JP3461697B2 - Heat exchange element - Google Patents

Heat exchange element

Info

Publication number
JP3461697B2
JP3461697B2 JP26847097A JP26847097A JP3461697B2 JP 3461697 B2 JP3461697 B2 JP 3461697B2 JP 26847097 A JP26847097 A JP 26847097A JP 26847097 A JP26847097 A JP 26847097A JP 3461697 B2 JP3461697 B2 JP 3461697B2
Authority
JP
Japan
Prior art keywords
partition plate
heat exchange
spacing
air flow
rib
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP26847097A
Other languages
Japanese (ja)
Other versions
JPH11108580A (en
Inventor
拓也 村山
敏男 歌川
Original Assignee
松下エコシステムズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 松下エコシステムズ株式会社 filed Critical 松下エコシステムズ株式会社
Priority to JP26847097A priority Critical patent/JP3461697B2/en
Publication of JPH11108580A publication Critical patent/JPH11108580A/en
Application granted granted Critical
Publication of JP3461697B2 publication Critical patent/JP3461697B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、熱交換形換気扇等
に使用する積層構造の熱交換素子に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a heat exchange element having a laminated structure used for a heat exchange type ventilation fan or the like.

【0002】[0002]

【従来の技術】従来、この種の熱交換素子は、特開昭5
5−72797号公報に記載されたものが知られてい
る。
2. Description of the Related Art Heretofore, this type of heat exchange element has been disclosed in Japanese Patent Laid-Open No.
The one described in Japanese Patent Publication No. 5-72797 is known.

【0003】以下、その熱交換素子について図7を参照
しながら説明する。図に示すように、熱交換素子101
は仕切板102と前記仕切板102を所定間隔に保持す
る波形の間隔板103からなり、1次気流Aと2次気流
Bとが直交するよう流入し、前記仕切板102を介して
熱交換される。
The heat exchange element will be described below with reference to FIG. As shown in the figure, the heat exchange element 101
Is composed of a partition plate 102 and a corrugated space plate 103 that holds the partition plate 102 at a predetermined interval, and the primary airflow A and the secondary airflow B flow in at right angles to each other, and heat is exchanged through the partition plate 102. It

【0004】[0004]

【発明が解決しようとする課題】このような従来の熱交
換素子では、熱交換素子101を構成する仕切板102
および間隔板103の基材は、和紙等の多孔質材料で形
成されているために、1次気流と2次気流が混合するの
で、多孔質材料にポリビニールアルコール等を含侵さ
せ、2種の気流の混合を抑制するような効果を持たせて
いるが、そのために1次気流または2次気流からの水蒸
気の移行が妨げられ、湿度交換効率が低下するという課
題があり、2種の気流の混合を抑制し、かつ湿度交換効
率の高い熱交換素子が要求されている。
In such a conventional heat exchange element, a partition plate 102 constituting the heat exchange element 101 is used.
Since the base material of the spacing plate 103 is made of a porous material such as Japanese paper, the primary air flow and the secondary air flow are mixed, so that the porous material is impregnated with polyvinyl alcohol or the like, and two types are used. Has the effect of suppressing the mixing of the air currents, but this impedes the transfer of water vapor from the primary air current or the secondary air current, and there is a problem that the humidity exchange efficiency decreases, and there are two types of air currents. There is a demand for a heat exchange element which suppresses the mixing of the above and has a high humidity exchange efficiency.

【0005】また、仕切板102および間隔板103の
膜厚は100〜200μmと厚いために温度交換効率が
低くなり、仕切板の厚さを薄くし、温度交換効率を向上
させると仕切板に腰がなくなり作業性が低下するという
課題があり、仕切板の作業性が良く、熱交換素子の量産
性を向上させ、かつ温度および湿度の交換効率の高い熱
交換素子が要求されている。
Further, since the thickness of the partition plate 102 and the spacing plate 103 is as thick as 100 to 200 μm, the temperature exchanging efficiency becomes low, and if the thickness of the partition plate is made thin and the temperature exchanging efficiency is improved, the partition plate becomes smooth. Therefore, there is a demand for a heat exchange element having good partition plate workability, improved mass productivity of heat exchange elements, and high temperature and humidity exchange efficiency.

【0006】また、多湿条件下では仕切板102がたわ
み、1次気流側と2次気流側で不均一になり、通気抵抗
が高くなるという課題があり、寸法安定性が良く、気流
の通気抵抗を低減することと、1次気流と2次気流の通
気抵抗の不均一をなくす熱交換素子が要求されている。
In addition, there is a problem that the partition plate 102 bends under high humidity conditions and becomes non-uniform on the primary air flow side and the secondary air flow side, resulting in high airflow resistance, which has good dimensional stability and airflow resistance. There is a demand for a heat exchange element that reduces air flow and eliminates non-uniformity of ventilation resistance between the primary and secondary air streams.

【0007】また、従来の熱交換素子101で気流の通
気抵抗を低減しようとした場合、間隔板103の幅ピッ
チwを広くする必要があり、幅ピッチwを広くすると、
湿度により波形が崩れ、間隔板103の高さピッチhを
高くすると、熱交換素子の一定高さ以内では仕切板の面
積が減少し、温度および湿度の交換効率が低下するとい
う課題があり、温度および湿度の交換効率が低下するこ
となく、気流の通気抵抗の小さい熱交換素子が要求され
ている。
Further, in order to reduce the air flow resistance of the conventional heat exchange element 101, it is necessary to widen the width pitch w of the spacing plate 103. If the width pitch w is widened,
When the waveform collapses due to humidity and the height pitch h of the spacing plate 103 is increased, there is a problem that the area of the partition plate decreases within a certain height of the heat exchange element, and the efficiency of temperature and humidity exchange decreases. Further, there is a demand for a heat exchange element having a small air flow resistance without reducing the humidity exchange efficiency.

【0008】また、熱交換素子101の間隔板103は
通風路を構成するものであり、温度および湿度の交換効
率への寄与は小さく、間隔板を少なくし気流との接触を
少なくし通気抵抗を低減する熱交換素子が要求されてい
る。
Further, since the spacing plate 103 of the heat exchange element 101 constitutes a ventilation passage, the contribution of temperature and humidity to the exchange efficiency is small, and the spacing plate is reduced to reduce the contact with the air flow to reduce the ventilation resistance. There is a demand for reducing heat exchange elements.

【0009】本発明は、このような従来の課題を解決す
るものであり、二酸化炭素および臭い成分等の他気流へ
の移行を抑制し、温度および湿度の交換効率を向上させ
ること、また仕切板の作業性を良くし、量産性を向上さ
せること、また寸法安定性を良くすることにより、気流
の通気抵抗が低減し、1次気流と2次気流の通気抵抗の
不均一をなくすことのできる熱交換素子の提供を目的と
している。
The present invention solves such a conventional problem by suppressing transfer of carbon dioxide and odorous components to other air flows, improving temperature and humidity exchange efficiency, and a partition plate. By improving the workability, improving the mass productivity, and improving the dimensional stability, it is possible to reduce the ventilation resistance of the air flow and eliminate the non-uniformity of the ventilation resistance of the primary air flow and the secondary air flow. The purpose is to provide a heat exchange element.

【0010】[0010]

【0011】[0011]

【0012】[0012]

【0013】[0013]

【0014】[0014]

【課題を解決するための手段】 本発明の熱交換素子は上
記目的を達成するために、仕切板と、この仕切板を所定
間隔に保持する間隔板とからなる単位素子を一段おきに
90度交互に積層し、1次気流と2次気流とが前記仕切
板を介して、温度と湿度を交換させるもので、前記 仕切
板と間隔板、または少なくとも前記仕切板を構成する透
湿性樹脂フィルムを、セルロース繊維50〜99重量%
および透湿性樹脂フィルムと同質の成分1〜50重量%
とからなる混抄紙で両面または少なくとも片面をラミネ
ート溶着したものである。
Means for Solving the Problems A heat exchange element of the present invention on
In order to achieve the above purpose, the partition plate and this partition plate are specified
Every other unit element consisting of a spacing plate held at intervals
Alternately laminated by 90 degrees, and the primary air flow and the secondary air flow are the partitions
Through the plate, in which to exchange temperature and humidity, the partition plate and the spacing plate, or the moisture-permeable resin film constituting at least the partition plate, cellulose fibers 50 to 99 wt%
And 1-50% by weight of the same component as the moisture-permeable resin film
The double-sided, or at least one surface in mixed paper consisting of those obtained by laminating welding.

【0015】本発明によれば、温度および湿度の交換効
率を向上させることができる。また寸法安定性が良く、
気流の通気抵抗を低減することができる。また二酸化炭
素および臭い成分等の他気流への移行を抑制することが
できる。また、熱交換素子製造の作業性を良くし、量産
性を向上させることができる。また透湿性樹脂フィルム
と混抄紙を部分的に溶着しているので、水蒸気分圧差で
の拡散による水蒸気の移行、または溶解、拡散、脱溶解
等により移行する水蒸気の伝熱面積の減少を抑えること
ができ、湿度交換効率の低下を抑制することのできる熱
交換素子が得られる。
According to the present invention, the effect of exchanging temperature and humidity is improved.
The rate can be improved. It also has good dimensional stability,
The ventilation resistance of the airflow can be reduced. Also carbon dioxide
To suppress the transfer of elementary and odorous components to other air flows
it can. Further, the workability of manufacturing the heat exchange element can be improved and the mass productivity can be improved. In addition, since the moisture-permeable resin film and the mixed paper are partially welded, it is possible to suppress the decrease of the heat transfer area of the steam that is transferred due to the diffusion of water vapor due to the partial pressure difference of the steam, or the dissolution, diffusion, and demelting. Therefore, a heat exchange element that can suppress the decrease in humidity exchange efficiency can be obtained.

【0016】また他の手段は、仕切板に透湿性樹脂フィ
ルムを用い、その仕切板の表面の両端部を遮蔽する遮蔽
リブと、この遮蔽リブと並行に所定間隔に複数本の間隔
リブを設け、前記仕切板の裏面は、前記仕切板の表面の
遮蔽リブと直交または斜交するように遮蔽リブを設け、
その遮蔽リブと並行に所定間隔に複数本の間隔リブを、
前記仕切板を介して前記仕切板の表裏の遮蔽リブおよび
間隔リブを樹脂にて一体成形した単位素子と、前記仕切
板とを交互に複数枚積層接着したものである。
Another means is to use a moisture-permeable resin film for the partition plate and to shield the both ends of the surface of the partition plate, and a plurality of shield ribs at predetermined intervals in parallel with the shield rib. The spacing rib is provided, and the back surface of the partition plate is provided with a shielding rib so as to be orthogonal or oblique to the shielding rib on the surface of the partition plate,
In parallel with the shielding rib, a plurality of spacing ribs at a predetermined spacing,
A plurality of unit elements in which the shielding ribs and the spacing ribs on the front and back of the partition plate are integrally molded with resin via the partition plate and the partition plate are alternately laminated and bonded.

【0017】そして本発明によれば、温度および湿度の
交換効率が低下することなく、気流の通気抵抗を低減す
ることのできる熱交換素子が得られる。
According to the present invention, it is possible to obtain the heat exchange element capable of reducing the ventilation resistance of the air flow without lowering the exchange efficiency of temperature and humidity.

【0018】また他の手段は、仕切板の表面および裏面
の間隔リブを断続的な構造としたものである。
Another means is that the spacing ribs on the front and back surfaces of the partition plate have an intermittent structure.

【0019】そして本発明によれば、間隔リブを断続的
にすることにより気流は分岐と合流が行われることによ
り境界層が破壊され、温度および湿度の交換効率を向上
することのできる熱交換素子が得られる。
Further, according to the present invention, by making the spacing ribs intermittent, the airflow is branched and merged so that the boundary layer is destroyed and the efficiency of temperature and humidity exchange can be improved. Is obtained.

【0020】また他の手段は、ほぼ六角形を有する仕切
板の表面の両端部を遮蔽する遮蔽リブと、この遮蔽リブ
と並行に所定間隔に複数本の間隔リブを設け、前記仕切
板の裏面は、気流の流入口および吐出口の近傍では、前
記仕切板の表面の間隔リブと直交または斜交するよう
に、また中央部分では対向流部分が形成されるように間
隔リブと遮蔽リブを設けたものである。
Another means is to provide a shielding rib for shielding both ends of the surface of the partition plate having a substantially hexagonal shape, and a plurality of spacing ribs at predetermined intervals in parallel with the shielding rib. In the vicinity of the inflow port and the discharge port of the air flow, the spacing ribs and the shielding ribs are provided so as to be orthogonal or oblique to the spacing ribs on the surface of the partition plate, and the counterflow portion is formed in the central portion. It is a thing.

【0021】そして本発明によれば、対向流の構造によ
り温度および湿度の交換効率を向上することのできる熱
交換素子が得られる。
According to the present invention, it is possible to obtain the heat exchange element which can improve the exchange efficiency of temperature and humidity by the structure of the counter flow.

【0022】また他の手段は、仕切板の表面の中央部分
の対向流部分はほぼS字状を有し、前記仕切板の裏面の
中央部分は、前記仕切板の表面の対向流部分のS字状の
山の部分と、前記仕切板の裏面の対向流部分のS字状の
谷の部分が重なるように構成したものである。
According to another means, the counterflow portion of the central portion of the front surface of the partition plate has a substantially S shape, and the center portion of the rear surface of the partition plate has an S portion of the counterflow portion of the front surface of the partition plate. It is configured such that the character-shaped peak portion and the S-shaped valley portion of the counterflow portion on the back surface of the partition plate overlap.

【0023】そして本発明によれば、S字状の通風路に
より1次気流と2次気流の接触時間が長くなり、温度お
よび湿度の交換効率を向上させることができ、また1次
気流と2次気流の通気抵抗の不均一をなくすことのでき
る熱交換素子が得られる。
According to the present invention, the S-shaped ventilation passage lengthens the contact time between the primary air flow and the secondary air flow, so that the exchange efficiency of temperature and humidity can be improved. It is possible to obtain a heat exchange element capable of eliminating the non-uniformity of the ventilation resistance of the secondary air flow.

【0024】[0024]

【0025】[0025]

【0026】[0026]

【発明の実施の形態】 本発明は、仕切板と、この仕切板
を所定間隔に保持する間隔板とからなる単位素子を、一
段おきに90度交互に積層し、1次気流と2次気流とが
前記仕切板を介して、温度と湿度を交換させるもので、
前記 仕切板と間隔板、または少なくとも前記仕切板を構
成する透湿性樹脂フィルムを、セルロース繊維50〜9
9重量%および透湿性樹脂フィルムと同質の成分1〜5
0重量%とからなる混抄紙で両面または片面をラミネー
溶着したものであり、仕切板を介して1次気流と2次
気流との間で湿度交換される際に、多湿側の気流中の水
蒸気を水蒸気分圧差を利用し低湿側へ移行させるか、多
湿側の気流中の水蒸気のみを透湿性樹脂フィルムの表面
で溶解させ、内部で拡散させ、低湿側の表面で脱溶解さ
せ水蒸気を移行させるもので、二酸化炭素および臭い成
分等の他気流への移行が抑制でき、また従来の多孔質材
に比べ膜厚が薄いために、温度および湿度の交換効率を
向上させることができる。また、透湿性樹脂フィルムは
結晶性を有するために、多湿条件下においても寸法安定
性が高く、仕切板のたわみを防止し、気流の通気抵抗を
低減させることができる。また、仕切板および間隔板ま
たは仕切板の腰が強くなり、作業性が良く、量産性が向
上する。また、混抄紙中のセルロース繊維は透湿性樹脂
フィルムと溶着しないために、透湿性樹脂フィルムと混
抄紙を部分的に溶着しているので、水蒸気分圧差での拡
散による水蒸気の移行、または水蒸気の溶解、拡散、脱
溶解する面積の減少を抑えることができ、湿度交換効率
の低下を抑制することができる。
BEST MODE FOR CARRYING OUT THE INVENTION The present invention relates to a partition plate and this partition plate.
The unit element consisting of a spacing plate that holds the
Alternating layers are stacked 90 degrees, and the primary and secondary air flows are
The temperature and humidity are exchanged through the partition plate.
The partition plate and the spacing plate, or the moisture-permeable resin film constituting at least the partition plate, cellulose fibers 50-9
9% by weight and components 1 to 5 of the same quality as the moisture permeable resin film
0 are those of both surfaces or one surface was laminated welded mixed paper consisting of% by weight, the primary airflow and the secondary through the partition plate
When the humidity is exchanged with the airflow, the water in the airflow on the high humidity side
Use steam partial pressure difference to move steam to the low humidity side, or
Only the water vapor in the air flow on the wet side is the surface of the moisture permeable resin film
Dissolve on the surface of the low humidity side
It transfers water vapor and produces carbon dioxide and odor.
It is possible to suppress the transfer of air to other air currents, etc.
Because the film thickness is thinner than
Can be improved. In addition, the moisture permeable resin film
Dimensional stability even under humid conditions due to its crystallinity
Highly flexible, prevents the partition plate from flexing and improves airflow resistance.
Can be reduced. Further, the partition plate and the spacing plate or the partition plate have a strong rigidity, which improves workability and improves mass productivity. Further, since the cellulose fibers in the mixed paper do not weld to the moisture-permeable resin film, the moisture-permeable resin film and the mixed paper are partially welded, so that the migration of water vapor due to diffusion due to the difference in water vapor partial pressure, or It is possible to suppress a decrease in the area of dissolution, diffusion, and de-dissolution, and a decrease in humidity exchange efficiency.

【0027】また、仕切板に透湿性樹脂フィルムを用
い、その仕切板の表面の両端部を遮蔽する遮蔽リブと、
この遮蔽リブと並行に所定間隔に複数本の間隔リブを設
け、前記仕切板の裏面は、前記仕切板の表面の遮蔽リブ
と直交または斜交するように遮蔽リブを設け、その遮蔽
リブと並行に所定間隔に複数本の間隔リブを、前記仕切
板を介して樹脂にて一体成形した単位素子と、前記仕切
板とを交互に複数枚積層接着したものであり、樹脂で遮
蔽リブおよび間隔リブを構成するために、高さ方向を高
くすることなく気流の通風路を広くし間隔リブを少なく
することができるために、気流の通気抵抗を低減するこ
とができる。また、リブを樹脂で成形することにより、
湿度による変形やリブ高さを高くすることなく安定な通
風路が構成されるので、熱交換素子の一定高さ内での仕
切板面積を減少させることなく、また仕切板に透湿性
フィルムを使用することにより、温度および湿度の交
換効率も向上することができる。
Further, a moisture-permeable resin film is used for the partition plate, and shielding ribs for shielding both ends of the surface of the partition plate,
A plurality of spacing ribs are provided at predetermined intervals in parallel with the shielding rib, and a shielding rib is provided on the back surface of the partition plate so as to be orthogonal or oblique to the shielding rib on the surface of the partition plate, and in parallel with the shielding rib. A plurality of spacing ribs at predetermined intervals, unit elements integrally formed of resin through the partition plate and a plurality of the partition plates are laminated and bonded alternately, and the shielding rib and the spacing rib are made of resin. Therefore, the airflow passage of the airflow can be widened and the spacing ribs can be reduced without increasing the height direction, so that the ventilation resistance of the airflow can be reduced. Also, by molding the ribs with resin,
Since stable air passage is constituted without increasing the deformation or rib height due to humidity, without reducing the partition plate area within a certain height of the heat exchange element, also breathable tree partition plate
By using the oil film, the exchange efficiency of temperature and humidity can be improved.

【0028】また、仕切板の表面および裏面の間隔リブ
を断続的な構造としたものであり、間隔リブを断続的に
することにより、流入口より流入した気流は断続した間
隔リブによって分岐と合流を繰り返すことにより境界層
が破壊され、温度および湿度の交換効率を高くすること
ができる。
Further, the spacing ribs on the front surface and the back surface of the partition plate have an intermittent structure, and by making the spacing ribs intermittent, the airflow flowing from the inflow port merges with the branch by the intermittent spacing ribs. By repeating the above, the boundary layer is destroyed, and the temperature and humidity exchange efficiency can be increased.

【0029】また、ほぼ六角形を有する仕切板の表面の
両端部を遮蔽する遮蔽リブと、この遮蔽リブと並行に所
定間隔に複数本の間隔リブを設け、前記仕切板の裏面
は、気流の流入口および吐出口の近傍では、前記仕切板
の表面の間隔リブと直交または斜交するように、また中
央部分では対向流部分の通風路を構成するものであり、
直交流方式よりも高い温度および湿度の交換効率を得る
ことができる。
Further, a shielding rib that shields both ends of the surface of the partition plate having a substantially hexagonal shape, and a plurality of spacing ribs are provided at predetermined intervals in parallel with the shielding rib. In the vicinity of the inflow port and the discharge port, so as to be orthogonal or oblique to the spacing ribs on the surface of the partition plate, and in the central portion to configure the ventilation passage of the counterflow portion
It is possible to obtain higher temperature and humidity exchange efficiency than the cross flow method.

【0030】また、仕切板の表面および裏面の中央部分
の対向流部分をほぼS字状にしたものであり、直線状通
風路よりも通風路が長くなるために1次気流と2次気流
の接触時間が長くなり、温度および湿度の交換効率が向
上する。また仕切板表面のS字状の間隔リブの山と裏面
のS字状の間隔リブの谷が重なるようにすることによ
り、対向流部分での仕切板のたわみが防止できるため
に、1次気流側と2次気流側の気流の通気抵抗の不均一
をなくすことができる。
Further, the counterflow portions of the central portion of the front surface and the back surface of the partition plate are substantially S-shaped, and since the ventilation passage is longer than the straight ventilation passage, the primary airflow and the secondary airflow are The contact time becomes longer, and the exchange efficiency of temperature and humidity is improved. In addition, since the peaks of the S-shaped spacing ribs on the front surface of the partition plate and the troughs of the S-shaped spacing ribs on the back surface are overlapped with each other, the partition plate can be prevented from bending in the counterflow portion, so that the primary air flow Side non-uniformity of the air flow resistance of the secondary air flow side and the secondary air flow side can be eliminated.

【0031】以下、本発明の実施例について図面を参照
しながら説明する。
Embodiments of the present invention will be described below with reference to the drawings.

【0032】[0032]

【実施例】(実施例1) 図1に示すように、熱交換素子1は仕切板2aと、この
仕切板2aを所定間隔に保持する間隔板3とからなる単
位素子4を一段おきに90度交互に積層した構成とし、
前記仕切板2aと前記間隔板3は通風路5および通風路
6を形成し、1次気流Aと2次気流Bが交錯して各々通
風路5および通風路6を通るようにして、仕切板2aを
介して1次気流Aと2次気流Bの間で温度および湿度の
交換が行われるよう構成されている。上記仕切板2aお
よび間隔板3、または少なくとも前記仕切板2aは、透
湿性樹脂フィルム7で設けた構成としたものである。前
記透湿性樹脂フィルム7としては、ポリエステル、4フ
ッ化エチレン、ポリエチレン、ポリウレタン、ポリエチ
レンテレフタレート、アクリル、ポリエステル、ポリ塩
化ビニル、ポリ塩化ビニリデン、ポリスチレン、ポリエ
チレン−ポリオレフィン共重合体、ポリエチレン−ポリ
塩化ビニル共重合等を主成分とするフィルムを使用する
ことができるが、中でもポリエステル、4フッ化エチレ
ン、ポリエチレン等を主成分とする透湿性樹脂フィルム
の使用が好ましいが、価格の安価なポリエチレン系透湿
樹脂フィルムの使用が更に好ましい。以下、仕切板2
aの透湿性樹脂フィルム7はポリエチレン系で説明す
る。
EXAMPLE 1 As shown in FIG. 1, the heat exchange element 1 has a unit element 4 consisting of a partition plate 2a and a spacing plate 3 for holding the partition plate 2a at a predetermined spacing, and the unit elements 4 are arranged at every other stage. It is configured to be laminated alternately.
The partition plate 2a and the spacing plate 3 form a ventilation passage 5 and a ventilation passage 6 so that the primary air flow A and the secondary air flow B intersect with each other to pass through the ventilation passage 5 and the ventilation passage 6, respectively. The temperature and humidity are exchanged between the primary airflow A and the secondary airflow B via 2a. The partition plate 2a and the spacing plate 3, or at least the partition plate 2a are provided with a moisture permeable resin film 7. Examples of the moisture-permeable resin film 7 include polyester, tetrafluoroethylene, polyethylene, polyurethane, polyethylene terephthalate, acrylic, polyester, polyvinyl chloride, polyvinylidene chloride, polystyrene, polyethylene-polyolefin copolymer, polyethylene-polyvinyl chloride copolymer. It is possible to use a film whose main component is polymerization and the like, but it is preferable to use a moisture-permeable resin film whose main component is polyester, tetrafluoroethylene, polyethylene, etc., but an inexpensive polyethylene-based moisture-permeable resin. The use of a film is more preferable. Below, partition plate 2
The moisture-permeable resin film 7 of a will be described with a polyethylene type.

【0033】温度及び湿度の交換効率を向上させるため
には、透湿性樹脂フィルムである透湿性ポリエチレン系
フィルムの膜厚は薄いほど好ましいが、薄くなると透湿
性ポリエチレン系フィルムの取り扱いが悪くなり、作業
性および量産性が低下する。本発明の透湿性ポリエチレ
ン系フィルムの膜厚は5〜100μm、好ましくは7〜
30μm、更に好ましくは7〜15μmである。
In order to improve the exchange efficiency of temperature and humidity, it is preferable that the film thickness of the moisture-permeable polyethylene film, which is a moisture-permeable resin film, is smaller. Performance and mass productivity are reduced. The film thickness of the moisture-permeable polyethylene-based film of the present invention is 5 to 100 μm, preferably 7 to
It is 30 μm, more preferably 7 to 15 μm.

【0034】上記構成により、1次気流Aおよび2次気
流Bを熱交換素子1に送風すると、通風路5を流れる1
次気流Aと通風路6を流れる2次気流Bは、仕切板2a
を介して温度と湿度の交換をする。
With the above structure, when the primary airflow A and the secondary airflow B are blown to the heat exchange element 1, the air flows through the ventilation passages 1.
The secondary air flow A and the secondary air flow B flowing through the ventilation path 6 are divided into the partition plate 2a.
Exchange temperature and humidity via.

【0035】仕切板2aを介して1次気流と2次気流と
の間で湿度交換される際に、多湿側の気流中の水蒸気を
水蒸気分圧差を利用し低湿側へ移行させるか、多湿気流
中の水蒸気のみを透湿性ポリエチレン系フィルム7の表
面で溶解させ、内部で拡散させ、低湿側の表面で脱溶解
させ水蒸気を移行させるもので、二酸化炭素および臭い
成分等の他気流への移行が抑制でき、また従来の多孔質
材に比べ膜厚が薄いために、温度および湿度の交換効率
を向上させることができる。また、透湿性ポリエチレン
系フィルム7は結晶性を有するために、多湿条件下にお
いても寸法安定性が高く、仕切板2aのたわみを防止
し、気流の通気抵抗を低減させることができる。
When the humidity is exchanged between the primary air flow and the secondary air flow through the partition plate 2a, the water vapor in the air flow on the high humidity side is transferred to the low humidity side by utilizing the partial pressure difference of water vapor, or the high humidity flow is generated. Only the water vapor in the solution is dissolved on the surface of the moisture-permeable polyethylene film 7, diffused inside, de-dissolved on the surface on the low humidity side to transfer the water vapor, and transfer to other air currents such as carbon dioxide and odorous components. Since it can be suppressed and the film thickness is smaller than that of the conventional porous material, the exchange efficiency of temperature and humidity can be improved. Further, since the moisture-permeable polyethylene film 7 has crystallinity, it has high dimensional stability even under a high-humidity condition, can prevent the partition plate 2a from flexing, and can reduce the airflow ventilation resistance.

【0036】(実施例2)実施例2も図1を参照しなが
ら説明する。なお第1実施例と同一箇所には同一番号を
付し、その詳細な説明は省略する。
(Embodiment 2) Embodiment 2 will also be described with reference to FIG. The same parts as those in the first embodiment are designated by the same reference numerals, and detailed description thereof will be omitted.

【0037】一般に、湿度交換効率を向上させるには透
湿性を向上させればよいのだが、透湿性を向上させるに
は、通気性のよい仕切板2a材料を使用すればよいが、
通気性のよい仕切板2a材料はガスバリア性が低く、排
気したい二酸化炭素や臭い成分が仕切板2aを介してま
た給気される。
Generally, it is sufficient to improve the moisture permeability in order to improve the humidity exchange efficiency, but in order to improve the moisture permeability, a material of the partition plate 2a having good air permeability may be used.
The material of the partition plate 2a having good air permeability has a low gas barrier property, and carbon dioxide and odorous components to be exhausted are supplied again through the partition plate 2a.

【0038】本発明は、非多孔質で水蒸気のみを多湿側
の仕切板2aの表面で溶解し、内部で拡散、低湿側の表
面で脱溶解し移行させる仕切板2a材料か、あるいは、
微多孔質で水蒸気を水蒸気分圧差で拡散移行させる仕切
板2a材料の開孔径を100nm以下にすること、好ま
しくは1nm以下、更に好ましくは、二酸化炭素や臭い
成分の径よりも小さく、水蒸気よりも大きい開孔径2.
9〜3.2で構成された仕切板2a材料を使用するこ
とが望ましい。
According to the present invention, a partition plate 2a material which is non-porous and dissolves only water vapor on the surface of the high humidity side partition plate 2a, diffuses inside, and dissolves and migrates on the low humidity side surface, or
The pore size of the material of the partition plate 2a, which is microporous and diffuses and transfers water vapor with a difference in water vapor partial pressure, is 100 nm or less, preferably 1 nm or less, more preferably smaller than the diameter of carbon dioxide and odorous components and smaller than that of water vapor. Large opening diameter 2.
It is desirable to use a partition plate 2a material composed of 9 to 3.2 Å .

【0039】前記、仕切板2a材料を使用することによ
り、二酸化炭素や臭いの給気側への移行を抑制すること
ができる。前記のガスバリア性を確認する簡便な方法と
して、JIS−P8117の透気度試験方法であり、こ
の試験方法での透気度が100ccの空気が透過するの
に100秒以上、好ましくは600秒以上が望ましい。
By using the material of the partition plate 2a, the transfer of carbon dioxide and odor to the air supply side can be suppressed. As a simple method for confirming the gas barrier property, there is an air permeability test method according to JIS-P8117, and it is 100 seconds or more, preferably 600 seconds or more for permeation of air having an air permeability of 100 cc in this test method. Is desirable.

【0040】上記構成により、1次気流Aおよび2次気
流Bを熱交換素子1に送風すると、通風路5を流れる1
次気流Aと通風路6を流れる2次気流Bは、仕切板2a
を介して温度と湿度の交換をする。
With the above structure, when the primary airflow A and the secondary airflow B are blown to the heat exchange element 1, they flow through the ventilation passage 1
The secondary air flow A and the secondary air flow B flowing through the ventilation path 6 are divided into the partition plate 2a.
Exchange temperature and humidity via.

【0041】仕切板2aを介して1次気流と2次気流と
の間で湿度交換される際に、多湿側の気流中の水蒸気の
みを水蒸気分圧差を利用し低湿側へ移行させるか、多湿
気流中の水蒸気のみを透湿性ポリエチレン系フィルム7
の表面で溶解させ、内部で拡散させ、低湿側の表面で脱
溶解させ水蒸気を移行させるもので、二酸化炭素および
臭い成分等の他気流への移行が抑制できる。
When the humidity is exchanged between the primary air flow and the secondary air flow through the partition plate 2a, only the water vapor in the air flow on the high humidity side is moved to the low humidity side by utilizing the partial pressure difference of water vapor, or Moisture-permeable polyethylene film 7
It is dissolved on the surface of, and diffused inside, and is dissolved on the surface of the low humidity side to dissolve water vapor, and the transfer of carbon dioxide and odorous components to other air streams can be suppressed.

【0042】(実施例3)図2を参照しながら説明す
る。なお第1および第2実施例と同一箇所には同一番号
を付し、その詳細な説明は省略する。
(Third Embodiment) A third embodiment will be described with reference to FIG. The same parts as those in the first and second embodiments are designated by the same reference numerals, and detailed description thereof will be omitted.

【0043】図2において、仕切板2aを構成する透湿
性樹脂フィルムである透湿性ポリエチレン系フィルム7
を、セルロース繊維50〜99重量%およびポリエチレ
ン系成分1〜50重量%とからなる混抄紙8で両面また
は片面をラミネート溶着したものである。
In FIG. 2, a moisture permeable polyethylene film 7 which is a moisture permeable resin film constituting the partition plate 2a.
Is laminated and welded on both sides or one side with a mixed paper 8 comprising 50 to 99% by weight of cellulose fibers and 1 to 50% by weight of a polyethylene component.

【0044】透湿性ポリエチレン系フィルム7と混抄紙
8のラミネートは、押し出しラミネートまたは熱ラミネ
ートによって溶着する。
The laminate of the moisture-permeable polyethylene film 7 and the mixed paper 8 is welded by extrusion lamination or heat lamination.

【0045】上記混抄紙8を構成するセルロース繊維お
よびポリエチレン系成分の重量比について、透湿性ポリ
エチレン系フィルム7と混抄紙8をラミネートする時
は、各々のポリエチレン系成分により溶着されるため、
混抄紙8中のポリエチレン系成分が増えると透湿性ポリ
エチレン系フィルム7との溶着面積が増加し、水蒸気の
溶解、拡散、脱溶解する面積が減少するために湿度交換
効率を低くする。また混抄紙8中のポリエチレン系成分
が減ると透湿性ポリエチレン系フィルム7との溶着面積
が減少し、接着性が低下する。よって、本発明の混抄紙
8を構成するセルロース繊維およびポリエチレン系成分
の重量比は、セルロース繊維50〜99重量%およびポ
リエチレン系成分1〜50重量%、好ましくはセルロー
ス繊維75〜85重量%およびポリエチレン系成分15
〜25重量%が望ましい。
Regarding the weight ratio of the cellulose fiber and the polyethylene component constituting the mixed paper 8, when the moisture-permeable polyethylene film 7 and the mixed paper 8 are laminated, they are welded by the respective polyethylene components.
When the amount of the polyethylene-based component in the mixed paper 8 increases, the welding area with the moisture-permeable polyethylene-based film 7 increases, and the area in which water vapor dissolves, diffuses, and de-melts decreases, so that the humidity exchange efficiency decreases. Further, when the polyethylene component in the mixed paper 8 is reduced, the welding area with the moisture permeable polyethylene film 7 is reduced and the adhesiveness is lowered. Therefore, the weight ratio of the cellulose fiber and the polyethylene-based component constituting the mixed paper 8 of the present invention is 50 to 99% by weight of the cellulose fiber and 1 to 50% by weight of the polyethylene-based component, preferably 75 to 85% by weight of the cellulose fiber and polyethylene. System component 15
-25 wt% is desirable.

【0046】上記構成により、温度および湿度の交換効
率を向上させるために膜厚を薄くした結果、腰の弱い透
湿性ポリエチレン系フィルム7を混抄紙8で両面または
片面をラミネート溶着することにより、仕切板2aの腰
が強くなり、作業性を良くし、量産性が向上する。ま
た、混抄紙8中のセルロース繊維は透湿性ポリエチレン
系フィルム7と溶着しないため、透湿性ポリエチレン系
フィルム7と混抄紙8を部分的に溶着しているので、水
蒸気の溶解、拡散、脱溶解する面積の減少を抑えること
ができ、湿度交換効率の低下を抑制することができる。
With the above structure, the film thickness is reduced in order to improve the exchange efficiency of temperature and humidity. As a result, the moisture-permeable polyethylene film 7 having a weak stiffness is laminated and welded on both sides or one side with the mixed paper 8 to form a partition. The rigidity of the plate 2a is increased, workability is improved, and mass productivity is improved. Further, since the cellulose fibers in the mixed paper 8 are not welded to the moisture-permeable polyethylene film 7, the moisture-permeable polyethylene film 7 and the mixed paper 8 are partially welded, so that water vapor is dissolved, diffused, and de-dissolved. The reduction of the area can be suppressed, and the reduction of the humidity exchange efficiency can be suppressed.

【0047】(実施例4)図3を参照しながら説明す
る。なお第1、2および第3実施例と同一箇所には同一
番号を付し、その詳細な説明は省略する。
(Embodiment 4) Description will be given with reference to FIG. The same parts as those in the first, second and third embodiments are designated by the same reference numerals, and detailed description thereof will be omitted.

【0048】図3において、ほぼ四角形の仕切板2aの
表面に両端部を遮断する遮蔽リブ9aと、この遮蔽リブ
9aと並行に1次気流Aの通風路10と1次気流Aの流
入口12と吐出口13を間隔リブ11aで構成し、一
方、前記仕切板2aの裏面は前記流入口12と吐出口1
3を遮蔽するように遮蔽リブ9bで、2次気流Bの通風
路14と流入口15と吐出口16を形成するように遮蔽
リブ9bと間隔リブ11bを前記仕切板2aを介して樹
脂で一体成形し単位素子17を形成し、この単位素子1
7と前記仕切板2aとを交互に積層接着し、熱交換素子
を形成する。
In FIG. 3, a shielding rib 9a for blocking both ends is provided on the surface of the partition plate 2a having a substantially rectangular shape, a ventilation passage 10 for the primary air flow A and an inlet 12 for the primary air flow A in parallel with the shielding rib 9a. The discharge port 13 and the discharge port 13 are constituted by the spacing rib 11a, while the back surface of the partition plate 2a is provided with the inflow port 12 and the discharge port 1.
3, the shielding rib 9b is used to form the ventilation passage 14 for the secondary air flow B, the inflow port 15 and the discharge port 16, and the shielding rib 9b and the spacing rib 11b are integrally formed of resin through the partition plate 2a. The unit element 17 is molded to form the unit element 1
7 and the partition plate 2a are alternately laminated and bonded to form a heat exchange element.

【0049】上記構成により、1次気流Aおよび2次気
流Bを熱交換素子に送風すると仕切板2aの表面を流れ
る1次気流Aは、流入口12より流入し、通風路10を
通り、吐出口13より吐出する。一方、仕切板2aの裏
面を流れる2次気流Bは、流入口15より1次気流Aと
は直交または斜交するように流入し、通風路14を通
り、吐出口16より吐出する。この時に仕切板2aを介
して1次気流Aと2次気流Bの間で温度と湿度を交換す
ることとなる。遮蔽リブ9a、9bおよび間隔リブ11
a、11bを樹脂で形成するために、湿度による変形や
リブ高さを高くすることなく安定な通風路10、14を
構成するために、熱交換素子の一定高さ内での仕切板面
積を減少させることなく、また仕切板2aに透湿性ポリ
エチレン系フィルム7を使用することにより、温度およ
び湿度の交換効率も向上することができ、また高さ方向
を高くすることなく気流の通風路を広くすることができ
るために、気流の通気抵抗を低減することができる。
With the above structure, when the primary airflow A and the secondary airflow B are sent to the heat exchange element, the primary airflow A flowing on the surface of the partition plate 2a flows in through the inflow port 12, passes through the ventilation passage 10, and is discharged. Discharge from the outlet 13. On the other hand, the secondary airflow B flowing on the back surface of the partition plate 2 a flows in from the inflow port 15 so as to be orthogonal to or oblique to the primary airflow A, passes through the ventilation passage 14, and is discharged from the discharge port 16. At this time, the temperature and the humidity are exchanged between the primary air flow A and the secondary air flow B via the partition plate 2a. Shielding ribs 9a, 9b and spacing rib 11
Since a and 11b are made of resin, the partition plate area within a certain height of the heat exchange element is set in order to form stable ventilation paths 10 and 14 without deformation due to humidity or increase in rib height. By using the moisture-permeable polyethylene film 7 for the partition plate 2a without reducing the temperature and humidity, the efficiency of exchange of temperature and humidity can be improved, and the ventilation path for the air flow can be widened without increasing the height direction. Therefore, the ventilation resistance of the air flow can be reduced.

【0050】なお、実施例では、仕切板2aの表面およ
び裏面に遮蔽リブ9a、9b、間隔リブ11a、11b
を樹脂と一体成形した単位素子17を形成し、前記単位
素子17と前記仕切板2aとを交互に積層接着し、熱交
換素子を形成するよう説明したが、仕切板2aの片面の
両端部を遮蔽する遮蔽リブと、前記遮蔽リブと並行に所
定間隔に複数本の間隔リブを樹脂にて一体成形した単位
素子を一段おきに90度交互に積層接着し、熱交換素子
を形成してもよく、その作用効果に差異を生じない。
In the embodiment, the shielding ribs 9a and 9b and the spacing ribs 11a and 11b are provided on the front and back surfaces of the partition plate 2a.
It is described that the unit element 17 integrally molded with the resin is formed, and the unit element 17 and the partition plate 2a are alternately laminated and adhered to form a heat exchange element. However, both end portions of one surface of the partition plate 2a are The heat exchanging element may be formed by alternately laminating and uniting the shielding rib for shielding and a plurality of unit ribs, which are integrally molded with resin, at a predetermined interval in parallel with the shielding rib in alternate steps by alternately stacking them. , It does not make a difference in its action and effect.

【0051】また、遮蔽リブ9a、9b、間隔リブ11
a、11bを樹脂と仕切板2aで一体成形した単位素子
17で説明したが、別に成形した遮蔽リブ9a、9b、
間隔リブ11a、11bを仕切板2aに接着し、単位素
子17として構成したものでもよい。
Further, the shielding ribs 9a and 9b, the spacing rib 11
Although the unit element 17 in which a and 11b are integrally molded with the resin and the partition plate 2a has been described, the shielding ribs 9a and 9b, which are separately molded, are
Alternatively, the unit ribs 17 may be formed by bonding the spacing ribs 11a and 11b to the partition plate 2a.

【0052】(実施例5)図4を参照しながら説明す
る。なお第1、2、3および第4実施例と同一箇所には
同一番号を付し、その詳細な説明は省略する。
(Embodiment 5) An explanation will be given with reference to FIG. The same parts as those in the first, second, third and fourth embodiments are designated by the same reference numerals, and detailed description thereof will be omitted.

【0053】図4において、1次気流Aの通風路10を
形成する間隔リブを断続とした断続間隔リブ19aと、
2次気流Bの通風路14を形成する間隔リブを断続とし
た断続間隔リブ19bで形成した単位素子20と、前記
仕切板2aとを交互に積層接着した熱交換素子を形成す
る。
In FIG. 4, an intermittent spacing rib 19a having intermittent spacing ribs forming the ventilation passage 10 for the primary air flow A,
A heat exchange element is formed by alternately stacking and adhering the unit element 20 formed by the intermittent spacing rib 19b in which the spacing rib forming the ventilation passage 14 of the secondary air flow B is intermittent and the partition plate 2a.

【0054】上記構成により、1次気流Aと2次気流B
は、流入口12、15より流入し、複数の断続間隔リブ
19a、19bにより分岐と合流を繰り返しながら境界
層を破壊し、吐出口13、16より吐出する。この時に
仕切板2aを介して1次気流Aと2次気流Bの間で温度
と湿度を交換することとなる。間隔リブを断続的にする
ことにより、流入口12、15より流入した気流は複数
の断続間隔リブ19a、19bによって分岐と合流を繰
り返しながら境界層が破壊するために、仕切板2aの表
面で効率良く熱交換されるため、温度および湿度の交換
効率を高くすることができる。
With the above structure, the primary air flow A and the secondary air flow B
Flows in through the inflow ports 12 and 15, breaks the boundary layer while repeating branching and merging by a plurality of intermittent spacing ribs 19a and 19b, and discharges from the discharge ports 13 and 16. At this time, the temperature and the humidity are exchanged between the primary air flow A and the secondary air flow B via the partition plate 2a. By making the spacing ribs intermittent, the airflow flowing in from the inflow ports 12, 15 breaks the boundary layer while repeating branching and merging by the plurality of intermittent spacing ribs 19a, 19b, thereby destroying the efficiency at the surface of the partition plate 2a. Since heat is exchanged well, the efficiency of exchanging temperature and humidity can be increased.

【0055】なお、実施例では、仕切板2aの両面の断
続間隔リブ19a、19bを断続な構造としたが、仕切
板2aの片面の間隔リブは連続リブとし、他面の間隔リ
ブを断続な構造としてもよく、その作用効果に差異を生
じない。
In the embodiment, the intermittent spacing ribs 19a and 19b on both sides of the partition plate 2a have an intermittent structure. However, the spacing rib on one side of the partition plate 2a is a continuous rib and the spacing ribs on the other surface are intermittent. The structure may be good and there is no difference in its action and effect.

【0056】(実施例6)図5を参照しながら説明す
る。なお第1、2、3、4および第5実施例と同一箇所
には同一番号を付し、その詳細な説明は省略する。
(Sixth Embodiment) An explanation will be given with reference to FIG. The same parts as those in the first, second, third, fourth and fifth embodiments are designated by the same reference numerals, and detailed description thereof will be omitted.

【0057】図5において、仕切板2bはほぼ六角形
で、この仕切板2bの表面には両端部を遮断する遮蔽リ
ブ21aと、前記遮蔽リブ21aと並行に間隔リブ23
aで1次気流Aの通風路22と1次気流Aの流入口24
と前記流入口24と相対向する面に吐出口25を設けた
構成とする。一方、前記仕切板2bの裏面の遮蔽リブ2
1bは、前記1次気流Aの流入口24側と吐出口25側
が遮蔽されるように構成し、前記遮蔽リブ21bと間隔
リブ23bで2次気流Bの通風路26と流入口27と吐
出口28を構成する。前記遮蔽リブ21bと前記間隔リ
ブ23bは、前記仕切板2b表面の1次気流Aの流入口
24と吐出口25の近傍では、前記間隔リブ23aとは
直交または斜交するように構成し、中央部では前記仕切
板2b表面の1次気流Aと対向するように構成し、前記
遮蔽リブ21a、21b、間隔リブ23a、23bを樹
脂と仕切板2bを介して一体成形し単位素子29を形成
する。
In FIG. 5, the partition plate 2b has a substantially hexagonal shape, and on the surface of the partition plate 2b, a shielding rib 21a for blocking both ends and a spacing rib 23 parallel to the shielding rib 21a are provided.
a, the ventilation passage 22 for the primary air flow A and the inlet 24 for the primary air flow A
And a discharge port 25 is provided on a surface facing the inflow port 24. On the other hand, the shielding rib 2 on the back surface of the partition plate 2b
1b is configured such that the inlet 24 side and the outlet 25 side of the primary airflow A are shielded, and the ventilation passage 26, the inlet 27, and the outlet of the secondary airflow B are formed by the shielding rib 21b and the spacing rib 23b. 28. The shielding ribs 21b and the spacing ribs 23b are configured so as to be orthogonal to or diagonally intersect with the spacing ribs 23a in the vicinity of the inlet 24 and the outlet 25 of the primary airflow A on the surface of the partition plate 2b. In the section, it is configured to face the primary air flow A on the surface of the partition plate 2b, and the shielding ribs 21a and 21b and the spacing ribs 23a and 23b are integrally molded with the resin through the partition plate 2b to form a unit element 29. .

【0058】前記単位素子29と前記仕切板2bとを交
互に積層接着し、1次気流Aの通風路22と2次気流B
の通風路26が構成されるように、熱交換素子を形成す
る。
The unit element 29 and the partition plate 2b are alternately laminated and adhered, and the ventilation passage 22 for the primary air flow A and the secondary air flow B are provided.
The heat exchange element is formed so that the ventilation passages 26 of FIG.

【0059】上記構成により、1次気流Aおよび2次気
流Bを熱交換素子に送風すると仕切板2bの表面を流れ
る1次気流Aは、流入口24より流入し、中央部の対向
流部分を通り、吐出口25より吐出する。
With the above structure, when the primary airflow A and the secondary airflow B are blown to the heat exchange element, the primary airflow A flowing on the surface of the partition plate 2b flows in through the inflow port 24, and the counterflow part in the central portion is discharged. Then, the liquid is discharged from the discharge port 25.

【0060】一方、仕切板2bの裏面を流れる2次気流
Bは、流入口27より1次気流Aとは直交または斜交す
るように流入し、中央部の対向流部分では1次気流Aと
は対向するように、また吐出口28近傍では1次気流A
とは直交または斜交するように吐出する。この時に仕切
板2bを介して1次気流Aと2次気流Bの間で温度と湿
度を交換する。
On the other hand, the secondary air flow B flowing on the back surface of the partition plate 2b flows in from the inflow port 27 so as to intersect the primary air flow A at a right angle or at an angle, and at the counterflow portion of the central portion, the secondary air flow A is formed. Face each other, and in the vicinity of the discharge port 28, the primary air flow A
And are discharged so that they intersect at right angles or obliquely. At this time, temperature and humidity are exchanged between the primary air flow A and the secondary air flow B via the partition plate 2b.

【0061】熱交換素子の中央部に対向流部分が形成さ
れることにより、直交流方式よりも温度および湿度の交
換効率を高くすることができる。
By forming the counterflow portion in the center of the heat exchange element, the efficiency of temperature and humidity exchange can be increased as compared with the crossflow method.

【0062】(実施例7)図6を参照しながら説明す
る。なお第1、2、3、4、5および第6実施例と同一
箇所には同一番号を付し、その詳細な説明は省略する。
(Embodiment 7) An explanation will be given with reference to FIG. The same parts as those in the first, second, third, fourth, fifth and sixth embodiments are designated by the same reference numerals, and detailed description thereof will be omitted.

【0063】図6において、1次気流Aと2次気流Bの
通風路22、26の中央部をS字状のS字間隔リブ30
a、30bで構成し、仕切板2bの表面のS字間隔リブ
30aのS字の山の部分と、前記仕切板2bの裏面のS
字間隔リブ30bの谷の部分とが前記仕切板2bを介し
て重なるように形成した単位素子31に前記仕切板2b
を交互に積層接着した熱交換素子を形成する。
In FIG. 6, the central portions of the air passages 22 and 26 for the primary air flow A and the secondary air flow B are S-shaped S-shaped spacing ribs 30.
a and 30b, the S-shaped ridge portion of the S-shaped spacing rib 30a on the front surface of the partition plate 2b and the S-shaped rear surface of the partition plate 2b.
The partition plate 2b is attached to the unit element 31 formed so that the valley portion of the character spacing rib 30b overlaps with the partition plate 2b.
To form a heat exchange element by alternately laminating and bonding.

【0064】上記構成により、1次気流Aと2次気流B
は、流入口24、27より流入し、中央部のS字の通風
路内を通り、吐出口25、28から吐出する。この時に
仕切板2bを介して1次気流Aと2次気流Bの間で温度
と湿度を交換する。
With the above structure, the primary air flow A and the secondary air flow B
Flows in through the inflow ports 24 and 27, passes through the S-shaped ventilation passage in the central portion, and is discharged from the discharge ports 25 and 28. At this time, temperature and humidity are exchanged between the primary air flow A and the secondary air flow B via the partition plate 2b.

【0065】仕切板2bの表面および裏面の中央部分の
対向流部分をS字状にすることにより、直線状通風路よ
りも通風路が長くなるために1次気流Aと2次気流Bの
接触時間が増加し、温度および湿度の交換効率が向上す
る。また仕切板2b表面のS字間隔リブ30aのS字の
山と裏面のS字間隔リブ30bのS字の谷が重なるよう
にすることにより、対向流部分での仕切板2bのたわみ
が防止できるために、仕切板2bのたわみによる1次気
流側と2次気流側の気流の通気抵抗の不均一をなくすこ
とができる。
By making the opposing flow portions of the central portion of the front surface and the back surface of the partition plate 2b S-shaped, the ventilation passage becomes longer than the linear ventilation passage, so that the primary air flow A and the secondary air flow B come into contact with each other. The time is increased and the temperature and humidity exchange efficiency is improved. Further, by making the S-shaped peaks of the S-shaped spacing ribs 30a on the front surface of the partition plate 2b and the S-shaped troughs of the S-shaped spacing ribs 30b on the back surface overlap, it is possible to prevent the partition plate 2b from bending at the counter flow portion. Therefore, it is possible to eliminate the unevenness of the air flow resistance between the primary air flow side and the secondary air flow side due to the bending of the partition plate 2b.

【0066】なお、実施例では、仕切板2bの表面およ
び裏面の中央部の間隔リブをS字に形成して説明した
が、複数の山と谷のある波形状にしてもよく、その作用
効果に差異を生じない。
In the embodiment, the description has been given by forming the spacing ribs in the central portion of the front surface and the back surface of the partition plate 2b in an S shape, but it is also possible to have a corrugated shape with a plurality of peaks and valleys, and the effect thereof. Does not make a difference.

【0067】また、熱交換素子の中央部の対向流部分が
仕切板2bを介して、表面のS字間隔リブ30aと裏面
のS字間隔リブ30bのS字の山と谷が重なる形状で説
明したが、表面のS字間隔リブ30aと裏面のS字間隔
リブ30bの山と山、谷と谷が重なる形状に構成したも
のでも温度および湿度の交換効率は向上する。
Further, a description will be given of a shape in which the counter flow portion in the central portion of the heat exchange element overlaps the S-shaped spacing rib 30a on the front surface and the S-shaped peaks and valleys of the S-shaped spacing rib 30b on the back surface via the partition plate 2b. However, the efficiency of exchanging temperature and humidity can be improved even if the front surface S-shaped spacing rib 30a and the back surface S-shaped spacing rib 30b are configured so that peaks, peaks, and valleys overlap each other.

【0068】[0068]

【発明の効果】以上の実施例から明らかなように、本発
明によれば、二酸化炭素および臭い成分等の他気流への
移行を抑制し、温度および湿度の交換効率の向上に効果
のある熱交換素子が提供できる。
As is apparent from the above examples, according to the present invention, heat transfer which suppresses the transfer of carbon dioxide and odorous components to other air streams and is effective in improving the exchange efficiency of temperature and humidity. An exchange element can be provided.

【0069】また仕切板の作業性を良くし、量産性の向
上に効果のある熱交換素子を提供できる。
Further, the workability of the partition plate can be improved, and a heat exchange element effective in improving mass productivity can be provided.

【0070】また寸法安定性を良くすることにより、気
流の通気抵抗が低減し、1次気流と2次気流の通気抵抗
の不均一をなくすことに効果のある熱交換素子を提供で
きる。
Further, by improving the dimensional stability, it is possible to provide a heat exchange element which is effective in reducing the airflow resistance of the airflow and eliminating the nonuniformity of the airflow resistance of the primary airflow and the secondary airflow.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例1および実施例2の熱交換素子
の斜視図
FIG. 1 is a perspective view of a heat exchange element according to first and second embodiments of the present invention.

【図2】同実施例3の仕切板の断面図FIG. 2 is a sectional view of a partition plate according to the third embodiment.

【図3】同実施例4の熱交換素子の斜視図FIG. 3 is a perspective view of a heat exchange element according to the fourth embodiment.

【図4】同実施例5の熱交換素子の斜視図FIG. 4 is a perspective view of a heat exchange element according to the fifth embodiment.

【図5】同実施例6の熱交換素子の斜視図FIG. 5 is a perspective view of the heat exchange element according to the sixth embodiment.

【図6】同実施例7の熱交換素子の斜視図FIG. 6 is a perspective view of a heat exchange element according to the seventh embodiment.

【図7】従来の熱交換素子の斜視図FIG. 7 is a perspective view of a conventional heat exchange element.

【符号の説明】[Explanation of symbols]

1 熱交換素子 2a、2b 仕切板 3 間隔板 4、17、20、29、31 単位素子 5、6、10、14、22、26 通風路 7 透湿性ポリエチレン
系フィルム 8 混抄紙 9a、9b、21a、21b 遮蔽リブ 11a、11b、23a、23b 間隔リブ 12、15、24、27 流入口 13、16、25、28 吐出口 19a、19b 断続間隔リブ 30a、30b S字間隔リブ
1 heat exchange element 2a, 2b partition plate 3 spacing plate 4, 17, 20, 29, 31 unit element 5, 6, 10, 14, 22, 26 air passage 7 moisture-permeable polyethylene film 8 mixed paper 9a, 9b, 21a , 21b Shielding ribs 11a, 11b, 23a, 23b Spacing ribs 12, 15, 24, 27 Inflow ports 13, 16, 25, 28 Discharge ports 19a, 19b Intermittent spacing ribs 30a, 30b S-shaped spacing ribs

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 昭61−46899(JP,A) 特開 平8−291990(JP,A) 特開 平8−75385(JP,A) 実開 昭61−74787(JP,U) (58)調査した分野(Int.Cl.7,DB名) F28F 3/06 F28D 9/00 ─────────────────────────────────────────────────── ─── Continuation of the front page (56) References JP-A-61-46899 (JP, A) JP-A-8-291990 (JP, A) JP-A-8-75385 (JP, A) Actual development Sho-61- 74787 (JP, U) (58) Fields surveyed (Int.Cl. 7 , DB name) F28F 3/06 F28D 9/00

Claims (5)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 仕切板と、この仕切板を所定間隔に保持
する間隔板とからなる単位素子を、一段おきに90度交
互に積層し、1次気流と2次気流とが前記仕切板を介し
て、温度と湿度を交換させるもので、前記仕切板と間隔
板、または少なくとも前記仕切板を構成する透湿性樹脂
フィルムを、セルロース繊維50〜99重量%および透
湿性樹脂フィルムと同質の成分1〜50重量%とからな
る混抄紙で両面または片面をラミネート溶着た熱交換
素子。
1. A partition plate and the partition plate are held at a predetermined interval.
The unit element consisting of the spacing plate
Layered on top of each other, the primary air flow and the secondary air flow are through the partition plate.
Te, in which to exchange temperature and humidity, the partition plate and the spacing plate, or the moisture-permeable resin film constituting at least the partition plate, component 1 of the cellulose fibers 50 to 99 wt% and the moisture-permeable resin film of the same quality A heat exchange element in which 50% by weight of mixed paper is laminated and welded on both sides or one side.
【請求項2】 仕切板の表面の両端部を遮蔽する遮蔽リ
ブと、この遮蔽リブと並行に所定間隔に複数本の間隔リ
ブを設け、前記仕切板の裏面は、前記仕切板の表面の遮
蔽リブと直交または斜交するように遮蔽リブを設け、そ
の遮蔽リブと並行に所定間隔に複数本の間隔リブを、前
記仕切板を介して樹脂にて一体成形した単位素子と、前
記仕切板とを交互に複数枚積層接着してなる請求項
載の熱交換素子。
2. A partition rib for shielding both ends of the front surface of the partition plate, and a plurality of spacing ribs arranged at predetermined intervals in parallel with the shield rib, wherein the back surface of the partition plate shields the front surface of the partition plate. A shielding rib is provided so as to be orthogonal or oblique to the rib, and a plurality of interval ribs are formed at a predetermined interval in parallel with the shielding rib, and are integrally molded with a resin via the partition plate, and the partition plate. formed by laminating a plurality bonded alternately claim 1 heat exchange element as claimed.
【請求項3】 仕切板の表面および裏面の間隔リブを断
続的な構造とした請求項記載の熱交換素子。
3. The heat exchange element according to claim 2, wherein the spacing ribs on the front surface and the back surface of the partition plate have an intermittent structure.
【請求項4】 ほぼ六角形を有する仕切板の表面の両端
部を遮蔽する遮蔽リブと、この遮蔽リブと並行に所定間
隔に複数本の間隔リブを設け、前記仕切板の裏面は、気
流の流入口および吐出口の近傍では、前記仕切板の表面
の間隔リブと直交または斜交するように、また中央部分
では対向流部分が形成されるように間隔リブと遮蔽リブ
を設けた請求項記載の熱交換素子。
4. A shielding rib for shielding both ends of the surface of a partition plate having a substantially hexagonal shape, and a plurality of spacing ribs provided at predetermined intervals in parallel with the shielding rib. in the vicinity of the inlet and discharge ports, the partition plate spacing ribs perpendicular or obliquely intersect the surface of the, also claim the spaced ribs and the shielding rib so that counterflow portion at the central portion is formed 1 The heat exchange element described.
【請求項5】 仕切板の表面の中央部分の対向流部分は
ほぼS字状を有し、前記仕切板の裏面の中央部分は、前
記仕切板の表面の対向流部分のS字状の山の部分と、前
記仕切板の裏面の対向流部分のS字状の谷の部分が重な
るように構成した請求項記載の熱交換素子。
5. The counter flow portion of the central portion of the front surface of the partition plate has an S-shape, and the center portion of the back surface of the partition plate has an S-shaped peak of the counter flow portion of the front surface of the partition plate. 5. The heat exchange element according to claim 4 , wherein the portion of S and the valley of the S-shaped valley of the counter flow portion on the back surface of the partition plate overlap each other.
JP26847097A 1997-10-01 1997-10-01 Heat exchange element Expired - Fee Related JP3461697B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26847097A JP3461697B2 (en) 1997-10-01 1997-10-01 Heat exchange element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26847097A JP3461697B2 (en) 1997-10-01 1997-10-01 Heat exchange element

Publications (2)

Publication Number Publication Date
JPH11108580A JPH11108580A (en) 1999-04-23
JP3461697B2 true JP3461697B2 (en) 2003-10-27

Family

ID=17458956

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26847097A Expired - Fee Related JP3461697B2 (en) 1997-10-01 1997-10-01 Heat exchange element

Country Status (1)

Country Link
JP (1) JP3461697B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9664457B2 (en) 2011-10-26 2017-05-30 Mitsubishi Electric Corporation Total heat exchange element and manufacturing method thereof

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3306591B2 (en) * 1999-12-21 2002-07-24 株式会社西部技研 Cross-flow type total heat exchanger
JP4848718B2 (en) * 2005-09-29 2011-12-28 パナソニック株式会社 Heat exchanger
KR100938917B1 (en) * 2007-04-23 2010-01-28 서문수 Total heat exchanger Element
WO2011065906A2 (en) * 2009-11-24 2011-06-03 Air To Air Sweden Ab A method of producing multiple channels for use in a device for exchange of solutes or heat between fluid flows
US9683789B2 (en) 2009-11-24 2017-06-20 Air To Air Sweden Ab Method of producing multiple channels for use in a device for exchange of solutes or heat between fluid flows
JP5517975B2 (en) * 2011-03-10 2014-06-11 三菱電機株式会社 Total heat exchange element
US20140326432A1 (en) 2011-12-19 2014-11-06 Dpoint Technologies Inc. Counter-flow energy recovery ventilator (erv) core

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6146899A (en) * 1984-08-13 1986-03-07 Japan Vilene Co Ltd Total heat exchange element
JPH0129431Y2 (en) * 1984-10-19 1989-09-07
JPH0875385A (en) * 1994-08-31 1996-03-19 Matsushita Seiko Co Ltd Heat exchanging element
JPH08291990A (en) * 1995-04-24 1996-11-05 Matsushita Seiko Co Ltd Heat-exchanger element

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9664457B2 (en) 2011-10-26 2017-05-30 Mitsubishi Electric Corporation Total heat exchange element and manufacturing method thereof

Also Published As

Publication number Publication date
JPH11108580A (en) 1999-04-23

Similar Documents

Publication Publication Date Title
WO2013157055A1 (en) Heat-exchange element and air conditioner
WO2013157056A1 (en) Heat exchange element
US8550151B2 (en) Heat exchanger
JP4206894B2 (en) Total heat exchange element
JP3461697B2 (en) Heat exchange element
JPWO2010125644A1 (en) Total heat exchange element
JP2006329499A (en) Heat exchanger
JP5610777B2 (en) Total heat exchange element
JP5797328B2 (en) Heat exchange element
JP2738284B2 (en) Method of manufacturing heat exchanger, spacing plate thereof and partition plate of heat exchanger
JP4449529B2 (en) Heat exchanger
JP3879482B2 (en) Stacked heat exchanger
JP2008070070A (en) Total heat exchanger
JP3488028B2 (en) Heat exchange element
JP2003262487A (en) Heat exchange element
JP4221708B2 (en) Heat exchanger
JP5781221B2 (en) Heat exchange element and air conditioner
JPH09280765A (en) Heat-exchange element
JP2006071149A (en) Heat exchanging element
JP2006071150A (en) Heat exchanging element
JP5790600B2 (en) Heat exchange element
JPH08128794A (en) Heat exchange element
JP2013257107A (en) Heat exchanging element, and method of manufacturing the same
WO2022172339A1 (en) Partition plate for countercurrent total heat exchange elements, countercurrent total heat exchange element and heat exchange ventilation device
JP2006064342A (en) Heat exchange element

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070815

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080815

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080815

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090815

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090815

Year of fee payment: 6

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090815

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090815

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100815

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110815

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110815

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120815

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees