JP3470215B2 - Tension control method of strip in catenary type drying furnace - Google Patents

Tension control method of strip in catenary type drying furnace

Info

Publication number
JP3470215B2
JP3470215B2 JP25418796A JP25418796A JP3470215B2 JP 3470215 B2 JP3470215 B2 JP 3470215B2 JP 25418796 A JP25418796 A JP 25418796A JP 25418796 A JP25418796 A JP 25418796A JP 3470215 B2 JP3470215 B2 JP 3470215B2
Authority
JP
Japan
Prior art keywords
catenary
tension
strip
type drying
drying furnace
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP25418796A
Other languages
Japanese (ja)
Other versions
JPH10102153A (en
Inventor
浩 大垣
一郎 田野口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP25418796A priority Critical patent/JP3470215B2/en
Publication of JPH10102153A publication Critical patent/JPH10102153A/en
Application granted granted Critical
Publication of JP3470215B2 publication Critical patent/JP3470215B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Coating Apparatus (AREA)
  • Control Of Heat Treatment Processes (AREA)
  • Heat Treatment Of Strip Materials And Filament Materials (AREA)
  • Controlling Rewinding, Feeding, Winding, Or Abnormalities Of Webs (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、連続塗装ラインで
塗装される帯状体をカテナリー型乾燥炉で乾燥する際に
適用して好適な、カテナリー型乾燥炉における帯状体の
張力制御方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for controlling the tension of a belt-shaped body in a catenary-type drying furnace, which is suitable for drying the belt-shaped body to be coated in a continuous coating line in a catenary-type drying furnace.

【0002】[0002]

【従来の技術】2つの固定位置(入側と出側に設置され
た各支点ロール)間に懸垂された帯状体を連続塗装した
後、加熱乾燥と冷却処理を行うカテナリー型乾燥炉で
は、カテナリー形状で搬送される帯状体(以下、単にカ
テナリーともいう)に沿って、その上側と下側のそれぞ
れに設けられたノズルから噴出される流体(気体)の伝
熱によって、加熱帯では加熱乾燥が、冷却帯では冷却処
理がそれぞれ行われる。
2. Description of the Related Art In a catenary type drying furnace in which a belt-like body suspended between two fixed positions (each supporting point roll installed on an inlet side and a fulcrum side) is continuously coated, followed by heating and drying, a catenary type drying furnace is used. Along with the belt-shaped body (hereinafter also simply referred to as a catenary) conveyed in a shape, heat and drying are performed in the heating zone by heat transfer of fluid (gas) ejected from nozzles provided on the upper side and the lower side, respectively. The cooling process is performed in each of the cooling zones.

【0003】カテナリー型乾燥炉には、このようにカテ
ナリーに沿って多数のノズルが設けられているため、帯
状体の搬送中にカテナリー形状の変動が大きくなると該
帯状体とノズルとの接触が起きたり、帯状体にノズルが
異常接近したために、ノズルからの噴出流体により塗膜
に風紋が発生したりする等の問題が生ずる。
Since the catenary-type drying furnace is provided with a large number of nozzles along the catenary as described above, when the catenary shape fluctuates greatly during the transportation of the belt-shaped body, the belt-shaped body and the nozzle come into contact with each other. Or, since the nozzle is abnormally close to the belt-like body, a problem occurs such that a jet pattern is generated on the coating film by the fluid ejected from the nozzle.

【0004】従来においては、これらの問題点を回避す
るために、カテナリー形状の帯状体に沿って上下それぞ
れに設けられている両ノズルの間隔を大きくとっていた
が、この方法は省エネルギーの観点からすると不利であ
ることから、逆に上下両ノズルの間隔を可能な限り狭く
することが重要であり、そのためにはカテナリーの変動
量を最小限に止どめる制御が必要となる。
In the past, in order to avoid these problems, the distance between both nozzles provided above and below along the catenary-shaped strip was set large, but this method is advantageous in terms of energy saving. Since it is disadvantageous, on the contrary, it is important to make the space between the upper and lower nozzles as narrow as possible, and for that purpose, control that minimizes the variation of the catenary is required.

【0005】従来行われているカテナリーの制御方法と
しては、(1)カテナリー部の処理材(懸垂状態にある
帯状体)の長さを一定に保つように長さを制御する方
法、(2)カテナリーの最低点(又は任意の1点)を通
るように張力を制御する方法、(3)補正関数を用いる
張力の制御方法(例えば特開平4−231422)等が
ある。そして、上記(2)、(3)の張力を制御する方
法には、更に、張力計による張力検出値を用いる方法
と、制御した張力値でのストリップの位置を計算し、位
置検出器による検出値を計算値に合わせるべく位置制御
を行う方法とがある。
As a conventional method of controlling the catenary, (1) a method of controlling the length of the treatment material (belt in a suspended state) in the catenary portion so as to keep the length constant, (2) There are a method of controlling the tension so as to pass through the lowest point (or an arbitrary one point) of the catenary, and (3) a method of controlling the tension using a correction function (for example, JP-A-4-231422). Further, in the methods of controlling the tension in the above (2) and (3), a method of using a tension detection value by a tensiometer and a method of calculating the position of the strip at the controlled tension value and detecting by a position detector There is a method of performing position control so that the value matches the calculated value.

【0006】[0006]

【発明が解決しようとする課題】しかしながら、最近の
連続塗装ラインにおいては、(A)生産性向上のために
ライン速度が速くなり、そのためにカテナリースパンが
超大化していることや、(B)寸法等が異なる種々の鋼
帯(帯状体)を処理可能とするチャンスフリー化のた
め、鋼帯の接続条件の板厚範囲が広くなっていること等
により、前述した省エネルギーの観点から鋼帯の上下に
それぞれ設けられた両ノズルの間隔、即ちノズルと鋼帯
との間隔を縮めるという要請に応えることは、前記
(1)〜(3)の従来の技術では限界があり、困難であ
ることが明らかとなった。
However, in the recent continuous coating line, (A) the line speed is increased to improve the productivity, and therefore the catenary span is extremely large, and (B) the size. In order to make it possible to process various steel strips (strips) with different characteristics, the strip thickness range of the connection conditions of steel strips is widened, etc. It is clear that it is difficult and difficult to meet the demand for reducing the distance between the nozzles provided in each of the above, that is, the distance between the nozzle and the steel strip, with the conventional techniques of (1) to (3). Became.

【0007】本発明は、前記従来の問題点を解決するべ
くなされたもので、上下それぞれに配設されたノズル
と、その間を通過させるカテナリー形状の帯状体との距
離を、従来に比して大幅に縮めることができるカテナリ
ー型乾燥炉における帯状体の張力制御方法を提供するこ
とを課題とする。
The present invention has been made in order to solve the above-mentioned conventional problems, and the distance between the nozzles arranged above and below and the catenary-shaped strips that pass between them is smaller than that of the conventional one. An object of the present invention is to provide a method for controlling the tension of a strip in a catenary-type drying furnace that can be significantly shortened.

【0008】[0008]

【課題を解決するための手段】本発明は、入側で塗装し
た帯状体を、入側と出側に設置した各支点ロールで懸垂
状態に支持しながら、加熱帯に配設されている加熱気体
吹付用の上側ノズルと下側ノズルの間を通過させた後、
冷却帯に配設されている冷却気体吹付用の上側ノズルと
下側ノズルの間を通過させて、塗膜の乾燥処理を行うカ
テナリー型乾燥炉における帯状体の張力制御方法におい
て、前記冷却帯では前記下側ノズルが昇降可能に設置
され、該下側ノズルの昇降動作に同期して昇降可能に設
置されたサポートロールにより、懸垂状態の帯状体の途
中を支持すると共に、前記カテナリー型乾燥炉に、寸法
の異なる先行材と後行材の2種類の帯状体の継接部を炉
内に通過させる際、帯状体の張力H(Xs)を、上記継
接部の炉内進入度(Xs/L)のみを変数とする補正関数
f(Xs/L)を含む次の張力制御式、 H(Xs)=H2−(H2−H1)f(Xs/L) …(1) ここで、H2:先行材の張力 H1:後行材の張力 Xs:継接部の炉内進入位置 L :カテナリーの全長補正関数f(Xs/L): 先行材が薄い場合は、 f(Xs/L)=0 (0≦Xs/L≦α) …(2A) f(Xs/L)={1/(1−α)}(Xs/L)−α/(1−α) (α≦Xs/L≦1) …(2B) 但し、α:定数(0.5≦α≦0.9) 先行材が厚い場合は、 f(Xs/L)=(1/β)(Xs/L)(0≦Xs/L≦β) …(3A) f(Xs/L)=1 (β≦Xs/L≦1) …(3B) 但し、β:定数(0.1≦β≦0.6) で設定することにより、前記課題を解決したものであ
る。
DISCLOSURE OF THE INVENTION According to the present invention, a belt-shaped body coated on the inlet side is supported by each fulcrum roll installed on the inlet side and the outlet side in a suspended state, while heating is provided in a heating zone. After passing between the upper nozzle and the lower nozzle for blowing gas,
In a method for controlling the tension of a strip in a catenary-type drying furnace, which passes through an upper nozzle and a lower nozzle for blowing a cooling gas arranged in a cooling zone to perform a drying process of a coating film, in the cooling zone , , The lower nozzle can be moved up and down
Is installed so that it can be moved up and down in synchronization with the lifting operation of the lower nozzle.
The placed support rolls support the suspended strip in the middle, and the catenary type drying furnace passes through the joint of two types of strips of the preceding material and the trailing material of different sizes into the furnace. At this time, the tension H (Xs) of the belt-shaped body is expressed by the following tension control formula H (Xs / L) including a correction function f (Xs / L) in which only the degree of penetration into the furnace (Xs / L) of the joint is a variable. Xs) = H2− (H2−H1) f (Xs / L) (1) where, H2: tension of leading material H1: tension of trailing material Xs: entrance position of joint at furnace L: catenary Full length correction function f (Xs / L): when the preceding material is thin, f (Xs / L) = 0 (0 ≦ Xs / L ≦ α) (2A) f (Xs / L) = {1 / (1 -Α)} (Xs / L) -α / (1-α) (α ≦ Xs / L ≦ 1) (2B) where α: constant (0.5 ≦ α ≦ 0.9) thick preceding material In the case, f (Xs / L) = (1 / β) (X s / L) (0 ≦ Xs / L ≦ β) (3A) f (Xs / L) = 1 (β ≦ Xs / L ≦ 1) (3B) where β is a constant (0.1 ≦ β ≦ The problem is solved by setting 0.6) .

【0009】即ち、前記従来のカテナリー制御方法で
は、最近のライン高速化、カテナリースパンの超大化、
帯状体の接続条件の広範囲化に対応できないことから、
本発明においては、カテナリー型乾燥炉内の冷却帯で帯
状体をサポートロールにより支持すると共に、前記補正
関数f(Xs/L)を用いる(1)式による張力制御を行
うことにより、即ちこの両者の組合せにより、カテナリ
ー形状の変動を大幅に低減することが可能となった。
That is, in the above-mentioned conventional catenary control method, recent line speed increase, catenary span increase,
Since it is not possible to support a wide range of connection conditions for strips,
In the present invention, the belt-like body is supported by the support rolls in the cooling zone in the catenary type drying furnace, and the tension control is performed by the equation (1) using the correction function f (Xs / L), that is, both of them. By combining the above, it became possible to significantly reduce the variation of the catenary shape.

【0010】又、本発明は、前記張力制御方法におい
て、前記張力制御式で決定された張力H(Xs/L)を用
いて、帯状体のカテナリー形状を算出して得られる、カ
テナリー位置検出装置の設置位置でのカテナリー位置
と、該カテナリー位置検出装置による実測カテナリー位
置とを一致させるべく、カテナリー型乾燥炉の入側又は
出側のブライドルロールを速度制御するようにしたもの
である。
Further, the present invention uses the tension H (Xs / L) determined by the tension control formula in the tension control method.
Then, by calculating the catenary shape of the strip,
Catenary position at the installation position of the tenary position detector
And the measured catenary position by the catenary position detection device
In order to match
The speed of the bridle roll on the delivery side is controlled .

【0011】まず、本発明で行う張力制御の基本式であ
る前記(1)式について詳述する。
First, the equation (1), which is the basic equation for tension control performed in the present invention, will be described in detail.

【0012】図1は、カテナリー炉10内に、入側支点
ロール(固定位置)12と、出側支点ロール(固定位
置)14との間で、カテナリー形状に懸垂され、連続的
に矢印方向に移送されている鋼板(帯状体)Sを模式的
に示した概略説明図である。
FIG. 1 shows that a catenary furnace 10 is suspended in a catenary shape between an inlet-side fulcrum roll (fixed position) 12 and an outlet-side fulcrum roll (fixed position) 14 and continuously in the direction of the arrow. It is a schematic explanatory drawing which showed typically the steel plate (strip | belt-shaped body) S currently conveyed.

【0013】上記鋼板Sの懸垂状態の形状、即ちカテナ
リー形状の曲線(以下、カテナリー曲線ともいう)を表
わすカテナリー方程式は、入側支点ロール12を原点と
するXY座標系で、一般的に次の(4)式で与えられ
る。
A catenary equation representing the suspended shape of the steel plate S, that is, a catenary curve (hereinafter, also referred to as a catenary curve) is an XY coordinate system with the entry side fulcrum roll 12 as the origin, and is generally as follows. It is given by the equation (4).

【0014】 Y=acosh{(X−C1 )/a}+C2 …(4)[0014] Y = acosh {(X-C1) / a} + C2 (4)

【0015】しかし、上記(4)式は、高次関数である
ため制御モデルとして組み込むには複雑であるので、次
の関係を使って二次関数で近似する。二次関数で近似し
た場合の誤差は、最長スパン75mで2mm以下であ
る。
However, since the above equation (4) is a high-order function and therefore complicated to incorporate as a control model, it is approximated by a quadratic function using the following relation. The error when approximated by a quadratic function is 2 mm or less at the longest span of 75 m.

【0016】 coshX=(ex −e-x)/2 =(1/2)(1+X+X2 /2!+X3 /3!・・・ +1−X+X2 /2!−X3 /3!・・・)≒1+X2 /2 …(5)[0016] coshX = (e x -e -x) / 2 = (1/2) (1 + X + X 2/2! + X 3/3! ··· + 1-X + X 2/2! -X 3/3! ·· ·) ≒ 1 + X 2/ 2 ... (5)

【0017】今、継接部の無い鋼板Sの場合のカテナリ
ー方程式をY0 とすると、次の(6)式のように変形で
きる。
Now, assuming that the catenary equation in the case of the steel plate S having no joint is Y0, it can be transformed into the following equation (6).

【0018】 Y0 =acoxh{(X−C1 )/a}+C2 ′ ≒a[1+(1/2){(X−C1 )/a}2 ]+C2 ′ =(1/2a)(X−C1 )2 +C2 …(6) ここで、a=H/W H:張力〔Kg〕 W:鋼板の単位長さ当りの重量〔Kg/mm〕 L:カテナリー全長(スパン)〔mm〕Y0 = acoxh {(X-C1) / a} + C2'≈a [1+ (1/2) {(X-C1) / a} 2 ] + C2 '= (1 / 2a) (X-C1) 2 + C2 (6) where a = H / WH H: Tension [Kg] W: Weight per unit length of steel sheet [Kg / mm] L: Total length of catenary (span) [mm]

【0019】上記(6)式における境界条件は、次の通
りである。
The boundary conditions in the above equation (6) are as follows.

【0020】X=0のとき、Y0 =0であるから、 C1 2 /2a+C2 =0 …(7) X=Lのとき、Y0 =h0 であるから、 (L−C1 )2 /2a+C2 =h0 …(8) ここで、h0 :支点高低差〔mm〕When X = 0, Y0 = 0, so C1 2 / 2a + C2 = 0 (7) When X = L, Y0 = h0, so (L-C1) 2 / 2a + C2 = h0. (8) where h0: fulcrum height difference [mm]

【0021】上記(8)式−(7)式より、C1 、C2
は次のように求まる。
From the above equations (8)-(7), C1 and C2
Is calculated as follows.

【0022】 (L−C1 )2 /2a−C1 2 /2a=h0 L2 /2a−LC1 /a=h0 ∴C1 =L/2−ah0 /L,C2 =−C1 2 /2a …(9)[0022] (LC1) 2 / 2a-C1 2 / 2a = h0 L 2 / 2a-LC1 / a = h0 ∴C1 = L / 2-ah0 / L, C2 = -C1 2 / 2a ... (9)

【0023】以上より、帯状体に継接点がない定常時に
おけるカテナリー基本式は、前記(6)式と上記(9)
式とで表わすことができる。
From the above, the catenary basic formula in the steady state where there is no joint in the strip is the above formula (6) and the above formula (9).
It can be expressed as

【0024】一方、前記図1に相当する図2(カテナリ
ー炉10は省略)に示すように、細線で示す先行の第1
鋼板(先行材)と、太線で示す後行の第2鋼板(後行
材)とが溶接されている場合は、前述と同様の計算によ
り、先行鋼板のカテナリー曲線Y2 は(11)式で、後
行鋼板のカテナリー曲線Y1 は(10)式で、それぞれ
与えられる。なお、図中Xs は、上記先行鋼板と後行鋼
板との溶接部(継接部)の進入位置を示している。
On the other hand, as shown in FIG. 2 (catenary furnace 10 is omitted) corresponding to FIG.
When the steel sheet (leading material) and the second trailing second steel sheet (trailing material) indicated by the thick line are welded, the catenary curve Y2 of the leading steel sheet is expressed by the equation (11) by the same calculation as described above. The catenary curve Y1 of the trailing steel plate is given by the equation (10). In addition, Xs in the drawing indicates the entry position of the welded portion (joint portion) between the preceding steel plate and the following steel plate.

【0025】 Y1 =a1 cosh{(X−C1 )/a1 }+C2 ≒(1/2a1 )(X−C1 )2 +C2 …(10) Y2 =a2 cosh{(X−C3 )/a2 }+C4 ≒(1/2a2 )(X−C3 )+C4 …(11) ここで、a1 :H/W1 〔mm〕 a2 :H/W2 〔mm〕 W1 :後行鋼板の単位長さ当りの重量〔Kg/mm〕 W2 :先行鋼板の単位長さ当りの重量〔Kg/mm〕Y1 = a1 cosh {(X-C1) / a1} + C2≈ (1 / 2a1) (X-C1) 2 + C2 (10) Y2 = a2 cosh {(X-C3) / a2} + C4≈ ( 1 / 2a2) (X-C3) + C4 (11) where a1: H / W1 [mm] a2: H / W2 [mm] W1: weight per unit length of the trailing steel plate [Kg / mm] W2: Weight per unit length of preceding steel plate [Kg / mm]

【0026】境界条件は次の通りである。The boundary conditions are as follows.

【0027】X=0とき、Y1 =0であるから、 C1 2 /2a1 +C2 =0 …(12) X=Lのとき、Y2 =h0 であるから、 (L−C3 )2 /2a2 +C4 =h0 …(13) X=Xs のとき、Y1 =Y2 であるから、 (Xs −C1 )2 /2a1 +C2 =(Xs −C3 )2 /2a2 +C4 …(14) X=Xs のとは、dY1 /dY=dY2 /dYであるか
ら、 (Xs −C1 )/a1 =(Xs −C3 )/a2 …(15)
When X = 0, Y1 = 0, so C1 2 / 2a1 + C2 = 0 (12) When X = L, Y2 = h0, so (L-C3) 2 / 2a2 + C4 = h0 (13) When X = Xs, Y1 = Y2, so (Xs-C1) 2 / 2a1 + C2 = (Xs-C3) 2 / 2a2 + C4 (14) X = Xs means dY1 / dY. = DY2 / dY, (Xs-C1) / a1 = (Xs-C3) / a2 (15)

【0028】上記(12)式〜(15)式を解くことに
より、溶接部が炉内を通過するときのカテナリー方程式
は次のようになる。
By solving the above equations (12) to (15), the catenary equation when the weld passes through the furnace is as follows.

【0029】0≦X≦Xs のときの後行鋼板 Y1 =(1/2a1 )(X−C1 )2 +C2 …(10) Xs ≦X≦Lのときの先行鋼板 Y2 =(1/2a2 )(X−C3 )2 +C4 …(11) ここで、C1 =Xs +a1 (L−Xs )2 /2a2 L−
Xs 2 /2L−a1 h0 /L C2 =−C1 2 /2a1 C3 =Xs −(a2 /a1 )(Xs −C1 ) C4 =Xs 2 /2a1 −Xs C1 /a1 −a2/2a1
2 (Xs −C1 )2
Trailing steel plate when 0≤X≤Xs Y1 = (1 / 2a1) (X-C1) 2 + C2 (10) Leading steel plate when Xs≤X≤L Y2 = (1 / 2a2) ( X-C3) 2 + C4 (11) where C1 = Xs + a1 (L-Xs) 2 / 2a2L-
Xs 2 / 2L-a1 h0 / L C2 = -C1 2 / 2a1 C3 = Xs- (a2 / a1) (Xs-C1) C4 = Xs 2 / 2a1-Xs C1 / a1-a2 / 2a1
2 (Xs-C1) 2

【0030】上記(10)式、(11)式で与えられる
カテナリー方程式について、カテナリーの変動量(定常
時との差)は、次式により評価する。
With respect to the catenary equations given by the above equations (10) and (11), the variation amount of the catenary (difference from the steady state) is evaluated by the following equation.

【0031】 δ(X)=Y1 −Y0 (0≦X≦Xs ) …(16A) δ(X)=Y2 −Y0 (Xs ≦X≦L) …(16B)[0031]     δ (X) = Y1 -Y0 (0≤X≤Xs) (16A)     δ (X) = Y2 -Y0 (Xs≤X≤L) (16B)

【0032】本発明者らは、上記(16A)、(16
B)式で与えられるカテナリー変動量を最小とするべ
く、張力の変更パターンを種々検討した結果、先行の第
1鋼板(先行材)のみのときの張力H2 から、後行の第
2鋼板(後行材)のみのときの張力H1 に移行する間の
張力H(Xs )を、継接部(溶接部)の炉内進入度(X
s/L)のみを変数とする補正関数f (Xs/L)を適用す
ることにより、継接部の前後の鋼板の寸法差によらず、
前記(1)式で一義的に与えることができることを知見
した。ここに記号の詳細を説明するために前記(1)式
を再掲する。
The present inventors have made the above (16A), (16)
As a result of various examinations of tension change patterns in order to minimize the catenary fluctuation amount given by the equation (B), from the tension H2 when only the preceding first steel sheet (preceding material) was used, the following second steel sheet (post The tension H (Xs) during the transition to the tension H1 when only the line material is used is the penetration degree (X
By applying a correction function f (Xs / L) having only s / L) as a variable,
It was found that it can be uniquely given by the formula (1). The above formula (1) is repeated here to explain the details of the symbols.

【0033】 H(Xs )=H2 −(H2 −H1 )f(Xs/L) …(1) H(Xs ):継接部がXs にあるときの張力 H2 :先行材単独のときの張力=UT×t1×B1 H1 :後行材単独のときの張力=UT×t2×B2 UT :基準ユニットテンション t2,t1 :それぞれ先行材、後行材の板厚 B2 ,B1 :それぞれ先行材、後行材の板幅 Xs :継接点の位置[0033]     H (Xs) = H2- (H2-H1) f (Xs / L) (1) H (Xs): Tension when the joint is at Xs H2: Tension when the preceding material alone = UT x t1 x B1 H1: Tension when the trailing material is alone = UT x t2 x B2 UT: Standard unit tension t2, t1: Plate thickness of leading material and trailing material, respectively B2, B1: Plate width of leading material and trailing material, respectively Xs: Position of relay contact

【0034】更に、本発明者が詳細に検討した結果、冷
却帯でサポートロールで支持する場合には、補正関数f
(Xs/L)を前記(2A)、(2B)、(3A)、(3
B)の各式で設定することにより、前記(16A)、
(16B)式の変動量δ(X)を極めて小さくできるこ
とを知見した。
Further, as a result of detailed study by the present inventor, when the support roll is supported in the cooling zone, the correction function f
(Xs / L) is the above (2A), (2B), (3A), (3
By setting with each formula of B), the above (16A),
It has been found that the variation amount δ (X) in the equation (16B) can be made extremely small.

【0035】即ち、前記(1)式に、前記(2A)、
(2B)、(3A)、(3B)式の補正関数を適用して
張力制御を行うことにより、冷却帯でのみカテナリーを
サポートロールで支持しながら通板を行ったところ、乾
燥炉の加熱帯では、上下両側に設置した両ノズルに近付
き過ぎることなく、しかも、冷却帯では帯状体がサポー
トロールから浮き上がることもなく、安定した通板が可
能であった。この安定通板は、加熱帯及び冷却帯の長さ
がそれぞれL/2程度で、その冷却帯に適当な数のサポ
ートロールを設けた設備で一般に可能であった。
That is, in the equation (1), the above (2A),
By performing the tension control by applying the correction functions of the formulas (2B), (3A), and (3B), the catenary was supported by the support rolls only in the cooling zone, and the stripping was performed. , It was possible to perform stable striping without coming too close to both nozzles installed on the upper and lower sides, and without the belt-like body rising from the support roll in the cooling zone. This stabilizing strip has a length of the heating zone and the cooling zone of about L / 2, respectively, and is generally possible with equipment provided with an appropriate number of support rolls in the cooling zone.

【0036】その際、前記関数f(Xs/L)に含まれる
定数α、βの範囲は、0.5≦α≦0.9、0.1≦β
≦0.6とすることが有効である。その理由を図3と図
4を用いて以下に説明する。
At this time, the ranges of the constants α and β contained in the function f (Xs / L) are 0.5 ≦ α ≦ 0.9 and 0.1 ≦ β.
It is effective that ≦ 0.6. The reason will be described below with reference to FIGS. 3 and 4.

【0037】図3は先行材が薄い場合について、図4は
先行材が厚い場合についてそれぞれ示し、いずれも
(A)は加熱帯におけるノズルからストリップ(帯状
体)までの距離を、(B)は冷却帯におけるサポートロ
ールからのストリップの浮き上がりの程度を示してい
る。なお、ノズルとの距離の基準である180mmは、
風紋発生限界距離を意味する。
FIG. 3 shows the case where the preceding material is thin, and FIG. 4 shows the case where the preceding material is thick. In both cases, (A) shows the distance from the nozzle to the strip (strip) in the heating zone, and (B) shows It shows the degree of lift of the strip from the support roll in the cooling zone. Note that 180 mm, which is the standard for the distance from the nozzle, is
It means the windmilling limit distance.

【0038】上記図3(A)より、定数αが0.5より
小さいとストリップが緩み過ぎ、ノズル間距離が180
mmより小さくなり、下側ノズルとの干渉の問題が出て
くると同時に、同図(B)より、ストリップのサポート
ロールからの浮き上がりの問題も出てくる。逆に、αが
0.9より大きいと上側ノズルとの干渉の問題が出てく
る。
From FIG. 3A, when the constant α is smaller than 0.5, the strip becomes too loose and the distance between nozzles is 180.
Since it becomes smaller than mm, there is a problem of interference with the lower nozzle, and at the same time, from the figure (B), there is also a problem of lifting of the strip from the support roll. On the other hand, when α is larger than 0.9, there arises a problem of interference with the upper nozzle.

【0039】又、上記図4より、定数βが0.1より小
さいと上側ノズルとの干渉の問題が出てくる。又、βが
0.6より大きいと下側ノズルとの干渉とストリップの
浮き上がりの両方の問題が出てくる。
Further, from FIG. 4, when the constant β is smaller than 0.1, there arises a problem of interference with the upper nozzle. If β is larger than 0.6, both problems of interference with the lower nozzle and floating of the strip will occur.

【0040】上記定数α及びβについて、それぞれ有効
範囲の最低値と最高値について、それぞれ関数f(Xs/
L)を図示すると、それぞれ図5及び図6のようにな
る。即ち、図5は、先行材が薄い場合に適用する前記
(2B)の関数を示し、丸はα=0.5のとき、三角形
はα=0.9のときの関数に当る。
For the above constants α and β, the function f (Xs /
L) is shown in FIGS. 5 and 6, respectively. That is, FIG. 5 shows the function of (2B) applied when the preceding material is thin, and the circle corresponds to α = 0.5 and the triangle corresponds to α = 0.9.

【0041】又、図6は、先行材が厚い場合に適用する
前記(3A)の関数を示し、丸はβ=0.1のとき、三
角形はβ=0.6のときの関数に当る。
FIG. 6 shows the function of (3A) applied when the preceding material is thick. The circle corresponds to β = 0.1 and the triangle corresponds to β = 0.6.

【0042】[0042]

【発明の実施の形態】以下、図面を参照して、本発明の
実施の形態について詳細に説明する。
BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of the present invention will be described in detail below with reference to the drawings.

【0043】図7は、本発明に係る一実施形態の張力制
御方法を適用するカテナリー型乾燥炉を備えた連続塗装
ラインの概略構成を示す説明図である。
FIG. 7 is an explanatory view showing a schematic structure of a continuous coating line equipped with a catenary type drying furnace to which the tension control method of one embodiment according to the present invention is applied.

【0044】上記カテナリー型乾燥炉は、加熱帯20と
冷却帯22とを備えており、その入側には図中Sで示す
鋼帯(帯状体)Sを矢印方向に搬送しながら、その表面
(図中上面)を塗装するロールコータ24と、該鋼帯S
を支持するリフトロール(入側支持ロール)26が、
又、その出側には出側支持ロール28が、それぞれ配設
されている。
The above-mentioned catenary type drying furnace is equipped with a heating zone 20 and a cooling zone 22, and a steel strip (belt) S indicated by S in the drawing is conveyed to the entrance side of the oven while its surface is being conveyed. Roll coater 24 for coating (upper surface in the figure) and the steel strip S
The lift roll (entrance side support roll) 26 that supports the
Further, output side support rolls 28 are arranged on the output sides thereof.

【0045】又、上記加熱帯20には、鋼帯Sの上下両
側にそれぞれ加熱用の上側ノズルチャンバ30と下側ノ
ズルチャンバ32がそれぞれ配設されており、これらチ
ャンバ30、32に付設されているノズルから加熱気体
が鋼帯Sの表裏両面にそれぞれ吹き付けられるようにな
っている。
Further, in the heating zone 20, an upper nozzle chamber 30 and a lower nozzle chamber 32 for heating are respectively arranged on the upper and lower sides of the steel strip S, and are attached to these chambers 30, 32. The heated gas is blown onto both the front and back surfaces of the steel strip S from the nozzles.

【0046】又、冷却帯22でも同様に、冷却用の上側
ノズルチャンバ34と、下側ノズルチャンバ36がそれ
ぞれ配設され、これらチャンバ34、36に付設されて
いるノズルから冷却気体が同様に鋼帯Sに吹き付けられ
るようになっている。この冷却帯22では、更に、下側
ノズルチャンバ36が、昇降装置38により昇降可能に
なっており、しかも該下側ノズルチャンバ36の昇降動
作に同期して昇降するサポートロール40が設置されて
いる。即ち、上記カテナリー型乾燥炉では、昇降装置3
8とサポートロール40は、冷却帯22のみに設置する
だけで十分であり、それ故、高温で、設備費も高くなる
加熱帯20には設置していない。
Similarly, in the cooling zone 22, an upper nozzle chamber 34 for cooling and a lower nozzle chamber 36 for cooling are respectively arranged, and the cooling gas from the nozzles attached to these chambers 34, 36 is also steel. It is designed to be sprayed on the belt S. In the cooling zone 22, the lower nozzle chamber 36 can be further moved up and down by an elevating device 38, and further, a support roll 40 that moves up and down in synchronization with the elevating operation of the lower nozzle chamber 36 is installed. . That is, in the catenary type drying furnace, the lifting device 3
It is sufficient to install 8 and the support roll 40 only in the cooling zone 22, therefore, they are not installed in the heating zone 20 which has a high temperature and requires a high equipment cost.

【0047】なお、図中符号42は、鋼帯Sの裏面塗装
用のロールコータであるが、ここでは使用しないため、
鋼帯Sから離してある。
Reference numeral 42 in the drawing is a roll coater for coating the back surface of the steel strip S, but since it is not used here,
It is separated from the steel strip S.

【0048】本実施形態においては、カテナリー型乾燥
炉の入側で前記ロールコータ24により表面を塗装した
鋼帯Sを、入側と出側に設置した前記各支点ロール2
6、28で懸垂状態に支持しながら、加熱帯20に配設
されている加熱用の前記上側ノズルチャンバ30と下側
ノズルチャンバ32の間を通過させた後、冷却帯22に
配設されている冷却用の上側ノズルチャンバ34と下側
ノズルチャンバ36の間を通過させて、塗膜の乾燥冷却
処理を行う。
In this embodiment, the steel strip S whose surface is coated by the roll coater 24 on the inlet side of the catenary type drying furnace is provided with the fulcrum rolls 2 installed on the inlet side and the outlet side.
After being passed between the upper nozzle chamber 30 for heating and the lower nozzle chamber 32 arranged in the heating zone 20, while being supported by 6 and 28 in a suspended state, they are arranged in the cooling zone 22. The film is passed between the upper nozzle chamber 34 and the lower nozzle chamber 36 for cooling to dry and cool the coating film.

【0049】その際、前記冷却帯22では、前記サポー
トロール40で懸垂状態の鋼帯Sの途中を支持すると共
に、前記カテナリー型乾燥炉に、寸法の異なる先行材と
後行材の2種類の帯状体の継接部Xs を炉内に通過させ
る際、鋼帯Sの張力H(Xs)を前記(1)式により設
定した。
At this time, the cooling zone 22 supports the steel strip S in the suspended state by the support rolls 40, and the catenary type drying furnace is provided with two types of materials, a leading material and a trailing material having different sizes. When passing the joint Xs of the strip into the furnace, the tension H (Xs) of the steel strip S was set by the equation (1).

【0050】具体的には、次の仕様の連続塗装ラインに
対して本発明を適用した。
Specifically, the present invention was applied to a continuous coating line having the following specifications.

【0051】カテナリー支持スパンL=60m 板継条件(断面積比)=1:1.6 基準ユニットテンションUT=2.65Kg/mm2 風紋発生限界距離=180mmCatenary support span L = 60 m Plate joint condition (cross-sectional area ratio) = 1: 1.6 Standard unit tension UT = 2.65 Kg / mm 2 Wind print limit distance = 180 mm

【0052】又、前記(1)式には、α=0.8、β=
0.5とした以下の関数f(Xs/L)を実際に適用し
た。
Further, in the equation (1), α = 0.8 and β =
The following function f (Xs / L) of 0.5 was actually applied.

【0053】先行材が薄い場合、 f(Xs/L)=0 (0≦Xs/L≦0.8) …(2A′) f(Xs/L)=5(Xs/L)−4 (0.8≦Xs/L≦1) …(2B′) 先行材が厚い場合、 f(Xs/L)=2(Xs/L)(0≦Xs/L≦0.5) …(3A′) f(Xs/L)=1 (0.5≦Xs/L≦1) …(3B′)When the preceding material is thin,     f (Xs / L) = 0 (0 ≦ Xs / L ≦ 0.8) (2A ′)     f (Xs / L) = 5 (Xs / L) -4 (0.8≤Xs / L≤1) (2B ') If the preceding material is thick,     f (Xs / L) = 2 (Xs / L) (0 ≦ Xs / L ≦ 0.5) (3A ′)     f (Xs / L) = 1 (0.5 ≦ Xs / L ≦ 1) (3B ′)

【0054】図8は、上記(2B′)式の関数を、図9
は、上記(3A′)式の関数をそれぞれ図示したもので
ある。
FIG. 8 shows the function of the equation (2B ') as shown in FIG.
Are the functions of the equation (3A ′).

【0055】そして、冷却帯22でのみ前記下側ノズル
チャンバ36を上昇させることにより、前記サポートロ
ール40により鋼帯Sを保持しながら、前記(1)式に
よる張力制御を行った。図10は、カテナリー支持スパ
ンL=60mのカテナリー型乾燥炉における鋼帯(カテ
ナリー)Sと入側、出側支持ロール26、28やサポー
トロール40等との位置関係を概念的に示したものであ
る。このようなカテナリー形状で鋼帯Sを搬送する際
に、本発明の張力制御方法を適用した結果を図11〜図
20に示す。
Then, by raising the lower nozzle chamber 36 only in the cooling zone 22, while holding the steel strip S by the support roll 40, the tension control according to the equation (1) was performed. FIG. 10 conceptually shows the positional relationship between the steel strip (catenary) S in the catenary-type drying furnace having the catenary supporting span L = 60 m and the inlet and outlet supporting rolls 26 and 28 and the support roll 40. is there. 11 to 20 show the results of applying the tension control method of the present invention when the steel strip S is conveyed in such a catenary shape.

【0056】図11〜図15は、先行材が薄い場合の、
図16〜図20は先行材が厚い場合の炉内の板継ぎ点X
s の進入距離(リフトロール26からの距離)と、加熱
帯20、冷却帯22それぞれにおける鋼帯Sの高さ(レ
ベル)やノズルチャンバとの間の距離をそれぞれ示した
ものである。
11 to 15 show the case where the preceding material is thin,
16 to 20 show the plate joint point X in the furnace when the preceding material is thick.
The s entry distance (distance from the lift roll 26), the height (level) of the steel strip S in each of the heating zone 20 and the cooling zone 22 and the distance to the nozzle chamber are shown.

【0057】上記図11〜図15より、先行材が薄い場
合には、継接点Xs が進入するに従って、鋼帯Sと加熱
帯20の下側ノズルチャンバ32の距離が近付いている
のが分かる。継接点が30mのときが217.82mm
で、最もノズルと鋼帯Sの距離が接近しているが、それ
でも限界値の180mmはクリアしているため、問題は
ない。冷却帯22では、塗膜は既に固っているため、接
近しすぎても、ノズルに接触しない限りは問題はない。
From FIGS. 11 to 15, it can be seen that when the preceding material is thin, the distance between the steel strip S and the lower nozzle chamber 32 of the heating zone 20 becomes closer as the joint Xs enters. 217.82 mm when the connecting contact is 30 m
Then, although the distance between the nozzle and the steel strip S is the shortest, there is no problem because the limit value of 180 mm is still cleared. In the cooling zone 22, since the coating film is already hard, even if they come too close to each other, there is no problem unless they come into contact with the nozzle.

【0058】上記図16〜図20より、先行材が厚い場
合でも、加熱帯20の上側ノズルチャンバ30との距離
は常に180mm以上あるため問題はなく、冷却帯でも
同様に問題はなかった。
From FIGS. 16 to 20, there is no problem even if the preceding material is thick, since the distance between the heating zone 20 and the upper nozzle chamber 30 is always 180 mm or more, and there is no problem in the cooling zone as well.

【0059】以上詳述した本実施形態によれば、鋼帯S
がサポートロール40から浮き上がり、それが原因で鋼
帯Sに擦り傷等を発生させることなく、安定した通板が
可能となり、冷却帯22におけるノズルチャンバに冷却
気体(空気)を供給するためのファンの動力を大きく削
減することが可能となった。
According to this embodiment described in detail above, the steel strip S
Is lifted from the support roll 40, the steel strip S is not scratched or the like due to it, stable plate passing is possible, and a fan for supplying cooling gas (air) to the nozzle chamber in the cooling zone 22 is provided. It has become possible to greatly reduce power consumption.

【0060】本実施形態においては、以上の張力制御に
加えて、前記張力制御式で決定された張力H(Xs/L)
を用いて、帯状体のカテナリー形状を算出して得られ
る、カテナリー位置検出装置の設置位置でのカテナリー
位置と、該カテナリー位置検出装置による実測カテナリ
ー位置とを一致させるべく、カテナリー型乾燥炉の入側
又は出側のブライドルロール(図示せず)を速度制御す
るようにしてもよい。
In the present embodiment, in addition to the above tension control, the tension H (Xs / L) determined by the above tension control equation is used.
In order to match the catenary position at the installation position of the catenary position detection device, which is obtained by calculating the catenary shape of the band-shaped body, with the actually measured catenary position by the catenary position detection device, The speed of a bridle roll (not shown) on the side or on the exit side may be controlled.

【0061】例えば、前記図7に示すように、加熱帯2
0の入側に設置したカテナリー位置検出装置(静電容量
式、レーザー式等の距離計)44で実際のカテナリー位
置を検出し、それを該装置位置での計算によるカテナリ
ー位置と一致させるようにする。このカテナリー位置検
出装置44の設置位置は、制御精度の点からカテナリー
が大きく変化する長スパンの中間位置が望ましい。
For example, as shown in FIG. 7, the heating zone 2
An actual catenary position is detected by a catenary position detection device (distance meter such as capacitance type or laser type) 44 installed on the entry side of 0 so that it matches the catenary position calculated by the position of the device. To do. The installation position of the catenary position detection device 44 is preferably an intermediate position of a long span where the catenary changes greatly in terms of control accuracy.

【0062】以上、本発明について具体的に説明した
が、本発明は、前記実施形態に示したものに限られるも
のでなく、その要旨を逸脱しない範囲で種々変更可能で
ある。
Although the present invention has been specifically described above, the present invention is not limited to the one shown in the above embodiment, and various modifications can be made without departing from the gist thereof.

【0063】例えば、連続塗装ラインの具体的な構成
は、前記実施形態に示したものに限定されない。
For example, the specific construction of the continuous coating line is not limited to that shown in the above embodiment.

【0064】[0064]

【発明の効果】以上説明したとおり、本発明によれば、
カテナリー型乾燥炉において上下それぞれに配設された
ノズルと、その間を通過させるカテナリー形状の帯状体
との距離を大幅に縮めることができる。従って、カテナ
リー型乾燥炉におけるエネルギー効率を大幅に向上する
ことが可能となる。
As described above, according to the present invention,
In the catenary-type drying furnace, the distance between the nozzles arranged at the upper and lower sides and the catenary-shaped strip passing therethrough can be greatly reduced. Therefore, the energy efficiency in the catenary type drying furnace can be significantly improved.

【図面の簡単な説明】[Brief description of drawings]

【図1】継接部がない場合のカテナリー形状を示す概略
説明図
FIG. 1 is a schematic explanatory view showing a catenary shape when there is no joint portion.

【図2】継接部がある場合のカテナリー形状を示す概略
説明図
FIG. 2 is a schematic explanatory view showing a catenary shape when there is a joint.

【図3】定数αの範囲の根拠を示す線図FIG. 3 is a diagram showing the basis of the range of the constant α.

【図4】定数βの範囲の根拠を示す線図FIG. 4 is a diagram showing the basis of the range of the constant β.

【図5】先行材が薄い場合の補正関数を示す線図FIG. 5 is a diagram showing a correction function when the preceding material is thin.

【図6】先行材が厚い場合の補正関数を示す線図FIG. 6 is a diagram showing a correction function when the preceding material is thick.

【図7】一実施形態に適用する連続塗装ラインの概略構
成を示す説明図
FIG. 7 is an explanatory diagram showing a schematic configuration of a continuous coating line applied to one embodiment.

【図8】実施形態で使用した先行材の薄い場合の補正関
数を示す線図
FIG. 8 is a diagram showing a correction function when the preceding material used in the embodiment is thin.

【図9】実施形態で使用した先行材の厚い場合の補正関
数を示す線図
FIG. 9 is a diagram showing a correction function when the preceding material is thick used in the embodiment.

【図10】カテナリーと炉設備との位置関係を示す説明
FIG. 10 is an explanatory diagram showing the positional relationship between the catenary and the furnace equipment.

【図11】先行材が薄い場合のXs =10のときのカテ
ナリー形状を示す線図
FIG. 11 is a diagram showing a catenary shape when Xs = 10 when the preceding material is thin.

【図12】先行材が薄い場合のXs =20のときのカテ
ナリー形状を示す線図
FIG. 12 is a diagram showing a catenary shape when Xs = 20 when the preceding material is thin.

【図13】先行材が薄い場合のXs =30のときのカテ
ナリー形状を示す線図
FIG. 13 is a diagram showing a catenary shape when Xs = 30 when the preceding material is thin.

【図14】先行材が薄い場合のXs =40のときのカテ
ナリー形状を示す線図
FIG. 14 is a diagram showing a catenary shape when Xs = 40 when the preceding material is thin.

【図15】先行材が薄い場合のXs =50のときのカテ
ナリー形状を示す線図
FIG. 15 is a diagram showing a catenary shape when Xs = 50 when the preceding material is thin.

【図16】先行材が厚い場合のXs =10のときのカテ
ナリー形状を示す線図
FIG. 16 is a diagram showing a catenary shape when Xs = 10 when the preceding material is thick.

【図17】先行材が厚い場合のXs =20のときのカテ
ナリー形状を示す線図
FIG. 17 is a diagram showing a catenary shape when Xs = 20 when the preceding material is thick.

【図18】先行材が厚い場合のXs =30のときのカテ
ナリー形状を示す線図
FIG. 18 is a diagram showing a catenary shape when Xs = 30 when the preceding material is thick.

【図19】先行材が厚い場合のXs =40のときのカテ
ナリー形状を示す線図
FIG. 19 is a diagram showing a catenary shape when Xs = 40 when the preceding material is thick.

【図20】先行材が厚い場合のXs =50のときのカテ
ナリー形状を示す線図
FIG. 20 is a diagram showing a catenary shape when Xs = 50 when the preceding material is thick.

【符号の説明】[Explanation of symbols]

20…加熱帯 22…冷却帯 24…ロールコータ 26…リフトロール(入側支持ロール) 28…出側支持ロール 30…加熱用上側ノズルチャンバ 32…加熱用下側ノズルチャンバ 34…冷却用上側ノズルチャンバ 36…冷却用下側ノズルチャンバ 38…昇降装置 40…サポートロール 44…カテナリー位置検出装置 20 ... Heating zone 22 ... Cooling zone 24 ... Roll coater 26 ... Lift roll (entrance side support roll) 28 ... Delivery side support roll 30 ... Upper nozzle chamber for heating 32 ... Lower nozzle chamber for heating 34 ... Upper nozzle chamber for cooling 36 ... Lower nozzle chamber for cooling 38 ... Lifting device 40 ... Support roll 44 ... Catenary position detection device

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平4−231422(JP,A) 特開 平2−305750(JP,A) 特開 昭57−57840(JP,A) 特開 昭63−53222(JP,A) 特開 昭57−23029(JP,A) 特開 平2−41712(JP,A) 特公 平7−114994(JP,B2) (58)調査した分野(Int.Cl.7,DB名) C21D 9/52 - 9/66 F27B 9/00 - 9/40 ─────────────────────────────────────────────────── ─── Continuation of front page (56) References JP-A-4-231422 (JP, A) JP-A-2-305750 (JP, A) JP-A-57-57840 (JP, A) JP-A-63- 53222 (JP, A) JP 57-23029 (JP, A) JP 2-41712 (JP, A) JP 7-114994 (JP, B2) (58) Fields investigated (Int.Cl. 7 , DB name) C21D 9/52-9/66 F27B 9/00-9/40

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】入側で塗装した帯状体を、入側と出側に設
置した各支点ロールで懸垂状態に支持しながら、加熱帯
に配設されている加熱気体吹付用の上側ノズルと下側ノ
ズルの間を通過させた後、冷却帯に配設されている冷却
気体吹付用の上側ノズルと下側ノズルの間を通過させ
て、塗膜の乾燥処理を行うカテナリー型乾燥炉における
帯状体の張力制御方法において、前記冷却帯では前記
下側ノズルが昇降可能に設置され、該下側ノズルの昇降
動作に同期して昇降可能に設置されたサポートロール
より、懸垂状態の帯状体の途中を支持すると共に、前記
カテナリー型乾燥炉に、寸法の異なる先行材と後行材の
2種類の帯状体の継接部を炉内に通過させる際、帯状体
の張力H(Xs)を、上記継接部の炉内進入度(Xs/
L)のみを変数とする補正関数f(Xs/L)を含む次の
張力制御式、 H(Xs)=H2−(H2−H1)f(Xs/L) …(1) ここで、H2:先行材の張力 H1:後行材の張力 Xs:継接部の炉内進入位置 L :カテナリーの全長補正関数f(Xs/L): 先行材が薄い場合は、 f(Xs/L)=0 (0≦Xs/L≦α) …(2A) f(Xs/L)={1/(1−α)}(Xs/L)−α/(1−α) (α≦Xs/L≦1) …(2B) 但し、α:定数(0.5≦α≦0.9) 先行材が厚い場合は、 f(Xs/L)=(1/β)(Xs/L)(0≦Xs/L≦β) …(3A) f(Xs/L)=1 (β≦Xs/L≦1) …(3B) 但し、β:定数(0.1≦β≦0.6) で設定することを特徴とするカテナリー型乾燥炉におけ
る帯状体の張力制御方法。
1. An upper nozzle for spraying heated gas and a lower part, which are provided in a heating zone, while supporting a strip-shaped body coated on the inlet side in a suspended state by respective fulcrum rolls installed on the inlet side and the outlet side. After passing between the side nozzles, it passes between the upper nozzle and the lower nozzle for spraying the cooling gas arranged in the cooling zone to perform the drying treatment of the coating film. in the tension control method, in the cooling zone, the
The lower nozzle is installed so that it can be raised and lowered, and the lower nozzle is raised and lowered.
Support rolls that can be moved up and down in synchronization with movement
When supporting the midway of the suspended strip, the catenary-type drying furnace is allowed to pass through the joint portion of two types of strips of the preceding material and the trailing material having different dimensions into the furnace. The tension H (Xs) of the joint is determined by the penetration degree (Xs /
The following tension control expression including a correction function f (Xs / L) having only L) as a variable, H (Xs) = H2- (H2-H1) f (Xs / L) (1) where H2: Tension of leading material H1: Tension of trailing material Xs: Ingress position of joint at furnace L: Total length correction function of catenary f (Xs / L): When the leading material is thin, f (Xs / L) = 0 (0 ≦ Xs / L ≦ α) (2A) f (Xs / L) = {1 / (1-α)} (Xs / L) −α / (1-α) (α ≦ Xs / L ≦ 1 ) (2B) where α: constant (0.5 ≦ α ≦ 0.9) when the preceding material is thick, f (Xs / L) = (1 / β) (Xs / L) (0 ≦ Xs / L ≦ β) (3A) f (Xs / L) = 1 (β ≦ Xs / L ≦ 1) (3B) where β is a constant (0.1 ≦ β ≦ 0.6) A method for controlling the tension of a strip in a catenary-type drying furnace.
【請求項2】請求項1において、 前記張力制御式で決定された張力H(Xs/L)を用い
て、帯状体のカテナリー形状を算出して得られる、カテ
ナリー位置検出装置の設置位置でのカテナリー位置と、
該カテナリー位置検出装置による実測カテナリー位置と
を一致させるべく、カテナリー型乾燥炉の入側又は出側
のブライドルロールを速度制御することを特徴とするカ
テナリー型乾燥炉における帯状体の張力制御方法。
2. The installation position of a catenary position detection device, which is obtained by calculating the catenary shape of a band using the tension H (Xs / L) determined by the tension control formula according to claim 1. Catenary position,
A tension control method for strips in a catenary type drying furnace, characterized in that the bridle rolls on the inlet side or the outlet side of the catenary type drying furnace are speed-controlled so as to match the actual catenary position measured by the catenary position detecting device.
JP25418796A 1996-09-26 1996-09-26 Tension control method of strip in catenary type drying furnace Expired - Fee Related JP3470215B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25418796A JP3470215B2 (en) 1996-09-26 1996-09-26 Tension control method of strip in catenary type drying furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25418796A JP3470215B2 (en) 1996-09-26 1996-09-26 Tension control method of strip in catenary type drying furnace

Publications (2)

Publication Number Publication Date
JPH10102153A JPH10102153A (en) 1998-04-21
JP3470215B2 true JP3470215B2 (en) 2003-11-25

Family

ID=17261454

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25418796A Expired - Fee Related JP3470215B2 (en) 1996-09-26 1996-09-26 Tension control method of strip in catenary type drying furnace

Country Status (1)

Country Link
JP (1) JP3470215B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104066857B (en) * 2012-02-13 2016-06-01 索拉劳尼克斯股份有限公司 The cooling of cated sheet metal band
JP6233267B2 (en) * 2014-10-07 2017-11-22 Jfeスチール株式会社 Baking furnace and method for controlling atmosphere in baking furnace
CN105413914A (en) * 2015-11-30 2016-03-23 惠州市浩明科技股份有限公司 Scraper type transfer coating system
CN107012451A (en) * 2017-05-24 2017-08-04 马鞍山钢铁股份有限公司 A kind of compact galvanized wire steel strip surface passivating device and its passivating method

Also Published As

Publication number Publication date
JPH10102153A (en) 1998-04-21

Similar Documents

Publication Publication Date Title
JP3470215B2 (en) Tension control method of strip in catenary type drying furnace
JP2003094106A (en) Method and device for cooling steel plate
US4242807A (en) Paint line flotation oven
JP2922285B2 (en) Heat treatment furnace for continuous coating line for performing both double-sided and single-sided coating of strip, operating method thereof, and method of controlling heat treatment
JP3134757B2 (en) Vibration prevention method for hot-dip galvanized steel strip
JPH0254746A (en) Method for preventing of warpage in band-like material in the cross direction
JP2854190B2 (en) Painted steel strip manufacturing equipment
JPS6261713A (en) Cooling method for hot rolling steel plate
JP2505572B2 (en) Continuous dry baking equipment for strip coating film
JP2698012B2 (en) Operating method of alloying furnace for galvanizing and alloying furnace
JPH0724384A (en) Coating application method and roll coater used in the method
JPS5848641A (en) Continuous heat treating furnace
JP3070100B2 (en) Tension control method of strip in catenary type furnace
JP3341577B2 (en) Roller straightening method for shaped steel
JP3353384B2 (en) Continuous coating equipment for strips
JP3567778B2 (en) Prevention method of strip vibration in continuous coating line
JPH01225758A (en) Apparatus for producing minimized spangle steel sheet
JP2713039B2 (en) Method of coating metal strip with roll coater
JPH0331465A (en) Method for correcting meandering in floater
JPH10109057A (en) Continuous drying furnace for belt-like material
JPS60138019A (en) Floater nozzle
JPH06262112A (en) Device for coating rear surface and method for coating rear surface of band-shaped body
JPS5822232A (en) Floating system conveyer
JPS5845334A (en) Continuous heat treatment furnace
JPH02172562A (en) Apparatus and method for suppressing vibration of strip of continuous coating line

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees