support portion is formed of a pair of fixing portions which are separated on the insulating substrate, and the fixing portion is provided with the fixing portion. There is an arm for connecting with each.

【0033】[0033]

【作用】請求項1の発明のように、支持部を絶縁基板
と接合する接合部と、該接合部を挟んで梁の伸長方向の
両側にそれぞれ設けられ絶縁基板と離間した状態にある
非接合部とし、該各非接合部と梁の各支持部端とを連結
することにより、梁と支持部との連結部周辺を絶縁基板
から離間させることができる。そして、シリコン板と絶
縁材料との熱膨張係数の違いにより発生する引張り応力
を受ける部分を小さくし、各部材の熱膨張係数の違いに
よって発生する梁の伸長方向に沿った内部応力を小さく
でき、該梁のばね定数の変化を小さくすることができ
る。
According to the first aspect of the invention, the supporting portion is joined to the insulating substrate and the beam extending in the extending direction of the beam with the joining portion interposed therebetween.
The non-bonded portions provided on both sides are separated from the insulating substrate, and the non-bonded portions are connected to the ends of the supporting portions of the beam, so that the periphery of the connecting portion between the beam and the supporting portion is separated from the insulating substrate. It can be separated. Then, the portion that receives the tensile stress generated due to the difference in the thermal expansion coefficient between the silicon plate and the insulating material can be reduced, and the internal stress along the extension direction of the beam generated due to the difference in the thermal expansion coefficient of each member can be reduced, The change in spring constant of the beam can be reduced.

【0034】また、請求項2の発明のように、前記支持
部の非接合部、梁および質量部を絶縁基板から離間する
ための凹部を該絶縁基板に形成し、該凹部内に前記各支
持部の接合部を接合する接合用突出部を設けることによ
り、この接合用突出部と支持部とが接合する部分が接合
部となり、他の部分が非接合部となって梁の支持部端が
連結される。そして、シリコン板と絶縁材料との熱膨張
係数の違いによる引張り応力の影響を受ける部分は接合
部となり、この接合部は支持部全体からみて小さくなっ
ているから、前記梁のばね定数の変動を小さくすること
ができる。
According to a second aspect of the present invention, a recess is formed in the insulating substrate to separate the non-joint portion, the beam and the mass portion of the supporting portion from the insulating substrate, and the support is provided in the recess. By providing the joining protrusion for joining the joining portions of the portions, the portion where the joining protrusion and the supporting portion are joined becomes the joining portion, and the other portion becomes the non-joining portion and the end portion of the beam supporting portion is formed. Be connected. Then, the portion affected by the tensile stress due to the difference in the thermal expansion coefficient between the silicon plate and the insulating material is the joint portion, and this joint portion is smaller than the entire supporting portion, so that the fluctuation of the spring constant of the beam is reduced. Can be made smaller.

【0035】さらに、請求項3の発明のように、前記支
持部の接合部を、絶縁基板上で分離する一対の固着部に
よって形成したから、シリコン板と絶縁材料との熱膨張
係数の違いによる引張り応力の影響を受ける部分は一対
の固着部となり、この各固着部は支持部全体からみて小
さくなっているから、前記梁のばね定数の変動を小さく
することができる。
Further, as in the invention of claim 3, since the joint portion of the supporting portion is formed by the pair of fixing portions which are separated on the insulating substrate, the difference in the thermal expansion coefficient between the silicon plate and the insulating material is caused. The portion affected by the tensile stress is a pair of fixed portions, and the fixed portions are smaller than the entire supporting portion. Therefore, the fluctuation of the spring constant of the beam can be reduced.

【0036】さらにまた、請求項4の発明のように、支
持部の接合部と非接合部との間には腕部を設けたから、
シリコン板と絶縁材料との熱膨張係数の違いによる引張
り応力の影響を受ける部分は腕部となり、この腕部は狭
くなって形成されているから、前記梁のばね定数の変動
を小さくすることができる。
Further, as in the invention of claim 4, since the arm portion is provided between the joint portion and the non-joint portion of the supporting portion,
The portion affected by the tensile stress due to the difference in the thermal expansion coefficient between the silicon plate and the insulating material is the arm portion, and since the arm portion is formed to be narrow, it is possible to reduce the fluctuation of the spring constant of the beam. it can.

【0037】一方、請求項5の発明のように、前記支持
部の接合部を、絶縁基板上で分離する一対の固着部によ
って形成すると共に、該各固着部に対し非接合部をそれ
ぞれ連結する一対の腕部とから構成したから、シリコン
板と絶縁材料との熱膨張係数の違いによる引張り応力の
影響を受ける部分は一対の腕部となり、この各腕部は小
さくなっているから、前記梁のばね定数の変動を小さく
することができる。
On the other hand, as in the fifth aspect of the present invention, the joint portion of the support portion is formed by a pair of fixing portions that are separated on the insulating substrate, and the non-joining portion is connected to each fixing portion. Since it is composed of a pair of arms, the portions affected by tensile stress due to the difference in thermal expansion coefficient between the silicon plate and the insulating material are a pair of arms, and each arm is small, so that the beam The fluctuation of the spring constant of can be reduced.

【0038】[0038]

【実施例】以下、本発明の実施例を図1ないし図19に
基づき説明する。なお、実施例では前述した先行技術と
同一の構成要素に同一の符号を付し、その説明を省略す
るものとする。
Embodiments of the present invention will be described below with reference to FIGS. In the embodiments, the same components as those of the above-described prior art are designated by the same reference numerals, and the description thereof will be omitted.

【0039】まず、図1ないし図4に本発明による第1
の実施例を示す。
First, the first embodiment of the present invention will be described with reference to FIGS.
An example of is shown.

【0040】図中、31は本実施例による加速度セン
サ、32は該加速度センサ31の基台をなす例えばガラ
ス材料によって板状に形成された絶縁基板としてのガラ
ス基板を示し、該ガラス基板32の表面には後述する固
定部35,35および可動部37が形成されている。
In the figure, 31 denotes an acceleration sensor according to the present embodiment, 32 denotes a glass substrate as an insulating substrate which is a base of the acceleration sensor 31 and is formed in a plate shape by a glass material, for example . fixing portions 35 and the movable portion 37 described later is formed on the surface.

【0041】また、前記ガラス基板32は、図2に示す
ように、矩形状の凹部33が形成され、該凹部33の四
隅には左,右方向に延びる4個の補助凹部33A,33
A,…が形成されると共に、前,後方向両側にはガラス
基板32と同じ高さとなる接合用突出部33B,33B
が形成されている。なお、34,34,…は電極パター
ンを示し、該各電極パターン34は固定部35と可動部
37からの信号を外部に導出するものである。
As shown in FIG. 2, the glass substrate 32 is formed with a rectangular recess 33, and four auxiliary recesses 33A, 33 extending in the left and right directions are formed at the four corners of the recess 33.
A, ... Are formed, and the protrusions 33B, 33B for bonding, which have the same height as the glass substrate 32, are formed on both sides in the front and rear directions.
Are formed. Reference numerals 34, 34, ... Denote electrode patterns, and each of the electrode patterns 34 guides signals from the fixed portion 35 and the movable portion 37 to the outside.

【0042】35,35はガラス基板32の左,右方向
に形成された固定部を示し、該各固定部35は先行技術
による固定部5とほぼ同様に、それぞれ対向する内側面
には複数(例えば5枚)の薄板状の電極板36A,36
A,…からなる固定電極としての固定側くし状電極3
6,36が形成されている。
Reference numerals 35 and 35 denote fixing portions formed on the left and right sides of the glass substrate 32. Each fixing portion 35 is provided with a plurality of ( (For example, 5 sheets) thin electrode plates 36A, 36
Fixed side comb-shaped electrode 3 as a fixed electrode composed of A, ...
6, 36 are formed.

【0043】37は低抵抗を有するシリコン板により形
成された可動部を示し、該可動部37はガラス基板3
2の前,後方向に離間した支持部38,38と、該各支
持部38に一端が固着され加速度の検出方向(図1中の
矢示A方向)と直交する方向に延びる4個の梁39,3
9,…と、該各梁39の他側を介して支持され各固定部
35間に配設された質量部40と、該質量部40から
左,右方向にそれぞれ突出形成された複数(例えば5
枚)の薄板状の電極板41A,41A,…を有する可動
側くし状電極41,41とから構成されている。そし
て、質量部40は、ガラス基板32の表面と平行な面に
沿って矢示A方向に変位する。
Reference numeral 37 denotes a movable portion formed of a silicon plate having a low resistance, and the movable portion 37 is the glass substrate 3
2, supporting portions 38, 38 spaced apart in the front and rear directions, and one end fixed to each of the supporting portions 38, and the acceleration detection direction (in FIG. 1).
Four beams 39, 3 extending in the direction orthogonal to the arrow A direction)
9 and so on, a mass portion 40 supported via the other side of each beam 39 and disposed between the fixed portions 35, and a plurality of protrusions formed in the left and right directions from the mass portion 40 ( Eg 5
The movable side comb-shaped electrodes 41, 41 having thin plate-shaped electrode plates 41A, 41A ,. That
The mass part 40 is parallel to the surface of the glass substrate 32.
Displace along the direction of arrow A.

【0044】ここで、前記各支持部38は梁39の伸長
方向に向けて延びた四角柱状に形成され、該支持部38
の中央部が接合部38Aとなり、その両端が該接合部3
8Aを挟んで梁39の伸長方向の両側にそれぞれ設けら
れた非接合部38B,38Bとなっている。また、接合
部38Aはガラス基板32の凹部33内に位置した接合
用突出部33Bに接合し、非接合部38B,38Bはガ
ラス基板32と離間した状態にある。
Here, each of the supporting portions 38 extends the beam 39.
The support portion 38 is formed in a quadrangular prism shape extending in the direction.
Nearby central portion junction 38A, and both ends of the joint portion 3
8A are provided on both sides of the beam 39 in the extension direction.
The non-bonded portions 38B and 38B are formed. Further, the joint portion 38A is joined to the joint protrusion 33B located in the recess 33 of the glass substrate 32, and the non-joint portions 38B and 38B are joined together .
Situations that near that spaced the glass substrate 32.

【0045】また、前記各梁39は、支持部38の各非
接合部38Bに連結される略L字状の支持部端39A,
39Aと、該各支持部端39A間に位置して前記質量部
40に連結される質量部端39B,39Bとからなり、
当該各梁39は凹部32上に位置するから、前記ガラス
基板32と離間した状態で保持されている。
Each beam 39 has a substantially L-shaped support end 39A, which is connected to each non-joint 38B of the support 38.
39A and mass part ends 39B and 39B located between the respective support part ends 39A and connected to the mass part 40,
Since each of the beams 39 is located on the concave portion 32, it is held in a state of being separated from the glass substrate 32.

【0046】このように構成される本実施例による加速
度センサ31では、質量部40に加わる矢示A方向の加
速度の検出動作においては、先行技術による加速度セン
サ1と同様に、加速度センサ31に矢示A方向の加速度
が加わると、各梁39が変形することにより質量部40
が矢示A方向(加速度の検出方向)に変位し、この変位
を各固定側くし状電極36と各可動側くし状電極41の
各電極板36A,41Aの離間寸法の変化による静電容
量の変化として検出し、加速度を検出するようになって
いる。
In the acceleration sensor 31 according to the present embodiment configured as described above, in the operation of detecting the acceleration in the direction A indicated by the arrow applied to the mass portion 40, the acceleration sensor 31 has an arrow as in the prior art acceleration sensor 1. When acceleration in the direction A shown is applied, each beam 39 is deformed, and
Is displaced in the direction of arrow A (acceleration detection direction) , and this displacement is caused by the change in the capacitance due to the change in the separation dimension of the electrode plates 36A and 41A of the fixed-side comb-shaped electrodes 36 and the movable-side comb-shaped electrodes 41. The change is detected and the acceleration is detected.

【0047】そして、本実施例では、各支持部38のガ
ラス基板32への接合は、ガラス基板32に設けた各接
合用突出部33Bと各支持部38の中央部(接合部38
A)とを陽極接合法によって接合しているから、各接合
部38Aによる接合面積の大きさは接合用突出部33B
の大きさとなり、支持部38全体に比べて接合面積は小
さくなる。一方、非接合部38B,38Bはガラス基板
32から浮き上がった状態となり、該各非接合部38B
の端部は自由端となっている。
In the present embodiment, the bonding of each supporting portion 38 to the glass substrate 32 is carried out by the bonding protrusion 33B provided on the glass substrate 32 and the central portion of each supporting portion 38 (bonding portion 38).
A) is joined by anodic bonding, so the size of the joint area by each joint 38A depends on the joint protrusion 33B.
And the bonding area is smaller than that of the entire supporting portion 38. On the other hand, the non-bonded portions 38B and 38B are in a state of being lifted from the glass substrate 32,
The end of is a free end.

【0048】また、当該加速度センサ31では、ガラス
とシリコンの熱膨張係数の違いによって引張り応力の影
響を受ける部分は各接合部38Aとなり、該各接合部3
8Aには、図1の矢示a,a,…のような引張り応力
(内部応力)が発生する。そして、接合部38Aにおけ
る内部応力は他の支持部38となる非接合部38B,3
8Bに伝わるが、接合部38Aの接合面積は支持部38
全体の面積に比べて小さくなっているため、接合部38
Aから支持部38に伝わる内部応力は小さいものとな
る。
In the acceleration sensor 31, the portions affected by the tensile stress due to the difference in the thermal expansion coefficient between glass and silicon are the joints 38A.
8A, tensile stress (internal stress) as indicated by arrows a, a, ... In FIG. 1 is generated. Then, the internal stress in the joint portion 38A is the non-joint portion 38B, 3 which becomes the other support portion 38.
8B, the joint area of the joint portion 38A is the same as that of the support portion 38A.
Since it is smaller than the whole area, the joint 38
The internal stress transmitted from A to the support portion 38 is small.

【0049】この結果、接合部38Aに生じる内部応力
は支持部38の各非接合部38Bを介して梁39に伝わ
るものの、前述したように支持部38における内部応力
の影響は小さくなっているから、梁39の温度変化によ
るばね定数の変動を低減することができる。
As a result, although the internal stress generated in the joint portion 38A is transmitted to the beam 39 via each non-joint portion 38B of the support portion 38, the influence of the internal stress in the support portion 38 is small as described above. Therefore, the fluctuation of the spring constant due to the temperature change of the beam 39 can be reduced.

【0050】そして、各梁39の温度変化によるばね定
数の変動を低減することにより、質量部40に加わる矢
示A方向の加速度を高精度に検出することができると共
に、加速度センサ31の使用環境の温度変化に対する検
出感度の変動も確実に低減することができる。
By reducing the fluctuation of the spring constant due to the temperature change of each beam 39, the acceleration applied to the mass portion 40 in the direction of the arrow A can be detected with high accuracy and the environment in which the acceleration sensor 31 is used. The fluctuation of the detection sensitivity with respect to the temperature change can be surely reduced.

【0051】次に、図5ないし図9に本発明による第2
の実施例を示すに、本実施例の特徴は、前記第1の実施
例による各支持部38の接合部38Aを分離した一対の
固着部としたことにある。なお、前述した第1の実施例
と同一の構成要素に同一の符号を付し、その説明を省略
するものとする。
Next, FIG. 5 to FIG. 9 show a second embodiment of the present invention.
The present embodiment is characterized in that the joining portions 38A of the supporting portions 38 according to the first embodiment are separated into a pair of fixing portions. The same components as those in the first embodiment described above are designated by the same reference numerals, and the description thereof will be omitted.

【0052】図中、51は本実施例による加速度セン
サ、52は該加速度センサ51の基台をなす絶縁基板と
してのガラス基板を示し、該ガラス基板52上には前述
した固定部35,35と後述する可動部55が形成され
ている。
In the figure, 51 is an acceleration sensor according to the present embodiment, 52 is a glass substrate as an insulating substrate which is a base of the acceleration sensor 51, and the fixing portions 35, 35 described above are provided on the glass substrate 52. A movable portion 55 described later is formed.

【0053】また、前記ガラス基板52は、図6に示す
ように、矩形状の凹部53が形成され、該凹部53の四
隅には左,右方向に延びる補助凹部53A,53A,…
が形成されると共に、前,後方向両側にはガラス基板5
2と同じ高さとなる接合用突出部53B,53Bが形成
されている。なお、54,54,…は電極パターンを示
し、該各電極パターン54は固定部35と可動部55か
らの信号を外部に導出するものである。また、該ガラス
基板52上の左,右方向には、それぞれ対向する固定側
くし状電極36,36を有する固定部35,35が形成
されている。
Further, as shown in FIG. 6, the glass substrate 52 is formed with rectangular recesses 53, and auxiliary recesses 53A, 53A, ...
And the glass substrate 5 is formed on both sides in the front and rear directions.
The protrusions 53B, 53B for joining having the same height as 2 are formed. Reference numerals 54, 54, ... Denote electrode patterns, and each of the electrode patterns 54 guides signals from the fixed portion 35 and the movable portion 55 to the outside. Further, on the left and right directions on the glass substrate 52, fixed portions 35, 35 having fixed side comb-shaped electrodes 36, 36 facing each other are formed.

【0054】55は低抵抗を有するシリコン板により形
成された可動部を示し、該可動部55は前記ガラス基板
52の前,後方向に離間した支持部56,56と、該各
支持部56に一端が固着された4個の梁57,57,…
と、該各梁57の他側を介して支持され、前記各固定部
35間に配設された質量部58と、該質量部58から
左,右方向にそれぞれ突出形成された複数(例えば5
枚)の薄板状の電極板59A,59A,…を有する可動
側くし状電極59,59とから構成されている。
Reference numeral 55 denotes a movable portion formed of a silicon plate having a low resistance. The movable portion 55 is a support portion 56, 56 spaced apart in the front and rear directions of the glass substrate 52, and the support portions 56. Four beams 57, 57, ...
A mass portion 58 supported through the other side of each beam 57 and disposed between the fixing portions 35, and a plurality of mass portions 58 formed to protrude from the mass portion 58 in the left and right directions (for example, 5
The movable side comb-shaped electrodes 59, 59 having thin plate-shaped electrode plates 59A, 59A ,.

【0055】ここで、前記各支持部56は四角柱状に形
成され、該支持部56の中央部が接合部56Aとなり、
その両端がガラス基板52と離間した状態にある非接合
部56B,56Bとなって、前記接合部56Aはガラス
基板52の凹部53内に位置した接合用突出部53Bに
接合している。
Here, each of the support portions 56 is formed in a quadrangular prism shape, and the central portion of the support portion 56 serves as a joint portion 56A,
Both ends become non-bonded portions 56B and 56B which are separated from the glass substrate 52, and the bonded portion 56A is bonded to the bonding protrusion 53B located in the recess 53 of the glass substrate 52.

【0056】また、56A1 ,56A1 ,…は前,後に
2個ずつで、合計4個の固着部を示し、該各固着部56
A1 は前記各支持部56の接合部56Aを2個ずつに分
離したもので、それぞれ対をなして接合部56Aを構成
している。
Further, reference numerals 56A1, 56A1, ... Indicate two front and rear two fixing portions, for a total of four fixing portions.
A1 is a joint portion 56A of each of the supporting portions 56, which is separated into two pieces, and each pair constitutes a joint portion 56A.

【0057】さらに、前記各梁57は、支持部56の各
非接合部56Bに連結される略L字状の支持部端57
A,57Aと、該各支持部端57A間に位置して前記質
量部58に連結される質量部端57B,57Bとからな
り、当該各梁57は凹部53上に位置しているから、前
記ガラス基板52と離間した状態で保持されている。
Further, each beam 57 has a substantially L-shaped support portion end 57 connected to each non-bonding portion 56B of the support portion 56.
A and 57A and mass part ends 57B and 57B that are located between the respective support part ends 57A and connected to the mass part 58. Since each beam 57 is located on the recess 53, It is held in a state of being separated from the glass substrate 52.

【0058】このように構成される本実施例による加速
度センサ51においても、該加速度センサ51に加わる
加速度の検出動作は前述した第1の実施例と差異はな
い。
Also in the acceleration sensor 51 according to the present embodiment constructed as described above, the operation of detecting the acceleration applied to the acceleration sensor 51 is not different from that in the first embodiment described above.

【0059】さらに、本実施例による加速度センサ51
においても、第1の実施例による加速度センサ31と同
様の作用効果が得られるものである。
Further, the acceleration sensor 51 according to the present embodiment.
Also in the above, the same operational effect as that of the acceleration sensor 31 according to the first embodiment can be obtained.

【0060】即ち、ガラスとシリコンの熱膨張係数の違
いによって可動部55に発生する引張り応力は、各接合
部56Aの固着部56A1 ,56A1 に作用して、該各
固着部56A1 には図5の矢示b,b,…のような引張
り応力(内部応力)が発生する。そして、各固着部56
A1 における内部応力は他の支持部56となる非接合部
56B,56Bに伝わるが、各固着部56A1 は支持部
56全体に比べて小さくなっているため、各固着部56
A1 (接合部56A)から支持部56に伝わる内部応力
は小さくなり、各梁57の温度変化によるばね定数の変
動を低減することができる。この結果、加速度の検出感
度を向上させることができる。
That is, the tensile stress generated in the movable portion 55 due to the difference in thermal expansion coefficient between glass and silicon acts on the fixed portions 56A1 and 56A1 of the respective joint portions 56A, and the respective fixed portions 56A1 shown in FIG. A tensile stress (internal stress) as indicated by arrows b, b, ... Is generated. Then, each fixing portion 56
Although the internal stress in A1 is transmitted to the non-bonded portions 56B and 56B that serve as the other supporting portions 56, since each fixing portion 56A1 is smaller than the entire supporting portion 56, each fixing portion 56A.
The internal stress transmitted from A1 (joint portion 56A) to the support portion 56 becomes small, and the fluctuation of the spring constant due to the temperature change of each beam 57 can be reduced. As a result, the acceleration detection sensitivity can be improved.

【0061】さらに、図10ないし図14に本発明によ
る第3の実施例を示すに、本実施例の特徴は、各支持部
の接合部と非接合部との間に幅の狭い腕部を形成したこ
とにある。なお、前述した第1の実施例と同一の構成要
素に同一の符号を付し、その説明を省略するものとす
る。
Further, FIGS. 10 to 14 show a third embodiment according to the present invention. The feature of this embodiment is that a narrow arm portion is provided between the joint portion and the non-joint portion of each supporting portion. It has been formed. The same components as those in the first embodiment described above are designated by the same reference numerals, and the description thereof will be omitted.

【0062】図中、61は本実施例による加速度セン
サ、62は該加速度センサ61の基台をなす絶縁基板と
してのガラス基板を示し、該ガラス基板62上には前述
した固定部35,35と後述する可動部55が形成され
ている。
In the figure, 61 is an acceleration sensor according to the present embodiment, and 62 is a glass substrate as an insulating substrate which forms the base of the acceleration sensor 61. On the glass substrate 62, the above-mentioned fixing portions 35 and 35 are provided. A movable portion 55 described later is formed.

【0063】また、前記ガラス基板62は、図11に示
すように、矩形状の凹部63が形成され、該凹部63の
四隅には左,右方向に延びる補助凹部63A,63A,
…が形成されている。なお、64,64,…は電極パタ
ーンを示し、該各電極パターン64は固定部35と可動
部65からの信号を外部に導出するものである。さら
に、該ガラス基板62上の左,右方向には、それぞれ対
向する固定側くし状電極36,36を有する固定部3
5,35が形成されている。
Further, as shown in FIG. 11, the glass substrate 62 is formed with rectangular recesses 63, and auxiliary recesses 63A, 63A, 63A, 63A, 63A, 63A extending in the left and right directions are formed at four corners of the recess 63.
... is formed. Reference numerals 64, 64, ... Denote electrode patterns, and each of the electrode patterns 64 guides signals from the fixed portion 35 and the movable portion 65 to the outside. Further, on the glass substrate 62, fixed portions 3 having fixed-side comb-shaped electrodes 36, 36 facing each other in the left and right directions, respectively.
5, 35 are formed.

【0064】65は低抵抗を有するシリコン板により形
成された可動部を示し、該可動部65は前記ガラス基板
62の前,後方向に離間した支持部66,66と、該各
支持部66に一端が固着された4個の梁67,67,…
と、該各梁67の他側を介して支持され、前記各固定部
35間に配設された質量部68と、該質量部68から
左,右方向にそれぞれ突出形成された複数(例えば5
枚)の薄板状の電極板69A,69A,…を有する可動
側くし状電極69,69とから構成されている。
Reference numeral 65 denotes a movable portion formed of a silicon plate having a low resistance. The movable portion 65 is a support portion 66, 66 spaced apart in the front and rear directions of the glass substrate 62 and each of the support portions 66. Four beams 67, 67, ...
A mass portion 68 supported via the other side of each beam 67 and arranged between the respective fixing portions 35, and a plurality of protrusions formed in the left and right directions from the mass portion 68 (for example, 5
The movable side comb-shaped electrodes 69, 69 having thin plate-shaped electrode plates 69A, 69A ,.

【0065】ここで、前記各支持部66は四角柱状に形
成され、ガラス基板62に接合された接合部66Aと、
前記ガラス基板62と離間し、両端が梁67に連結され
た四角柱状の非接合部66Bと、該非接合部66Bと接
合部66Aとを中央部で連結する幅を狭くして形成され
た腕部66Cとから構成されている。また、前記接合部
66Aのみがガラス基板62に接合され、その他の非接
合部66Bおよび腕部66Cは凹部63上に位置し、前
記ガラス基板62から離間した状態で保持されている。
Here, each of the support portions 66 is formed in a rectangular column shape, and a joint portion 66A joined to the glass substrate 62,
A non-bonding portion 66B in the shape of a quadratic prism that is separated from the glass substrate 62 and has both ends connected to the beam 67, and an arm portion formed by narrowing the width that connects the non-bonding portion 66B and the bonding portion 66A at the central portion. 66C and. Further, only the joint portion 66A is joined to the glass substrate 62, and the other non-joint portions 66B and the arm portions 66C are located on the concave portion 63 and are held in a state of being separated from the glass substrate 62.

【0066】また、前記各梁67は、支持部66の各非
接合部66Bの両側に連結される略L字状の支持部端6
7A,67Aと、該各支持部端67A間に位置して前記
質量部68に連結される質量部端67B,67Bとから
なり、当該各梁67は凹部53上に位置するから、前記
ガラス基板62から離間した状態で各支持部66によっ
て保持されている。
Further, each beam 67 is connected to both sides of each non-bonding portion 66B of the supporting portion 66 and has a substantially L-shaped supporting portion end 6.
7A, 67A and mass part ends 67B, 67B located between the respective support part ends 67A and connected to the mass part 68. Since each beam 67 is located on the recess 53, the glass substrate It is held by each support portion 66 in a state of being separated from 62.

【0067】このように構成される本実施例による加速
度センサ61においても、該加速度センサ61に加わる
加速度の検出動作においては、前述した第1の実施例と
差異はない。
Also in the acceleration sensor 61 according to the present embodiment constructed as described above, the operation of detecting the acceleration applied to the acceleration sensor 61 is not different from that of the first embodiment described above.

【0068】さらに、本実施例による加速度センサ61
においても、第1の実施例と同様の作用効果が得られる
ものである。
Further, the acceleration sensor 61 according to the present embodiment.
Also in the above, the same effects as those of the first embodiment can be obtained.

【0069】即ち、ガラスとシリコンの熱膨張係数の違
いによって引張り応力の影響を受ける部分は各接合部6
6Aの腕部66C,66Cとなり、該各腕部66Cには
図10の矢示c,c,…のような引張り応力(内部応
力)が発生する。そして、各腕部66Cにおける内部応
力は他の支持部66となる非接合部66B,66Bに伝
わるが、各腕部66Cは支持部66全体に比べて小さく
なっているため、各腕部66C(接合部66A)から支
持部66に伝わる内部応力は小さくなり、各梁67の温
度変化によるばね定数の変動を低減することができる。
この結果、矢示A方向に加わる加速度の検出感度を向上
させることができる。
That is, the portions affected by the tensile stress due to the difference in the coefficient of thermal expansion between glass and silicon are the joints 6
6A arm portions 66C, 66C, and tensile stress (internal stress) as indicated by arrows c, c, ... In FIG. 10 is generated in each arm portion 66C. Then, the internal stress in each arm portion 66C is transmitted to the other non-joint portions 66B and 66B serving as the support portions 66, but since each arm portion 66C is smaller than the entire support portion 66, each arm portion 66C ( The internal stress transmitted from the joint portion 66A) to the support portion 66 becomes small, and the fluctuation of the spring constant due to the temperature change of each beam 67 can be reduced.
As a result, it is possible to improve the detection sensitivity of the acceleration applied in the arrow A direction.

【0070】さらに、図15ないし図19に本発明によ
る第4の実施例を示すに、本実施例の特徴は、各支持部
の接合部を前記絶縁基板上で分離する一対の固着部から
形成し、該各固着部に非接合部を連結する一対の腕部と
から構成したことにある。なお、前述した第1の実施例
と同一の構成要素に同一の符号を付し、その説明を省略
するものとする。
Further, FIG. 15 to FIG. 19 show a fourth embodiment according to the present invention. The feature of this embodiment is that a joining portion of each supporting portion is formed by a pair of fixing portions for separating on the insulating substrate. However, it is composed of a pair of arm portions connecting the non-bonded portions to the respective fixing portions. The same components as those in the first embodiment described above are designated by the same reference numerals, and the description thereof will be omitted.

【0071】図中、71は本実施例による加速度セン
サ、72は該加速度センサ71の基台をなす絶縁基板と
してのガラス基板を示し、該ガラス基板72上には前述
した固定部35,35と後述する可動部75が形成され
ている。
In the figure, 71 is an acceleration sensor according to this embodiment, 72 is a glass substrate as an insulating substrate which is the base of the acceleration sensor 71, and the fixing portions 35, 35 described above are provided on the glass substrate 72. A movable portion 75, which will be described later, is formed.

【0072】また、前記ガラス基板72は、図16に示
すように、矩形状の凹部73が形成され、該凹部73の
四隅には左,右方向に延びる補助凹部73A,73A,
…が形成されている。なお、74,74,…は電極パタ
ーンを示し、該各電極パターン74は固定部35と可動
部75からの信号を外部に導出するものである。さら
に、該ガラス基板72上の左,右方向には、それぞれ対
向する固定側くし状電極36,36を有する固定部3
5,35が形成されている。
Further, as shown in FIG. 16, the glass substrate 72 is formed with rectangular recesses 73, and auxiliary recesses 73A, 73A, 73A, 73A extending in the left and right directions are formed at four corners of the recess 73.
... is formed. Further, 74, 74, ... Denote electrode patterns, and each of the electrode patterns 74 guides signals from the fixed portion 35 and the movable portion 75 to the outside. Further, the fixed part 3 having fixed side comb-shaped electrodes 36, 36 facing each other in the left and right directions on the glass substrate 72, respectively.
5, 35 are formed.

【0073】75は低抵抗を有するシリコン板により形
成された可動部を示し、該可動部75は前記ガラス基板
72の前,後方向に離間した支持部76,76と、該各
支持部76に一端が固着された4個の梁77,77,…
と、該各梁77の他側を介して支持され、前記各固定部
35間に配設された質量部78と、該質量部78から
左,右方向にそれぞれ突出形成された複数(例えば5
枚)の薄板状の電極板79A,79A,…を有する可動
側くし状電極79,79とから構成されている。
Reference numeral 75 denotes a movable portion formed of a silicon plate having a low resistance. The movable portion 75 is a support portion 76, 76 spaced apart in the front and rear directions of the glass substrate 72 and the support portions 76. Four beams 77, 77, ...
A mass portion 78 supported via the other side of each beam 77 and arranged between the fixing portions 35, and a plurality of protrusions formed in the left and right directions from the mass portion 78 (for example, 5
And the movable side comb-shaped electrodes 79, 79 having thin plate-shaped electrode plates 79A, 79A ,.

【0074】ここで、前記各支持部76は四角柱状に形
成され、ガラス基板72に接合され、それぞれ一対の固
着部76A1 ,76A1 からなる接合部76Aと、前記
ガラス基板72と離間し、両端が梁77に連結された四
角柱状の非接合部76Bと、該非接合部76Bの中央部
と接合部76A(各固着部76A1 )とを連結する腕部
76C,76Cとから構成されている。また、前記接合
部76A(各固着部76A1 )のみがガラス基板72に
接合され、その他の非接合部76Bおよび各腕部76C
は凹部73上に位置し、前記ガラス基板72から離間し
て保持されている。
Here, each of the supporting portions 76 is formed in a quadrangular prism shape and is joined to the glass substrate 72, and the joining portion 76A composed of a pair of fixing portions 76A1 and 76A1 is separated from the glass substrate 72, and both ends thereof are separated from each other. It is composed of a square columnar non-joint portion 76B connected to the beam 77, and arm portions 76C and 76C connecting the central portion of the non-joint portion 76B and the joint portion 76A (fixed portions 76A1). Further, only the joining portions 76A (each fixing portion 76A1) are joined to the glass substrate 72, and the other non-joining portions 76B and each arm portion 76C.
Is located on the recess 73 and is held apart from the glass substrate 72.

【0075】また、前記各梁77は、支持部76の各非
接合部76Bの両側に連結される略L字状の支持部端7
7A,77Aと、該各支持部端77A間に位置して前記
質量部78に連結される質量部端77B,77Bとから
なり、当該各梁77は凹部53上に位置するから、前記
ガラス基板72から離間した状態で各支持部76によっ
て保持されている。
Further, each beam 77 is connected to both sides of each non-bonding portion 76B of the supporting portion 76 and has a substantially L-shaped supporting portion end 7.
7A, 77A and mass part ends 77B, 77B located between the respective support part ends 77A and connected to the mass part 78. Since each beam 77 is located on the recess 53, the glass substrate It is held by each support portion 76 in a state of being separated from 72.

【0076】このように構成される本実施例による加速
度センサ71においても、該加速度センサ71に加わる
加速度の検出動作は前述した第1の実施例と差異はな
い。
Also in the acceleration sensor 71 according to the present embodiment constructed as described above, the operation of detecting the acceleration applied to the acceleration sensor 71 is not different from that in the first embodiment.

【0077】さらに、本実施例による加速度センサ71
においても、前述した第1の実施例と同様の作用効果が
得られるものである。
Further, the acceleration sensor 71 according to the present embodiment.
Also in the above, the same operational effects as those of the above-described first embodiment can be obtained.

【0078】即ち、ガラスとシリコンの熱膨張係数の違
いによって発生する引張り応力は、各接合部76Aの腕
部76C,76Cに作用して、該各腕部76Cには図1
0の矢示d,d,…のような引張り応力(内部応力)が
発生する。そして、各腕部76Cにおける内部応力は他
の支持部76となる非接合部76B,76Bに伝わる
が、各腕部76Cは支持部76全体に比べて小さくなっ
ているため、各腕部76C(接合部76A)から支持部
76に伝わる内部応力は小さくなり、各梁77の温度変
化によるばね定数の変動を低減することができる。この
結果、矢示A方向に加わる加速度の検出感度を向上させ
ることができる。
That is, the tensile stress generated by the difference in the coefficient of thermal expansion between glass and silicon acts on the arm portions 76C and 76C of each joint portion 76A, so that each arm portion 76C has the structure shown in FIG.
A tensile stress (internal stress) as indicated by the arrows 0, d, d, ... Then, the internal stress in each arm portion 76C is transmitted to the non-joint portions 76B and 76B that become the other support portions 76, but since each arm portion 76C is smaller than the entire support portion 76, each arm portion 76C ( The internal stress transmitted from the joint portion 76A) to the support portion 76 becomes small, and the fluctuation of the spring constant due to the temperature change of each beam 77 can be reduced. As a result, it is possible to improve the detection sensitivity of the acceleration applied in the arrow A direction.

【0079】なお、前記各実施例では、絶縁基板にガラ
ス基板32,52,62,72を用いるものとして述べ
たが、これに替えて、高抵抗なシリコン基板、セラミッ
ク基板、絶縁樹脂基板等を用いてもよく、この場合でも
上述の各実施例の如く構成することによって、確実に加
速度の検出感度を向上させることができる。
Although the glass substrates 32, 52, 62, 72 are used as the insulating substrates in each of the above embodiments, a high resistance silicon substrate, a ceramic substrate, an insulating resin substrate or the like may be used instead. It may be used, and even in this case, by configuring as in each of the above-described embodiments, the detection sensitivity of acceleration can be reliably improved.

【0080】[0080]

【発明の効果】以上詳述した如く、請求項1の本発明に
よる加速度センサでは、質量部を梁を介して支持する支
持部を、絶縁基板に接合され接合部と、該接合部を挟
んで梁の伸長方向の両側にそれぞれ設けられ絶縁基板か
ら離間した状態にある非接合部とから構成し、前記梁
を、絶縁基板から離間した状態で前記支持部の各非接合
部に連結される支持部端と、該各支持部端の間に位置し
て前記質量部に連結される質量部端とから構成したか
ら、梁と支持部との連結部周辺を絶縁基板から離間させ
ることができる。このため、シリコン板と絶縁材料との
熱膨張係数の違いによる引張り応力が発生する部分の面
積を小さくし、各部材の熱膨張係数の違いによって発生
する梁の伸長方向に沿った内部応力を小さくでき、該梁
のばね定数の変動を小さくすることができる。この結
果、絶縁基板の表面と平行な面に沿った加速度の検出感
度を向上することができる。
As has been described above in detail, in the acceleration sensor according to the present invention of claim 1, a support portion for supporting the weight portion via the beams, and a joint portion joined to insulated substrate, the the joint portion Sandwich
And a non-joint portion provided on each side of the beam in the extension direction and separated from the insulating substrate. The beam is connected to each non-joint portion of the supporting portion in a state of being separated from the insulating substrate. Since the end portions of the support portion and the end portions of the mass portion located between the end portions of the support portion and connected to the mass portion are included, the periphery of the connection portion between the beam and the support portion can be separated from the insulating substrate. It Therefore , the area of the part where tensile stress is generated due to the difference in the thermal expansion coefficient between the silicon plate and the insulating material is reduced, and the internal stress along the extension direction of the beam caused by the difference in the thermal expansion coefficient of each member is reduced. Therefore, the fluctuation of the spring constant of the beam can be reduced. As a result, it is possible to improve the detection sensitivity of acceleration along the plane parallel to the surface of the insulating substrate .

【0081】また、請求項2の発明のように、前記支持
部の非接合部、梁および質量部を絶縁基板から離間する
ための凹部を該絶縁基板に形成し、該凹部内に前記各支
持部の接合部が接合される接合用突出部を設けるように
したから、シリコン板と絶縁材料との熱膨張係数の違い
による引張り応力が発生する接合部の接合面積を小さく
し、各部材の熱膨張係数の違いによって発生する梁への
内部応力を小さくでき、該梁のばね定数の変動を小さく
することができる。この結果、当該加速度センサにおけ
る加速度の検出感度を向上することができる。
According to a second aspect of the present invention, a recess is formed in the insulating substrate to separate the non-joint portion, the beam, and the mass portion of the supporting portion from the insulating substrate, and each support is provided in the recess. Since the protrusion for joining is provided to join the joints of the parts, the joint area of the joint where the tensile stress is generated due to the difference in thermal expansion coefficient between the silicon plate and the insulating material is reduced, and the heat of each member is reduced. It is possible to reduce the internal stress to the beam caused by the difference in the expansion coefficient, and reduce the fluctuation of the spring constant of the beam. As a result, the acceleration detection sensitivity of the acceleration sensor can be improved.

【0082】さらに、請求項3の発明のように、前記支
持部の接合部を、絶縁基板上で分離する一対の固着部に
よって形成したから、シリコン板と絶縁材料との熱膨張
係数の違いによる引張り応力の影響を受ける部分は一対
の固着部となり、この各固着部は支持部全体からみてそ
の面積は小さくなっているから、前記梁のばね定数の変
動を小さくすることができ、当該加速度センサの検出感
度を向上することができる。
Further, as in the invention of claim 3, since the joint portion of the supporting portion is formed by the pair of fixing portions which are separated on the insulating substrate, the difference in thermal expansion coefficient between the silicon plate and the insulating material is caused. The portion affected by the tensile stress is a pair of fixed portions, and the area of each of the fixed portions is small when viewed from the whole of the supporting portion. Therefore, it is possible to reduce the fluctuation of the spring constant of the beam. The detection sensitivity of can be improved.

【0083】さらにまた、請求項4の発明のように、支
持部の接合部と非接合部との間には幅の狭い腕部を設け
たから、シリコン板と絶縁材料との熱膨張係数の違いに
よる引張り応力の影響を受ける部分は腕部となり、この
腕部は狭くなって形成されているから、前記梁のばね定
数の変動を小さくすることができ、当該加速度センサの
検出感度を向上することができる。
Further, as in the invention of claim 4, since the narrow arm portion is provided between the joint portion and the non-joint portion of the supporting portion, the difference in thermal expansion coefficient between the silicon plate and the insulating material is provided. The portion that is affected by the tensile stress due to is the arm portion, and since this arm portion is formed to be narrow, it is possible to reduce the fluctuation of the spring constant of the beam and improve the detection sensitivity of the acceleration sensor. You can

【0084】一方、請求項5の発明のように、前記支持
部の接合部を、絶縁基板上で分離する一対の固着部によ
って形成すると共に、該各固着部に非接合部を連結する
一対の腕部とから構成したから、シリコン板と絶縁材料
との熱膨張係数の違いによる引張り応力の影響を受ける
部分は一対の腕部となり、この各腕部は小さくなってい
るから、前記梁のばね定数の変動を小さくすることがで
き、当該加速度センサの検出感度を向上することができ
る。
On the other hand, as in the fifth aspect of the invention, the joint portion of the support portion is formed by a pair of fixing portions that are separated on the insulating substrate, and a pair of non-joining portions are connected to the respective fixing portions. Since it is composed of the arm portions, the portions affected by the tensile stress due to the difference in thermal expansion coefficient between the silicon plate and the insulating material are a pair of arm portions. The fluctuation of the constant can be reduced, and the detection sensitivity of the acceleration sensor can be improved.

【図面の簡単な説明】[Brief description of drawings]

【図1】第1の実施例による加速度センサを上側からみ
た平面図である。
FIG. 1 is a plan view of an acceleration sensor according to a first embodiment as viewed from above.

【図2】図1中の加速度センサのガラス基板を示す平面
図である。
FIG. 2 is a plan view showing a glass substrate of the acceleration sensor in FIG.

【図3】図1中の矢示III −III 方向からみた縦断面図
である。
FIG. 3 is a vertical cross-sectional view as seen from the direction of arrows III-III in FIG.

【図4】図1中の矢示IV−IV方向からみた縦断面図であ
る。
FIG. 4 is a vertical sectional view as seen from the direction of arrows IV-IV in FIG.

【図5】第2の実施例による加速度センサを上側からみ
た平面図である。
FIG. 5 is a plan view of the acceleration sensor according to the second embodiment as viewed from above.

【図6】図5中の加速度センサのガラス基板を示す平面
図である。
6 is a plan view showing a glass substrate of the acceleration sensor in FIG.

【図7】図5中の矢示VII −VII 方向からみた縦断面図
である。
FIG. 7 is a vertical cross-sectional view taken along the line VII-VII in FIG.

【図8】図5中の矢示VIII−VIII方向からみた縦断面図
である。
8 is a vertical cross-sectional view as seen from the direction of arrows VIII-VIII in FIG.

【図9】図5中の矢示IX−IX方向からみた縦断面図であ
る。
9 is a vertical cross-sectional view as seen from the direction of arrow IX-IX in FIG.

【図10】第3の実施例による加速度センサを上側から
みた平面図である。
FIG. 10 is a plan view of an acceleration sensor according to a third embodiment as viewed from above.

【図11】図10中の加速度センサのガラス基板を示す
平面図である。
11 is a plan view showing a glass substrate of the acceleration sensor in FIG.

【図12】図10中の矢示XII −XII 方向からみた縦断
面図である。
12 is a vertical cross-sectional view as seen from the direction of arrow XII-XII in FIG.

【図13】図10中の矢示XIII−XIII方向からみた縦断
面図である。
13 is a vertical cross-sectional view as seen from the direction of arrows XIII-XIII in FIG.

【図14】図10中の矢示XIV −XIV 方向からみた縦断
面図である。
14 is a vertical cross-sectional view as seen from the direction of arrows XIV-XIV in FIG.

【図15】第4の実施例による加速度センサを上側から
みた平面図である。
FIG. 15 is a plan view of an acceleration sensor according to a fourth embodiment as viewed from above.

【図16】図15中の加速度センサのガラス基板を示す
平面図である。
16 is a plan view showing a glass substrate of the acceleration sensor in FIG.

【図17】図15中の矢示XVII−XVII方向からみた縦断
面図である。
FIG. 17 is a vertical sectional view as seen from the direction of arrow XVII-XVII in FIG.

【図18】図15中の矢示XVIII −XVIII 方向からみた
縦断面図である。
18 is a vertical cross-sectional view as seen from the direction of arrows XVIII-XVIII in FIG.

【図19】図15中の矢示XIX −XIX 方向からみた縦断
面図である。
FIG. 19 is a vertical sectional view as seen from the direction of the arrow XIX-XIX in FIG.

【図20】先行技術による加速度センサを示す斜視図で
ある。
FIG. 20 is a perspective view showing an acceleration sensor according to the prior art.

【図21】図20の加速度センサを上側からみた平面図
である。
FIG. 21 is a plan view of the acceleration sensor of FIG. 20 seen from above.

【図22】図20中の加速度センサのガラス基板を示す
平面図である。
22 is a plan view showing a glass substrate of the acceleration sensor in FIG.

【図23】図21中の矢示XXIII −XXIII 方向からみた
縦断面図である。
23 is a vertical cross-sectional view as seen from the direction of arrows XXIII-XXIII in FIG. 21.

【図24】図21中の矢示XXIV−XXIV方向からみた縦断
面図である。
24 is a vertical cross-sectional view as seen from the direction of arrows XXIV-XXIV in FIG. 21.

【図25】図21中の矢示XXV −XXV 方向からみた縦断
面図である。
FIG. 25 is a vertical cross-sectional view taken along the line XXV-XXV in FIG. 21.

【図26】先行技術によるシリコン板の両面への窒化膜
のマスキング処理を示す縦断面図である。
FIG. 26 is a vertical sectional view showing a masking process of a nitride film on both surfaces of a silicon plate according to the prior art.

【図27】第1のエッチング処理によって固定部と可動
部を形成するための溝を形成した状態を示す縦断面図で
ある。
FIG. 27 is a vertical cross-sectional view showing a state in which grooves for forming a fixed portion and a movable portion are formed by the first etching process.

【図28】溝形成後にシリコン板の窒化膜を除去した状
態を示す縦断面図である。
FIG. 28 is a vertical cross-sectional view showing a state where the nitride film of the silicon plate is removed after the groove is formed.

【図29】シリコン板にガラス基板を陽極接合法により
接合した状態を示す縦断面図である。
FIG. 29 is a vertical cross-sectional view showing a state in which a glass substrate is bonded to a silicon plate by an anodic bonding method.

【図30】第2のエッチング処理によって固定部と可動
部を分離形成した状態を示す縦断面図である。
FIG. 30 is a vertical cross-sectional view showing a state in which a fixed portion and a movable portion are formed separately by a second etching process.

【符号の説明】[Explanation of symbols]

31,51,61,71 加速度センサ 32,52,62,72 ガラス基板(絶縁基板) 33,53,63,73 凹部 33B,53B 接合用突出部 35 固定部 36 固定側くし状電極(固定電極) 37,55,65,75 可動部 38,56,66,76 支持部 38A,56A,66A,76A 接合部 38B,56B,66B,76B 非接合部 39,57,67,77 梁 39A,57A,67A,77A 支持部端 39B,57B,67B,77B 質量部端 40,58,68,78 質量部 41,59,69,79 可動側くし状電極(可動電
極) 56A1 ,76A1 固着部
31, 51, 61, 71 Acceleration sensor 32, 52, 62, 72 Glass substrate (insulating substrate) 33, 53, 63, 73 Recessed portion 33B, 53B Joining protrusion 35 Fixed portion 36 Fixed side comb-shaped electrode (fixed electrode) 37,55,65,75 Movable part 38,56,66,76 Support part 38A, 56A, 66A, 76A Joint part 38B, 56B, 66B, 76B Non-joint part 39,57,67,77 Beam 39A, 57A, 67A , 77A Support end 39B, 57B, 67B, 77B Mass end 40, 58, 68, 78 Mass 41, 59, 69, 79 Movable side comb-shaped electrode (movable electrode) 56A1, 76A1 Fixed part

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平4−301575(JP,A) 特開 平7−131036(JP,A) 特開 平2−251178(JP,A) 特開 平1−301176(JP,A) 特開 平7−198746(JP,A) 特開 平7−122759(JP,A) 特開 昭62−190775(JP,A) 特表 平2−502756(JP,A) (58)調査した分野(Int.Cl.7,DB名) G01P 15/125 H01L 29/84 ─────────────────────────────────────────────────── ─── Continuation of the front page (56) Reference JP-A-4-301575 (JP, A) JP-A-7-131036 (JP, A) JP-A-2-251178 (JP, A) JP-A-1- 301176 (JP, A) JP-A-7-198746 (JP, A) JP-A-7-122759 (JP, A) JP-A-62-190775 (JP, A) JP-A-2-502756 (JP, A) (58) Fields surveyed (Int.Cl. 7 , DB name) G01P 15/125 H01L 29/84

Claims (5)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 絶縁基板と、該絶縁基板の表面陽極接
合されたシリコン板をエッチング加工することにより互
いに分離して形成された固定部と可動部とを備え 固定部には固定電極を一体に形成し 記可動部は絶縁基板上に離間して固着された一対の
支持部と、該各支持部にそれぞれ連結され加速度の検出
方向と直交する方向に延びる梁と、該各梁を介して前記
各支持部間で連結され、加速度が作用したときに該加速
度に応じて検出方向に変位する質量部と、該質量部に形
成され前記固定部の固定電極との間で該質量部の変位方
向に微小隙間を介して対向するように配置された可動電
極とから形成してなる加速度センサであっ 記支持部は前記絶縁基板に接合され接合部と、
接合部を挟んで前記梁の伸長方向の両側にそれぞれ設け
られ前記絶縁基板から離間した状態にある非接合部とか
らなり 記梁は、前記絶縁基板から離間した状態で前記支持部
の各非接合部に連結される支持部端と、該各支持部端の
間に位置して前記質量部に連結される質量部端とから構
成し 前記質量部は、前記絶縁基板の表面と平行な面に沿って
前記検出方向に変位する ことを特徴とする加速度セン
サ。
1. An insulating substrate, and an anode contact with the surface of the insulating substrate.
And a fixing portion and a movable portion formed separated from each other by etching the engaged silicon plate, the said fixing portion to form the fixed electrode together, the front Symbol movable part, on an insulating substrate A pair of support portions that are separated from each other and fixed to each other , and accelerations that are respectively connected to the support portions
A beam extending in a direction orthogonal to the direction, a mass portion connected between the support portions via the respective beams, and displacing in a detection direction according to the acceleration when an acceleration acts, and formed on the mass portion. met acceleration sensor obtained by forming and a arranged movable electrode so as to face each other with a small gap in the direction of displacement of the mass portion between the fixed electrode before Symbol fixing portion is, before Symbol support parts includes a joint portion to which the joined to the insulating substrate, the
Provided on both sides of the beam in the extension direction with the joint part in between.
The consists of a non-bonded portion in the separated state from the insulating substrate is, prior Kihari comprises a support part end connected to the non-bonded portion of the support portion in a state of being separated from the insulating substrate, each of said support And a mass part end that is located between the mass parts and is connected to the mass part , wherein the mass part is along a plane parallel to the surface of the insulating substrate.
An acceleration sensor which is displaced in the detection direction .
【請求項2】 前記絶縁基板には前記支持部の非接合
部、梁および質量部を該絶縁基板から離間するための凹
部を形成し、該凹部内には前記各支持部の接合部が接合
される接合用突出部を設けてなる請求項1記載の加速度
センサ。
2. The insulating substrate is formed with a recess for separating the non-joint portion, the beam and the mass portion of the supporting portion from the insulating substrate, and the joint portion of each supporting portion is joined in the recess. The acceleration sensor according to claim 1, further comprising a protrusion for joining.
【請求項3】 前記支持部の接合部は前記絶縁基板上で
分離している一対の固着部から形成してなる請求項1記
載の加速度センサ。
3. The acceleration sensor according to claim 1, wherein the joint portion of the support portion is formed of a pair of fixed portions separated on the insulating substrate.
【請求項4】 前記支持部の接合部と非接合部との間に
は腕部を設けてなる請求項1記載の加速度センサ。
4. The acceleration sensor according to claim 1, wherein an arm portion is provided between the joint portion and the non-joint portion of the support portion.
【請求項5】 前記支持部の接合部は前記絶縁基板上で
分離している一対の固着部から形成し、該各固着部には
該固着部を前記非接合部と連結するための腕部をそれぞ
れ設けてなる請求項1記載の加速度センサ。
5. The joint portion of the supporting portion is formed by a pair of fixing portions that are separated on the insulating substrate, and each fixing portion has an arm portion for connecting the fixing portion to the non-joining portion. The acceleration sensor according to claim 1, further comprising:
JP17483394A 1994-07-04 1994-07-04 Acceleration sensor Expired - Lifetime JP3473115B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17483394A JP3473115B2 (en) 1994-07-04 1994-07-04 Acceleration sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17483394A JP3473115B2 (en) 1994-07-04 1994-07-04 Acceleration sensor

Publications (2)

Publication Number Publication Date
JPH0815308A JPH0815308A (en) 1996-01-19
JP3473115B2 true JP3473115B2 (en) 2003-12-02

Family

ID=15985460

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17483394A Expired - Lifetime JP3473115B2 (en) 1994-07-04 1994-07-04 Acceleration sensor

Country Status (1)

Country Link
JP (1) JP3473115B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6973829B2 (en) 2000-08-29 2005-12-13 Denso Corporation Semiconductor dynamic quantity sensor with movable electrode and fixed electrode supported by support substrate
US7267006B2 (en) * 2004-02-27 2007-09-11 Bae Systems Plc Accelerometer
JP2010164569A (en) * 2010-02-15 2010-07-29 Panasonic Corp Multiaxial acceleration sensor
JP5712755B2 (en) * 2011-04-14 2015-05-07 セイコーエプソン株式会社 Acceleration detector, acceleration detection device, and electronic apparatus
CN103983807B (en) * 2014-05-15 2018-06-22 清华大学 Silicon micromechanical accelerometer

Also Published As

Publication number Publication date
JPH0815308A (en) 1996-01-19

Similar Documents

Publication Publication Date Title
JP4932988B2 (en) Micromechanical semiconductor accelerometer
US7533582B2 (en) Force detector and acceleration detector and method of manufacturing the same
US6716253B2 (en) Force detector
EP0490419B1 (en) Accelerometer
EP0386463B1 (en) Capacitive accelerometer with mid-plane proof mass
JP2896725B2 (en) Capacitive pressure sensor
JPH09113534A (en) Acceleration sensor
JP3473115B2 (en) Acceleration sensor
JP3189506B2 (en) Acceleration sensor
JPH06300650A (en) Capacitive pressure sensor
JPH0565109B2 (en)
JP2001044450A (en) Semiconductor dynamic quantity sensor
JP3125520B2 (en) Acceleration sensor and method of manufacturing the same
JPH0954114A (en) Acceleration sensor
JP3433570B2 (en) Semiconductor acceleration sensor
JPH07176768A (en) Acceleration sensor
JP3427462B2 (en) Manufacturing method of semiconductor acceleration sensor
JP3366733B2 (en) Capacitive acceleration sensor
JP3183158B2 (en) Acceleration sensor and method of manufacturing the same
JP3019444B2 (en) Semiconductor acceleration sensor
JPH06340452A (en) Production of electrostatic capacity type sensor
JPH06331649A (en) Acceleration sensor and manufacture thereof
JP3313793B2 (en) Bonding method of silicon structure and glass structure and mechanical quantity sensor using the same
JPH0611403A (en) Pressure sensor array
JPH11190746A (en) Semiconductor physical quantity sensor and fabrication thereof

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080919

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080919

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090919

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090919

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100919

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100919

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110919

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120919

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120919

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130919

Year of fee payment: 10

EXPY Cancellation because of completion of term