JP3452781B2 - refrigerator - Google Patents

refrigerator

Info

Publication number
JP3452781B2
JP3452781B2 JP34037797A JP34037797A JP3452781B2 JP 3452781 B2 JP3452781 B2 JP 3452781B2 JP 34037797 A JP34037797 A JP 34037797A JP 34037797 A JP34037797 A JP 34037797A JP 3452781 B2 JP3452781 B2 JP 3452781B2
Authority
JP
Japan
Prior art keywords
evaporator
compartment
refrigerating
freezing
refrigerator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP34037797A
Other languages
Japanese (ja)
Other versions
JPH11173729A (en
Inventor
勉 佐久間
裕子 本郷
久美子 山口
正人 田子
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP34037797A priority Critical patent/JP3452781B2/en
Publication of JPH11173729A publication Critical patent/JPH11173729A/en
Application granted granted Critical
Publication of JP3452781B2 publication Critical patent/JP3452781B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/25Control of valves
    • F25B2600/2511Evaporator distribution valves

Landscapes

  • Devices That Are Associated With Refrigeration Equipment (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、庫内を複数の冷却
室に分け、各冷却室にそれぞれ蒸発器と冷気循環ファン
とを設けた冷蔵庫に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a refrigerator in which the interior of a refrigerator is divided into a plurality of cooling chambers, and each cooling chamber is provided with an evaporator and a cool air circulation fan.

【0002】[0002]

【従来の技術】一般に、冷蔵庫は圧縮機から吐出された
冷媒が凝縮器→絞り弁→蒸発器を通り、再び圧縮機に戻
る冷凍サイクルを構成し、蒸発器と冷気循環ファンから
成る一つの冷却システムで冷蔵室および冷凍室の二つの
温度空間を冷却している。蒸発器で熱交換された冷気は
冷気循環ファンで冷気ダクトや冷気流路切換用の電動ダ
ンパを介して各部屋に供給され、それぞれの設定温度に
冷却される。また、冷蔵室や野菜室に供給される冷気の
温度は冷凍室に供給される冷気温度と同じであるため、
冷蔵室や野菜室への冷気を供給する冷気ダクトには断熱
を施す必要があった。そのため、この冷気ダクトや電動
ダンパの容積が大きくなり、容積率(冷蔵庫外寸法に対
する内容積)の大幅な向上は望めず、現構成の冷蔵庫で
は容積率向上に限界があった。
2. Description of the Related Art Generally, a refrigerator constitutes a refrigeration cycle in which refrigerant discharged from a compressor passes through a condenser, a throttle valve, and an evaporator, and then returns to the compressor. The system cools the two temperature spaces, the cold room and the freezer room. The cool air that has undergone heat exchange in the evaporator is supplied to each room by a cool air circulation fan through a cool air duct and an electric damper for switching the cool air flow path, and is cooled to each set temperature. Further, since the temperature of the cold air supplied to the refrigerating room and the vegetable room is the same as the temperature of the cold air supplied to the freezing room,
It was necessary to insulate the cold air ducts that supply the cold air to the refrigerator compartment and the vegetable compartment. Therefore, the volume of the cold air duct and the electric damper becomes large, and the volume ratio (internal volume relative to the refrigerator outside size) cannot be expected to be significantly improved, and the refrigerator having the current configuration has a limit in improving the volume ratio.

【0003】このため、本出願人は特願平9−6845
3号を出願した。この構成は、二つの蒸発器を直列に接
続して冷蔵室と冷凍室に配置し、圧縮機と冷却ファンの
回転数を可変し、それぞれ独立した冷気流路で冷却する
冷蔵庫が提案されている。この構成では冷蔵室と冷凍室
が完全に独立しているためダクト・ダンパレスとするこ
とができ高容積化が図れる。
Therefore, the present applicant has filed Japanese Patent Application No. 9-6845.
Filed No. 3. In this configuration, a refrigerator is proposed in which two evaporators are connected in series and are arranged in a refrigerating room and a freezing room, the rotation speeds of a compressor and a cooling fan are variable, and cooling is performed by independent cold air passages. . With this configuration, the refrigerating room and the freezing room are completely independent from each other, so that a duct / damperless structure can be used and the volume can be increased.

【0004】また、前記特願平9−68453号と同様
に、二つの蒸発器を並列に接続し、各冷却室をそれぞれ
異なる温度に冷却する冷蔵庫としては、特公平7−72
661号公報にて開示されたものがある。この構成は、
3方弁で冷媒流路を切換え、−18℃程度の通常冷凍室
と−30℃程度の深温冷凍室を構成するものである。通
常冷凍室は第1のキャピラリに接続された第1蒸発器で
冷却し、深温冷凍室は3方弁の切換えによって第1のキ
ャピラリと第2のキャピラリが直列に接続された第2の
蒸発器で冷却するものである。
Further, as in Japanese Patent Application No. 9-68453, a refrigerator in which two evaporators are connected in parallel and each cooling chamber is cooled to a different temperature is disclosed in Japanese Patent Publication No. 7-72.
There is one disclosed in Japanese Patent No. 661. This configuration
The refrigerant flow path is switched by a three-way valve to form a normal freezing room at about -18 ° C and a deep freezing room at about -30 ° C. Usually, the freezer compartment is cooled by the first evaporator connected to the first capillary, and the deep-freezer compartment is the second evaporator in which the first and second capillaries are connected in series by switching the 3-way valve. It cools with a container.

【0005】同じく二つの蒸発器を並列に接続したサイ
クルを構成するものとして、特開平9−170832号
公報に開示されたものがある。この構成では、高温蒸発
器と低温蒸発器を有し、3方バルブでいずれかの蒸発器
へ冷媒が流れるよう冷媒流路を選択している。すなわ
ち、凝縮圧力を低下して蒸発温度を上昇させ、冷凍サイ
クル効率向上を図ったものである。その構成は、凝縮器
から流出された冷媒を蒸発器に誘導する冷媒管と、蒸発
器から流出された冷媒を圧縮機に誘導する冷媒管とを熱
交換させるものである。
Similarly, there is one disclosed in Japanese Patent Application Laid-Open No. 9-170832, which constitutes a cycle in which two evaporators are connected in parallel. In this configuration, the high-temperature evaporator and the low-temperature evaporator are provided, and the refrigerant passage is selected by the three-way valve so that the refrigerant flows to one of the evaporators. That is, the condensing pressure is lowered to raise the evaporation temperature to improve the efficiency of the refrigeration cycle. The structure heat-exchanges the refrigerant pipe that guides the refrigerant that has flowed out of the condenser to the evaporator and the refrigerant pipe that guides the refrigerant that has flowed out of the evaporator to the compressor.

【0006】また、同様に実開昭60−188982号
公報に開示されたものは、冷蔵室冷却時の圧縮機回転数
を、冷凍室冷却時の圧縮機回転数より低くなるよう制御
し、蒸発温度を上げて省電力効果を得ようとするもので
ある。
Similarly, in the one disclosed in Japanese Utility Model Laid-Open No. 60-188982, the number of revolutions of the compressor during cooling of the refrigerating compartment is controlled to be lower than the number of revolutions of the compressor during cooling of the freezing compartment to evaporate. This is to raise the temperature to obtain the power saving effect.

【0007】[0007]

【発明が解決しようとする課題】しかしながら、前記特
公平7−72661号のように、二つの蒸発器を直列に
接続したサイクルの冷蔵庫では、二つの蒸発器の内、い
ずれか一方の蒸発器に適した温度となるよう圧縮機回転
数が制御されるため、他方の蒸発温度には適さない温度
の冷媒が流れることになる。このため、例えば3〜5℃
に保たれる冷蔵室の蒸発器は−10℃程度に制御される
が、この時−18℃に保たれる冷凍室の蒸発器も同じ温
度の冷媒が流れる。また、着霜が進んだ一方の蒸発器の
除霜を行う場合、圧縮機を停止しなければならず、除霜
の必要のない他の冷却室までが温度上昇を招くという問
題があった。
However, in the refrigerator of the cycle in which two evaporators are connected in series as in Japanese Patent Publication No. 7-72661, only one of the two evaporators is used. Since the compressor speed is controlled so that the temperature becomes suitable, the refrigerant having a temperature not suitable for the other evaporation temperature flows. Therefore, for example, 3-5 ℃
The evaporator in the refrigerating room kept at -10 ° C. is controlled to about −10 ° C., but at this time, the refrigerant of the same temperature also flows in the evaporator in the freezing room kept at −18 ° C. Further, when defrosting one of the evaporators which has been frosted, the compressor must be stopped, and there is a problem that the temperature of other cooling chambers that do not require defrosting rises.

【0008】一方、特開平9−170832号のよう
に、二つの蒸発器を並列に接続したサイクルの冷蔵庫で
は、各冷却室に適した蒸発温度での冷却ができず、冷蔵
と冷凍の二つの温度帯を得るということは困難であっ
た。また、各蒸発器へ流れる冷媒量の調整手段がないた
め、各蒸発器の大きさをほぼ同じにしないと小さい蒸発
器側に冷媒が流れた場合に液バックが起こり、サイクル
効率の低下を招くことになる。さらに低温側蒸発器から
高温側蒸発器に冷媒流路が切り換わった直後には、低温
側蒸発器に冷媒が滞留することから、高温側蒸発器への
冷媒不足が起こることが考えられ、消費電力量の面で不
利となる。
On the other hand, in a refrigerator having a cycle in which two evaporators are connected in parallel, as in Japanese Patent Laid-Open No. 9-170832, cooling at an evaporation temperature suitable for each cooling chamber cannot be performed, and two types of refrigeration and freezing are required. It was difficult to get the temperature range. Further, since there is no means for adjusting the amount of refrigerant flowing to each evaporator, liquid back occurs when the refrigerant flows to the small evaporator side unless the size of each evaporator is made substantially the same, which leads to a decrease in cycle efficiency. It will be. Furthermore, immediately after the refrigerant flow path is switched from the low-temperature side evaporator to the high-temperature side evaporator, the refrigerant remains in the low-temperature side evaporator, which may cause a shortage of refrigerant to the high-temperature side evaporator. It is disadvantageous in terms of power consumption.

【0009】また、同様に前記実開昭60−18898
2号のものでは、冷蔵室冷却時の圧縮機回転数を、冷凍
室冷却時の圧縮機回転数より低くしたため、庫内温度の
大幅な上昇に対し、急速冷凍など、短時間での対応がで
きなかった。
[0009] Similarly, the above-mentioned Japanese Utility Model Laid-Open No. 60-18898.
With No. 2, the compressor speed during cooling of the refrigerating compartment was set lower than the compressor speed during cooling of the freezing compartment, so quick rises and other measures could be taken in a short time in response to a large increase in the temperature inside the refrigerator. could not.

【0010】本発明は前記課題を解決するため、圧縮機
から吐出された冷媒流路を切換え、冷凍負荷に応じて圧
縮機や冷気循環ファンの回転数を制御して、冷却温度に
適した蒸発温度で冷蔵室と冷凍室を冷却することによっ
て、冷凍サイクル効率の向上を図り、消費電力低減を図
った冷蔵庫を提供することを目的とする。
In order to solve the above-mentioned problems, the present invention switches the refrigerant flow path discharged from the compressor, controls the rotational speeds of the compressor and the cold air circulation fan according to the refrigerating load, and evaporates to a temperature suitable for the cooling temperature. An object of the present invention is to provide a refrigerator in which refrigeration cycle efficiency is improved and power consumption is reduced by cooling the refrigerating room and the freezing room at a temperature.

【0011】さらに本発明では、冷蔵室冷却時と冷凍室
冷却時とで異なる冷媒循環量を適切に調整し、いずれか
一方の蒸発器のみに冷媒を流して冷却するため、圧縮機
の小型化を図るとともに、冷凍室冷却時は冷蔵室蒸発器
の除霜も可能とすることを目的とする。
Further, according to the present invention, different refrigerant circulation amounts are appropriately adjusted during cooling of the refrigerating compartment and during cooling of the freezing compartment, and the refrigerant is allowed to flow through only one of the evaporators for cooling, thus reducing the size of the compressor. At the same time, it is intended to enable defrosting of the refrigerator compartment evaporator when cooling the freezer compartment.

【0012】[0012]

【課題を解決するための手段】上述の課題を解決するた
め、本発明の請求項1に記載の冷蔵庫は、冷蔵室と冷凍
室にそれぞれ蒸発器および冷気循環ファンを配置し、各
蒸発器がそれぞれキャピラリ接続して並列に配置さ
れ、各蒸発器への冷媒流路を交互に切換えて冷蔵室と冷
凍室とを交互に冷却する冷蔵庫において、前記冷蔵室蒸
発器が冷凍キャピラリと熱交換を行なう構成とする一
方、前記冷凍室および前記冷蔵室の検出温度結果に基づ
いて圧縮機の回転数を制御し、冷蔵室と冷凍室が設定温
度となるように各蒸発器の蒸発温度を制御するようにし
たことを要旨とする。
In order to solve the above-mentioned problems, a refrigerator according to claim 1 of the present invention has an evaporator and a cold air circulation fan respectively arranged in a refrigerating room and a freezing room, and each evaporator is are arranged in parallel in connection with capillary respectively, in the refrigerator a refrigerant flow path is switched to alternately cool the refrigeration room and the freezing chamber alternately to the evaporators, the refrigerating chamber steam
The generator is configured to exchange heat with the frozen capillary.
On the other hand, the rotation speed of the compressor is controlled based on the detection temperature results of the freezer compartment and the refrigerator compartment, and the evaporation temperature of each evaporator is controlled so that the refrigerator compartment and the freezer compartment become set temperatures. Is the gist.

【0013】この構成によって、冷蔵室蒸発器が冷凍キ
ャピラリと熱交換を行うので、冷凍室冷却時に冷凍キャ
ピラリで冷蔵室蒸発器を加熱することにより、冷蔵室蒸
発器の着霜に対して除霜を行うことができ、この除霜に
より冷蔵室庫内を高湿化に保つことができる。また、
蔵室蒸発器と冷凍室蒸発器への冷媒流路を交互に切換え
て冷蔵室と冷凍室を冷却する際に、各蒸発器を各冷却室
温度に適した蒸発温度で冷却できるため、冷凍サイクル
効率が向上する。
With this configuration, the refrigerating compartment evaporator can be used as a freezer.
Since heat is exchanged with the capillaries, the freezer
By heating the refrigerator evaporator with the pilari,
You can defrost the frost on the generator, and
It is possible to keep the inside of the refrigerator compartment highly humid. Further, when cooling the refrigerating compartment evaporator and the freezing compartment evaporator by alternately switching the refrigerant flow paths to cool the refrigerating compartment and the freezing compartment, each evaporator can be cooled at an evaporation temperature suitable for each cooling compartment temperature. Refrigeration cycle efficiency is improved.

【0014】請求項2に記載の冷蔵庫は、請求項1に記
載の冷蔵庫において、冷蔵室と冷凍室に配置した冷気循
環ファンの回転数を可変することで、冷蔵室と冷凍室の
冷気吹出温度を制御することを要旨とする。
According to a second aspect of the present invention, in the refrigerator according to the first aspect, the temperature of the cold air circulating fan arranged in the refrigerating compartment and the freezing compartment is varied to change the temperature of the cold air blown into the refrigerating compartment and the freezing compartment. The point is to control.

【0015】この構成によって、冷蔵室と冷凍室の冷気
循環ファンの回転数を可変して、それぞれの冷気吹出温
度を制御するので、冷蔵室蒸発器が庫内温度より低温の
時には冷蔵室ファンを適切な回転数で駆動することによ
って、冷気の供給と庫内冷気の循環が行われ、冷蔵室庫
内の温度分布を均一にできる。
With this configuration, the rotational speeds of the cold air circulation fans in the refrigerating compartment and the freezing compartment are varied to control the respective cool air blowing temperatures. Therefore, when the refrigerating compartment evaporator has a temperature lower than the inside temperature, the refrigerating compartment fan is operated. By driving at an appropriate rotation speed, the supply of cold air and the circulation of cold air in the refrigerator are performed, and the temperature distribution in the refrigerator compartment can be made uniform.

【0016】請求項3に記載の冷蔵庫は、請求項1に記
載の冷蔵庫において、冷凍室蒸発器の出ロに逆止弁と液
冷媒を貯留する冷媒タンクを設け、冷媒タンク出口と冷
蔵室蒸発器出口とを接続することを要旨とする。
A refrigerator according to a third aspect is the refrigerator according to the first aspect, wherein a check valve and a refrigerant tank for storing the liquid refrigerant are provided at the outlet of the freezer compartment evaporator, and a refrigerant tank outlet and a refrigerating room evaporator are provided. The point is to connect with the outlet.

【0017】この構成によって、冷蔵室冷却時に、冷凍
室蒸発器内から冷媒が漏れ出ることなく低温状態で滞留
するので、冷凍室冷却時には冷凍室冷却に切り換わった
直後から迅速に冷却でき、冷凍サイクル損失を抑えるこ
とができる。
With this configuration, when the refrigerating compartment is cooled, the refrigerant stays in a low temperature state without leaking from the freezer compartment evaporator, so that the freezing compartment can be cooled immediately after it is switched to the freezing compartment during the cooling. Cycle loss can be suppressed.

【0018】請求項4に記載の冷蔵庫は、請求項3に記
載の冷蔵庫において、前記冷媒タンクは、冷蔵キャピラ
リと熱交換を行う構成とすることを要旨とする。
A refrigerator according to a fourth aspect is characterized in that, in the refrigerator according to the third aspect, the refrigerant tank is configured to exchange heat with a refrigerating capillary.

【0019】この構成によって、冷蔵室冷却時に冷蔵キ
ャピラリで冷媒タンクを加熱し、冷媒タンクの圧力を高
めることができるので、冷凍室蒸発器から低温冷媒が漏
れ出ることを抑えることができる。
With this configuration, the refrigerant tank can be heated by the refrigerating capillaries and the pressure in the refrigerant tank can be increased when the refrigerating compartment is cooled, so that the low temperature refrigerant can be prevented from leaking from the freezer compartment evaporator.

【0020】請求項5に記載の冷蔵庫は、請求項3に記
載の冷蔵庫において、前記冷媒タンクに、冷蔵室冷却時
に通電するヒータを設けることを要旨とする。
A fifth aspect of the present invention is the refrigerator according to the third aspect, wherein the refrigerant tank is provided with a heater that is energized when cooling the refrigerating chamber.

【0021】この構成によって、冷蔵室冷却時に冷媒タ
ンクを加熱するので、冷蔵室冷却時の冷媒放出を促進す
ることができる。
With this configuration, the refrigerant tank is heated when the refrigerating chamber is cooled, so that the discharge of the refrigerant when the refrigerating chamber is cooled can be promoted.

【0022】請求項6に記載の冷蔵庫は、請求項3に記
載の冷蔵庫において、前記冷媒タンクは、冷蔵室に配置
されることを要旨とする。
According to a sixth aspect of the present invention, in the refrigerator according to the third aspect, the refrigerant tank is arranged in a refrigerating room.

【0023】この構成によって、冷媒タンクが、冷蔵室
冷却時に冷媒を放出しやすい温度帯に設置されるので、
冷媒放出を促進することができる。
With this configuration, the refrigerant tank is installed in a temperature zone where the refrigerant is likely to be discharged when the refrigerating chamber is cooled,
Refrigerant discharge can be accelerated.

【0024】請求項7に記載の冷蔵庫は、請求項1に記
載の冷蔵庫において、冷蔵室蒸発器の出口にアキュムレ
ー夕を設け、このアキュムレータが冷凍キャピラリと熱
交換を行う構成とすることを要旨とする。
The refrigerator according to claim 7 is the refrigerator according to claim 1, wherein an accumulator is provided at the outlet of the refrigerating compartment evaporator, and the accumulator exchanges heat with the freezing capillary. To do.

【0025】この構成によって、冷蔵室冷却時にアキュ
ムレータ内に滞留した冷媒を、冷凍室冷却時に冷凍キャ
ピラリで加熱し、冷媒放出を促進させることができる。
With this configuration, the refrigerant accumulated in the accumulator during cooling of the refrigerating chamber can be heated by the freezing capillary during cooling of the freezing chamber to accelerate the discharge of the refrigerant.

【0026】請求項8に記載の冷蔵庫は、請求項7に記
載の冷蔵庫において、前記アキュムレータに、冷凍室冷
却時に通電するヒータを設けることを要旨とする。
The eighth aspect of the present invention is the refrigerator according to the seventh aspect, wherein the accumulator is provided with a heater that is energized when cooling the freezer compartment.

【0027】この構成によって、冷凍室冷却時にアキュ
ムレータを加熱するので、冷凍室冷却時の冷媒放出を促
進することができる。
With this configuration, the accumulator is heated when the freezer compartment is cooled, so that the discharge of the refrigerant when the freezer compartment is cooled can be promoted.

【0028】請求項9に記載の冷蔵庫は、請求項1に記
載の冷蔵庫において、冷蔵キャピラリと冷凍キャピラリ
が、圧縮機吸込みパイプと熱交換するように一体的に構
成されることを要旨とする。
A ninth aspect of the present invention is the refrigerator according to the first aspect, wherein the refrigerating capillaries and the freezing capillaries are integrally configured so as to exchange heat with the compressor suction pipe.

【0029】この構成によって、冷蔵キャピラリと冷凍
キャピラリが、圧縮機吸込みパイプと一体的に構成され
るので、製作時におけるキャピラリの屈折による亀裂な
どの問題を回避できると共に、熱交換によってサイクル
効率を向上できる。
With this structure, since the refrigerating capillaries and the freezing capillaries are integrally formed with the compressor suction pipe, problems such as cracks due to refraction of the capillaries during manufacturing can be avoided, and cycle efficiency can be improved by heat exchange. it can.

【0030】請求項10に記載の冷蔵庫は、請求項1に
記載の冷蔵庫において、冷媒流路の切換えを、三方弁で
行うことを要旨とする。
A refrigerator according to a tenth aspect is characterized in that, in the refrigerator according to the first aspect, the switching of the refrigerant flow path is performed by a three-way valve.

【0031】この構成によって、三方弁で冷媒流路を切
換えるので、製作上、配管接続箇所が減り、コストを低
減することができる。
With this configuration, since the refrigerant flow passage is switched by the three-way valve, the number of pipe connection points is reduced in manufacturing, and the cost can be reduced.

【0032】[0032]

【0033】[0033]

【0034】請求項11に記載の冷蔵庫は、請求項11
に記載の冷蔵庫において、冷蔵室蒸発器と熱交換する前
の冷凍キャピラリは、冷蔵室蒸発器の出ロパイプと熱交
換することを要旨とする。
[0034] The refrigerator according to claim 11, claim 11
In the refrigerator described in (1), the gist is that the freezing capillary before exchanging heat with the refrigerating compartment evaporator exchanges heat with the outlet pipe of the refrigerating compartment evaporator.

【0035】この構成によって、冷凍キャピラリは、冷
蔵室蒸発器の出ロパイプと熱交換してから、冷蔵室蒸発
器と熱交換するので、除霜温度となる冷凍キャピラリの
温度を下げることができ、冷蔵室蒸発器を必要以上に加
熱することがなく、適正な温度で除霜ができる。
With this structure, the freezing capillary exchanges heat with the outlet pipe of the refrigerating compartment evaporator and then with the refrigerating compartment evaporator, so that the temperature of the freezing capillary, which is the defrosting temperature, can be lowered. Defrosting can be done at an appropriate temperature without overheating the refrigerator compartment evaporator.

【0036】請求項12に記載の冷蔵庫は、冷蔵室と冷
凍室にそれぞれ蒸発器および冷気循環ファンを配置し、
各蒸発器がそれぞれキャピラリを接続して並列に配置さ
れ、各蒸発器への冷媒流路を交互に切換えて冷蔵室と冷
凍室とを交互に冷却する冷蔵庫において、前記冷媒流路
の切換えを、一方の蒸発器側の流路に設けられた電磁弁
と、他方の蒸発器側に設けられ、前記電磁弁下流側の圧
力低下時に“開”となる差圧弁で行う構成とすることを
要旨とする。
In the refrigerator according to the twelfth aspect , an evaporator and a cold air circulation fan are arranged in the refrigerating room and the freezing room, respectively.
Each evaporator is arranged in parallel by connecting the respective capillaries, in the refrigerator that alternately cools the refrigerating room and the freezing room by alternately switching the refrigerant flow path to each evaporator, the switching of the refrigerant flow path, An electromagnetic valve provided in a flow path on one evaporator side and a differential pressure valve provided on the other evaporator side and "opened" when the pressure on the downstream side of the electromagnetic valve decreases are summarized. To do.

【0037】この構成によって、冷媒流路の切換えを、
電磁弁と差圧弁とを用いて行うので、コスト低減と信頼
性の向上を図ることができる。
With this configuration, the switching of the refrigerant flow path
Since the solenoid valve and the differential pressure valve are used, cost reduction and reliability improvement can be achieved.

【0038】[0038]

【発明の実施の形態】以下、図面を参照して本発明の実
施の形態を詳細に説明する。
BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.

【0039】図1は本発明の冷蔵庫に係る実施の形態を
示す冷凍サイクル図である。図2は本実施の形態の配管
構成図であり、破線はキャピラリを、実線はそれ以外の
冷媒配管を表す。
FIG. 1 is a refrigerating cycle diagram showing an embodiment of the refrigerator of the present invention. FIG. 2 is a piping configuration diagram of the present embodiment, in which broken lines represent capillaries and solid lines represent other refrigerant pipes.

【0040】冷蔵室蒸発器2と冷凍室蒸発器4にそれぞ
れ冷蔵室ファン3と冷凍室ファン5が配置され、各蒸発
器がそれぞれ冷蔵キャピラリ19と冷凍キャピラリ18
とを接続して並列に配置されている。各蒸発器への冷媒
流路を、電磁弁15と差圧弁16とを用いて交互に切換
えて、冷蔵室と冷凍室とを交互に冷却する。本実施の形
態では、圧縮機13がインバータ電源(図示せず)によ
って回転数(能力)可変に構成され、冷媒流量を制御し
て、冷蔵室と冷凍室の各蒸発器の蒸発温度を制御する。
そして冷蔵室と冷凍室とにそれぞれ温度センサ(図示せ
ず)を備え、マイクロコンピュータなどによって構成さ
れる温度制御部(図示せず)によって、冷凍室温度セン
サおよび冷蔵室温度センサの検出温度とあらかじめ設定
された設定温度とから、それぞれ冷蔵室温度と冷凍室温
度に適した蒸発温度となるように、インバータ電源を制
御して圧縮機の能力を可変制御する。
A refrigerating compartment fan 3 and a freezing compartment fan 5 are arranged in the refrigerating compartment evaporator 2 and the freezing compartment evaporator 4, respectively, and each evaporator is equipped with a refrigerating capillary 19 and a freezing capillary 18, respectively.
They are connected in parallel with each other. The refrigerant flow path to each evaporator is alternately switched using the solenoid valve 15 and the differential pressure valve 16 to cool the refrigerating chamber and the freezing chamber alternately. In the present embodiment, the compressor 13 is configured so that the rotation speed (capacity) is variable by an inverter power supply (not shown), the refrigerant flow rate is controlled, and the evaporation temperature of each evaporator in the refrigerating compartment and the freezing compartment is controlled. .
The refrigerating compartment and the freezing compartment are each provided with a temperature sensor (not shown), and the temperature control unit (not shown) configured by a microcomputer or the like detects the temperature detected by the freezing compartment temperature sensor and the refrigerating compartment temperature sensor in advance. The capacity of the compressor is variably controlled by controlling the inverter power source so that the evaporation temperatures suitable for the refrigerating room temperature and the freezing room temperature are respectively obtained from the set set temperatures.

【0041】図3は本発明の実施の形態の冷蔵庫の断面
図であり、冷蔵室、冷凍室にそれぞれ蒸発器と冷気循環
ファンを配置し、冷蔵室蒸発器と冷気循環ファンを冷蔵
室の上部に配置した例を示す。
FIG. 3 is a cross-sectional view of the refrigerator according to the embodiment of the present invention. An evaporator and a cold air circulation fan are arranged in the refrigerating compartment and the freezing compartment respectively, and the refrigerating compartment evaporator and the cool air circulation fan are located above the refrigerating compartment. Here is an example of arrangement.

【0042】冷蔵庫本体1は、断熱仕切壁6によって冷
蔵室蒸発器2を配置した冷蔵温度帯(冷蔵室)40と、
冷凍室蒸発器4を配置した冷凍温度帯(冷凍室)50に
区画された構造となっている。このため、冷気は完全に
独立して循環され、各冷気が混合することはない。さら
に冷蔵温度帯40の庫内は冷蔵仕切板7によって冷蔵室
8と野菜室9とに仕切られ、冷凍温度帯50の庫内は冷
凍仕切板24によって第1冷凍室10および第2冷凍室
11とに仕切られ、各室はそれぞれ開閉扉51〜54を
有している。
The refrigerator body 1 includes a refrigerating temperature zone (refrigerating room) 40 in which the refrigerating room evaporator 2 is arranged by a heat insulating partition wall 6,
The structure is divided into a freezing temperature zone (freezing room) 50 in which the freezing room evaporator 4 is arranged. Therefore, the cold air is circulated completely independently, and the cold air is not mixed. Further, the inside of the refrigerating temperature zone 40 is partitioned into a refrigerating compartment 8 and a vegetable compartment 9 by the refrigerating partition plate 7, and the inside of the freezing temperature zone 50 is divided into the first freezing compartment 10 and the second freezing compartment 11 by the freezing partition plate 24. Each room has opening and closing doors 51 to 54.

【0043】また、冷蔵室蒸発器2と冷蔵室ファン3は
冷蔵室8の最上段奥に配置され、冷凍室蒸発器4と冷凍
室ファン5は第1および第2冷凍室10、11の背壁内
に配置されている。冷気循環ファン3,5は、回転数可
変のモータ(図示せず)によって回転駆動され、温度制
御部からの制御によって冷気循環ファンの回転数を可変
して、冷蔵室と冷凍室の冷気吹出温度を制御する。
The refrigerating compartment evaporator 2 and the refrigerating compartment fan 3 are arranged in the uppermost stage of the refrigerating compartment 8, and the freezing compartment evaporator 4 and the freezing compartment fan 5 are located behind the first and second freezing compartments 10 and 11. It is located in the wall. The cold air circulation fans 3 and 5 are rotatably driven by a motor (not shown) whose rotation speed is variable, and the rotation speed of the cold air circulation fan is changed under the control of the temperature control unit so that the cold air blowout temperatures of the refrigerating room and the freezing room are changed. To control.

【0044】冷蔵庫本体1の背壁下部の機械室12に
は、冷凍サイクルを構成する圧縮機13、凝縮器14が
それぞれ配置され、圧縮機13から吐出された冷媒は、
凝縮器14を通った後、電磁弁15と差圧弁16からな
る冷媒切換機構によって冷蔵用蒸発器2または冷凍用蒸
発器4に入り、それぞれの蒸発温度で冷却した後、再び
圧縮機13に戻る冷凍サイクルを構成する。
In the machine room 12 below the back wall of the refrigerator main body 1, a compressor 13 and a condenser 14 constituting a refrigeration cycle are arranged, and the refrigerant discharged from the compressor 13 is
After passing through the condenser 14, the refrigerant switching mechanism including the electromagnetic valve 15 and the differential pressure valve 16 enters the refrigerating evaporator 2 or the freezing evaporator 4, cools at each evaporation temperature, and then returns to the compressor 13 again. Configure a refrigeration cycle.

【0045】次に、本実施の形態の制御動作について、
各冷却室ごとの冷媒の流れと挙動を説明する。冷凍室5
0の冷却時は、電磁弁15を“開”とする。この時、差
圧弁の信号圧ライン17は高圧となるため差圧弁16は
“閉”となる。したがって、凝縮器14を出た冷媒は冷
凍キャピラリ18を通って冷凍室蒸発器4に入り、ここ
で冷凍室50内の空気と熱交換を行う。その後、冷媒は
逆止弁20、冷媒タンク21を通って再び圧縮機13に
入って以後この過程を繰り返す。この時、冷蔵室蒸発器
2、アキュムレータ22内に残留する冷媒は、冷凍室蒸
発器4からの冷媒とともに圧縮機13に吸い込まれる。
したがって、冷凍室50冷却時はサイクル内に充填され
た冷媒の大部分が循環することになり、冷凍室蒸発器4
で熱交換した後の余剰冷媒は冷媒タンク21に液冷媒と
して貯留され、残りの冷媒が圧縮機13に戻ることにな
る。
Next, regarding the control operation of the present embodiment,
The flow and behavior of the refrigerant in each cooling chamber will be described. Freezer 5
When cooling to 0, the solenoid valve 15 is opened. At this time, the signal pressure line 17 of the differential pressure valve has a high pressure, so that the differential pressure valve 16 is "closed". Therefore, the refrigerant discharged from the condenser 14 passes through the freezing capillary 18 and enters the freezer compartment evaporator 4, where it exchanges heat with the air in the freezer compartment 50. Then, the refrigerant passes through the check valve 20 and the refrigerant tank 21 and enters the compressor 13 again, and thereafter this process is repeated. At this time, the refrigerant remaining in the refrigerator compartment evaporator 2 and the accumulator 22 is sucked into the compressor 13 together with the refrigerant from the freezer compartment evaporator 4.
Therefore, when the freezer compartment 50 is cooled, most of the refrigerant filled in the cycle circulates, and the freezer compartment evaporator 4 is cooled.
The surplus refrigerant after the heat exchange is stored in the refrigerant tank 21 as a liquid refrigerant, and the remaining refrigerant returns to the compressor 13.

【0046】また、冷凍キャピラリ18と冷蔵室蒸発器
2は一体に構成された二重管熱交換器となっており、冷
凍室50冷却中は冷凍キャピラリ18と冷蔵室蒸発器2
が熱交換する構成となっている。そのため、冷蔵室40
冷却中に冷蔵室蒸発器2には着霜が起こるが、冷凍室5
0冷却時に冷凍キャピラリ18で加熱し、冷蔵室蒸発器
2の除霜を行うことになる。したがって、冷蔵室40空
間は食品保存に好条件となる高湿度が保たれる。さら
に、この時冷蔵室ファン3を任意に駆動することによっ
て高湿度化と温度分布均一化が図れる。
The freezing capillary 18 and the refrigerator compartment evaporator 2 are integrated into a double-tube heat exchanger, and the freezing capillary 18 and the refrigerator compartment evaporator 2 are provided while the freezer compartment 50 is being cooled.
Is configured to exchange heat. Therefore, the refrigerator compartment 40
Frost occurs in the refrigerator compartment evaporator 2 during cooling, but the freezer compartment 5
During cooling to zero, the freezing capillary 18 is heated to defrost the refrigerator compartment evaporator 2. Therefore, the refrigerating room 40 space can maintain high humidity, which is a favorable condition for food preservation. Further, at this time, by arbitrarily driving the refrigerating compartment fan 3, high humidity and uniform temperature distribution can be achieved.

【0047】一方、冷蔵室40冷却時は電磁弁15が
“閉”となり、差圧弁16の信号圧ライン17は低圧と
なるため差圧弁16が“開”となる。したがって、凝縮
器14を出た冷媒は差圧弁16、冷蔵キャピラリ19を
通って冷蔵室蒸発器2に入り、ここで冷蔵室40内の空
気と熱交換を行う。その後冷媒はアキュムレータ22を
通って再び圧縮機13に入り、以後この過程を繰り返
す。
On the other hand, when the refrigerating chamber 40 is cooled, the electromagnetic valve 15 is "closed" and the signal pressure line 17 of the differential pressure valve 16 is low in pressure, so that the differential pressure valve 16 is "open". Therefore, the refrigerant discharged from the condenser 14 enters the refrigerating compartment evaporator 2 through the differential pressure valve 16 and the refrigerating capillary 19 and exchanges heat with the air in the refrigerating compartment 40. After that, the refrigerant passes through the accumulator 22 and enters the compressor 13 again, and this process is repeated thereafter.

【0048】次に、冷凍室50冷却から冷蔵室40冷却
に切換えた時の冷媒挙動を詳細に説明する。前述したよ
うに、冷凍室50冷却時はサイクル内冷媒の大部分が循
環するため、冷蔵室蒸発器2にはほとんど冷媒が存在し
なくなる。この状態で、冷蔵室40冷却に切り換わった
直後には、低温となっている冷凍室蒸発器4に冷媒が滞
留することになり、冷蔵室蒸発器2では冷媒不足の状態
が起こり、熱交換が十分に行われなくなる。つまり冷凍
サイクルの効率低下を招くことになる。
Next, the behavior of the refrigerant when the cooling of the freezing compartment 50 is switched to the cooling of the refrigerating compartment 40 will be described in detail. As described above, most of the refrigerant in the cycle circulates when the freezer compartment 50 is cooled, so that almost no refrigerant exists in the refrigerator compartment evaporator 2. In this state, immediately after switching to the cooling of the refrigerating compartment 40, the refrigerant stays in the freezing compartment evaporator 4, which is at a low temperature, and the refrigerating compartment evaporator 2 is in a refrigerant shortage state and heat exchange occurs. Will not be fully performed. That is, the efficiency of the refrigeration cycle is reduced.

【0049】そこで、図2に示した配管図のように、冷
媒タンク21は冷蔵キャピラリ19と熱交換するように
構成される。すなわち、冷蔵室40冷却時には冷蔵キャ
ピラリ19で冷媒タンク21を加熱し、冷媒タンク21
内に貯留された冷媒によって速やかに冷媒が供給できる
構成となっている。
Therefore, as shown in the piping diagram of FIG. 2, the refrigerant tank 21 is configured to exchange heat with the refrigerating capillary 19. That is, when the refrigerating chamber 40 is cooled, the refrigerant tank 21 is heated by the refrigerating capillary 19, and the refrigerant tank 21 is heated.
The refrigerant can be quickly supplied by the refrigerant stored therein.

【0050】この時冷凍室蒸発器4内には低温の冷媒が
残っているが、冷媒タンク21の加熱によって逆止弁2
0の下流側は上流側に比べて高圧となり、冷凍室蒸発器
4内には低温状態の冷媒が、冷媒タンク21側に漏れる
ことなく貯留される。したがって、冷凍室50冷却に切
り換わった直後でも冷凍室蒸発器4はすぐに設定された
蒸発温度で冷却できることになる。
At this time, the low temperature refrigerant remains in the freezer compartment evaporator 4, but the check valve 2 is heated by the refrigerant tank 21.
The downstream side of 0 has a higher pressure than the upstream side, and the refrigerant in the low temperature state is stored in the freezer compartment evaporator 4 without leaking to the refrigerant tank 21 side. Therefore, even immediately after switching to the cooling of the freezer compartment 50, the freezer compartment evaporator 4 can be immediately cooled at the set evaporation temperature.

【0051】本実施の形態では、冷蔵キャピラリ19と
冷凍キャピラリ18が圧縮機13の吸い込みパイプ23
と一体構成された第1熱交換部25を設け、製作時にキ
ャピラリの屈折による亀裂発生などの事故を低減できる
とともに、熱交換による冷凍サイクルの効率向上が得ら
れる構成となっている。
In this embodiment, the refrigerating capillary 19 and the freezing capillary 18 are the suction pipe 23 of the compressor 13.
By providing the first heat exchange section 25 integrally formed with the above, it is possible to reduce accidents such as cracks caused by refraction of the capillaries at the time of manufacturing, and to improve the efficiency of the refrigeration cycle by heat exchange.

【0052】さらに冷蔵室蒸発器2と熱交換する前の冷
凍キャピラリ18と冷蔵室蒸発器2の出口配管27とを
熱交換する第2熱交換部26を設けている。これによっ
て、冷凍室50冷却時に冷凍キャピラリの温度を低下さ
せることで、冷蔵室蒸発器2の除霜温度を下げ、除霜温
度の最適化を図ることで、除霜時の熱による冷蔵室40
の温度上昇を低く抑えることができる。
Further, there is provided a second heat exchange section 26 for exchanging heat between the freezing capillary 18 before exchanging heat with the refrigerating compartment evaporator 2 and the outlet pipe 27 of the refrigerating compartment evaporator 2. Accordingly, by lowering the temperature of the freezing capillaries during cooling of the freezing compartment 50, the defrosting temperature of the refrigerating compartment evaporator 2 is lowered, and the defrosting temperature is optimized.
The temperature rise can be suppressed to a low level.

【0053】次に、図4は本発明の他の実施の形態の冷
蔵庫の断面図であり、冷蔵室、冷凍室にそれぞれ蒸発器
と冷気循環ファンを配置し、冷蔵室蒸発器と冷気循環フ
ァンを冷蔵室の下部に配置した例である。冷凍サイクル
の制御動作については、上記実施の形態と同様である。
Next, FIG. 4 is a cross-sectional view of a refrigerator according to another embodiment of the present invention. An evaporator and a cold air circulation fan are arranged in a refrigerating compartment and a freezing compartment, respectively, and a refrigerating compartment evaporator and a cold air circulation fan are arranged. This is an example of arranging at the bottom of the refrigerator compartment. The control operation of the refrigeration cycle is similar to that of the above-mentioned embodiment.

【0054】以上の構成によって、本発明の冷蔵庫は、
圧縮機13の回転数、冷気循環ファン3,5の回転数を
可変して冷蔵室40と冷凍室50を交互に冷却し、それ
ぞれの温度帯に合った蒸発器温度としてそれぞれの冷却
時に高い冷凍サイクル効率が得られる。そして、いずれ
か一方の蒸発器のみに冷媒を流して冷却するため、圧縮
機の小型化が図れ、高い能力が必要な時は圧縮機回転数
を上げることによって対応できる。
With the above construction, the refrigerator of the present invention is
The rotation speed of the compressor 13 and the rotation speeds of the cold air circulation fans 3 and 5 are varied to cool the refrigerating chamber 40 and the freezing chamber 50 alternately, and the evaporator temperature is set to a temperature in each temperature zone and high refrigeration is performed at each cooling. Cycle efficiency is obtained. Then, since the refrigerant is allowed to flow through only one of the evaporators for cooling, the size of the compressor can be reduced, and when high performance is required, it can be dealt with by increasing the rotation speed of the compressor.

【0055】また、冷蔵室40冷却時と冷凍室50冷却
時で異なる冷媒循環量を適切に調整でき、冷凍室50冷
却時は冷蔵室蒸発器2の除霜も可能で、冷蔵室40は食
品保存に好条件である高湿度に保つことができる。
Further, different refrigerant circulation amounts can be properly adjusted when the refrigerating compartment 40 is cooled and when the freezing compartment 50 is cooled, and the refrigerating compartment evaporator 2 can be defrosted when the freezing compartment 50 is cooled. It can be kept at high humidity, which is a good condition for storage.

【0056】さらに、冷凍室は、主に水分を発生する冷
蔵室との冷気混合がないため冷凍室蒸発器4への着霜量
が抑えられ、各蒸発器はそれぞれ適した頻度で除霜でき
ため、無駄な除霜を回避できる。したがって、着霜が多
くなる冷蔵室は、冷凍室に温度上昇の影響を与えること
なく、こまめに除霜でき、食品に好条件となる高湿化が
図れるとともに、消費電力量を抑えることが可能とな
る。
Furthermore, since the freezing compartment does not mix cold air with the refrigerating compartment that mainly generates water, the amount of frost formed on the freezer compartment evaporator 4 is suppressed, and each evaporator can be defrosted at an appropriate frequency. Therefore, useless defrosting can be avoided. Therefore, a refrigerating room with a lot of frost can be defrosted frequently without affecting the temperature of the freezing room, and it is possible to achieve high humidity, which is a favorable condition for food, and it is possible to suppress power consumption. Becomes

【0057】[0057]

【発明の効果】以上説明した通り、本発明の請求項1に
記載の冷蔵庫は、冷蔵室蒸発器と冷凍室蒸発器への冷媒
流路を交互に切換えて冷蔵室と冷凍室を冷却する際に、
各蒸発器を各冷却室温度に適した蒸発温度で冷却でき、
冷凍サイクル効率の向上が図れる。また、各蒸発器の容
量を小さくできるため、圧縮機の小型化が図れ、消費電
力量とコストの低減に寄与できると共に、冷蔵室蒸発器
の除霜が可能となり、この除霜によって冷蔵室の庫内を
食品に好適な高湿化に保つことができる。
As described above, in the refrigerator according to the first aspect of the present invention, when the refrigerating compartment evaporator and the freezing compartment evaporator are alternately switched over, the refrigerant passages are cooled. To
Each evaporator can be cooled at an evaporation temperature suitable for each cooling chamber temperature,
Refrigeration cycle efficiency can be improved. In addition, since the capacity of each evaporator can be reduced, the compressor can be downsized, which contributes to the reduction of power consumption and cost, and at the same time , the refrigerator evaporator.
Defrosting is possible, and this defrosting keeps the inside of the refrigerator compartment
It is possible to maintain high humidity suitable for food.

【0058】請求項2に記載の冷蔵庫は、冷蔵室と冷凍
室の冷気循環ファンの回転数を可変して、それぞれの冷
気吹出温度を制御するので、冷蔵室蒸発器が庫内温度よ
り低温の時には冷蔵室ファンを適切な回転数で駆動する
ことによって、冷気の供給と庫内冷気の循環が行われ、
冷蔵室庫内の温度分布均一化が図れる。さらに、冷凍室
冷却中に冷蔵室内で冷気循環を行うことで、冷蔵室蒸発
器の除霜が行われ、早い温度変化にも対応可能となる。
In the refrigerator according to the second aspect of the present invention, the number of rotations of the cold air circulation fan in the refrigerating compartment and the freezing compartment is varied to control the respective cool air blowing temperatures, so that the refrigerating compartment evaporator has a temperature lower than the inside temperature. At times, by driving the refrigerator compartment fan at an appropriate number of revolutions, the supply of cold air and the circulation of cold air in the refrigerator are performed,
Uniform temperature distribution in the refrigerator compartment can be achieved. Furthermore, by performing cold air circulation in the refrigerating compartment during cooling of the freezing compartment, defrosting of the refrigerating compartment evaporator is performed, and it is possible to cope with a rapid temperature change.

【0059】請求項3に記載の冷蔵庫は、冷蔵室冷却時
に、冷凍室内から冷媒が漏れ出ることなく低温状態で滞
留するので、冷凍室冷却時には冷凍室冷却に切り換わっ
た直後から迅速に冷却でき、冷凍サイクル損失を抑える
ことができる。さらに、冷凍室冷却時に余剰冷媒を冷媒
タンクに貯留し、この貯留冷媒を冷蔵室冷却時に放出し
て冷蔵室冷却直後の冷媒不足状態を回避し、効率向上を
図ることができる。
In the refrigerator according to the third aspect, when the refrigerating compartment is cooled, the refrigerant stays in a low temperature state without leaking out from the freezing compartment, so that when the freezing compartment is cooled, it can be cooled quickly immediately after switching to the freezing compartment cooling. The refrigeration cycle loss can be suppressed. Further, excess refrigerant is stored in the refrigerant tank during cooling of the freezer compartment, and the stored refrigerant is discharged during cooling of the refrigerating compartment to avoid a shortage of refrigerant immediately after cooling of the refrigerating compartment, thereby improving efficiency.

【0060】請求項4に記載の冷蔵庫は、冷蔵室冷却時
に冷蔵キャピラリで冷媒タンクを加熱し、冷媒タンクの
圧力を高めることができるので、冷凍室蒸発器から低温
冷媒が漏れ出ることを抑える。さらに、冷凍室冷却時に
冷媒タンクに貯留された冷媒を放出し、この冷媒を冷蔵
室冷却時に早く利用できるため、冷蔵室冷却直後の冷媒
不足状態を回避できる。
In the refrigerator according to the fourth aspect, the refrigerant tank can be heated by the refrigerating capillary to increase the pressure in the refrigerant tank when the refrigerating compartment is cooled, so that the low temperature refrigerant is prevented from leaking from the freezer compartment evaporator. Further, since the refrigerant stored in the refrigerant tank is released during cooling of the freezer compartment and this refrigerant can be used quickly during cooling of the refrigerating compartment, a shortage of refrigerant immediately after cooling of the refrigerating compartment can be avoided.

【0061】請求項5に記載の冷蔵庫は、冷蔵室冷却時
に冷媒タンクを加熱するので、冷蔵室冷却時の冷媒放出
を促進する。
In the refrigerator according to the fifth aspect, the refrigerant tank is heated when the refrigerating compartment is cooled, so that the refrigerant discharge is promoted when the refrigerating compartment is cooled.

【0062】請求項6に記載の冷蔵庫は、冷媒タンク
が、冷蔵室冷却時に冷媒を放出しやすい温度帯に設置さ
れるので、冷媒放出を促進する。
In the refrigerator according to the sixth aspect, the refrigerant tank is installed in a temperature zone where the refrigerant is likely to be discharged when the refrigerating chamber is cooled, so that the refrigerant discharge is promoted.

【0063】請求項7に記載の冷蔵庫は、冷蔵室冷却時
にアキュムレータ内に滞留した冷媒を、冷凍室冷却時に
冷凍キャピラリで加熱して冷媒を放出させ、冷却を行う
ので、各冷凍サイクルに合わせて冷媒放出を促進させる
ことができる。
In the refrigerator according to the seventh aspect, the refrigerant accumulated in the accumulator during the cooling of the refrigerating compartment is heated by the freezing capillary to release the refrigerant during the cooling of the freezing compartment, so that the cooling is performed. Refrigerant release can be accelerated.

【0064】請求項8に記載の冷蔵庫は、冷凍室冷却時
にアキュムレータを加熱するので、冷凍室冷却時の冷媒
放出を促進する。
In the refrigerator according to the eighth aspect, the accumulator is heated during cooling of the freezing compartment, so that the discharge of the refrigerant during cooling of the freezing compartment is promoted.

【0065】請求項9に記載の冷蔵庫は、冷蔵キャピラ
リと冷凍キャピラリが、圧縮機吸込みパイプと一体的に
構成されるので、製作時におけるキャピラリの屈折によ
る亀裂などの問題を回避でき、しかも熱交換によって冷
凍サイクルの効率向上にも寄与できる。
In the refrigerator according to the ninth aspect, since the refrigerating capillaries and the freezing capillaries are formed integrally with the compressor suction pipe, problems such as cracks due to refraction of the capillaries during manufacturing can be avoided and heat exchange can be performed. This can also contribute to improving the efficiency of the refrigeration cycle.

【0066】請求項10に記載の冷蔵庫は、三方弁で冷
媒流路を切換えるので、製作上、配管接続箇所を低減で
き、コストも低減できる。
In the refrigerator according to the tenth aspect, the refrigerant flow passage is switched by the three-way valve, so that the number of pipe connection points can be reduced and the cost can be reduced in manufacturing.

【0067】[0067]

【0068】請求項11に記載の冷蔵庫は、冷凍キャピ
ラリが、冷蔵室蒸発器の出ロパイプと熱交換してから、
冷蔵室蒸発器と熱交換するので、除霜温度となる冷凍キ
ャピラリの温度を下げることができ、冷蔵室蒸発器を必
要以上に加熱することなく、適切な温度で除霜できる。
In the refrigerator according to the eleventh aspect , after the freezing capillary exchanges heat with the outlet pipe of the refrigerator compartment evaporator,
Since heat is exchanged with the refrigerating compartment evaporator, the temperature of the freezing capillary, which is the defrosting temperature, can be lowered, and defrosting can be performed at an appropriate temperature without heating the refrigerating compartment evaporator more than necessary.

【0069】請求項12に記載の冷蔵庫は、冷媒流路の
切換えを、電磁弁と差圧弁とを用いて行うので、コスト
低減と信頼性の向上を図れる。
In the refrigerator according to the twelfth aspect , since the switching of the refrigerant flow path is performed by using the solenoid valve and the differential pressure valve, the cost can be reduced and the reliability can be improved.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の冷蔵庫に係る実施の形態を示す冷凍サ
イクル図である。
FIG. 1 is a refrigeration cycle diagram showing an embodiment of a refrigerator of the present invention.

【図2】本発明の冷蔵庫に係る実施の形態の配管構成図
である。
FIG. 2 is a piping configuration diagram of an embodiment according to the refrigerator of the present invention.

【図3】本発明の実施の形態の冷蔵庫の断面図である。FIG. 3 is a cross-sectional view of the refrigerator according to the embodiment of the present invention.

【図4】本発明の他の実施の形態の冷蔵庫の断面図であ
る。
FIG. 4 is a sectional view of a refrigerator according to another embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1…冷蔵庫本体,2…冷蔵室蒸発器,3…冷蔵室ファ
ン,4…冷凍室蒸発器,5…冷凍室ファン,6…断熱仕
切壁,7…冷蔵仕切板,8…冷蔵室,9…野菜室,10
…第1冷凍室,11…第2冷凍室,12…機械室,13
…圧縮機,14…凝縮器,15…電磁弁,16…差圧
弁,17…差圧弁信号ライン,18…冷凍キャピラリ,
19…冷蔵キャピラリ,20…逆止弁,21…冷媒タン
ク,22…アキュムレータ,23…吸込パイプ,24…
冷凍仕切板,25…第1熱交換部,26…第2熱交換
部,27…蒸発器出ロパイプ,40…冷蔵温度帯空間
(冷蔵室),50…冷凍温度帯空間(冷凍室),51〜
54…扉。
DESCRIPTION OF SYMBOLS 1 ... Refrigerator main body, 2 ... Refrigerator compartment evaporator, 3 ... Refrigerator compartment fan, 4 ... Freezer compartment evaporator, 5 ... Refrigerator compartment fan, 6 ... Thermal insulation partition wall, 7 ... Refrigerator partition plate, 8 ... Refrigerator compartment, 9 ... Vegetable room, 10
... 1st freezing room, 11 ... 2nd freezing room, 12 ... Machine room, 13
... compressor, 14 ... condenser, 15 ... solenoid valve, 16 ... differential pressure valve, 17 ... differential pressure valve signal line, 18 ... refrigeration capillary,
19 ... Refrigerating capillary, 20 ... Check valve, 21 ... Refrigerant tank, 22 ... Accumulator, 23 ... Suction pipe, 24 ...
Refrigeration partition plate, 25 ... First heat exchange section, 26 ... Second heat exchange section, 27 ... Evaporator outlet pipe, 40 ... Refrigerating temperature zone space (refrigerating room), 50 ... Freezing temperature zone space (freezing chamber), 51 ~
54 ... Door.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 山口 久美子 神奈川県横浜市磯子区新杉田町8番地 株式会社東芝 住空間システム技術研究 所内 (72)発明者 田子 正人 神奈川県横浜市磯子区新杉田町8番地 株式会社東芝 住空間システム技術研究 所内 (56)参考文献 特開 昭61−38379(JP,A) 特開 平4−344074(JP,A) 特開 平9−170832(JP,A) 特開 昭61−89444(JP,A) 特開 平10−47827(JP,A) 実開 昭60−188982(JP,U) 特公 平7−72661(JP,B2) (58)調査した分野(Int.Cl.7,DB名) F25D 11/02 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Kumiko Yamaguchi, 8 Shinsita-cho, Isogo-ku, Yokohama-shi, Kanagawa Kanagawa Prefecture, Ltd. Living Space System Technology Research Laboratory (72) Masato Tako, 8 Shinsugita-cho, Isogo-ku, Yokohama, Kanagawa (56) Reference JP-A-61-38379 (JP, A) JP-A-4-344074 (JP, A) JP-A-9-170832 (JP, A) JP-A-SHO 61-89444 (JP, A) JP-A-10-47827 (JP, A) Actually developed 60-188982 (JP, U) JP-B 7-72661 (JP, B2) (58) Fields investigated (Int. Cl. 7 , DB name) F25D 11/02

Claims (12)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 冷蔵室と冷凍室にそれぞれ蒸発器および
冷気循環ファンを配置し、各蒸発器がそれぞれキャピラ
接続して並列に配置され、各蒸発器への冷媒流路を
交互に切換えて冷蔵室と冷凍室とを交互に冷却する冷蔵
庫において、前記冷蔵室蒸発器が冷凍キャピラリと熱交
換を行なう構成とする一方、前記冷凍室および前記冷蔵
室の検出温度結果に基づいて圧縮機の回転数を制御し、
冷蔵室と冷凍室が設定温度となるように各蒸発器の蒸発
温度を制御するようにしたことを特徴とする冷蔵庫。
1. An evaporator and a cold air circulation fan are respectively arranged in a refrigerating chamber and a freezing chamber, each evaporator is connected in parallel with a capillary and arranged in parallel, and a refrigerant flow path to each evaporator is alternately switched. In a refrigerator in which a refrigerating room and a freezing room are alternately cooled, the refrigerating room evaporator heat-exchanges with a freezing capillary.
On the other hand, while controlling the rotation speed of the compressor based on the temperature detection results of the freezer compartment and the refrigerator compartment,
A refrigerator characterized in that the evaporation temperature of each evaporator is controlled so that the refrigerating room and the freezing room have a set temperature.
【請求項2】 冷蔵室と冷凍室に配置した冷気循環ファ
ンの回転数を可変することで、冷蔵室と冷凍室の冷気吹
出温度を制御することを特徴とする請求項1に記載の冷
蔵庫。
2. The refrigerator according to claim 1, wherein the cold air blowing temperature of the refrigerating compartment and the freezing compartment is controlled by changing the number of rotations of the cold air circulating fan arranged in the refrigerating compartment and the freezing compartment.
【請求項3】 冷凍室蒸発器の出ロに逆止弁と液冷媒を
貯留する冷媒タンクを設け、冷媒タンク出口と冷蔵室蒸
発器出口とを接続することを特徴とする請求項1に記載
の冷蔵庫。
3. The check valve and the refrigerant tank for storing the liquid refrigerant are provided at the outlet of the freezer compartment evaporator, and the refrigerant tank outlet and the refrigerating compartment evaporator outlet are connected to each other. Refrigerator.
【請求項4】 前記冷媒タンクは、冷蔵キャピラリと熱
交換を行う構成とすることを特徴とする請求項3に記載
の冷蔵庫。
4. The refrigerator according to claim 3, wherein the refrigerant tank is configured to exchange heat with a refrigerating capillary.
【請求項5】 前記冷媒タンクに、冷蔵室冷却時に通電
するヒータを設けることを特徴とする請求項3に記載の
冷蔵庫。
5. The refrigerator according to claim 3, wherein the refrigerant tank is provided with a heater that is energized when the refrigerating compartment is cooled.
【請求項6】 前記冷媒タンクは、冷蔵室に配置される
ことを特徴とする請求項3に記載の冷蔵庫。
6. The refrigerator according to claim 3, wherein the refrigerant tank is disposed in a refrigerating compartment.
【請求項7】 冷蔵室蒸発器の出口にアキュムレー夕を
設け、このアキュムレータが冷凍キャピラリと熱交換を
行う構成とすることを特徴とする清求項1に記載の冷蔵
庫。
7. The refrigerator according to claim 1, wherein an accumulator is provided at the outlet of the refrigerator compartment evaporator, and the accumulator exchanges heat with the freezing capillary.
【請求項8】 前記アキュムレータに、冷凍室冷却時に
通電するヒータを設けることを特徴とする請求項7に記
載の冷蔵庫。
8. The refrigerator according to claim 7, wherein the accumulator is provided with a heater that is energized when the freezer compartment is cooled.
【請求項9】 冷蔵キャピラリと冷凍キャピラリが、圧
縮機吸込みパイプと熱交換するように一体的に構成され
ることを特徴とする請求項1に記載の冷蔵庫。
9. The refrigerator according to claim 1, wherein the refrigerating capillary and the freezing capillary are integrally configured so as to exchange heat with the compressor suction pipe.
【請求項10】 冷媒流路の切換えを、三方弁で行うこ
とを特徴とする請求項1に記載の冷蔵庫。
10. The refrigerator according to claim 1, wherein the switching of the refrigerant flow path is performed by a three-way valve.
【請求項11】 冷蔵室蒸発器と熱交換する前の冷凍キ
ャピラリは、冷蔵室蒸発器の出ロパイプと熱交換するこ
とを特徴とする請求項記載の冷蔵庫。
11. Frozen capillary before replacing the refrigerating compartment evaporator heat refrigerator according to claim 1, characterized in that Ropaipu heat exchange out of the refrigerating compartment evaporator.
【請求項12】 冷蔵室と冷凍室にそれぞれ蒸発器およ
び冷気循環ファンを配置し、各蒸発器がそれぞれキャピ
ラリを接続して並列に配置され、各蒸発器への冷媒流路
を交互に切換えて冷蔵室と冷凍室とを交互に冷却する冷
蔵庫において、 前記冷媒流路の切換えを、一方の蒸発器側の流路に設け
られた電磁弁と、他方の蒸発器側に設けられ、前記電磁
弁下流側の圧力低下時に“開”となる差圧弁で行う構成
とすることを特徴とする冷蔵庫。
12. An evaporator and a cold air circulation fan are arranged in the refrigerating chamber and the freezing chamber, respectively, and the respective evaporators are connected in parallel with each other by connecting capillaries, and the refrigerant flow paths to the respective evaporators are alternately switched. In a refrigerator in which a refrigerating chamber and a freezing chamber are alternately cooled, switching of the refrigerant flow passage is performed by a solenoid valve provided in a flow passage on one evaporator side, and the solenoid valve provided on the other evaporator side. A refrigerator characterized by being configured by a differential pressure valve that opens when the pressure on the downstream side drops.
JP34037797A 1997-12-10 1997-12-10 refrigerator Expired - Fee Related JP3452781B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP34037797A JP3452781B2 (en) 1997-12-10 1997-12-10 refrigerator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP34037797A JP3452781B2 (en) 1997-12-10 1997-12-10 refrigerator

Publications (2)

Publication Number Publication Date
JPH11173729A JPH11173729A (en) 1999-07-02
JP3452781B2 true JP3452781B2 (en) 2003-09-29

Family

ID=18336372

Family Applications (1)

Application Number Title Priority Date Filing Date
JP34037797A Expired - Fee Related JP3452781B2 (en) 1997-12-10 1997-12-10 refrigerator

Country Status (1)

Country Link
JP (1) JP3452781B2 (en)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3661548B2 (en) * 2000-02-25 2005-06-15 三菱電機株式会社 Refrigerator using flammable refrigerant
KR100404984B1 (en) * 2000-08-24 2003-11-10 가부시끼가이샤 도시바 Refrigerator and controlling method therefor
KR20020048687A (en) * 2000-12-18 2002-06-24 구자홍 The control method for capacity variation of refrigerator-freezer
KR20030033362A (en) * 2001-10-22 2003-05-01 엘지전자 주식회사 Driving control method for parrllel refrigerator
US7726141B2 (en) * 2002-12-24 2010-06-01 Lg Electronics Inc. Refrigerator, and method for controlling operation of the same
JP2005282952A (en) * 2004-03-30 2005-10-13 Gac Corp Cooling system
JP4461038B2 (en) * 2005-02-10 2010-05-12 株式会社東芝 refrigerator
US8136365B2 (en) 2007-07-02 2012-03-20 Hoshizaki Denki Kabushiki Kaisha Cooling apparatus having a variable speed compressor with speed limited on the basis of a sensed performance parameter
CN103363704B (en) * 2013-06-26 2015-11-18 青岛澳柯玛超低温冷冻设备有限公司 The How It Works of evaporimeter connected system structure in refrigeration plant
JP6355325B2 (en) * 2013-12-16 2018-07-11 三菱電機株式会社 Refrigerator and control method of refrigerator
CN106568269B (en) 2016-10-24 2019-08-27 青岛海尔股份有限公司 Refrigerator
CN107328155A (en) * 2017-06-19 2017-11-07 澳柯玛股份有限公司 A kind of pair of case refrigerator
CN110422497B (en) * 2019-08-30 2023-10-31 中国国家铁路集团有限公司 Refrigerated container and cold-inducing and heat-dissipating device
CN111238095B (en) * 2020-03-12 2023-04-07 长虹美菱股份有限公司 Refrigerating system for realizing variable-temperature chamber deep cooling and control method thereof

Also Published As

Publication number Publication date
JPH11173729A (en) 1999-07-02

Similar Documents

Publication Publication Date Title
US6327867B1 (en) Refrigerator having a cooler mounted in each of a refrigerator compartment and a freezer compartment
US6286326B1 (en) Control system for a refrigerator with two evaporating temperatures
JP3452781B2 (en) refrigerator
JP6074596B2 (en) refrigerator
US5867994A (en) Dual-service evaporator system for refrigerators
CN215447048U (en) Defrosting module and refrigeration equipment with same
CN113375403A (en) Defrosting module, refrigeration equipment and control method
JP4088474B2 (en) refrigerator
JP2731498B2 (en) Gas cooling device
WO2019107066A1 (en) Refrigerator
JP4206792B2 (en) refrigerator
JP3906637B2 (en) Freezer refrigerator
KR100753501B1 (en) refrigerator
JP3049425B2 (en) Refrigerator with two evaporators
KR100764267B1 (en) Refrigerator, and method for controlling operation of the same
JPH08296942A (en) Freezer-refrigerator and its controlling method
KR100844598B1 (en) Refrigerator
JP4103384B2 (en) refrigerator
JP3404313B2 (en) refrigerator
JP2000283626A (en) Refrigerator
WO2018147113A1 (en) Refrigerator
JP3725397B2 (en) refrigerator
JP2004069245A (en) Refrigerator
CN219713716U (en) Refrigerating system for refrigerator and refrigerator
KR100525400B1 (en) refrigerator

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees