JP3464076B2 - Excavation stirrer for large diameter - Google Patents

Excavation stirrer for large diameter

Info

Publication number
JP3464076B2
JP3464076B2 JP14453595A JP14453595A JP3464076B2 JP 3464076 B2 JP3464076 B2 JP 3464076B2 JP 14453595 A JP14453595 A JP 14453595A JP 14453595 A JP14453595 A JP 14453595A JP 3464076 B2 JP3464076 B2 JP 3464076B2
Authority
JP
Japan
Prior art keywords
discharge port
excavation
shaft
stirring
discharge
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP14453595A
Other languages
Japanese (ja)
Other versions
JPH08338017A (en
Inventor
厚生 福田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tenox Corp
Original Assignee
Tenox Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tenox Corp filed Critical Tenox Corp
Priority to JP14453595A priority Critical patent/JP3464076B2/en
Publication of JPH08338017A publication Critical patent/JPH08338017A/en
Application granted granted Critical
Publication of JP3464076B2 publication Critical patent/JP3464076B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Consolidation Of Soil By Introduction Of Solidifying Substances Into Soil (AREA)

Description

【発明の詳細な説明】 【0001】 【産業上の利用分野】この発明は、地盤の現位置掘削土
に固化材を添加して機械的に混合攪拌し、化学的に固化
した改良土柱を築造する地盤改良工法において、改良径
が例えば1.5mを超えるような大口径の改良土柱の築
造に適用する大口径用掘削攪拌装置に関するものであ
る。 【0002】 【従来の技術】深層混合地盤改良工法においては、一般
に、ベースマシンに掘削軸を回転掘進可能に設け、この
掘削軸の先端に掘削翼,攪拌翼,固化材吐出口などを設
けた掘削攪拌装置を使用し、例えば掘削軸を回転掘進さ
せて所定の深度に達すると、スラリー状の固化材を吐出
しつつ掘進・混合攪拌を行い、最下端まで達すると、掘
削軸を逆転させて引き上げながら再び混合攪拌し、地盤
中に改良土柱を築造している。 【0003】このような掘削攪拌装置において、大口径
の改良土柱を築造する場合、掘削翼や攪拌翼に関して
は、その長さを単純に大きくすることで対応することが
できる。一方、固化材スラリーの吐出に関しては、改良
径が1.2m〜1.5m程度までであれば、セメントミ
ルク等の固化材スラリーを掘削軸の先端部における側面
に設けた吐出口から低圧で吐出する構成で、掘削孔横断
面内で均一に分散させ攪拌混合することが可能である。
しかし、1.5mを超えるような大口径の改良土柱を築
造するためには、固化材スラリーを掘削孔横断面全体に
均一に行き渡るように配慮することが肝要となる。 【0004】掘削攪拌装置としては、従来から種々の装
置が開発されているが、固化材スラリーを掘削土横断面
全体に均一に行き渡らせる技術としては、例えば次のよ
うなものが提案されている。 【0005】 掘削翼ガイド方式 例えば、特開平7−76826号公報(切削混合機)に
記載されているように、掘削軸の先端に、下向き樋状の
カッタースポークと樋内に配列した多数の切刃からなる
掘削翼を取付け、掘削軸内の供給管内を供給されるセメ
ントミルクを掘削軸先端に設けた拡散板で受けると同時
に水平方向に拡散し、このセメントミルクを樋状のカッ
タースポーク内ガイド空間に導き、カッタースポーク全
体にセメントミルクを行き渡らせるものである。 【0006】 吐出口の位置を掘削翼や攪拌翼にまで
延長する方式 例えば、特開昭62−273316号公報(地盤改良装
置)では、掘削軸の先端部における攪拌翼あるいは掘削
翼に直径方向に間隔をおいて多数の吐出口を設けてい
る。また、特開平6−146264号公報(共回り防止
強制攪拌装置)では、セメントミルクを供給する供給管
を掘削翼まで延在させ、その先端の射出ノズルが掘削翼
の半径方向中央部に位置するようにしている。 【0007】 【発明が解決しようとする課題】前述の掘削翼ガイド方
式は、拡散板により水平に拡散させたセメントミルク
を、掘削翼をガイドとして全断面に均一に行き渡らせる
工夫をしているものの、セメントミルクを直接制御する
ことができない機構である。従って、セメントミルクが
全断面均一に攪拌混合する場合もあるが、うまく行かな
い場合もあるという欠点を有し、確実性に欠けるため、
大口径の改良土柱には適用し難い。 【0008】また、前述の攪拌翼等に多数の吐出口を設
ける方式では、各吐出口からの吐出量が掘削軸から離れ
るに従って少なくなり、均一な攪拌混合ができないとい
う欠点がある。さらに、掘削翼中央に射出ノズルを設け
る方式では、掘削土横断面の外側部分についてはセメン
トミルクが均一に充填されるが、逆に内側部分について
はセメントミルクが供給されず、改良土柱全体が不均一
な改良体となる欠点があった。 【0009】この発明は、前述のような問題点を解消す
べくなされたもので、その目的は、大口径の改良土柱に
対しても固化材スラリーを掘削土横断面全体に均一に確
実に行き渡らせることができ、断面全体にわたって均一
な大口径改良土柱を容易に築造することのできる大口径
用掘削攪拌装置を提供することにある。 【0010】 【課題を解決するための手段】本発明は、掘削土に固化
材液を添加しつつ混合攪拌して改良土柱を築造する掘削
攪拌装置において、掘削軸の先端部分における下部およ
び/または上部に吐出口を設け、この下部吐出口または
上部吐出口を、掘削軸の先端部分における側面部と、掘
削翼または攪拌翼の半径方向中間部とに設けた少なくと
も2つの吐出口から構成すると共に、前記半径方向中間
部の吐出口は平面視で翼延在方向に対して直角の方向に
向くようにし、これら側面部と半径方向中間部の吐出口
のそれぞれに独立した固化材液(セメントミルクなど)
の供給通路を接続したことを特徴とする。 【0011】固化材液の吐出方法には、掘削・攪拌ヘッ
ドの貫入時(掘進・攪拌時)にのみ掘削軸の先端部分に
おける下部(掘削翼付近)の下部吐出口から吐出する方
法、引抜時(上昇・攪拌時)にのみ掘削軸の先端部分に
おける上部(最上段の攪拌翼付近)の上部吐出口から吐
出する方法、あるいは貫入時と引抜時の両方とも吐出す
る(貫入時に下部吐出口から、引抜時に上部吐出口から
吐出する)方法がある。従って、本発明では、貫入時の
み吐出する場合には、掘削軸の先端部分における下部
(掘削翼位置あるいは最下段の攪拌翼位置など)に少な
くとも2つの下部吐出口を設け、引抜時のみ吐出する場
合には、掘削軸の先端部分における上部(最上段の攪拌
翼位置付近など)に少なくとも2つの下部吐出口を設
け、貫入時と引抜時とも吐出する場合には、掘削軸の先
端部分における下部と上部に、少なくとも2つの下部吐
出口と少なくとも2つの上部吐出口をそれぞれ設けるこ
とになる。 【0012】下部吐出口または上部吐出口は、掘削翼あ
るいは攪拌翼の掘削軸近傍と半径方向中央部に設けても
よいが、一つを掘削軸の先端部分の側面に、他を掘削翼
あるいは攪拌翼の半径方向中間部に設けるのが、構造上
の点などから好ましい。また、掘削軸側の内側吐出口と
攪拌翼側の外側吐出口とには、それぞれ独立した固化材
液供給通路が接続されるが、各固化材液供給通路には、
掘削攪拌装置の外部の固化材液タンクから個別に固化材
液を供給可能とし、各吐出口からそれぞれ任意の吐出量
で固化材液が噴出される。 【0013】 【作用】以上のような構成において、掘削軸側面または
掘削軸近傍の内側吐出口および翼中間部の外側吐出口か
ら固化材液が同時に噴出され、内側吐出口からの固化材
スラリーが掘削軸近傍の掘削土内側部分に十分に供給さ
れ、外側吐出口からの固化材スラリーが掘削土の周囲部
分まで到達して掘削土外側部分に十分に供給される。さ
らに、各吐出口のそれぞれに独立した固化材液供給通路
が接続されるため、各吐出口からの固化材液の吐出量を
口径の大きさに応じて任意に設定することにより、各吐
出口から所定の吐出量だけを確実に吐出することがで
き、直径が1.5mを超えるような大口径の改良土柱で
も固化材液を横断面全体に均一に、かつ確実に行き渡ら
せることができる。 【0014】 【実施例】以下、この発明を図示する一実施例に基づい
て説明する。図1は、この発明に係る大口径用掘削攪拌
装置における掘削軸の先端部分を示し、図2はその横断
面を示す。図1において、図示しない掘削軸本体の先端
部分に掘削・攪拌ヘッドAが取付けられ、この掘削・攪
拌ヘッドAの掘削軸1に、下から順に、掘削軸先端の掘
削ビット2と、複数の掘削刃を備えた二枚の掘削翼3
と、掘削軸1に対して回転自在に支持され固定状態で土
の共回りを阻止する共回り防止翼4と、複数段の攪拌翼
5とが取付けられている。 【0015】なお、掘削軸本体は上部に回転駆動装置を
有し、この回転駆動装置を介して装置本体のリーダに上
下移動可能に支持され、回転駆動装置を吊りワイヤロー
プで昇降させることにより、掘削・攪拌ヘッドが回転し
つつ掘進下降し、また引揚上昇する(図示省略)。 【0016】このような掘削・攪拌ヘッドAにおいて、
図1,図2に示すように、掘削軸1の下端における側面
に吐出口10を設け、一対の掘削翼3の一方に吐出口1
1を設け、内側の掘削軸吐出口10と外側の掘削翼吐出
口11により下部吐出口を構成する。掘削軸吐出口10
は、一対の掘削翼3の取付け部分の間に一箇所設け、掘
削翼吐出口11は、掘削軸1から掘削翼3の傾斜する裏
面に添設した水平供給管12の先端に形成することによ
り、掘削翼3の半径方向中央部に一箇所設ける。この実
施例では、掘削軸吐出口10と掘削翼吐出口11の吐出
方向は互いに反対方向となるようにしている(図2参
照)。 【0017】掘削軸吐出口10および掘削翼吐出口11
の水平供給管12には、それぞれ独立した固化材スラリ
ー供給通路13,14を接続する。この固化材スラリー
供給通路13,14は、掘削軸1および掘削軸本体内に
設けた供給管あるいは供給孔などとし、掘削軸本体の上
端部に設けたスイベル、ホース等を介して、外部に設置
したミキシングプラントのポンプに接続し、各吐出口1
0,11に個別に固化材スラリーを供給可能とする。 【0018】また、ポンプは二台設置し、それぞれのポ
ンプに流量調整弁を介して掘削軸吐出口10用のホース
と掘削翼吐出口11用のホースを接続するなどして、各
吐出口10,11毎に吐出量を設定し、調整できるよう
にする。 【0019】なお、掘削軸吐出口10は、掘削軸1の対
向する側面に一対で配設してもよい。掘削翼吐出口11
は、もう一方の掘削翼3にも設けてもよいし、掘削翼3
の半径方向中間部に間隔をおいて複数配設するようにし
てもよい。また、掘削翼吐出口11は最下段の攪拌翼5
-1に水平供給管12’を介して設け、この攪拌翼吐出口
11’と掘削軸吐出口10とにより下部吐出口を構成し
てもよい。さらに、掘削軸吐出口10をなくし、最下段
の攪拌翼5-1の近傍における掘削軸1の側面に掘削軸吐
出口10’を設け、この掘削軸吐出口10’と攪拌翼吐
出口11’とにより下部吐出口を構成してもよい。ま
た、掘削軸吐出口10,10’を無くし、掘削翼吐出口
11あるいは攪拌翼吐出口11’を掘削翼3あるいは攪
拌翼5における掘削軸1の近傍と半径方向中央部とに設
けるようにしてもよい。 【0020】掘削軸吐出口10,10’あるいは翼吐出
口11,11’を、複数配設する場合には、複数個の吐
出口10,10’あるいは11,11’に共通の固化材
スラリー供給通路から固化材スラリーを供給可能として
もよいし、複数個の吐出口10あるいは11に対して独
立した固化材スラリー供給通路をそれぞれ接続するよう
にしてもよい。 【0021】以上は、下部吐出口の構成についてのみ説
明したが、引抜時吐出方法あるいは貫入時・引抜時吐出
方法を行う場合には、上部吐出口を設ける。この上部吐
出口は、下部吐出口と同様に、最上段の攪拌翼5-4の取
付け部分の若干上方における掘削軸1の側面に設けた掘
削軸吐出口10”と、この攪拌翼5-4の半径方向中間部
に水平供給管12”を介して設けた攪拌翼吐出口11”
から構成する。 【0022】なお、この掘削軸吐出口10”と攪拌翼吐
出口11”の場合も、下部吐出口と同様に、それぞれ複
数個配設する、上部の適当な位置に配設する、攪拌翼の
掘削軸近傍と半径方向中央部に設けるなどの種々の態様
をとることができる。また、掘削軸吐出口10”と攪拌
翼吐出口11”のそれぞれの固化材スラリー供給通路1
3”および14”は、下部吐出口の固化材スラリー供給
通路13および14とそれぞれ別個独立とする。 【0023】この場合には、例えば、13”と13を2
重管から構成して、13”を掘削軸吐出口10”に連通
し、13を掘削軸吐出口10に連通し、掘削軸本体の上
部に設けた流路切替装置により13”と13とを選択可
能とし、上部の掘削軸吐出口10”と下部の掘削軸吐出
口10とを任意に選択し、かつそれぞれから所定の吐出
量の固化材スラリーを噴出可能とする。14”と14も
同様にする。 【0024】以上のような構成において、直径が1.5
mを超える改良土柱に対して、例えば次のような手順で
深層地盤改良を行う。 【0025】(1) 築造すべき改良土柱の径に応じて各吐
出口10,11からの吐出量をそれぞれ設定しておき、
掘削軸を回転させつつ下降させる。 【0026】(2) 所定の深度に達すると、固化材スラリ
ーを各吐出口10,11から同時に噴出しつつ掘進・混
合攪拌を行う。 【0027】(3) 貫入時吐出方法では、最下端まで達す
ると、掘削軸を逆転させて引き上げ、各吐出口10,1
1から固化材スラリーは圧送を停止して再び混合攪拌を
行う。 【0028】地盤改良区間から掘削軸を回転させつつ引
き揚げて、施工を終了する。 【0029】貫入時・引抜時吐出方法では、最下端まで
達すると、下部の吐出口10,11から上部の吐出口1
0”,11”に切替え、掘削軸を逆転させて引き上げな
がら、固化材スラリーを上部の吐出口10”,11”か
ら同時に噴出しつつ再び混合攪拌を行う。地盤改良区間
の注入・攪拌・引揚が終了すると、各吐出口10”,1
1”からの固化材スラリーの噴出を停止し、掘削軸を回
転させつつ引き揚げて、施工を終了する。 【0030】内側の掘削軸吐出口10あるいは10”と
外側の掘削翼吐出口11あるいは11”からそれぞれ個
別に設定された所要の吐出量で固化材スラリーが噴出さ
れ、固化材スラリーが掘削土の横断面全体に均一に、か
つ確実に分散され、攪拌混合され、全体にわたって均一
な改良土柱が得られる。 【0031】なお、以上は深層地盤改良工法について説
明したが、これに限らず、その他の地盤改良工法にも本
発明を適用できることはいうまでもない。 【0032】 【発明の効果】前述の通り、この発明は、掘削軸の先端
部分に、掘削土柱径方向に位置の異なる少なくとも2つ
の吐出口、例えば掘削軸の先端部側面と掘削翼あるいは
攪拌翼の半径方向中間部とに吐出口を設け、これら各吐
出口に、それぞれ独立して固化材液を供給可能としたた
め、掘削土の内側と外側に固化材液を供給することがで
きると共に、それぞれの吐出量を任意に設定することが
でき、大口径の改良土柱であっても、固化材液を断面全
体にわたって均一に、かつ確実に行き渡らせることがで
き、全体にわたって均一な大口径改良土柱を容易に築造
することができる。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an improved soil column which has been chemically solidified by adding a solidifying material to the excavated soil at the current position of the ground, mechanically mixing and stirring it. The present invention relates to a large-diameter excavation and stirring device applied to the construction of a large-diameter improved earth column having an improved diameter exceeding, for example, 1.5 m in a ground improvement method for building. 2. Description of the Related Art In a deep mixing ground improvement method, an excavation shaft is generally provided on a base machine so as to be rotatable and excavated, a stirring blade, a solidified material discharge port and the like are provided at the tip of the excavation shaft. Using a drilling and stirring device, for example, when the drilling shaft reaches a predetermined depth by rotating and drilling, the drilling and mixing and stirring is performed while discharging the solidified material in a slurry state, and when it reaches the bottom end, the drilling shaft is reversed. It is mixed and stirred again while pulling up, and an improved earth pillar is being built in the ground. In such an excavating and stirring apparatus, when an improved soil column having a large diameter is to be constructed, the length of the excavating blade or the stirring blade can be simply increased. On the other hand, regarding the discharge of the solidified material slurry, if the improved diameter is up to about 1.2 m to 1.5 m, the solidified material slurry such as cement milk is discharged at a low pressure from the discharge port provided on the side surface at the tip of the excavation shaft. With this configuration, it is possible to uniformly disperse and stir and mix in the cross section of the borehole.
However, in order to construct a large-diameter improved soil column having a diameter exceeding 1.5 m, it is important to consider that the solidified material slurry is uniformly distributed over the entire cross section of the excavation hole. Various types of excavating and stirring devices have been developed in the past. As a technique for uniformly dispersing the solidified material slurry over the entire cross section of excavated soil, for example, the following technology has been proposed. . Drilling blade guide system [0005] As described in, for example, JP-A-7-76826 (cutting mixer), a downward gutter-shaped cutter spoke and a large number of cuts arranged in the gutter are provided at the tip of a drilling shaft. A drilling wing consisting of a blade is attached, and the cement milk supplied in the supply pipe in the drilling shaft is received by the diffusion plate provided at the tip of the drilling shaft and simultaneously diffuses horizontally, and this cement milk is guided in a gutter-like cutter spoke. It leads to the space and spreads the cement milk throughout the cutter spokes. [0006] A method of extending the position of the discharge port to a digging blade or a stirring blade, for example, in Japanese Patent Application Laid-Open No. 62-273316 (ground improvement device), a diametrical direction is applied to the stirring blade or the digging blade at the tip of the digging shaft. A large number of discharge ports are provided at intervals. In JP-A-6-146264 (co-rotation prevention forced stirring device), a supply pipe for supplying cement milk extends to a drilling wing, and an injection nozzle at the tip thereof is located at a radially central portion of the drilling wing. Like that. [0007] The above-mentioned excavation wing guide system is designed to uniformly spread the cement milk spread horizontally by the diffusion plate over the entire cross section using the excavation wing as a guide. It is a mechanism that cannot directly control cement milk. Therefore, although the cement milk may be stirred and mixed uniformly over the entire cross section, it has a disadvantage that it may not work well, and lacks certainty.
It is difficult to apply to large-diameter improved soil columns. In addition, the above-described method in which a number of discharge ports are provided in the stirring blade or the like has a disadvantage that the discharge amount from each discharge port decreases as the distance from the excavation axis decreases, and uniform stirring and mixing cannot be performed. Furthermore, in the method in which the injection nozzle is provided at the center of the excavation wing, cement milk is uniformly filled in the outer portion of the excavated soil cross section, but conversely, cement milk is not supplied in the inner portion, and the entire improved soil column is There is a disadvantage that it results in a non-uniform improvement. SUMMARY OF THE INVENTION The present invention has been made to solve the above-mentioned problems, and an object of the present invention is to ensure that a solidified material slurry is uniformly and uniformly applied to an excavated soil cross section even for a large-diameter improved soil column. An object of the present invention is to provide a large-diameter excavating and stirring device that can be spread and that can easily construct a large-diameter improved earth column uniform over the entire cross section. SUMMARY OF THE INVENTION The present invention relates to an excavating and stirring apparatus for constructing an improved earth column by mixing and stirring while adding a solidifying material liquid to an excavated soil. or the discharge port is provided in the upper, the lower discharge opening or top ejection port, and the side surface portion at the tip portion of the drilling shaft, drilling
<br/> the least provided with radially intermediate portion of Kezutsubasa or stirring blade also with consist of two discharge ports, said radially intermediate
The discharge port of the section is at right angles to the blade extension direction in plan view.
Solidified material liquid (such as cement milk) for each of these side and radially intermediate discharge ports
Are connected. The method of discharging the solidified material liquid includes a method in which the liquid is discharged from a lower discharge port (in the vicinity of the excavation wing) at a tip end portion of the excavation shaft only when the excavation / stirring head penetrates (drilling / agitation), and in a pulling-out operation. Discharge from the upper discharge port at the top (near the uppermost stirring blade) at the tip of the excavation shaft only during (up and stirring), or discharge both at the time of penetration and at the time of withdrawal (from the lower discharge port at the time of penetration) And discharge from the upper discharge port at the time of drawing out). Therefore, in the present invention, in the case of discharging only at the time of penetration, at least two lower discharge ports are provided at a lower portion (such as the position of the excavating blade or the position of the lowermost stirring blade) at the tip portion of the excavating shaft, and discharging is performed only at the time of pulling out. In such a case, at least two lower discharge ports are provided at an upper portion (e.g., near the position of the uppermost agitating blade) at a tip portion of the excavation shaft. And at least two lower discharge ports and at least two upper discharge ports. The lower discharge port or the upper discharge port may be provided in the vicinity of the excavation axis and the radial center of the excavation blade or the stirring blade. It is preferable to provide it at a radially intermediate portion of the stirring blade in terms of the structure and the like. In addition, independent solidified material liquid supply passages are connected to the inner discharge port on the excavation axis side and the outer discharge port on the stirring blade side, respectively.
The solidified material liquid can be individually supplied from the solidified material liquid tank outside the excavating and stirring device, and the solidified material liquid is ejected from each discharge port at an arbitrary discharge amount. In the above construction, the solidified material liquid is simultaneously jetted from the inner discharge port on the side of or near the excavation axis and the outer discharge port in the middle of the blade, and the solidified material slurry is discharged from the inner discharge port. Sufficiently supplied to the inside of the excavated soil near the excavation axis, the solidified material slurry from the outer discharge port reaches the peripheral portion of the excavated soil and is sufficiently supplied to the outside of the excavated soil. Further, since an independent solidified material liquid supply passage is connected to each of the discharge ports, the discharge amount of the solidified material liquid from each of the discharge ports is arbitrarily set according to the size of the diameter, so that each of the discharge ports is Can reliably discharge only a predetermined discharge amount, and the solidified material liquid can be uniformly and reliably spread over the entire cross section even with a large-diameter improved soil column having a diameter exceeding 1.5 m. . DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below with reference to an embodiment shown in the drawings. FIG. 1 shows a tip portion of a drilling shaft in a large-diameter drilling and stirring device according to the present invention, and FIG. 2 shows a cross section thereof. In FIG. 1, a digging / mixing head A is attached to a tip portion of a digging shaft main body (not shown). A digging bit 2 at the tip of the digging shaft and a plurality of Two drilling wings with blades 3
And a counter-rotating blade 4 that is rotatably supported on the excavating shaft 1 and prevents co-rotation of the soil in a fixed state, and a plurality of stages of stirring blades 5 are attached. The excavating shaft main body has a rotary driving device at an upper portion, and is supported by a leader of the device main body via the rotary driving device so as to be vertically movable, and the rotary driving device is raised and lowered by a hanging wire rope. The excavation / stirring head rotates and excavates and descends, and also lifts and rises (not shown). In such a drilling / stirring head A,
As shown in FIGS. 1 and 2, a discharge port 10 is provided on a side surface at the lower end of the excavation shaft 1, and the discharge port 1 is provided on one of a pair of excavation blades 3.
1, a lower discharge port is constituted by the inner excavation axis discharge port 10 and the outer excavation blade discharge port 11. Drilling shaft discharge port 10
Is provided at one location between the mounting portions of the pair of digging wings 3, and the digging wing discharge port 11 is formed at the tip of a horizontal supply pipe 12 attached to the inclined back surface of the digging wing 3 from the digging shaft 1. And one location at the radial center of the excavation wing 3. In this embodiment, the discharge directions of the excavation shaft discharge port 10 and the excavation blade discharge port 11 are set to be opposite to each other (see FIG. 2). Drilling shaft discharge port 10 and drilling blade discharge port 11
The independent solidified material slurry supply passages 13 and 14 are connected to the horizontal supply pipe 12. The solidified material slurry supply passages 13 and 14 are supply pipes or supply holes provided in the excavation shaft 1 and the excavation shaft main body, and are installed outside via a swivel, a hose, or the like provided at an upper end portion of the excavation shaft main body. Connected to the pump of the mixing plant
The solidified material slurry can be individually supplied to 0 and 11. Further, two pumps are installed, and a hose for the excavation shaft discharge port 10 and a hose for the excavation blade discharge port 11 are connected to each pump via a flow rate control valve. , 11 are set and adjusted. The excavation shaft discharge ports 10 may be provided as a pair on opposing side surfaces of the excavation shaft 1. Drilling wing discharge port 11
May be provided on the other excavating wing 3 or the excavating wing 3
May be arranged at intervals in the radially intermediate portion of the above. The excavation blade discharge port 11 is provided at the lowermost stirring blade 5.
-1 through a horizontal supply pipe 12 ', and the lower discharge port may be constituted by the stirring blade discharge port 11' and the excavation shaft discharge port 10. Furthermore, eliminating the drilling shaft discharge port 10, the drilling shaft discharge port 10 on the side surface of the excavating shaft 1 in the vicinity of the lowermost stirring blade 5 -1 'to provided, the drilling shaft discharge port 10' and the stirring blade discharge port 11 ' The lower discharge port may be constituted by the above. In addition, the excavation shaft discharge ports 10 and 10 ′ are eliminated, and the excavation blade discharge port 11 or the stirring blade discharge port 11 ′ is provided in the vicinity of the excavation shaft 1 and the radial center of the excavation blade 3 or the stirring blade 5. Is also good. When a plurality of excavation shaft discharge ports 10, 10 'or blade discharge ports 11, 11' are provided, a solidified material slurry supply common to the plurality of discharge ports 10, 10 'or 11, 11' is provided. The solidified material slurry may be supplied from the passage, or an independent solidified material slurry supply passage may be connected to each of the plurality of discharge ports 10 or 11. Although only the configuration of the lower discharge port has been described above, the upper discharge port is provided when the discharge method at the time of pull-out or the discharge method at the time of penetration or pull-out is performed. Like the lower discharge port, the upper discharge port has a digging shaft discharge port 10 ″ provided on the side surface of the digging shaft 1 slightly above the mounting portion of the uppermost stirring blade 5-4 , and the stirring blade 5-4. Stirring impeller discharge port 11 "provided through a horizontal supply pipe 12" at the radially intermediate portion of
It consists of. In addition, in the case of the excavating shaft discharge port 10 "and the stirring blade discharge port 11", similarly to the lower discharge port, a plurality of each of the excavating shaft discharge ports and a stirring blade discharge port 11 " Various modes such as providing near the excavation axis and at the center in the radial direction can be adopted. Further, the solidified material slurry supply passages 1 of the excavation shaft discharge port 10 ″ and the stirring blade discharge port 11 ″ are respectively provided.
3 ″ and 14 ″ are respectively independent of the solidified material slurry supply passages 13 and 14 of the lower discharge port. In this case, for example, 13 ″ and 13 are replaced by 2
13 ″ communicates with the drilling shaft discharge port 10 ″, 13 communicates with the drilling shaft discharge port 10, and 13 ″ and 13 are connected by a flow path switching device provided at the upper part of the drilling shaft body. The upper excavation shaft discharge port 10 "and the lower excavation shaft discharge port 10 are arbitrarily selected, and a predetermined discharge amount of the solidified material slurry can be ejected from each of them. 14 "and 14. The same applies to the above configuration.
For improved soil columns exceeding m, deep ground improvement is performed by the following procedure, for example. (1) The discharge amount from each of the discharge ports 10 and 11 is set according to the diameter of the improved earth pillar to be built,
The drilling shaft is lowered while rotating. (2) When the depth reaches a predetermined depth, excavation and mixing and stirring are performed while simultaneously solidifying material slurry is ejected from each of the discharge ports 10 and 11. (3) In the discharge method at the time of penetration, when reaching the lowermost end, the excavation axis is reversed and pulled up, and each of the discharge ports 10, 1
From 1 the pressure of the solidified material slurry is stopped and the mixing and stirring are performed again. The construction is completed by pulling up from the ground improvement section while rotating the excavation shaft. In the discharge method at the time of penetration or withdrawal, when reaching the lowermost end, the lower discharge ports 10 and 11 are moved from the upper discharge port 1 to the upper discharge port 1.
The mixture is switched to 0 "and 11", and the mixing and stirring is performed again while simultaneously ejecting the solidified material slurry from the upper discharge ports 10 "and 11" while reversing and raising the excavation axis. When the injection, agitation, and withdrawal of the ground improvement section are completed, each discharge port 10 ″, 1
The jetting of the solidified material slurry from 1 "is stopped, and the drilling shaft is pulled up while rotating. The inner drilling shaft discharge port 10 or 10" and the outer drilling blade discharge port 11 or 11 are finished. The solidified material slurry is jetted at a required discharge amount set individually from each of the above, and the solidified material slurry is uniformly and reliably dispersed over the entire cross section of the excavated soil, stirred and mixed, and the uniform improved soil throughout Although the above description has been given of the deep ground improvement method, it is needless to say that the present invention can be applied to other ground improvement methods. As described above, the present invention provides at least two discharge ports having different positions in the radial direction of the excavated soil column, for example, the excavated blade or the agitating blade at the distal end of the excavated shaft. Discharge ports are provided at the middle part in the radial direction of the wing, and solidified material liquid can be supplied to each of these discharge ports independently, so that solidified material liquid can be supplied to the inside and outside of the excavated soil, Each discharge rate can be set arbitrarily, and even for large-diameter improved soil pillars, the solidifying material liquid can be distributed uniformly and reliably over the entire cross section, and uniform large-diameter improvement throughout Earth pillars can be easily built.

【図面の簡単な説明】 【図1】この発明に係る大口径用掘削攪拌装置の先端部
分の一実施例を示す側面図である。 【図2】図1の横断面図である。 【符号の説明】 1…掘削軸 2…掘削ビット 3…掘削翼 4…共回り防止翼 5…攪拌翼 10…掘削軸吐出口 11…掘削翼吐出口 12…水平供給管 13…掘削軸吐出口用の固化材スラリー供給通路 14…掘削翼吐出口用の固化材スラリー供給通路
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a side view showing one embodiment of a tip portion of a large-diameter excavation and stirring device according to the present invention. FIG. 2 is a cross-sectional view of FIG. [Description of Signs] 1 ... Drilling shaft 2 ... Drilling bit 3 ... Drilling wing 4 ... Anti-rotating wing 5 ... Stirring blade 10 ... Drilling shaft discharge port 11 ... Drilling blade discharge port 12 ... Horizontal supply pipe 13 ... Drilling shaft discharge port Solidified material slurry supply passage 14 for the excavation blade discharge port

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平1−247611(JP,A) 特開 昭57−51322(JP,A) 特開 平5−171635(JP,A) 特開 昭62−273316(JP,A) 特開 平6−146264(JP,A)   ────────────────────────────────────────────────── ─── Continuation of front page       (56) References JP-A-1-247611 (JP, A)                 JP-A-57-51322 (JP, A)                 JP-A-5-171635 (JP, A)                 JP-A-62-273316 (JP, A)                 JP-A-6-146264 (JP, A)

Claims (1)

(57)【特許請求の範囲】 【請求項1】 掘削土に固化材液を添加しつつ混合攪拌
して改良土柱を築造する掘削攪拌装置において、 掘削軸の先端部分における下部および/または上部に吐
出口を設け、この下部吐出口または上部吐出口を、掘削
軸の先端部分における側面部と、掘削翼または攪拌翼の
半径方向中間部とに設けた少なくとも2つの吐出口から
構成すると共に、前記半径方向中間部の吐出口は平面視
で翼延在方向に対して直角の方向に向くようにし、これ
ら側面部と半径方向中間部の吐出口のそれぞれに独立し
た固化材液の供給通路を接続したことを特徴とする大口
径用掘削攪拌装置。
(1) An excavating and stirring apparatus for constructing an improved earth column by mixing and stirring while adding a solidifying material liquid to excavated soil, comprising: a lower part and / or an upper part at a tip part of an excavating shaft. The lower discharge port or the upper discharge port is excavated.
The side at the tip of the shaft and the
And at least two discharge ports provided at the radially intermediate portion, and the discharge port at the radially intermediate portion is viewed in plan.
In the direction perpendicular to the wing extension direction.
A large diameter drilling and stirring device, wherein independent supply passages for the solidifying material liquid are connected to the side surfaces and the radially intermediate discharge ports.
JP14453595A 1995-06-12 1995-06-12 Excavation stirrer for large diameter Expired - Lifetime JP3464076B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14453595A JP3464076B2 (en) 1995-06-12 1995-06-12 Excavation stirrer for large diameter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14453595A JP3464076B2 (en) 1995-06-12 1995-06-12 Excavation stirrer for large diameter

Related Child Applications (2)

Application Number Title Priority Date Filing Date
JP2001305093A Division JP3423705B2 (en) 2001-10-01 2001-10-01 Construction method of large diameter improved soil column
JP2001305092A Division JP3423704B2 (en) 2001-10-01 2001-10-01 Construction method of large diameter improved soil column

Publications (2)

Publication Number Publication Date
JPH08338017A JPH08338017A (en) 1996-12-24
JP3464076B2 true JP3464076B2 (en) 2003-11-05

Family

ID=15364577

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14453595A Expired - Lifetime JP3464076B2 (en) 1995-06-12 1995-06-12 Excavation stirrer for large diameter

Country Status (1)

Country Link
JP (1) JP3464076B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4702821B2 (en) * 2001-09-06 2011-06-15 株式会社不動テトラ Solidification pile construction device and construction method
JP2013136916A (en) * 2011-12-28 2013-07-11 Asahi Kasei Construction Materials Co Ltd Ground improvement device and ground improvement method
CN110359448B (en) * 2019-06-11 2020-09-11 东南大学 Method for reinforcing shallow soft foundation by bidirectional integral stirring equipment

Also Published As

Publication number Publication date
JPH08338017A (en) 1996-12-24

Similar Documents

Publication Publication Date Title
US5304016A (en) Method for forming a pillar in an earthen foundation
JPH0160614B2 (en)
JPH07238532A (en) Method and device for soil improvement
JP3423705B2 (en) Construction method of large diameter improved soil column
JP6490865B1 (en) Ground improvement device and ground improvement method
JP3464076B2 (en) Excavation stirrer for large diameter
JP3423704B2 (en) Construction method of large diameter improved soil column
JP2006283438A (en) Columnar pile preparing device and columnar pile preparing method
JP3048044B2 (en) Ground improvement method and its equipment
JPH03125712A (en) Poor subsoil improvement method and device
JPH0931967A (en) Mixing and agitating device using mechanical agitation and high pressure jet combinedly
JP4615841B2 (en) Synthetic pile construction method and synthetic pile
JP3707146B2 (en) Stirring head of ground improvement equipment
JPS5849254Y2 (en) Multi-axis excavator with casing
JP2004019221A (en) Jet agitating device using cross jet stream
JPS6353327B2 (en)
JPH06146260A (en) Forming method of columnar body in ground and device therefor
JPH11350468A (en) Ground improving method and ground improving device
JPH09296442A (en) Cast-in-place piling device
JPS61113923A (en) Ground improving method
JP2728633B2 (en) Construction method and construction device for soil cement pile
JP2003041570A (en) Device for forming solidified pile
JP3560381B2 (en) Agitation rod for ground improvement
JPH07268859A (en) Method for improving soil
JP2000170155A (en) Partial improving method for shallow layer in soft ground

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090822

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120822

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120822

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150822

Year of fee payment: 12

EXPY Cancellation because of completion of term