JP3461937B2 - How to measure insulation resistance - Google Patents

How to measure insulation resistance

Info

Publication number
JP3461937B2
JP3461937B2 JP28483694A JP28483694A JP3461937B2 JP 3461937 B2 JP3461937 B2 JP 3461937B2 JP 28483694 A JP28483694 A JP 28483694A JP 28483694 A JP28483694 A JP 28483694A JP 3461937 B2 JP3461937 B2 JP 3461937B2
Authority
JP
Japan
Prior art keywords
measurement
measured
insulation resistance
averaging
value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP28483694A
Other languages
Japanese (ja)
Other versions
JPH08146057A (en
Inventor
菊夫 牛窪
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
DKK TOA Corp
Original Assignee
DKK TOA Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by DKK TOA Corp filed Critical DKK TOA Corp
Priority to JP28483694A priority Critical patent/JP3461937B2/en
Publication of JPH08146057A publication Critical patent/JPH08146057A/en
Application granted granted Critical
Publication of JP3461937B2 publication Critical patent/JP3461937B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Measurement Of Resistance Or Impedance (AREA)

Description

【発明の詳細な説明】 【0001】 【産業上の利用分野】この発明は、測定結果(測定値)
を複数回取り、それを加算平均して出力する(測定結果
として出力するデータをそれ以前の一定測定回数の加算
平均のデータとする)測定系において、加算平均する測
定回数を一定不変にせずに測定結果に応じて変化させ、
測定系に含まれるノイズの影響を著しく低減させるとと
もに、高速測定を可能にした絶縁抵抗の測定方法に関す
るものである。 【0002】 【従来の技術】例えば、コンデンサや誘電体(絶縁体)
のような製品の検査ラインで個々の製品について絶縁抵
抗を測定してその良否を判断する場合、測定系に含まれ
るノイズ成分によって絶縁抵抗値の指示が大きく影響さ
れる。特に、超高抵抗の測定においては極めて微少な電
流によって絶縁抵抗を測定することになるから、ノイズ
の影響を大きく受け、大きな誤差要因となっている。ま
た、ノイズの混入により測定できる範囲が制限されてい
る。この現象はノイズ成分をより通過させ易くする比較
的容量の大きなコンデンサや誘電体において顕著にな
る。 【0003】従来はノイズの影響を少なくするために、
ノイズ電流を抑える抵抗値の大きい入力抵抗を有する電
流計や高い内部抵抗を有する高圧源を使用する測定系に
より絶縁抵抗の測定を行っていた。しかしながら、この
方法では測定系の回路抵抗と容量による時定数が大きく
なるため絶縁抵抗測定に至るまでの容量の充電に要する
時間が長くなり、即ち、応答速度が遅くなり、絶縁抵抗
の測定を高速で行うことができない。一方、ノイズを低
減するために測定結果を複数回取り、それを加算平均し
て出力する方法も従来より採用されている。 【0004】 【発明が解決しようとする課題】上記複数回の測定結果
を加算平均して出力する加算平均法を使用する場合には
ノイズの影響をかなり低減できる。しかし、従来の加算
平均法では、加算平均する測定回数Nが、例えば5回と
か10回というように1つの測定期間中は一定不変の回
数に設定されており(50回或いは100回のような大
きな回数の場合もある)、従って、5回固定の例を図6
に示すように、測定を開始してから結果が出てくるまで
加算平均する回数分の時間が必ずかかり(図6の例では
5回分の測定結果を加算平均するまで出力が発生されな
い)、測定に対する応答時間が長くなり、高速測定には
不向きであった。 【0005】この発明の目的は、上記従来技術の欠点を
除去し、加算平均法を使用するにもかかわらず絶縁抵抗
の測定の高速化を可能にし、かつ超高抵抗であっても高
精度に安定に測定できるようにした絶縁抵抗の測定方法
を提供することにある。 【0006】 【課題を解決するための手段】この発明では、測定結果
を複数回取り、それを加算平均して出力する測定方法を
使用する絶縁抵抗の測定において、大きな充電電流が流
れる測定初期には加算平均しないでそのまま出力する
か、加算平均する測定回数を最小限に抑え、充電電流が
減少して測定電流値が設定可能な基準値を越すようにな
ったら加算平均する測定回数を増加してノイズ成分を平
均化するようにしたものである。この方法を適用する
と、加算平均法を使用しても、測定の高速化が可能とな
り、しかも超高絶縁抵抗であっても高精度に安定に測定
できるようになる。 【0007】 【実施例】以下、この発明の実施例について詳細に説明
する。コンデンサや誘電体のような被測定物の絶縁抵抗
の測定においては、測定初期に大きな電流が流れるが、
この電流のうち、絶縁物として流れる電流は非常に小さ
く、大部分の電流は被測定物の持つ容量を充電するため
の充電電流である。このように、測定初期においては電
流値が大きいからノイズの影響を受けないし、また、電
流の変化率が大きいから、加算平均する測定回数Nが多
くても測定精度の向上にはつながらない。従来のように
加算平均する測定回数Nが一定不変であると、測定初期
においても同じ測定回数Nとなるから、測定時間が長く
なり、高速測定を実行する上で障害となる。 【0008】本発明者は上記点に着目して種々の実験を
繰り返した結果、測定初期の充電電流が大きく、かつ電
流の変化が大きいときには加算平均しないでそのまま出
力するか、加算平均する測定回数Nを最小限にし、ノイ
ズによって影響の出てくる測定値(基準値)を境にして
この測定回数Nを増加させ、ノイズ成分を平均化して測
定値の安定化を図るようにすると、加算平均法を使用し
ても測定の高速化が可能となり、しかも超高絶縁抵抗で
あっても高精度に安定に測定できることを確認した。 【0009】本発明者は測定結果に応じて制御する加算
平均する測定回数Nを次式により設定してコンデンサの
絶縁抵抗を測定した。 測定回数N=|log(測定値)−log(基準値)|
×係数 ここで、「測定値」とは実際に測定したデータであり、
「基準値」とは加算平均する測定回数Nを決める基準に
なる測定値であり、「係数」とは加算平均する測定回数
Nの増加率を決める定数である。この例では測定値及び
基準値とも対数値としたが、これは抵抗値が一般に対数
目盛りで表示されるためであり、従って、対数値は単な
る一例であり、これに限定されないことは言うまでもな
い。 【0010】図7は従来の絶縁抵抗計で0.01μFの
フィルムコンデンサの絶縁抵抗を25Vの電圧を印加し
て測定したときの(加算平均法を使用しないときの)実
測抵抗値である。縦軸は抵抗値(Ω)を示し、対数目盛
りで表示されている。横軸は時間(秒)を示し、1目は
10秒である。この図の特性曲線から明瞭なように、時
間の経過に伴って抵抗値は減少するが、抵抗値が1013
Ωを越えるころ(1分経過後あたり)からノイズの影響
が大きくなり始め、これ以上大きい抵抗値の測定は困難
であることが分かる。勿論、1013Ω近辺の抵抗値もノ
イズの影響がかなりあって正確な値が得られないことが
分かる。 【0011】図8は図7と全く同じ条件において上述し
た加算平均する測定回数が固定の従来の加算平均法を使
用して同じ0.01μFのフィルムコンデンサの絶縁抵
抗を測定したときの実測抵抗値である。この場合、加算
平均する測定回数Nは10回とした。測定開始直後にデ
ータがないのは、最初のデータが10回の測定データを
得てから加算平均することによって得られるためであ
り、この無データ期間は最初の10回の測定期間に相当
する。この図の特性曲線から明瞭なように、抵抗値が1
13Ωを越えたころ(2分経過後あたり)からノイズの
影響が出始めており、上述した加算平均法によっても、
1013Ωより若干大きい抵抗値あたりまでが測定限界で
あることが分かる。また、測定精度が高いとも言えず、
測定に時間がかかることも分かる。さらに、急激に測定
値が変化する冒頭の部分の出力がないので、初期部分の
特性曲線がどのような勾配のものかが分からないという
欠点がある。 【0012】図1は加算平均する測定回数Nを可変させ
たこの発明による加算平均法を使用して、他の条件は上
記と全く同じにして0.01μFのフィルムコンデンサ
の絶縁抵抗を測定したときの実測抵抗値である。この実
施例では基準値を1011Ω(即ち、1E11)に設定
し、係数は〔10+1〕に設定した。即ち、次の式によ
って測定回数Nを算出した。 【0013】測定回数N=〔log(測定値)−log
(1E11)〕×10+1 この式によって得られた測定回数Nが測定値によってど
のように変化するかを図4に示す。また、この発明によ
る測定回数可変の加算平均法の測定動作を図5に示す。
図5においては出力される測定結果を単に「平均値」と
いう表現で表しているが、1つの測定値がそのまま出力
される場合には加算平均しないことは言うまでもない。
なお、この実施例では加算平均する測定回数Nを決定す
るパラメータの1つである基準値を1011Ωに設定した
が、この基準値に限定されるものではない。また、係数
もこの例に限定されない。 【0014】図4のデータから明瞭なように、この発明
では充電電流が大きく、かつ変化が大きいときには加算
平均する測定回数Nが少なくなり、特に初期においては
加算平均されずに測定値がそのまま出力されるから、図
1の特性曲線から明瞭なように、測定開始直後において
も測定データが現れ、測定開始直後の特性が分からない
という欠点は除去される。また、測定時間が短縮され
る。一方、ノイズの影響が出てくる基準値1011Ωを境
にして加算平均する測定回数Nが増大するから、図1の
特性曲線から明瞭なように、1013Ωを越えても測定値
が安定しており、ノイズの影響を受けないことが分か
る。よって、高抵抗においても高精度の測定値が得ら
れ、また、測定できる高抵抗の範囲が広くなるという利
点がある。 【0015】図2は従来の絶縁抵抗計で、固定の測定回
数を加算平均する加算平均法を使用することなく、10
0pFのセラミックコンデンサの絶縁抵抗を25Vの電
圧を印加して測定したときの実測抵抗値と、この発明に
よる加算平均する測定回数Nを可変させた加算平均法を
使用して、他は全く同じ条件で100pFのセラミック
コンデンサの絶縁抵抗を測定したときの実測抵抗値とを
比較して示すものである。この図から明瞭なように、こ
の発明の方法によれば1014Ωを越えても測定値が安定
しており、ノイズの影響を受けないことが分かる。 【0016】図3は従来の絶縁抵抗計で、加算平均法を
使用することなく、10pFのセラミックコンデンサの
絶縁抵抗を25Vの電圧を印加して測定したときの実測
抵抗値と、加算平均する測定回数Nを可変させたこの発
明による加算平均法を使用して、他は全く同じ条件で1
0pFのセラミックコンデンサの絶縁抵抗を測定したと
きの実測抵抗値とを比較して示すものである。この図か
ら明瞭なように、この発明の方法によれば1014Ωをか
なり越えた高抵抗値も、ノイズの影響を受けずに安定し
て測定できることが分かる。 【0017】このように、この発明では、絶縁抵抗の測
定に際し、最初に大きな充電電流が流れるときには加算
平均せずにそのまま出力するか、加算平均する測定回数
を最小限に抑えて、測定が高速度で行えるようにし、一
方、充電電流が減少して測定電流値が設定可能な基準値
を越すようになったら加算平均する測定回数を増加して
ノイズ成分を平均化し、低ノイズ化するようにしたの
で、電流が少なくなればなるほど、電流の変化率は小さ
くなり、加算平均する測定回数の増加による影響を受け
難くなる。 【0018】 【発明の効果】以上説明したように、この発明によれ
ば、加算平均法を使用するにもかかわらず測定時間の短
縮が可能となり、例えばコンデンサなどの製品の検査時
間を短縮することができる。また、かなり高い絶縁抵抗
値でもノイズの影響を受けることなく安定に高精度に測
定できるから、測定範囲を拡大することができるという
顕著な効果がある。従って、この発明の方法を適用すれ
ば、低ノイズと高速性を兼ね備えた超絶縁計を実現でき
る。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to measurement results (measured values).
In a measurement system that takes a plurality of times, adds and averages them, and outputs the data (the data output as the measurement result is the data of the average of a fixed number of previous measurements), the number of measurements to be added and averaged is not fixed Change according to the measurement result,
The present invention relates to a method for measuring insulation resistance, which significantly reduces the influence of noise included in a measurement system and enables high-speed measurement. [0002] For example, capacitors and dielectrics (insulators)
When the insulation resistance of each product is measured on a product inspection line as described above and the quality is determined, the indication of the insulation resistance value is greatly affected by noise components included in the measurement system. In particular, in the measurement of ultra-high resistance, since the insulation resistance is measured by a very small current, it is greatly affected by noise and causes a large error. In addition, the range that can be measured is limited by the contamination of noise. This phenomenon is remarkable in a capacitor or a dielectric having a relatively large capacitance that makes it easier to pass a noise component. Conventionally, in order to reduce the influence of noise,
The insulation resistance has been measured by an ammeter having an input resistance having a large resistance value for suppressing noise current or a measurement system using a high voltage source having a high internal resistance. However, in this method, the time required for charging the capacitance until the measurement of the insulation resistance becomes longer because the time constant due to the circuit resistance and the capacitance of the measurement system increases, that is, the response speed becomes slower, and the measurement of the insulation resistance becomes faster. Can't do it. On the other hand, a method of taking measurement results a plurality of times in order to reduce noise, averaging the results, and outputting the results is conventionally employed. [0004] In the case of using an averaging method of averaging and outputting the results of the above-mentioned multiple measurements, the influence of noise can be reduced considerably. However, in the conventional averaging method, the number of measurements N for averaging is set to a constant and invariable number during one measurement period such as 5 or 10 (for example, 50 or 100). In some cases, the number of times is large).
As shown in the figure, it takes time for the number of times of averaging from the start of the measurement until the result is obtained (in the example of FIG. 6, no output is generated until the averaging of the five measurement results). Response time was long and was not suitable for high-speed measurement. SUMMARY OF THE INVENTION An object of the present invention is to eliminate the above-mentioned disadvantages of the prior art, to enable high-speed measurement of insulation resistance despite the use of the averaging method, and to achieve high accuracy even with ultra-high resistance. It is an object of the present invention to provide a method for measuring an insulation resistance that enables stable measurement. According to the present invention, in the measurement of insulation resistance using a measurement method in which a measurement result is taken a plurality of times, the results are averaged and output, a large charge current flows in the initial stage of the measurement. Is output without adding or averaging, or the number of measurements for averaging is minimized, and the number of measurements for averaging is increased when the charging current decreases and the measured current value exceeds a configurable reference value. In this case, the noise components are averaged. When this method is applied, even if the averaging method is used, the measurement can be speeded up, and even if the insulation resistance is very high, the measurement can be performed stably with high accuracy. Hereinafter, embodiments of the present invention will be described in detail. When measuring the insulation resistance of a device under test such as a capacitor or a dielectric, a large current flows at the beginning of the measurement.
Of these currents, the current flowing as an insulator is very small, and most of the current is a charging current for charging the capacity of the device under test. As described above, at the initial stage of the measurement, the current value is large, so that it is not affected by noise. Further, since the change rate of the current is large, even if the number N of times of averaging is large, the measurement accuracy is not improved. If the number of measurements N to be added and averaged is not constant as in the related art, the same number of measurements N will be obtained even in the initial stage of measurement, so that the measurement time will be long and will be an obstacle to executing high-speed measurement. As a result of repeating various experiments focusing on the above points, the present inventor has found that when the charging current at the initial stage of measurement is large and the change in the current is large, the output is performed without adding or averaging the number of measurements. By minimizing N, increasing the number of measurements N at the boundary of a measured value (reference value) affected by noise, and averaging the noise component to stabilize the measured value, the addition averaging is performed. It was confirmed that even if the method was used, the measurement could be speeded up, and that the measurement could be performed with high accuracy and stability even with an ultra-high insulation resistance. The inventor measured the insulation resistance of the capacitor by setting the number of measurements N to be averaged, which is controlled according to the measurement result, by the following equation. Number of measurements N = | log (measured value) -log (reference value) |
× coefficient Here, “measured value” is data actually measured,
The “reference value” is a measurement value serving as a reference for determining the number of measurements N to be averaged, and the “coefficient” is a constant that determines an increase rate of the number of measurements N to be averaged. In this example, both the measured value and the reference value are logarithmic values, because the resistance value is generally displayed on a logarithmic scale. Therefore, it is needless to say that the logarithmic value is merely an example and is not limited to this. FIG. 7 shows measured resistance values (when the averaging method is not used) when the insulation resistance of a 0.01 μF film capacitor is measured by applying a voltage of 25 V with a conventional insulation resistance meter. The vertical axis indicates the resistance value (Ω) and is displayed on a logarithmic scale. The horizontal axis indicates time (second), and the first is 10 seconds. As is clear from the characteristic curve in this figure, the resistance value decreases with time, but the resistance value is 10 13
It can be seen that the influence of noise starts to increase from the time when the resistance exceeds Ω (after about one minute), and it is difficult to measure a resistance value larger than this. Of course, it can be seen that the resistance value near 10 13 Ω is also affected by noise, and an accurate value cannot be obtained. FIG. 8 shows an actually measured resistance value when the insulation resistance of the same 0.01 μF film capacitor is measured using the conventional averaging method in which the number of times of averaging is fixed under the same conditions as in FIG. It is. In this case, the number of measurements N to be averaged was set to 10 times. The reason why there is no data immediately after the start of the measurement is that the first data is obtained by acquiring and averaging 10 measurement data, and this non-data period corresponds to the first 10 measurement periods. As is clear from the characteristic curve of FIG.
The effect of noise began to appear around 0 13 Ω (after about 2 minutes), and according to the averaging method described above,
It can be seen that the measurement limit is reached up to around a resistance value slightly higher than 10 13 Ω. Also, it cannot be said that the measurement accuracy is high,
It can also be seen that the measurement takes time. Furthermore, since there is no output at the beginning of the measurement where the measured value changes rapidly, there is a disadvantage that it is not possible to know what slope the characteristic curve of the initial part has. FIG. 1 shows a case where the insulation resistance of a film capacitor of 0.01 μF was measured using the averaging method according to the present invention in which the number of measurements N for averaging was varied, and the other conditions were exactly the same as above. Is the actually measured resistance value. In this embodiment, the reference value is set to 10 11 Ω (that is, 1E11), and the coefficient is set to [10 + 1]. That is, the number of measurements N was calculated by the following equation. The number of measurements N = [log (measured value) -log
(1E11)] × 10 + 1 FIG. 4 shows how the number of measurements N obtained by this equation changes depending on the measured value. FIG. 5 shows the measuring operation of the averaging method of the present invention in which the number of times of measurement is variable.
In FIG. 5, the output measurement result is simply expressed as “average value”, but it goes without saying that when one measurement value is output as it is, the averaging is not performed.
In this embodiment, the reference value, which is one of the parameters for determining the number of measurements N to be averaged, is set to 10 11 Ω. However, the present invention is not limited to this reference value. Further, the coefficient is not limited to this example. As is clear from the data of FIG. 4, according to the present invention, when the charging current is large and the change is large, the number of measurements N to be averaged is reduced. Therefore, as is clear from the characteristic curve of FIG. 1, the measurement data appears even immediately after the start of the measurement, and the disadvantage that the characteristic immediately after the start of the measurement is not known is eliminated. Further, the measurement time is shortened. On the other hand, since the number N of times of addition and averaging increases at a reference value of 10 11 Ω where the influence of noise appears, the measured value exceeds 10 13 Ω, as is clear from the characteristic curve of FIG. It can be seen that it is stable and is not affected by noise. Therefore, there is an advantage that a highly accurate measured value can be obtained even at a high resistance, and the range of the high resistance that can be measured is widened. FIG. 2 shows a conventional insulation resistance meter, which does not use the averaging method of averaging the fixed number of measurements.
Using the measured resistance value obtained by measuring the insulation resistance of a ceramic capacitor of 0 pF by applying a voltage of 25 V and the averaging method according to the present invention in which the number of times of averaging N is varied, the other conditions are exactly the same. 2 shows the measured resistance value when the insulation resistance of a 100 pF ceramic capacitor is measured. As is clear from this figure, according to the method of the present invention, the measured value is stable even when it exceeds 10 14 Ω, and it is understood that it is not affected by noise. FIG. 3 shows a conventional insulation resistance meter, in which the insulation resistance of a 10 pF ceramic capacitor is measured by applying a voltage of 25 V without using the averaging method, and the measured resistance value is obtained by averaging. Using the averaging method according to the present invention in which the number N is varied, 1
This is a comparison between the measured resistance value when measuring the insulation resistance of a 0 pF ceramic capacitor. As is clear from this figure, according to the method of the present invention, even a high resistance value considerably exceeding 10 14 Ω can be measured stably without being affected by noise. As described above, according to the present invention, when measuring the insulation resistance, when a large charging current flows for the first time, output is performed without adding or averaging, or the number of times of averaging is minimized, and the measurement is performed with high accuracy. At the same time, when the charging current decreases and the measured current value exceeds a settable reference value, the number of times of averaging is increased to increase the number of measurements and the noise component is averaged to reduce noise. Therefore, as the current decreases, the rate of change of the current decreases, and the current is less likely to be affected by the increase in the number of times of averaging. As described above, according to the present invention, the measurement time can be reduced despite the use of the averaging method, and the inspection time of products such as capacitors can be reduced. Can be. Further, since the measurement can be performed stably and accurately without being affected by noise even at a considerably high insulation resistance value, there is a remarkable effect that the measurement range can be expanded. Therefore, by applying the method of the present invention, a super-insulation meter having both low noise and high speed can be realized.

【図面の簡単な説明】 【図1】この発明による測定方法を適用して測定したフ
ィルムコンデンサの絶縁抵抗を示す特性図である。 【図2】従来の絶縁抵抗計によって測定した他のセラミ
ックコンデンサの絶縁抵抗とこの発明による測定方法を
適用して測定した絶縁抵抗とを示す特性図である。 【図3】従来の絶縁抵抗計によって測定したさらに他の
セラミックコンデンサの絶縁抵抗とこの発明による測定
方法を適用して測定した絶縁抵抗とを示す特性図であ
る。 【図4】この発明による測定方法において用いられた基
準値及び係数から得られた測定回数が測定値によって変
化する態様を示す図である。 【図5】この発明による測定方法において使用された加
算平均法の測定動作を説明するための図である。 【図6】従来の加算平均する測定回数を固定とした加算
平均法の測定動作を説明するための図である。 【図7】従来の絶縁抵抗計によって測定した図1と同じ
フィルムコンデンサの絶縁抵抗を示す特性図である。 【図8】従来の絶縁抵抗計に加算平均する測定回数を固
定とした従来の加算平均法を適用して測定した図1と同
じフィルムコンデンサの絶縁抵抗を示す特性図である。
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a characteristic diagram showing the insulation resistance of a film capacitor measured by applying the measuring method according to the present invention. FIG. 2 is a characteristic diagram showing the insulation resistance of another ceramic capacitor measured by a conventional insulation resistance meter and the insulation resistance measured by applying the measurement method according to the present invention. FIG. 3 is a characteristic diagram showing the insulation resistance of still another ceramic capacitor measured by a conventional insulation resistance meter and the insulation resistance measured by applying the measurement method according to the present invention. FIG. 4 is a diagram showing a mode in which the number of measurements obtained from a reference value and a coefficient used in the measurement method according to the present invention changes according to the measurement value. FIG. 5 is a diagram for explaining a measuring operation of the averaging method used in the measuring method according to the present invention. FIG. 6 is a diagram for explaining a measurement operation of the conventional averaging method in which the number of measurements for averaging is fixed. FIG. 7 is a characteristic diagram showing the insulation resistance of the same film capacitor as in FIG. 1 measured by a conventional insulation resistance meter. 8 is a characteristic diagram showing the insulation resistance of the same film capacitor as in FIG. 1 measured by applying the conventional averaging method in which the number of times of averaging is fixed to the conventional insulation resistance meter.

Claims (1)

(57)【特許請求の範囲】 【請求項1】 入力抵抗を有する電流計と内部抵抗を有
する電源とを使用する測定系を用いて絶縁抵抗を測定
し、測定した測定値と以前に測定した複数の測定値を加
算平均して測定結果として出力する、コンデンサや誘電
体の絶縁抵抗の測定方法において、 上記測定した測定値の対数と上記加算平均する数を決め
る基準抵抗値の対数との差に、上記加算平均する数の増
加率を決める係数を掛けた数を上記加算平均する数とす
るこを特徴とする絶縁抵抗の測定方法。
(57) [Claim 1] Insulation resistance was measured using a measuring system using an ammeter having an input resistance and a power supply having an internal resistance, and the measured value and the previously measured value were measured. In a method of measuring the insulation resistance of a capacitor or a dielectric, which averages and outputs a plurality of measured values as a measurement result, a difference between a logarithm of the measured value and a logarithm of a reference resistance value which determines the number to be averaged. A method for measuring the insulation resistance, characterized in that a number obtained by multiplying a coefficient for determining an increasing rate of the number to be averaged is a number to be averaged.
JP28483694A 1994-11-18 1994-11-18 How to measure insulation resistance Expired - Fee Related JP3461937B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28483694A JP3461937B2 (en) 1994-11-18 1994-11-18 How to measure insulation resistance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28483694A JP3461937B2 (en) 1994-11-18 1994-11-18 How to measure insulation resistance

Publications (2)

Publication Number Publication Date
JPH08146057A JPH08146057A (en) 1996-06-07
JP3461937B2 true JP3461937B2 (en) 2003-10-27

Family

ID=17683647

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28483694A Expired - Fee Related JP3461937B2 (en) 1994-11-18 1994-11-18 How to measure insulation resistance

Country Status (1)

Country Link
JP (1) JP3461937B2 (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4685500B2 (en) * 2005-04-20 2011-05-18 日置電機株式会社 Insulation resistance tester
JP4670551B2 (en) * 2005-08-26 2011-04-13 富士ゼロックス株式会社 Resistivity measuring apparatus and resistivity measuring method
JP4640204B2 (en) * 2006-02-17 2011-03-02 信越半導体株式会社 Evaluation method of SOI wafer
JP2007240320A (en) * 2006-03-08 2007-09-20 Fujitsu Ltd Electrical resistance measuring method and resistance measuring device using same
JP5384039B2 (en) * 2008-06-16 2014-01-08 住友重機械工業株式会社 Method for measuring internal resistance of storage battery in working machine and internal resistance measuring device
JP5627326B2 (en) * 2010-07-26 2014-11-19 日置電機株式会社 Ground resistance meter and method for measuring ground resistance
US8659858B2 (en) 2010-08-24 2014-02-25 Sanyo Electric Co., Ltd. Ground-fault detecting device, current collecting box using the ground-fault detecting device, and photovoltaic power generating device using the current collecting box
JP5959293B2 (en) * 2012-04-27 2016-08-02 日置電機株式会社 Insulation resistance measuring device and insulation resistance measuring method
JP6966309B2 (en) * 2017-12-11 2021-11-10 日置電機株式会社 Insulation resistance tester and its measurement method
WO2023119686A1 (en) * 2021-12-24 2023-06-29 株式会社日立産機システム Management device for power transmission mechanism, management method for power transmission mechanism, and management system

Also Published As

Publication number Publication date
JPH08146057A (en) 1996-06-07

Similar Documents

Publication Publication Date Title
US4825147A (en) Capacitance measuring method and apparatus
JP3461937B2 (en) How to measure insulation resistance
US4646248A (en) Insulation analyzer apparatus and method of use
US5621329A (en) Automatic self-calibration system for digital teraohmmeter
JP3137060B2 (en) How to judge the quality of capacitors
JP3216171B2 (en) IC test equipment calibration method
US5854425A (en) Method for measurement and compensation of a time constant for a constant voltage anemometer
Hantouche et al. Digital measurement of partial discharges in full-sized power capacitors
JP2982236B2 (en) Test circuit for semiconductor integrated circuits
JPH1144715A (en) Measurement of insulating resistance of electronic part
JPH09113545A (en) Electric current measuring device
JP2954449B2 (en) Capacitance measuring circuit and LCR meter having the same
US3967196A (en) Method and apparatus for measuring the void content of a solid dielectric
JP3245397B2 (en) Partial discharge measurement method
JPH0149904B2 (en)
JPH0521429B2 (en)
US8903687B1 (en) Dielectric absorption compensation for a measurement instrument
Filipovic-Grcic et al. An Improved Method for Performance Testing of Partial Discharge Calibrators
JP2940598B2 (en) Power system harmonic measurement method
EP0666646A2 (en) Differential voltage monitor
JPH0743403B2 (en) Insulation resistance measurement method
JP3421524B2 (en) How to measure capacitance
SU789782A1 (en) Method of measuring d.c. and a.c. voltage
JPS6314528B2 (en)
JPH06222107A (en) Maximum hysteresis error measuring method

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090815

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090815

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110815

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110815

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130815

Year of fee payment: 10

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees