JP3454647B2 - Air conditioner - Google Patents

Air conditioner

Info

Publication number
JP3454647B2
JP3454647B2 JP29526696A JP29526696A JP3454647B2 JP 3454647 B2 JP3454647 B2 JP 3454647B2 JP 29526696 A JP29526696 A JP 29526696A JP 29526696 A JP29526696 A JP 29526696A JP 3454647 B2 JP3454647 B2 JP 3454647B2
Authority
JP
Japan
Prior art keywords
refrigerant
pipe
heat exchange
air conditioner
exchange pipe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP29526696A
Other languages
Japanese (ja)
Other versions
JPH10141804A (en
Inventor
洋一郎 小林
哲夫 佐野
信夫 川合
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Carrier Corp
Original Assignee
Toshiba Carrier Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Carrier Corp filed Critical Toshiba Carrier Corp
Priority to JP29526696A priority Critical patent/JP3454647B2/en
Priority to TW087208371U priority patent/TW360387U/en
Priority to CNB971202125A priority patent/CN1155781C/en
Publication of JPH10141804A publication Critical patent/JPH10141804A/en
Application granted granted Critical
Publication of JP3454647B2 publication Critical patent/JP3454647B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Air Filters, Heat-Exchange Apparatuses, And Housings Of Air-Conditioning Units (AREA)
  • Other Air-Conditioning Systems (AREA)
  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】この発明は、冷媒の種類・圧
力の違いに対処した空気調和機に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an air conditioner that copes with differences in refrigerant types and pressures.

【0002】[0002]

【従来の技術】現在、空気調和機で一般に使われる冷媒
として、HCFC冷媒(水素元素を含んだクロロフルオ
ロカーボン)があり、その中でもとくにHCFC22冷
媒が多く使われている。しかしながら、これらHCFC
冷媒は、塩素を含んでいるためオゾン層破壊の問題があ
る。
2. Description of the Related Art At present, as a refrigerant generally used in an air conditioner, there is an HCFC refrigerant (chlorofluorocarbon containing hydrogen element), and among them, an HCFC22 refrigerant is widely used. However, these HCFCs
Since the refrigerant contains chlorine, it has a problem of ozone layer depletion.

【0003】オゾン破壊係数が零の冷媒として、HFC
(水素元素を含んだフルオロカーボン)冷媒、CO2
媒(R744)がある。また、将来の候補として、HF
E(ハイドロフルオロエーフル)冷媒が考えられてい
る。
As a refrigerant having an ozone depletion potential of zero, HFC
There are (fluorocarbon containing hydrogen element) refrigerant and CO 2 refrigerant (R744). In addition, as a future candidate, HF
E (hydrofluoroeful) refrigerants have been considered.

【0004】HFC冷媒としては、HFC−32(ジフル
オロエタン)、HFC−125 (ペンタフルオロエタ
ン)、HFC−134a(テトラフルオロエタン)等の単一
冷媒、もしくはこれら単一冷媒の混合によるR410A
冷媒(HFC−32を50wt%、HFC−125 を50wt%混
合)、R407C冷媒(HFC−32とHFC−125 とH
FC−134aの混合冷媒)が検討されている。炭化水素系
ではプロパンL38 (R−290)などが検討されて
いる。
As the HFC refrigerant, a single refrigerant such as HFC-32 (difluoroethane), HFC-125 (pentafluoroethane), HFC-134a (tetrafluoroethane), or R410A obtained by mixing these single refrigerants is used.
Refrigerant (HFC-32 mixed at 50 wt% and HFC-125 mixed at 50 wt%), R407C refrigerant (HFC-32, HFC-125 and H
A mixed refrigerant of FC-134a) is under consideration. Propane L 3 H 8 (R-290) and the like are being studied for hydrocarbon systems.

【0005】一方、空気調和機やその他の冷凍機器に用
いられるフィンドパイプ式の熱交換器は、板状の複数の
放熱フィンを配列してこれら放熱フィンにU字形の複数
本の熱交換パイプを挿通して固定し、これら熱交換パイ
プのうち互いに隣接する各熱交換パイプの端部にU字形
の連結パイプの両端部を挿入接続し、この挿入接続によ
り各熱交換パイプを順次に連通している。全体的な構成
を図8および図9に示し、要部の構成を図10に示して
いる。
On the other hand, in a finned pipe type heat exchanger used in an air conditioner or other refrigeration equipment, a plurality of plate-shaped heat radiation fins are arranged and a plurality of U-shaped heat exchange pipes are arranged on these heat radiation fins. It is inserted and fixed, and both ends of the U-shaped connecting pipes are inserted and connected to the ends of the heat exchange pipes adjacent to each other among these heat exchange pipes, and the heat exchange pipes are sequentially connected by this insertion connection. There is. The overall structure is shown in FIGS. 8 and 9, and the structure of the main part is shown in FIG.

【0006】1は熱交換器で、熱伝導性の良好なアルミ
ニウムなどでできた矩形板状の複数枚の放熱フィン2が
互いに離間して配列され、これら放熱フィン2にパイプ
3が挿通して固定される。
Reference numeral 1 denotes a heat exchanger, in which a plurality of rectangular plate-shaped heat radiation fins 2 made of aluminum or the like having good heat conductivity are arranged apart from each other, and a pipe 3 is inserted into these heat radiation fins 2. Fixed.

【0007】この熱交換器1に、圧縮機、膨張弁、およ
び別の熱交換器が接続されて、冷凍サイクルが構成され
る。パイプ3は、中途部がU字形に屈曲されて両直線部
が各放熱フィン2に挿通される複数本の熱交換パイプ3
1と、これら熱交換パイプ31のうち互いに隣接する各
熱交換パイプ31の端部に対して両端部が挿入接続され
るU字形の複数本の連結パイプ(以下、Uベンドと称す
る)32とからなる。これらUベンド32の挿入接続に
より、各熱交換パイプ31が順次に連通されて冷媒を流
すことができる。
A compressor, an expansion valve, and another heat exchanger are connected to the heat exchanger 1 to form a refrigeration cycle. The pipe 3 has a plurality of heat exchange pipes 3 whose middle part is bent in a U shape and both straight parts are inserted into the respective heat radiation fins 2.
1 and a plurality of U-shaped connecting pipes (hereinafter, referred to as U bends) 32 in which both ends are inserted and connected to the ends of the heat exchange pipes 31 adjacent to each other among the heat exchange pipes 31. Become. By inserting and connecting the U bends 32, the heat exchange pipes 31 are sequentially communicated with each other so that the refrigerant can flow.

【0008】各熱交換パイプ31の両端部31a,31
aと各Uベンド32の両端部32a,32aとは、ロウ
付け溶接により、固着される。各熱交換パイプ31の両
端部31a,31aは、放熱フィン2から所定長さ(=
2 +K1 )突出しており、その突出領域がフレア状の
段形状部31bを伴って拡管形成される。この両端の拡
管形成部31a,31aは、インロー部とも称され、開
口から距離K1 の範囲にあって、Uベンド32の外径S
2 を収容するのに必要な内径R2 を有する。
Both ends 31a, 31 of each heat exchange pipe 31
The a and the both ends 32a, 32a of each U bend 32 are fixed by brazing welding. Both ends 31a, 31a of each heat exchange pipe 31 have a predetermined length (=
K 2 + K 1 ) is projected, and the protruding region is expanded and formed with the flared stepped portion 31b. The expanded pipe forming portions 31a, 31a at both ends are also referred to as spigot portions, are in a range of a distance K 1 from the opening, and have an outer diameter S of the U bend 32.
It has an inner diameter R 2 required to accommodate 2 .

【0009】なお、図では、熱交換パイプ31の内周面
とUベンド32の外周面との間に隙間が存するように見
えるが、実際には隙間なくロウ付け溶接がなされる。ま
た、各熱交換パイプ31のうち、冷媒の流入側および流
出側に対応する熱交換パイプ31の一端部31aには、
他の冷凍サイクル機器とを接続するための外部配管4が
挿入接続される。この挿入接続の処理は、上記したUベ
ンド32の挿入接続と同じである。
In the figure, it seems that there is a gap between the inner peripheral surface of the heat exchange pipe 31 and the outer peripheral surface of the U-bend 32, but in reality brazing welding is performed without a gap. Further, in each heat exchange pipe 31, one end portion 31a of the heat exchange pipe 31 corresponding to the refrigerant inflow side and the refrigerant outflow side,
An external pipe 4 for connecting to another refrigeration cycle device is inserted and connected. The processing of this insertion connection is the same as the above-mentioned insertion connection of the U bend 32.

【0010】[0010]

【発明が解決しようとする課題】オゾン破壊係数が零の
HFC冷媒やCO2 冷媒は、従来用いられてきたHCF
C22に比べて圧力がかなり高くなる特性がある。このた
め、実際の使用に当たっては、冷凍サイクル機器を高耐
圧化する必要がある。
HFC refrigerants and CO 2 refrigerants having an ozone depletion potential of zero have been used in the conventional HCF refrigerants.
It has a characteristic that the pressure is considerably higher than that of C22. Therefore, in actual use, it is necessary to increase the pressure resistance of the refrigeration cycle equipment.

【0011】一方、熱交換器1については、熱交換パイ
プ31とUベンド32との接続構造に関し、次のような
問題がある。 (1)フレア状に拡がる段形状部31bに冷媒圧力に基
づく応力集中があり、その部分での耐久性が十分でな
い。
On the other hand, the heat exchanger 1 has the following problems regarding the connection structure between the heat exchange pipe 31 and the U bend 32. (1) There is stress concentration due to the refrigerant pressure in the step-shaped portion 31b that spreads like a flare, and the durability in that portion is not sufficient.

【0012】(2)放熱フィン2に対応する位置から拡
管形成部31aの手前までの熱交換パイプ31の長さK
2 の領域の強度が、拡管形成部31aの領域の強度に比
べて弱い。
(2) The length K of the heat exchange pipe 31 from the position corresponding to the radiating fin 2 to the front of the pipe forming portion 31a.
The strength of the area 2 is weaker than the strength of the area of the tube formation portion 31a.

【0013】(3)熱交換パイプ31の内周面とUベン
ド32の外周面とを溶接するためのロウ材が、その内周
面と外周面との接触領域だけに止まらずに熱交換パイプ
31の奥へと染み出してそこにロウ詰まりが生じ、その
ロウ詰まりが冷媒流の邪魔になって空調等の運転に悪影
響を及ぼす可能性がある。
(3) The brazing material for welding the inner peripheral surface of the heat exchange pipe 31 and the outer peripheral surface of the U-bend 32 does not stop only in the contact area between the inner peripheral surface and the outer peripheral surface of the heat exchange pipe. There is a possibility that bleeding will occur in the depth of 31 and wax clogging will occur there, and the clogging of wax will interfere with the flow of the refrigerant and adversely affect the operation of air conditioning and the like.

【0014】この発明は上記の事情を考慮し次の第1な
いし第3の目的のいずれかを達成するもので、第1の目
的は、オゾン層を破壊しない冷媒としてHFC32やHF
C125 を混合したR410A等のHCFC代替冷媒を使
用しても十分に安全確保が可能な空気調和機を提供する
ことにある。
The present invention achieves any of the following first to third objects in consideration of the above circumstances. The first object is to use HFC32 or HF as a refrigerant that does not destroy the ozone layer.
An object of the present invention is to provide an air conditioner capable of sufficiently ensuring safety even if an HCFC alternative refrigerant such as R410A mixed with C125 is used.

【0015】また、第2の目的は、冷媒圧力に基づく応
力集中に対し十分な耐久性と強度を得て高圧冷媒の使用
に適した空気調和機を提供することができ、しかも熱交
換パイプの溶接に際してのロウ詰まりを解消してスムー
ズな冷媒流を確保することにある。また、第3の目的
は、外部配管との接続部への応力集中に対し十分な耐久
性と強度を得て高圧冷媒の使用に適した空気調和機を提
供することにある。
A second object is to provide an air conditioner suitable for the use of high-pressure refrigerant, which has sufficient durability and strength against stress concentration due to refrigerant pressure, and can provide a heat exchange pipe. The purpose is to eliminate wax clogging during welding and to ensure a smooth refrigerant flow. A third object of the present invention is to provide an air conditioner suitable for use of high-pressure refrigerant, which has sufficient durability and strength against stress concentration at the connection portion with the external pipe.

【0016】[0016]

【課題を解決するための手段】第1の発明の空気調和機
は、放熱フィンに複数本の熱交換パイプを挿通し、これ
ら熱交換パイプを順次に連通して圧力の高い冷媒を流す
構成の熱交換器を備えたものであって、上記熱交換器の
各熱交換パイプのうち、冷媒の流入側または流出側に位
置する熱交換パイプの機械的強度を、他の熱交換パイプ
の機械的強度より大きくした。
In the air conditioner of the first invention , a plurality of heat exchange pipes are inserted through the heat radiation fins.
Flow through the heat exchange pipes in order to flow the high pressure refrigerant.
A heat exchanger having a configuration, wherein
Located on the refrigerant inflow or outflow side of each heat exchange pipe.
The mechanical strength of the heat exchange pipe to be placed is
Greater than the mechanical strength of.

【0017】[0017]

【0018】[0018]

【0019】[0019]

【0020】[0020]

【0021】第2の発明の空気調和機は、第1の発明に
おいて、冷媒の流入側または流出側に位置する熱交換パ
イプの管壁の厚さが、他の熱交換パイプの管壁の厚さよ
り大きい。
In the air conditioner of the second invention, in the first invention, the thickness of the pipe wall of the heat exchange pipe located on the inflow side or the outflow side of the refrigerant is the same as that of the other heat exchange pipe. Bigger than

【0022】第3の発明の空気調和機は、第1の発明に
おいて、冷媒の流入側または流出側に位置する熱交換パ
イプは、外部配管の挿入接続を受入れるための接続用領
域が管軸方向になるべく長い。
In the air conditioner of the third aspect of the invention, in the first aspect of the invention, the heat exchange pipe located on the inflow side or the outflow side of the refrigerant has a connection area for receiving the insertion connection of the external pipe in the pipe axial direction. As long as possible.

【0023】[0023]

【0024】[0024]

【0025】[0025]

【0026】[0026]

【0027】[0027]

【0028】また、第1ないし第3の発明では、外部配
管との接続部への応力集中に対し十分な耐久性と強度が
得られるのでHCFC冷媒の代替冷媒として高圧冷媒
を用いても安全確保が可能である。
Further, in the first to third inventions, sufficient durability and strength can be obtained with respect to stress concentration in the connection portion with the external pipe, so that it is safe to use a high pressure refrigerant as an alternative refrigerant to the HCFC refrigerant. Can be secured.

【0029】[0029]

【発明の実施の形態】以下、この発明の一実施例につい
て図面を参照して説明する。なお、図面において、図
8、図9、図10と同一部分には同一符号を付し、その
詳細な説明は省略する。
BEST MODE FOR CARRYING OUT THE INVENTION An embodiment of the present invention will be described below with reference to the drawings. In the drawings, the same parts as those in FIGS. 8, 9 and 10 are designated by the same reference numerals, and detailed description thereof will be omitted.

【0030】空気調和機の全体的な構成を図1および図
2に示す。Aは室外ユニット、Bは室内ユニットであ
る。この室外ユニットAおよび室内ユニットBに、ヒー
トポンプ式冷凍サイクルが搭載される。
The overall structure of the air conditioner is shown in FIGS. 1 and 2. A is an outdoor unit, and B is an indoor unit. A heat pump type refrigeration cycle is mounted on the outdoor unit A and the indoor unit B.

【0031】すなわち、圧縮機41の吐出口に四方弁4
2を介してコンデンサ(凝縮器)43が配管接続され、
そのコンデンサ43に電動膨張弁44を介してエバポレ
ータ(蒸発器)45が接続される。そして、エバポレー
タ45に、上記四方弁42を介して圧縮機41の吸込口
が接続される。
That is, the four-way valve 4 is provided at the discharge port of the compressor 41.
A condenser (condenser) 43 is pipe-connected via 2
An evaporator (evaporator) 45 is connected to the condenser 43 via an electric expansion valve 44. Then, the suction port of the compressor 41 is connected to the evaporator 45 via the four-way valve 42.

【0032】室外ユニットA側の接続には配管51が用
いられる。室内ユニットB側の接続には配管52が用い
られる。冷房時は、四方弁42が図1の状態に設定され
ることにより、圧縮機41から吐出される冷媒が矢印の
ように四方弁42、コンデンサ43、電動膨張弁44、
エバポレータ45へと流れ、エバポレータ45を経た冷
媒が四方弁42を通って圧縮機41に吸込まれる。
A pipe 51 is used for connection on the outdoor unit A side. A pipe 52 is used for the connection on the indoor unit B side. During cooling, the four-way valve 42 is set to the state shown in FIG. 1, so that the refrigerant discharged from the compressor 41 has the four-way valve 42, the condenser 43, the electric expansion valve 44, as shown by the arrow.
The refrigerant flows to the evaporator 45, and the refrigerant passing through the evaporator 45 passes through the four-way valve 42 and is sucked into the compressor 41.

【0033】暖房時は、四方弁42が図2の状態に切換
えられることにより、圧縮機41から吐出される冷媒が
矢印のように四方弁42、コンデンサ45、電動膨張弁
44、コンピュータ43へと流れ、そのコンピュータ4
3を経た冷媒が四方弁42を通って圧縮機41に吸込ま
れる。
During heating, the four-way valve 42 is switched to the state shown in FIG. 2, so that the refrigerant discharged from the compressor 41 flows to the four-way valve 42, the condenser 45, the electric expansion valve 44, and the computer 43 as shown by the arrow. Flow, computer 4
The refrigerant passing through 3 is sucked into the compressor 41 through the four-way valve 42.

【0034】冷凍サイクル中に充填される冷媒として、
オゾン破壊係数が零の冷媒、たとえばHFC冷媒、HF
E冷媒(ハイドロフルオロエーテル)、CO2 冷媒、プ
ロパンC38 (R−290)のような炭化水素系物質
またはアンモニアを含む冷媒のいずれかが使用される。
このうち、HFC冷媒としては、HFC−32(ジフルオ
ロエタン)、HFC−125 (ペンタフルオロエタン)、
HFC−134a(テトラフルオロエタン)等の単一冷媒、
もしくはこれら冷媒の混合によるR410A冷媒(HF
C−32を50wt%、HFC−125 を50wt%混合)、R40
7C(HFC−32、HFC−125 、HFC−134aの混
合)冷媒などがある。炭化水素系のプロパン(R−29
0)の使用もある。
As the refrigerant charged in the refrigeration cycle,
Refrigerants having an ozone depletion potential of zero, such as HFC refrigerants and HF
Either an E refrigerant (hydrofluoroether), a CO 2 refrigerant, a hydrocarbon-based substance such as propane C 3 H 8 (R-290) or a refrigerant containing ammonia is used.
Of these, HFC-32 (difluoroethane), HFC-125 (pentafluoroethane),
A single refrigerant such as HFC-134a (tetrafluoroethane),
Alternatively, R410A refrigerant (HF
50% by weight of C-32 and 50% by weight of HFC-125), R40
7C (HFC-32, HFC-125, HFC-134a mixed) refrigerant and the like. Hydrocarbon-based propane (R-29
There is also the use of 0).

【0035】ただし、これらの冷媒には、圧力が高い、
可燃性がある、毒性がある、などの特徴があり、使用に
当たっては十分な安全性を確保する必要がある。対策と
して、室内ユニットBの配管接続に用いる室内配管52
の耐圧強度が、室外ユニットAに用いる室外配管51の
耐圧強度よりも大きく設定される。
However, these refrigerants have high pressure,
It has characteristics such as flammability and toxicity, and it is necessary to secure sufficient safety before use. As a countermeasure, the indoor piping 52 used for connecting the piping of the indoor unit B
Is set to be larger than the pressure resistance of the outdoor pipe 51 used for the outdoor unit A.

【0036】室内配管52の耐圧強度が室外配管51の
耐圧強度より大きい場合には、冷媒圧力の異常上昇に際
し、配管破損、冷媒漏れなどの不測の事態が室内側(居
住域)の配管52よりも先に室外側の配管51で発生す
る。これにより、室内側(居住域)の配管52における
配管破損や冷媒漏れを防ぐことができ、圧力の高い冷
媒、可燃性のある冷媒、あるいは毒性のある冷媒が使用
されている場合でも、火災や健康への害が室内の住人に
及ぶことなく、十分な安全を確保することができる。
When the pressure resistance of the indoor piping 52 is higher than the pressure resistance of the outdoor piping 51, when the refrigerant pressure rises abnormally, an unexpected situation such as damage to the piping or leakage of the refrigerant from the piping 52 on the indoor side (residential area) Also occurs first in the pipe 51 on the outdoor side. As a result, it is possible to prevent pipe breakage and refrigerant leakage in the pipe 52 on the indoor side (residential area), and to prevent a fire or a fire even when a high-pressure refrigerant, a flammable refrigerant, or a toxic refrigerant is used. Sufficient safety can be secured without harming the health of the inhabitants in the room.

【0037】冷凍サイクルには圧力スイッチや圧縮機モ
ータ電流検知器など冷媒圧力の異常上昇を検知する手段
を設け、その異常検知に際して圧縮機の運転を停止した
り圧縮機の回転数を低減するなどの保護制御を行うのが
一般的であるが、その保護制御が検知手段の故障などで
機能しなかった場合でも、上記のように配管破損や冷媒
漏れを室外側の配管51に請け負わせて室内の住人に被
害が及ばないようにすることができる。
The refrigeration cycle is provided with means such as a pressure switch and a compressor motor current detector for detecting an abnormal rise in the refrigerant pressure, and when the abnormality is detected, the operation of the compressor is stopped or the rotation speed of the compressor is reduced. However, even if the protection control does not function due to a failure of the detection means, the pipe damage or refrigerant leakage is outsourced to the outdoor side pipe 51 as described above, and You can prevent the residents from being harmed.

【0038】室内配管52の耐圧強度を室外配管51の
耐圧強度より大きくするための具体的な手段として、
(1)室内配管52の外径を室外配管51の外径より小
さくする、(2)室内配管52の管壁の厚さを室外配管
51の管壁の厚さより大きくする、(3)室内配管52
の材料強度を室外配管51の材料強度より大きくする、
(4)室外配管51の特定箇所の強度を同配管51の他
の箇所の強度より僅かに小さくする、などがある。
As a concrete means for making the pressure resistance of the indoor piping 52 larger than the pressure resistance of the outdoor piping 51,
(1) The outer diameter of the indoor pipe 52 is made smaller than the outer diameter of the outdoor pipe 51, (2) The thickness of the pipe wall of the indoor pipe 52 is made larger than the thickness of the pipe wall of the outdoor pipe 51, (3) The indoor pipe 52
The material strength of is greater than the material strength of the outdoor pipe 51,
(4) For example, the strength of a specific part of the outdoor pipe 51 may be made slightly smaller than the strength of other parts of the same pipe 51.

【0039】室内配管52の外径を室外配管51の外径
より小さくすると、冷媒圧力に基づく室内配管52への
応力を低減することができる。なお、室内配管52の外
径をd1 、完璧の厚さをt1 、材料許容応力値をk1
許容圧力をP1 とすると、P1 =k1 ・(t1 /d1
である。
By making the outer diameter of the indoor pipe 52 smaller than the outer diameter of the outdoor pipe 51, the stress on the indoor pipe 52 due to the refrigerant pressure can be reduced. In addition, the outer diameter of the indoor pipe 52 is d 1 , the perfect thickness is t 1 , the allowable material stress value is k 1 ,
If the allowable pressure is P 1 , then P 1 = k 1 · (t 1 / d 1 ).
Is.

【0040】室外配管51の外径をd2 、完璧の厚さを
2 、材料許容応力値をk2 、許容圧力をP2 とする
と、P2 =k2 ・(t2 /d2 )である。したがって、
1 /P2 =k1 /k2 ・t1 /t2 ・d2 /d1 の関
係が得られる。この関係に基づき、P1 >P2 になる組
み合わせを次の(a)〜(c)のように選定すること
で、室内配管52の耐圧強度を室外配管51の耐圧強度
より大きくすることができる。
Assuming that the outer diameter of the outdoor pipe 51 is d 2 , the perfect thickness is t 2 , the allowable material stress value is k 2 , and the allowable pressure is P 2 , then P 2 = k 2 · (t 2 / d 2 ). Is. Therefore,
The relationship of P 1 / P 2 = k 1 / k 2 · t 1 / t 2 · d 2 / d 1 is obtained. Based on this relationship, the pressure resistance of the indoor piping 52 can be made higher than the pressure resistance of the outdoor piping 51 by selecting the combination satisfying P 1 > P 2 as in the following (a) to (c). .

【0041】(a)t1 =t2 、k1 =k2 の場合に
は、d1 <d2 とする。 (b)d1 =d2 、k1 =k2 の場合には、t1 >t2
とする。 (c)t1 =t2 、d1 =d2 の場合には、k1 >k2
とする。
(A) If t 1 = t 2 and k 1 = k 2 , then d 1 <d 2 . (B) When d 1 = d 2 and k 1 = k 2 , t 1 > t 2
And (C) When t 1 = t 2 and d 1 = d 2 , k 1 > k 2
And

【0042】室内配管52の耐圧強度を室外配管51の
耐圧強度より大きくするための具体的な手段の一つに、
上記(4)の配管52の特定箇所の強度を同配管52の
他の箇所の強度より僅かに小さくする、があるが、これ
は冷媒圧力の異常上昇に際して、配管破損や冷媒漏れを
室外側の配管51の特定箇所に発生させるための構成で
ある。
One of the concrete means for making the pressure resistance of the indoor piping 52 larger than the pressure resistance of the outdoor piping 51 is:
There is a case where the strength of a specific part of the pipe 52 of (4) is made slightly smaller than the strength of other parts of the pipe 52. It is a configuration for generating at a specific location of the pipe 51.

【0043】この構成の場合、さらに、配管51の特定
箇所をカバー部材で囲む構成を採用することにより、冷
媒漏れの影響が室外ユニットAの他の部品などに波及す
る事態を遮断または低減することができる。
In the case of this structure, by further adopting a structure in which a specific portion of the pipe 51 is surrounded by a cover member, it is possible to block or reduce the situation in which the influence of the refrigerant leakage spreads to other parts of the outdoor unit A and the like. You can

【0044】次に、他の実施例として、一方、上記コン
デンサ43およびエバポレータ45として使用する熱交
換器1をR−410Aのような高圧冷媒に対応して高耐
圧化した熱交換器を説明する。図3および図4にその熱
交換器の要部を示す。熱交換器1の全体的な構成は図
8、図9と同じである。
Next, as another embodiment, a heat exchanger in which the heat exchanger 1 used as the condenser 43 and the evaporator 45 has a high withstand voltage corresponding to a high pressure refrigerant such as R-410A will be described. . 3 and 4 show the main parts of the heat exchanger. The overall configuration of the heat exchanger 1 is the same as in FIGS. 8 and 9.

【0045】Uベンド32の両端部32a,32aが、
スウェージング加工により、フレア状の段形状部32b
を伴って縮管形成される。この縮管形成部32a,32
aは、熱交換パイプ31の拡管形成部31a,31aと
の対応位置よりさらに奥の位置まで挿入される。
Both ends 32a, 32a of the U bend 32 are
Flare-shaped step 32b by swaging
And a tube is formed. The contracted tube forming portions 32a, 32
“A” is inserted to a position deeper than a position corresponding to the pipe expansion forming portions 31a, 31a of the heat exchange pipe 31.

【0046】熱交換パイプ31の管軸方向に沿う縮管形
成部32a.32aの長さは、熱交換器の側端面となる
放熱フィン2とほぼ対応する位置まで達するLaに設定
される。熱交換パイプ31の管軸方向に沿う段形状部3
2b,32bの長さは、熱交換パイプ31の管軸方向に
沿う段形状部31b,31bの長さと同じ長さLbに設
定される。
Reduced tube forming portion 32a. Along the tube axis direction of the heat exchange pipe 31. The length of 32a is set to La that reaches a position almost corresponding to the radiation fin 2 which is the side end surface of the heat exchanger. Step-shaped portion 3 along the tube axis direction of the heat exchange pipe 31
The lengths of 2b and 32b are set to the same length Lb as the length of the step-shaped portions 31b and 31b along the tube axis direction of the heat exchange pipe 31.

【0047】図では、熱交換パイプ31の内周面とUベ
ンド32の外周面との重なり部分に隙間が存するように
見えるが、実際には極わずかな隙間を有しているか、或
いは接触しており、その重なり部分がロウ付け溶接され
る。このロウ付け溶接により、熱交換パイプ31に対す
るUベンド32の接続が完了する。
In the figure, it seems that there is a gap in the overlapping portion between the inner peripheral surface of the heat exchange pipe 31 and the outer peripheral surface of the U-bend 32, but in reality, there is a very small gap or there is a contact. And the overlapping part is brazed and welded. The brazing welding completes the connection of the U bend 32 to the heat exchange pipe 31.

【0048】このような構成によれば、放熱フィン2か
ら突出した熱交換パイプ31の領域(長さ=K2 +K
1 )のほぼ全体に対し、Uベンド32の外周面がぴった
りと接した状態になり、そこに二重管構造が生じる。
According to this structure, the area of the heat exchange pipe 31 protruding from the heat radiation fin 2 (length = K 2 + K)
The outer peripheral surface of the U-bend 32 is in close contact with almost all of 1 ), and a double pipe structure is formed there.

【0049】この二重管構造により、熱交換パイプ31
とUベンド32との接続領域の全体にわたって高い強度
および耐久性が得られる。すなわち、冷媒圧力(内圧)
に基づく応力をUベンド32の段形状部32b,32b
と熱交換パイプ31の段形状部31b,31bとの両方
で受容することができ、従来のように熱交換パイプ31
の段形状部31b,31bだけに応力が集中する事態を
回避することができる。
Due to this double pipe structure, the heat exchange pipe 31
High strength and durability can be obtained over the entire connection area between the U bend 32 and the U bend 32. That is, the refrigerant pressure (internal pressure)
The stress based on the stepped portions 32b, 32b of the U bend 32.
And the step-shaped portions 31b, 31b of the heat exchange pipe 31 can be received, and the heat exchange pipe 31 can be received as in the conventional case.
It is possible to avoid a situation in which stress concentrates only on the step-shaped portions 31b and 31b.

【0050】しかも、熱交換パイプ31の内周面とUベ
ンド32の外周面との重なり部分を管軸方向に長く取れ
るので、溶接用のロウ材が熱交換パイプ31の奥に染み
出してしまうことなく良好な溶接を行うことができる。
したがって、熱交換パイプ31の奥に邪魔なロウ詰まり
が生じなくなり、スムーズな冷媒流を確保することがで
きる。
Moreover, since the overlapping portion of the inner peripheral surface of the heat exchange pipe 31 and the outer peripheral surface of the U-bend 32 can be long in the axial direction of the pipe, the brazing material for welding oozes out into the depth of the heat exchange pipe 31. Good welding can be performed without
Therefore, no obstructive wax clogging occurs inside the heat exchange pipe 31, and a smooth refrigerant flow can be secured.

【0051】なお、図5に示すように、Uベンド32の
拡管形成部32a,32aの長さを延長してその拡管形
成部32a,32aが放熱フィン2と対応する位置より
さらに熱交換器の内方まで入り込む形状とすれば、熱交
換パイプ31とUベンド32との二重管構造の領域が拡
がり、強度および耐久性をさらに高めることができる。
As shown in FIG. 5, the lengths of the expanded pipe forming portions 32a, 32a of the U-bend 32 are extended so that the expanded pipe forming portions 32a, 32a are located farther from the positions corresponding to the heat radiation fins 2. If the shape is such that the heat exchange pipe 31 and the U-bend 32 are inserted inward, the area of the double pipe structure of the heat exchange pipe 31 and the U bend 32 is expanded, and the strength and durability can be further enhanced.

【0052】また、図9に示したように、各熱交換パイ
プ31のうち、冷媒の流入側および流出側に対応する熱
交換パイプ31の一端部には、他の冷凍サイクル部品と
接続するための外部配管4が挿入接続されるが、その外
部配管4が挿入接続される熱交換パイプ31について
は、図6、図7に示すように機械的強度が他の熱交換パ
イプ31の機械的強度より大きく設定される。
Further, as shown in FIG. 9, one end of each heat exchange pipe 31 corresponding to the refrigerant inflow side and the refrigerant outflow side is connected to another refrigeration cycle component. The external pipe 4 of FIG. 6 is inserted and connected, but the heat exchange pipe 31 to which the external pipe 4 is inserted and connected has a mechanical strength of another heat exchange pipe 31 as shown in FIGS. 6 and 7. It is set larger.

【0053】外部配管4が挿入接続される熱交換パイプ
31の機械的強度を他の熱交換パイプ31の機械的強度
より大きくするための具体的な手段として、図6に示す
ように管壁の厚さを他の熱交パイプ31より大きくした
り、図7に示すように外部配管4の挿入接続を受入れる
ための接続用領域(ロウ付け溶接領域)を管軸方向にな
るべく長くする、などがある。
As a concrete means for increasing the mechanical strength of the heat exchange pipe 31 to which the external pipe 4 is inserted and connected is higher than the mechanical strength of the other heat exchange pipe 31, as shown in FIG. The thickness is made larger than that of the other heat exchange pipes 31, or the connecting region (brazing welding region) for receiving the insertion connection of the external pipe 4 is made as long as possible in the pipe axis direction as shown in FIG. is there.

【0054】外部配管4と熱交換パイプ31との接続部
には、冷媒圧力に基づく応力集中のほかに、圧縮機振動
や送風機振動に起因する応力集中がある。そのような圧
力に基づく応力集中と振動に基づく応力集中とが共にか
かっても、上記のように機械的強度を大きくすること
で、十分に耐えることができる。しかも、安価にそれを
達成することができる。
At the connection between the external pipe 4 and the heat exchange pipe 31, in addition to stress concentration due to refrigerant pressure, there is stress concentration due to compressor vibration and blower vibration. Even if both stress concentration based on such pressure and stress concentration based on vibration are applied, it is possible to sufficiently endure it by increasing the mechanical strength as described above. Moreover, it can be achieved at low cost.

【0055】上述した図3〜図7に示す実施例では、冷
媒としてHFC−32を45wt%以上含むR−410Aのよ
うに、50℃の飽和圧力が2500KPa (キロパスカル)以上
となる高圧冷媒を用いており、従来のR−22冷媒(凝縮
温度が65℃のときの飽和圧力が2800KPa )に対し、高耐
圧設計が必要であるが、上記図3〜図7の構成の熱交換
器では十分適応できるだけの高い強度と耐久性を備えて
いる。その他、この発明は上記実施例に限定されるもの
ではなく、要旨を変えない範囲で種々変形実施可能であ
る。
In the embodiment shown in FIGS. 3 to 7 described above, a high pressure refrigerant having a saturation pressure of 2500 KPa (kilopascal) or higher at 50 ° C., such as R-410A containing 45 wt% or more of HFC-32, is used as the refrigerant. It is used and requires a high pressure resistance design for the conventional R-22 refrigerant (saturation pressure is 2800 KPa when the condensation temperature is 65 ° C), but the heat exchanger with the configuration shown in Figs. 3 to 7 is sufficient. It has enough strength and durability to adapt. Besides, the present invention is not limited to the above-described embodiments, and various modifications can be made without departing from the scope of the invention.

【0056】[0056]

【発明の効果】以上述べたように、本発明の空気調和機
のように、冷凍サイクルの配管のうち、室内ユニット側
の配管の耐圧強度を室外ユニット側の配管の耐圧強度よ
り大きくする構成とした場合には、冷媒圧力の異常上昇
によるガスリークの発生は室外側になりやすいため、H
CFC冷媒に代えて高圧の代替冷媒を用いても十分な安
全確保が可能である。
As described above, as in the air conditioner of the present invention, of the piping of the refrigeration cycle, the pressure resistance strength of the piping on the indoor unit side is made larger than the pressure resistance strength of the piping on the outdoor unit side. In such a case, the gas leak due to the abnormal increase in the refrigerant pressure is likely to occur outside the room, so
Even if a high-pressure alternative refrigerant is used instead of the CFC refrigerant, sufficient safety can be ensured.

【0057】また、本発明のように熱交換器の各熱交換
パイプの両端部をフレア状の段形状を伴って拡管形成す
るとともに、連結パイプの両端部をフレア状の段形状を
伴って縮管形成し、その連結パイプの縮管形成部を各熱
交換パイプの拡管形成部より奥の位置まで挿入する構成
とした場合には、熱交換パイプの接続部分における冷媒
圧力による応力集中に対し十分な耐久性と強度を得るこ
とができ、しかも溶接に際してのロウ詰まりを解消して
スムーズな冷媒流を確保できるので、高圧の代替冷媒を
用いた空気調和機の安全性を向上できる。
Further, as in the present invention, both ends of each heat exchange pipe of the heat exchanger are expanded and formed with flared step shapes, and both ends of the connecting pipe are compressed with flared step shapes. When a pipe is formed and the constricted pipe forming part of the connecting pipe is inserted to a position deeper than the expanded pipe forming part of each heat exchange pipe, it is sufficient for stress concentration due to refrigerant pressure at the connection part of the heat exchange pipe. Since it is possible to obtain high durability and strength, and to eliminate wax clogging during welding and to ensure a smooth refrigerant flow, it is possible to improve the safety of an air conditioner using a high-pressure alternative refrigerant.

【0058】また、本発明のように、熱交換器の各熱交
換パイプのうち、冷媒の流入側または流出側に位置する
熱交換パイプの機械的強度を、他の熱交換パイプの機械
的強度より大きくする場合には、外部配管との接続部へ
の応力集中に対し十分な耐久性と強度が得られるので、
高圧の代替冷媒を用いた空気調和機の安全性を向上でき
る。
As in the present invention, among the heat exchange pipes of the heat exchanger, the mechanical strength of the heat exchange pipe located on the refrigerant inflow side or the refrigerant outflow side is changed to the mechanical strength of the other heat exchange pipes. If it is made larger, sufficient durability and strength can be obtained for stress concentration at the connection with the external pipe,
The safety of the air conditioner using the high-pressure alternative refrigerant can be improved.

【図面の簡単な説明】[Brief description of drawings]

【図1】一実施例の空気調和機における冷凍サイクルの
構成と冷房時の冷媒の流れを示す図。
FIG. 1 is a diagram showing a configuration of a refrigeration cycle in an air conditioner of an embodiment and a flow of a refrigerant during cooling.

【図2】同実施例の空気調和機における冷凍サイクルの
構成と暖房時の冷媒の流れを示す図。
FIG. 2 is a diagram showing a configuration of a refrigeration cycle and a flow of a refrigerant during heating in the air conditioner of the embodiment.

【図3】一実施例の空気調和機における熱交換器の構成
を断面して示す図。
FIG. 3 is a cross-sectional view showing the configuration of a heat exchanger in the air conditioner of one embodiment.

【図4】図3におけるUベンドの構成を示す図。FIG. 4 is a diagram showing a configuration of a U-bend in FIG.

【図5】図3の変形例の構成を断面して示す図。5 is a cross-sectional view showing the configuration of the modified example of FIG.

【図6】同実施例の空気調和機における熱交換器の外部
配管接続部の変形例の構成を断面して示す図。
FIG. 6 is a cross-sectional view showing the configuration of a modified example of the external pipe connection portion of the heat exchanger in the air conditioner of the embodiment.

【図7】同実施例の空気調和機における熱交換器の外部
配管接続部の他の変形例の構成を断面して示す図。
FIG. 7 is a cross-sectional view showing the configuration of another modification of the external pipe connecting portion of the heat exchanger in the air conditioner of the embodiment.

【図8】同実施例および従来における熱交換器の全体的
な構成を示す斜視図。
FIG. 8 is a perspective view showing an overall configuration of a heat exchanger according to the same embodiment and a conventional heat exchanger.

【図9】図8における要部の構成を示す図。9 is a diagram showing a configuration of a main part in FIG.

【図10】従来の熱交換器の構成を部分的に断面して示
す図。
FIG. 10 is a partial cross-sectional view showing the configuration of a conventional heat exchanger.

【符号の説明】[Explanation of symbols]

1…熱交換器、2…放熱フィン、3…パイプ、31…熱
交換パイプ、31a…先端部、31b…段形状部、32
…Uベンド、32a…先端部、32b…段形状部、A…
室外ユニット、B…室内ユニット、41…圧縮機、43
…コンデンサ、44…電動膨張弁、45…エバポレー
タ、51…室外ユニット側の配管、52…室内ユニット
側の配管。
DESCRIPTION OF SYMBOLS 1 ... Heat exchanger, 2 ... Radiating fin, 3 ... Pipe, 31 ... Heat exchange pipe, 31a ... Tip part, 31b ... Step shape part, 32
... U bend, 32a ... Tip part, 32b ... Step shape part, A ...
Outdoor unit, B ... Indoor unit, 41 ... Compressor, 43
... condenser, 44 ... electric expansion valve, 45 ... evaporator, 51 ... outdoor unit side piping, 52 ... indoor unit side piping.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI F25B 39/04 F25B 41/00 Z 41/00 F24F 1/00 391C (56)参考文献 特開 平8−152230(JP,A) 特開 平5−203195(JP,A) 特開 平6−219145(JP,A) 特開 平6−288496(JP,A) 特開 昭63−259395(JP,A) 特開 平8−247576(JP,A) 特開 平1−237294(JP,A) 特開 平5−45080(JP,A) 実開 昭61−74078(JP,U) 実開 昭58−119089(JP,U) 実開 昭63−104892(JP,U) (58)調査した分野(Int.Cl.7,DB名) F25B 39/00 F24F 5/00 F25B 13/00 F25B 41/00 F25B 39/02 F25B 39/04 F24F 1/00 391 F25B 1/00 395 F25B 49/02 540 ─────────────────────────────────────────────────── ─── Continuation of front page (51) Int.Cl. 7 Identification code FI F25B 39/04 F25B 41/00 Z 41/00 F24F 1/00 391C (56) Reference JP-A-8-152230 (JP, A) ) JP-A-5-203195 (JP, A) JP-A-6-219145 (JP, A) JP-A-6-288496 (JP, A) JP-A-63-259395 (JP, A) JP-A-8- 247576 (JP, A) JP-A-1-237294 (JP, A) JP-A-5-45080 (JP, A) Actually open 61-74078 (JP, U) Actually open 58-119089 (JP, U) 63-104892 (JP, U) (58) Fields surveyed (Int.Cl. 7 , DB name) F25B 39/00 F24F 5/00 F25B 13/00 F25B 41/00 F25B 39/02 F25B 39 / 04 F24F 1/00 391 F25B 1/00 395 F25B 49/02 540

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 放熱フィンに複数本の熱交換パイプを挿
通し、これら熱交換パイプを順次に連通して圧力の高い
冷媒を流す構成の熱交換器を備えた空気調和機におい
て、 前記熱交換器の各熱交換パイプのうち、冷媒の流入側ま
たは流出側に位置する熱交換パイプの機械的強度を、他
の熱交換パイプの機械的強度より大きくしたことを特徴
とする空気調和機。
1. An air conditioner equipped with a heat exchanger configured to insert a plurality of heat exchange pipes into a radiation fin and to sequentially communicate the heat exchange pipes to flow a high-pressure refrigerant, wherein: Among the heat exchange pipes of the vessel, the heat exchange pipe located on the inflow side or the outflow side of the refrigerant has a mechanical strength higher than that of other heat exchange pipes.
【請求項2】 請求項に記載の空気調和機において、 冷媒の流入側または流出側に位置する熱交換パイプの管
壁の厚さが、他の熱交換パイプの管壁の厚さより大きい
ことを特徴とする空気調和機。
2. The air conditioner according to claim 1 , wherein the thickness of the pipe wall of the heat exchange pipe located on the refrigerant inflow side or the refrigerant outflow side is greater than the thickness of the other heat exchange pipe. An air conditioner characterized by.
【請求項3】 請求項に記載の空気調和機において、 冷媒の流入側または流出側に位置する熱交換パイプは、
外部配管の挿入接続を受入れるための接続用領域が管軸
方向になるべく長いことを特徴とする空気調和機。
3. The air conditioner according to claim 1 , wherein the heat exchange pipe located on the inflow side or the outflow side of the refrigerant is
An air conditioner characterized in that a connection area for receiving an insertion connection of an external pipe is as long as possible in a pipe axis direction.
JP29526696A 1996-11-07 1996-11-07 Air conditioner Expired - Fee Related JP3454647B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP29526696A JP3454647B2 (en) 1996-11-07 1996-11-07 Air conditioner
TW087208371U TW360387U (en) 1996-11-07 1997-09-12 Air conditioner
CNB971202125A CN1155781C (en) 1996-11-07 1997-11-05 Air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29526696A JP3454647B2 (en) 1996-11-07 1996-11-07 Air conditioner

Publications (2)

Publication Number Publication Date
JPH10141804A JPH10141804A (en) 1998-05-29
JP3454647B2 true JP3454647B2 (en) 2003-10-06

Family

ID=17818374

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29526696A Expired - Fee Related JP3454647B2 (en) 1996-11-07 1996-11-07 Air conditioner

Country Status (3)

Country Link
JP (1) JP3454647B2 (en)
CN (1) CN1155781C (en)
TW (1) TW360387U (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010260398A (en) * 2009-04-30 2010-11-18 Mitsubishi Electric Corp Air conditioner for vehicle
EP3376138A4 (en) * 2015-11-12 2019-02-13 Mitsubishi Electric Corporation Air conditioner
CN110940042A (en) * 2018-09-21 2020-03-31 奥克斯空调股份有限公司 Refrigerant leakage detection method and air conditioning device

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19983376T1 (en) * 1998-07-14 2001-06-28 Schlumberger Technologies Inc Device, method and system for a liquid-based temperature change stress control of electronic components with a wide range and quick response
JP2000249384A (en) * 1999-02-25 2000-09-12 Daikin Ind Ltd Freezer
JP3903851B2 (en) 2002-06-11 2007-04-11 株式会社デンソー Heat exchanger
JP2007093084A (en) * 2005-09-28 2007-04-12 Toshiba Kyaria Kk Air-conditioner
CN102374582A (en) * 2010-08-05 2012-03-14 隋榕育 Air-duct-type one-drivers-two air conditioner indoor machine
JP5477315B2 (en) * 2011-03-07 2014-04-23 三菱電機株式会社 Refrigeration air conditioner
JP5073849B1 (en) * 2011-07-05 2012-11-14 シャープ株式会社 Heat exchanger and air conditioner equipped with the same
JP5665937B1 (en) * 2013-09-13 2015-02-04 三菱電機株式会社 Refrigeration cycle equipment
CN104061644B (en) * 2014-06-26 2017-01-18 中国科学院宁波材料技术与工程研究所 Rapid cooling device
US10697568B2 (en) * 2014-09-25 2020-06-30 Mitsubishi Electric Corporation Refrigerant pipe, method of manufacturing the refrigerant pipe, and heat exchanger including the refrigerant pipe
CN108885038A (en) * 2016-03-28 2018-11-23 三菱电机株式会社 Outdoor unit
JP6865809B2 (en) * 2019-12-24 2021-04-28 三菱電機株式会社 Air conditioner
JP7227512B2 (en) * 2021-04-28 2023-02-22 ダイキン工業株式会社 Piping connection structure and refrigeration cycle device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010260398A (en) * 2009-04-30 2010-11-18 Mitsubishi Electric Corp Air conditioner for vehicle
EP3376138A4 (en) * 2015-11-12 2019-02-13 Mitsubishi Electric Corporation Air conditioner
US10627127B2 (en) 2015-11-12 2020-04-21 Mitsubishi Electric Corporation Air conditioner in which a flammable refrigerant flows
CN110940042A (en) * 2018-09-21 2020-03-31 奥克斯空调股份有限公司 Refrigerant leakage detection method and air conditioning device

Also Published As

Publication number Publication date
CN1155781C (en) 2004-06-30
CN1182187A (en) 1998-05-20
JPH10141804A (en) 1998-05-29
TW360387U (en) 1999-06-01

Similar Documents

Publication Publication Date Title
JP3454647B2 (en) Air conditioner
EP3040654B1 (en) Air conditioning device and refrigerant leak detection method
EP3683524B1 (en) Refrigeration apparatus
JPH10122711A (en) Refrigerating cycle control device
JP6857815B2 (en) Refrigeration cycle equipment
JP2004361036A (en) Air conditioning system
US20170284712A1 (en) Refrigeration cycle apparatus
JP5936785B1 (en) Air conditioner
JPH0875290A (en) Heat pump type air conditioner
JP2009257601A (en) Air conditioning device
WO2018139589A1 (en) Refrigeration device
JP2008096082A (en) Piping joint structure for refrigerating cycle, compressor, and refrigeration system
JP3966260B2 (en) Heat pump water heater
JP3813317B2 (en) Refrigeration cycle equipment
JP6565277B2 (en) Refrigeration equipment
JP6925508B2 (en) Heat exchanger, refrigeration cycle device and air conditioner
KR19980042120A (en) Air conditioner
JP5404729B2 (en) Heat exchanger and refrigeration cycle apparatus
WO2012137260A1 (en) Refrigerant recovery method for refrigeration cycle device and refrigeration cycle device
WO2020165970A1 (en) Heat exchanger for air conditioning
WO2017134721A1 (en) Outdoor unit of air conditioning apparatus
JP2015158303A (en) heat exchanger and refrigeration cycle device
JP3309778B2 (en) Air conditioner
JP7398582B1 (en) air conditioner
JP7338229B2 (en) Refrigeration cycle test equipment

Legal Events

Date Code Title Description
S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080725

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080725

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090725

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100725

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100725

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110725

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110725

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120725

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees