JP4103384B2 - refrigerator - Google Patents

refrigerator Download PDF

Info

Publication number
JP4103384B2
JP4103384B2 JP2001393585A JP2001393585A JP4103384B2 JP 4103384 B2 JP4103384 B2 JP 4103384B2 JP 2001393585 A JP2001393585 A JP 2001393585A JP 2001393585 A JP2001393585 A JP 2001393585A JP 4103384 B2 JP4103384 B2 JP 4103384B2
Authority
JP
Japan
Prior art keywords
ice
ice making
cooler
refrigerator
refrigeration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001393585A
Other languages
Japanese (ja)
Other versions
JP2003194448A (en
Inventor
誠 岡部
恵司 大矢
克正 坂本
等 丸山
章 西澤
広繁 小西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2001393585A priority Critical patent/JP4103384B2/en
Publication of JP2003194448A publication Critical patent/JP2003194448A/en
Application granted granted Critical
Publication of JP4103384B2 publication Critical patent/JP4103384B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
この発明は冷蔵庫に係り、特に自動製氷装置を備えた冷蔵庫に関するものである。
【0002】
【従来の技術】
従来の冷蔵庫における制御装置を図15および図16を用いて説明する。図15は従来の冷蔵庫の横断面図であり、図において、1は冷蔵庫本体で、上から冷蔵室2、製氷室3、切替室4、野菜室5および冷凍室6に区画形成されている。7は前記冷蔵庫本体1の背面に設けた冷却器室で、冷凍冷蔵用冷却器8とその上部に冷気を循環させるための冷気循環送風機9を配置している。10は前記冷却器8の下方に設けた前記冷凍冷蔵用冷却器8に付着した霜を定期的に融解し除去する霜取ヒータ、11は圧縮機、12はドレンパンで、前記霜取ヒータ10によって融解されたドレン水を庫外へ排出するためのドレンパイプ13を介して、前記圧縮機11の放熱などを利用して蒸発させている。14は前記冷蔵室2、製氷室3、切替室4、野菜室5および冷凍室6と前記冷却器室7とを連通させる冷気通路、15は冷蔵室温度センサ、16は冷凍室温度センサ、17は切替室温度センサ、18は前記冷気通路14の冷蔵室2および前記切替室4への吹出口に備えたダンパ、19は前記製氷室3に設けた自動製氷装置で、製氷皿19a、製氷皿温度検出センサ19b、貯氷箱19c、貯氷箱19cの氷の量を検出する検氷レバー19dと、給水ポンプ20および給水タンク21とから成っている。
【0003】
図16は従来の冷蔵庫の冷媒回路および風路を示す正面図である。図において、22は凝縮器、23は絞り装置で、前記圧縮機11、冷凍冷蔵用冷却器8、凝縮器22とを冷媒管24で接続して冷媒回路を形成している。
【0004】
上記のような構造の冷蔵庫において、貯氷箱19cの氷の量を検氷レバー19dで検出し、その量が規定量(以下、満氷と呼ぶ)以下であり、かつ、製氷皿19aの裏側底部に取付けられ、上記製氷皿19aの温度を検出する製氷皿温度検出センサ19bの検出温度が設定以下になっているとき、自動製氷装置19が製氷皿19aをひねり離氷を行う。その後、給水ポンプ20が作動して、冷蔵室内に設けられた給水タンク21より上記製氷皿19aに給水が行われ、上記同様の製氷動作を繰り返すようになっている。
【0005】
また、第1熱交換器と第2熱交換器を直列に接続し上流に膨張弁を接続し、第1の熱交換器をメインの室内機、第2の熱交換器をサブの室内機として構成した空調機用冷媒回路とした技術が、特開平09−178277号公報に開示されている。
【0006】
また、第1熱交換器と第2熱交換器を直列に接続し、それぞれの熱交換器の上流側にキャピラリーチューブを接続し、その上流に三方弁を配して、第1の熱交換器を冷蔵室用、第2の熱交換器を冷凍室用として、それぞれファンを持った独立の風路構成とした冷凍冷蔵庫の技術が、特開2001−99543号公報に開示されている。
【0007】
【発明が解決すようとする課題】
上記のような従来の冷蔵庫では、一つの冷凍冷蔵用冷却器の冷気を、風路内に設置したダンパ17の開閉によって、各貯蔵室に分配し、各室の冷却を行っているため、各室の冷却能力は低下しがちであり、したがって、製氷に時間が掛かるといった問題がある。
【0008】
さらに、圧縮機の運転・停止は冷凍室の温度センサによって、また圧縮機の回転数は外気温度によって制御されている事が多い。例えば、冷凍室内の食品貯蔵量が少ないとき、扉開閉回数の少ないとき、又は、外気温度が低いときなどの負荷が軽い場合には圧縮機の運転率や回転数は低くなり、そのため、冷却能力が低下し、製氷に要する時間が増えるといった問題があった。
【0009】
また、食品を貯蔵する各室から戻った空気が冷却器で冷やされ、再度各貯蔵室の冷却のために送り出されるといった循環によって、貯蔵されている食品より発せられた臭いが循環し、氷生成のために製氷皿に注がれた水に溶け込むことによる氷への臭い移りといった問題があった。
【0010】
この発明は、このような問題点を解決するためになされたもので、食品臭を含まないと共に、製氷時間を短くして製氷に費やす電力を少なくすることを目的とする。
【0011】
【課題を解決するための手段】
この発明に係る請求項1の冷蔵庫は、圧縮機、凝縮器、流路を選択できる切替弁、第1の絞り装置、製氷専用の製氷用冷却器及び逆止弁を冷媒配管で順次接続して形成された回路と、前記第1の絞り装置とは絞り量が異なる第2の絞り装置及び冷凍冷蔵用冷却器を直列に接続して形成され、前記第2の絞り装置側が前記切替弁に接続され、前記冷凍冷蔵用冷却器側が前記逆止弁と前記圧縮機の間の冷媒配管に接続されたバイパス路と、を備えるとともに、製氷皿、貯氷箱及び給水タンクを備え、前記製氷用冷却器により冷却されて前記製氷皿で離氷と給水の製氷動作を繰り返す自動製氷装置と、前記冷凍冷蔵用冷却器により冷却される複数の食品貯蔵室と、前記製氷皿前記貯氷箱及び前記製氷用冷却器を配置し、他の食品貯蔵室と隔離されて独立的に形成され、他の食品貯蔵室を冷却した冷気と混ざらないように風路が閉サイクルをなす製氷室専用区部と、前記製氷室専用区部に配置され前記製氷用冷却器の冷気を循環させる製氷専用の製氷用送風機と、を設け、前記切替弁により前記第1の絞り装置、前記製氷用冷却器及び前記逆止弁を接続した流路と、前記バイパス路を選択できるようにしたものである。
【0013】
また、この発明に係る請求項の冷蔵庫は、前記製氷室専用区部に前面扉を開閉可能に設けたものである。
【0015】
また、この発明に係る請求項の冷蔵庫は、前記製氷室専用区部の製氷用冷却器室に、前記製氷用冷却器に付着した霜を除去する手段を設けたものである。
また、この発明に係る請求項4の冷蔵庫は、前記製氷皿の温度を検出する製氷皿温度検出センサと前記製氷室専用区部内の温度を検出する製氷室温度検出センサを設置し、前記製氷皿温度検出センサと前記製氷室温度検出センサの検出温度によって前記製氷用送風機の運転・停止や回転数を制御するものである。
【0016】
また、この発明に係る請求項の冷蔵庫は、製氷皿、貯氷箱及び給水タンクを備えて前記製氷皿で離氷と給水の製氷動作を繰り返す自動製氷装置と、複数の食品貯蔵室と、を有する冷蔵庫において、前記製氷皿と前記貯氷箱を配置し、他の食品貯蔵室と隔離されて独立的に形成され、他の食品貯蔵室を冷却した冷気と混ざらないように風路が閉サイクルをなす製氷室専用区部と、前記製氷室専用区部に配置された製氷専用の製氷用冷却器と、前記製氷用冷却器に接続され前記製氷皿に接触させることで前記製氷皿を直接冷却し、離氷のための前記製氷皿回転時に障害とならないように駆動される冷却板と、を設けたものである。
【0017】
また、この発明に係る請求項の冷蔵庫は、圧縮機、凝縮器、切替弁、第1の絞り装置、前記製氷用冷却器及び冷凍冷蔵用冷却器を冷媒配管で順次接続し冷媒回路を形成すると共に、前記第1の絞り装置とは絞り量が異なり、且つ管内径の異なる第2の絞り装置を前記第1の絞り装置と並列に設けたものである。
【0018】
また、この発明に係る請求項の冷蔵庫は、圧縮機、凝縮器、切替弁、第1の絞り装置、前記製氷用冷却器、逆止弁及び冷凍冷蔵用冷却器を冷媒配管で順次接続し冷媒回路を形成すると共に、前記第1の絞り装置とは絞り量が異なり、且つ管内径の異なる第2の絞り装置の一方を前記切替弁に接続し、他方を前記逆止弁と前記冷凍冷蔵用冷却器との間に接続して、前記第2の絞り装置を前記第1の絞り装置、前記製氷用冷却器および前記逆止弁の直列回路と並列に設けたものである。
【0019】
また、この発明に係る請求項の冷蔵庫は、圧縮機、凝縮器、切替弁、第1の絞り装置、前記製氷用冷却器及び逆止弁を冷媒配管で順次接続し冷媒回路を形成すると共に、前記第1の絞り装置とは絞り量が異なり、且つ管内径の異なる第2の絞り装置の一方を前記切替弁に接続し、他方を冷凍冷蔵用冷却器に接続して、前記第の絞り装置と前記冷凍冷蔵用冷却器の直列接続した冷凍用冷媒配管を前記第1の絞り装置、前記製氷用冷却器および前記逆止弁の直列回路と並列に設けたものである。
【0020】
また、この発明に係る請求項の冷蔵庫は、圧縮機、凝縮器、切替弁、第1の絞り装置、冷蔵用冷却器、逆止弁、前記製氷用冷却器及び冷凍冷蔵用冷却器を冷媒配管で順次接続し冷媒回路を形成すると共に、前記第1の絞り装置とは絞り量が異なり、且つ管内径の異なる第2の絞り装置の一方を前記切替弁に接続し、他方を前記逆止弁と前記製氷用冷却器との間に接続して、前記第2の絞り装置を前記第1の絞り装置、前記冷蔵用冷却器および逆止弁の直列回路と並列に設けたものである。
【0021】
また、この発明に係る請求項10の冷蔵庫は、圧縮機、凝縮器、切替弁、第1の絞り装置、冷蔵用冷却器、逆止弁を冷媒配管で順次接続し冷媒回路を形成すると共に、前記第1の絞り装置とは絞り量が異なり、且つ管内径の異なる第2の絞り装置の一方を前記切替弁に接続し、他方を前記製氷用冷却器に接続して、前記第2の絞り装置、前記製氷用冷却器及び冷凍冷蔵用冷却器と直列接続した回路を前記第1の絞り装置、前記冷蔵用冷却器および前記逆止弁との直列回路と並列に設けたものである。
【0022】
【発明の実施の形態】
実施の形態1.
以下、この発明の実施の形態1による冷蔵庫ついて説明する。図1はこの発明の実施の形態1による冷蔵庫を示す横断面図、図2はこの発明の実施の形態1による要部を示す詳細図、図3はこの発明の実施の形態1による冷蔵庫を示す冷媒回路図である。図において、1は冷蔵庫本体で、冷蔵室2、製氷室3、切替室4、野菜室5および冷凍室6に区画形成されている。7は前記冷蔵庫本体1の背面に設けた冷凍冷蔵用冷却器室で、冷凍冷蔵用冷却器8とその上部に冷気を循環させるための冷気循環送風機9を配置している。10は前記冷凍冷蔵用冷却器8の下方に設けた冷凍冷蔵用冷却器8に付着した霜を定期的に融解し除去する霜取ヒータ、11は圧縮機、12はドレンパンで、前記霜取ヒータ10によって融解されたドレン水を庫外へ排出するためのドレンパイプ13を介して、前記圧縮機11の放熱などを利用して蒸発させている。14は前記冷蔵室2、切替室4、野菜室5および冷凍室6と前記冷凍冷蔵用冷却器室7とを連通させる冷気通路である。
【0023】
25は、前面に前面扉25aで閉塞し、他方を前記冷蔵室2、切替室4、野菜室5および冷凍室6と隔離されて独立的に形成された前記製氷室3の製氷室専用区部で、製氷皿19a、製氷皿温度検出センサ19b、貯氷箱19c、前記貯氷箱19cの氷の量を検出する検氷レバー19dと、給水ポンプ20および給水タンク21とから成る自動製氷装置19を配置している。26は製氷専用の冷却手段として前記製氷室専用区部25の後部の前記自動製氷装置19とは区画壁25bにより区画され製氷用冷却器室27に配置された製氷用冷却器で、下方にはこの製氷用冷却器の霜を融解する製氷用冷却器用霜取ヒータ28を配置している。29は前記製氷用冷却器用霜取ヒータ28により融解されたドレン水を前記ドレンパン12に導く製氷室専用区部ドレン排水路である。
【0024】
30、31は前記区画壁25bに設けた吹出し口および吸込み口、32は前記製氷用冷却器26の冷気を前記自動製氷装置19へ循環させるために前記製氷用冷却器室27にもうけられた製氷用送風機である。この製氷用送風機32は、製氷皿19aの裏側底部に取付けられ、製氷皿19aの温度を検出する例えばサーミスタなどの製氷皿温度検出センサ19bや、製氷室専用区部25内の温度を検出する製氷室温度検出センサ33の検出温度によって運転・停止や回転数を制御されるものである。
【0025】
次に、製氷風路について説明する。図において、製氷用冷却器26の冷気は、近傍に配置された製氷用送風機21によって循環され、吹出し口30より吹出され、自動製氷機19における氷の生成、および、貯氷箱19cに貯蔵された氷の融解防止をなし、吸込み口31より再び製氷用冷却器26へ戻るものである。
【0026】
すなわち、製氷室専用区部25内の風路は閉サイクルをなすもので、冷気循環送風機9によって循環される他の食品貯蔵室冷却の冷気と混ざることなはない。従って、他の食品からの氷への臭い移りを完全に遮断できるものである。
【0027】
次に、図3に示すこの発明の実施の形態1による冷蔵庫を示す冷媒回路図を説明する。図において、11は圧縮機、22は凝縮器、23aは第1絞り装置、23bは前記第1絞り装置23aとは絞り量の異なる第2絞り装置で、管内径の異なる毛細管を用いており、切替弁34を介して前記第1絞り装置23aと並列にして一方を前記凝縮器22に、他方を前記製氷室専用区部25内に設けた製氷用冷却器26に接続され、前記圧縮機11、冷凍冷蔵用冷却器8、凝縮器22と共に、冷媒管24で接続して冷媒回路を形成している。
【0028】
次に、この実施の形態1の冷媒回路の動作を説明する。図において、圧縮機11によって圧縮された高温高圧の冷媒は、凝縮器22にて凝縮液化し、切替弁34で切替え、第1絞り装置23a、あるいは、第2絞り装置23bにて減圧され、製氷用冷却器26、および、冷凍冷蔵用冷却器8にて庫内の空気と熱交換し、蒸発して圧縮機11へ戻る。
【0029】
この実施の形態1の冷蔵庫では、製氷用冷却器26と冷凍冷蔵用冷却器8とは直列に配置され、氷の生成を行わない場合は製氷用送風機32を停止し、製氷用冷却器26における熱交換を極力抑えることによって、冷凍サイクルとしては従来同様の能力が維持されるものである。さらに、前記製氷室専用区部25にて別途製氷のみの閉サイクル風路を設けており、従来よりも冷却器を循環する風路の圧損は低減され、すなわち、その分省エネ化が図れると言える。
【0030】
次に、霜取りヒータについて説明する。前記製氷用冷却器26の近傍に、製氷用冷却器霜取ヒータ28、およびドレンパイプ29を備え、付着した霜を融解し庫外へ排出することにより、氷結防止を図っている。製氷用冷却器26近傍には、例えばサーミスタなどの製氷用冷却器霜取センサ35によって、通電開始、および、停止を制御されるものである。
【0031】
ただし、この発明の冷蔵庫では、製氷用冷却器霜取ヒータ22への通電制御手段はこれに限定されることなく、たとえば、通電開始のタイミングや通電時間を時間で制御し、定期的に除霜を行うものであってもよい。さらに、製氷用冷却器霜取ヒータ22の種類は限定することなく、例えば、図4に示すような、メイン霜取ヒータとして広く用いられているヒータ線22bとガラス管22cとから成るガラス管ヒータ22aを用いる。あるいは、図5に示すようなコードヒータ22dを粘着シート22e、あるいは、板状のヒータ(図示せず)を奥側壁面などに貼りつける、といったものでもよい。また除霜手段としては、ヒータに限定することなく、例えば、冷凍サイクルの停止中に送風機を運転させ霜の融解を促す、といった手段を用いてもよい。
【0032】
また、この実施の形態1の冷蔵庫ではドレンパイプ29を通ったドレン水をメインドレンパイプ13を経由してドレンパン12へ排出しているが、ドレンパイプ29の出口が直接ドレンパン12へつながるものであってもよい。
【0033】
次に、図6に示す製氷用送風機の制御フローチャートを説明する。図において、ステップS1において給水を開始する。ステップS2において製氷皿サーミスタ温度tを検出する。そして、ステップS3に進み、検出した温度がt≧0℃?かを判断し、0℃よりtが大きいか等しい場合は、ステップS4に進み、ステップS4で製氷用送風機をONする。製氷用送風機が駆動したらステップS5に進み、再び製氷皿サーミスタ温度tを検出する。その後ステップS6に進み、ステップS6で検出した温度がt≦―11℃?かを判断し、tがー11℃より小さければ、ステップS7に進み製氷完了して製氷用送風機OFFするものである。ステップS6でtがー11℃より大きければ、ステップS4に戻って再び製氷用送風機をONするものである。
【0034】
このことにより、検出温度によって給水を感知し、製氷が行われる間、製氷用送風機32を運転させることで強制対流によって熱伝達を促進させ、製氷時間短縮を図るものである。また、同様に検出温度によって製氷完了を感知し、製氷完了後は製氷用送風機32を停止することで、無駄な電力消費を抑えるものである。
【0035】
前記の製氷用送風機32を運転することにより、従来に比べ製氷室専用区部25内の冷却能力は向上し、よって、製氷時間を短縮させることができるものである。また、外気温度や貯蔵食品量、あるいは、扉開閉回数など冷蔵庫にかかる負荷変動の影響を受けることなく、安定して製氷室専用区部25内に充分な冷気が供給されるものとなり、したがって、安定して急速製氷を実現できるものである。さらに、製氷室の扉が独立して開閉可能とすれば、扉開閉による負荷変動を把握し、冷却制御を行うことも可能となる。
【0036】
また、図1に示した実施の形態1としての冷蔵庫では、図7に示すような上下が冷蔵室2や野菜室5といった冷蔵温度帯の部屋に挟まれた位置に独立した製氷室専用区部25を構成する形態の冷蔵庫に関するものを示したが、この発明ではこれに限定されることない。
【0037】
例えば、図8に示すような、冷凍室3の一角に自動製氷装置19、および、貯氷箱19cを備えた製氷コーナー19eを設けた形態の冷蔵庫であてもよい。
【0038】
また、図9に示すような、冷蔵庫1の上部が冷蔵温度ゾーン部屋2a、下部が冷凍温度ゾーン部屋6aとし、上下それぞれ異なる温度ゾーンで分割され、下部の冷凍温度ゾーン部屋6aに製氷室専用区部25が配置された形態の冷蔵庫であってもよい。
【0039】
また、前記実施の形態1においては、製氷用としての機能を述べてきたが、例えば、前記製氷室専用区部25内に設置されたサーミスタなどの製氷室温度検出センサ33の検出温度によって、送風機回転数や運転・停止を制御し、氷の貯蔵のみを行うこともできる。また、同様に制御することで、製氷室専用区部25内を希望の温度帯に設定することも可能であり、冷蔵庫使用者が氷を必要としないときには、他の食品貯蔵室として使用することもできるものである。なお、温度帯を変化させる手段としては、製氷用冷却器霜取ヒータ22に通電を行ってもよい。
【0040】
実施の形態2.
以下、この発明の実施の形態2における冷蔵庫を図を用いながら説明する。図10はこの発明の実施の形態2における冷蔵庫を示す要部側面図である。図において、36は前記製氷用冷却器26に直接接続された冷却板で、自動製氷装置19の製氷皿19aに接触させることで直冷式の製氷システムを構成している。なお、前記冷却板36は、例えば図10に示す矢印の如く駆動することで、離氷のための製氷皿回転時に障害とならないような機構となる。また、製氷用冷却器26、あるいは、冷却板36と製氷皿19aの位置関係は限定されることなく、たとえば、製氷皿19aの側面や床面であってもよい。また、この実施の形態2では製氷用冷却器26に接続された冷却板36を製氷皿19aに接触させる手段を示したが、この発明ではこれに限定されることなく、例えば、ペルチェ素子の冷却面を接触させる手段などでもよい。
【0041】
実施の形態3.
以下、この発明の実施の形態3について、図を用いながら説明する。図11はこの発明の実施の形態3による冷蔵庫を示す冷媒回路図である。図において、11は圧縮機で、凝縮器22、切替弁34、第1絞り装置23aを設けた第1絞り装置用配管23c、前記製氷室専用区部25内に設けた製氷用冷却器26、逆止弁37および冷凍冷蔵用冷却器8を順に冷媒管24により冷媒回路を形成している。23dは前記第1絞り装置23aとは絞り量の異なり、管内径の異なる毛細管を用いている第2絞り装置23bを備えた第2絞り装置用配管で、一方は前記切替弁34を介して前記凝縮器22に接続し、他方は前記逆止弁34と前記冷凍冷蔵用冷却器8との間の冷媒管24に接続されている。
【0042】
この実施の形態の3による冷蔵庫では、切替弁34により、製氷および庫内全体を同時に冷却する同時冷却モードと、庫内全体のみを冷却する庫内冷却モードとを切替えることができ、きめ細かな冷却を実現できる。
【0043】
実施の形態4.
以下、この発明の実施の形態4について、図を用いながら説明する。図12はこの発明の実施の形態4による冷蔵庫を示す冷媒回路図である。図において、11は圧縮機で、凝縮器22、切替弁34、第1絞り装置23aを設けた第1絞り装置用配管23c、前記製氷室専用区部25内に設けた製氷用冷却器26および逆止弁37を順に直列にして冷媒管24により製氷専用冷媒回路38を形成している。39は前記第1絞り装置23aとは絞り量の異なり、管内径の異なる毛細管を用いている第2絞り装置23bを備えた冷凍用冷媒配管で、一方は前記切替弁34を介して前記凝縮器22に接続し、他方は冷凍冷蔵用冷却器8を直列接続して前記逆止弁34と前記圧縮機11との間の冷媒管24に接続し、前記製氷室専用区部25内に設けた前記製氷用冷却器26とは並列なバイパス路を形成している。
【0044】
この実施の形態4の冷蔵庫では、製氷用絞り機構である第1絞り装置用配管23cおよび製氷用冷却器26の回路と、メイン用絞り機構である第2絞り装置用配管23dおよび冷却器8のバイパス路とが、並列して配置され、上流の切替弁34によって流路の選択ができ、すなわち、製氷専用冷却モードが実現され、製氷に能力を集中させることで、更なる急速製氷が行えるものである。
【0045】
実施の形態5.
以下、この発明の実施の形態5について、図を用いながら説明する。図13はこの発明の実施の形態5による冷蔵庫を示す冷媒回路図である。図において、11は圧縮機で、凝縮器22、切替弁34、冷蔵用絞り機構である第1絞り装置23aを設けた第1絞り装置用配管23c、冷蔵室2に設けた冷蔵用冷却器40、逆止弁37、前記製氷室専用区部25内に設けた製氷用冷却器26、および冷凍冷蔵用冷却器8を順に直列にして冷媒管24により冷媒回路を形成している。23dは前記第1絞り装置23aとは絞り量の異なり、管内径の異なる毛細管を用いている冷凍用絞り機構である第2絞り装置23bを備えた第2絞り装置用配管で、一方は前記切替弁34を介して前記凝縮器22に接続し、他方は前記逆止弁34と前記製氷室専用区部25内に設けた前記製氷用冷却器26との間の冷媒管24に接続し、前記冷蔵室の設けた冷蔵用冷却器40とは並列なバイパス路を形成している。なお、41は冷蔵室用送風機である。
【0046】
この実施の形態5の冷蔵庫では、専用冷却器による急速製氷ばかりでなく、それぞれの部屋に専用の冷却器が配置され、それぞれ使用条件に合ったな蒸発温度に設定することが可能であり、冷却ロスを低減することによる省エネ化、および、各部屋のきめ細かな温度コントロールを実現できるものである。
【0047】
実施の形態6.
以下、この発明の実施の形態6について、図を用いながら説明する。図14はこの発明の実施の形態6による冷蔵庫を示す冷媒回路図である。図において、11は圧縮機で、凝縮器22、切替弁34、冷蔵用絞り機構である第1絞り装置23aを設けた第1絞り装置用配管23c、冷蔵室2に設けた冷蔵用冷却器40および逆止弁37を順に直列にして冷媒管24により冷媒回路を形成している。23dは前記第1絞り装置23aとは絞り量の異なり、管内径の異なる毛細管を用いている製氷および冷凍用絞り機構である第2絞り装置23bを備えた第2絞り装置用配管で、前記製氷室専用区部25内に設けた前記製氷用冷却器26および冷凍冷蔵用冷却器8を直列にして、一方は前記切替弁34を介して前記凝縮器22に接続し、他方は前記逆止弁34と前記圧縮機11との間の冷媒管24に接続し、前記冷蔵室の設けた冷蔵用冷却器40とは並列なバイパス路を形成している。なお、41は冷蔵室用送風機である。
【0048】
また、この発明の冷蔵庫では、前記実施の形態1から6の冷蔵庫において、切替弁34に絞り機能を付加しており、絞り量の最適化による更なる省エネ化をはかることが可能である。例えば、凝縮器22の出口温度を検出することによって、凝縮器22出口付近の冷媒の過冷却度、あるいは、圧縮機13の入口の温度を検出することによって、冷媒の加熱度を推定し、最適な絞り量となるよう、リニアに可変できるものとしてもよい。
【0049】
さらにまた、この発明の冷蔵庫では、前記実施の形態1から6の冷蔵庫において、切替弁34に、どちらの流路にも冷媒を流さない全閉機能を付加することにより、圧縮機11の停止中の冷媒移動を遮断でき、停止中の冷却器温度上昇を抑えることによる省エネ化をはかるものである。
【0050】
さらにまた、この発明の冷蔵庫では、前記実施の形態1から6の冷蔵庫において、切替弁34に、どちらの流路にも冷媒を流す全開機能を付加することにより、霜取り中、高温高圧の冷媒を積極的に冷却器に送り込み、霜取り時間短縮による省エネ化をはかるものである。
【0051】
【発明の効果】
以上に詳細に説明したように、この発明の請求項1に係る冷蔵庫によれば、圧縮機、凝縮器、流路を選択できる切替弁、第1の絞り装置、製氷専用の製氷用冷却器及び逆止弁を冷媒配管で順次接続して形成された回路と、前記第1の絞り装置とは絞り量が異なる第2の絞り装置及び冷凍冷蔵用冷却器を直列に接続して形成され、前記第2の絞り装置側が前記切替弁に接続され、前記冷凍冷蔵用冷却器側が前記逆止弁と前記圧縮機の間の冷媒配管に接続されたバイパス路と、を備えるとともに、製氷皿、貯氷箱及び給水タンクを備え、前記製氷用冷却器により冷却されて前記製氷皿で離氷と給水の製氷動作を繰り返す自動製氷装置と、前記冷凍冷蔵用冷却器により冷却される複数の食品貯蔵室と、前記製氷皿前記貯氷箱及び前記製氷用冷却器を配置し、他の食品貯蔵室と隔離されて独立的に形成され、他の食品貯蔵室を冷却した冷気と混ざらないように風路が閉サイクルをなす製氷室専用区部と、前記製氷室専用区部に配置され前記製氷用冷却器の冷気を循環させる製氷専用の製氷用送風機と、を設け、前記切替弁により前記第1の絞り装置、前記製氷用冷却器及び前記逆止弁を接続した流路と、前記バイパス路を選択できるようにしたので、製氷時間の短縮を図ることができると共に、冷蔵庫にかかる負荷変動の影響を受けることなく、安定して製氷時間を短くすることができ、且つ他の貯蔵室の食品から氷への臭い移りを確実に遮断できる効果を有する。また、製氷専用の送風機を設けた構成としたので、強制対流方式とすることで、より効率的な冷却が可能であり、さらなる製氷時間短縮が図れる効果を有する。また、製氷専用の冷却手段を設けた構成としたので、効率良く急速製氷を実現できる効果を有する。また、製氷専用冷却モードが実現され、製氷に能力を集中させることで、更なる急速製氷が行える。
【0053】
この発明の請求項に係る冷蔵庫によれば、前記製氷室専用区部に前面扉を開閉可能に設けた構成としたので、製氷室の冷却制御を独立に行うことが可能となる効果を有する。
【0055】
この発明の請求項に係る冷蔵庫によれば、前記製氷室専用区部の製氷用冷却器室に、前記製氷用冷却器に付着した霜を除去する手段を設けた構成としたので、冷却器周辺の氷結を防止でき、信頼性が向上する効果を有する。
この発明の請求項4に係る冷蔵庫によれば、前記製氷皿の温度を検出する製氷皿温度検出センサと前記製氷室専用区部内の温度を検出する製氷室温度検出センサを設置し、前記製氷皿温度検出センサと前記製氷室温度検出センサの検出温度によって前記製氷用送風機の運転・停止や回転数を制御するので、無駄な電力消費を抑える。
【0056】
この発明の請求項に係る冷蔵庫によれば、製氷皿、貯氷箱及び給水タンクを備えて前記製氷皿で離氷と給水の製氷動作を繰り返す自動製氷装置と、複数の食品貯蔵室と、を有する冷蔵庫において、前記製氷皿と前記貯氷箱を配置し、他の食品貯蔵室と隔離されて独立的に形成され、他の食品貯蔵室を冷却した冷気と混ざらないように風路が閉サイクルをなす製氷室専用区部と、前記製氷室専用区部に配置された製氷専用の製氷用冷却器と、前記製氷用冷却器に接続され前記製氷皿に接触させることで前記製氷皿を直接冷却し、離氷のための前記製氷皿回転時に障害とならないように駆動される冷却板と、を設けた構成としたので、製氷時間の短縮を図ることができると共に、冷蔵庫にかかる負荷変動の影響を受けることなく、安定して製氷時間を短くすることができ、且つ他の貯蔵室の食品から氷への臭い移りを確実に遮断できる効果を有する。また、製氷皿を直接冷却する直冷式の冷却システムとすることによって、さらなる急速製氷を実現できる効果を有する。
【0057】
この発明の請求項に係る冷蔵庫によれば、圧縮機、凝縮器、切替弁、第1の絞り装置、前記製氷用冷却器及び冷凍冷蔵用冷却器を冷媒配管で順次接続し冷媒回路を形成すると共に、前記第1の絞り装置とは絞り量が異なり、且つ管内径の異なる第2の絞り装置を前記第1の絞り装置と並列に設けた構成としたので、従来の省エネ性を維持しつつ、製氷時間の短縮を図ることが可能となる効果を有する。
【0058】
この発明の請求項に係る冷蔵庫によれば、圧縮機、凝縮器、切替弁、第1の絞り装置、前記製氷用冷却器、逆止弁及び冷凍冷蔵用冷却器を冷媒配管で順次接続し冷媒回路を形成すると共に、前記第1の絞り装置とは絞り量が異なり、且つ管内径の異なる第2の絞り装置の一方を前記切替弁に接続し、他方を前記逆止弁と前記冷凍冷蔵用冷却器との間に接続して、前記第2の絞り装置を前記第1の絞り装置、前記製氷用冷却器および前記逆止弁の直列回路と並列に設けた構成としたので、製氷時間の短縮のみならず、冷蔵庫にかかる負荷に応じ絞り量最適化をはかることによる省エネ化も実現できる効果を有する。
【0059】
この発明の請求項に係る冷蔵庫によれば、圧縮機、凝縮器、切替弁、第1の絞り装置、前記製氷用冷却器及び逆止弁を冷媒配管で順次接続し冷媒回路を形成すると共に、前記第1の絞り装置とは絞り量が異なり、且つ管内径の異なる第2の絞り装置の一方を前記切替弁に接続し、他方を冷凍冷蔵用冷却器に接続して、前記第の絞り装置と前記冷凍冷蔵用冷却器の直列接続した冷凍用冷媒配管を前記第1の絞り装置、前記製氷用冷却器および前記逆止弁の直列回路と並列に設けた構成としたので、製氷および庫内同時冷却モードと庫内冷却モードとの切替えが可能となり、各部屋のきめ細かな冷却を実現できる効果を有する。
【0060】
この発明の請求項に係る冷蔵庫によれば、圧縮機、凝縮器、切替弁、第1の絞り装置、冷蔵用冷却器、逆止弁、前記製氷用冷却器及び冷凍冷蔵用冷却器を冷媒配管で順次接続し冷媒回路を形成すると共に、前記第1の絞り装置とは絞り量が異なり、且つ管内径の異なる第2の絞り装置の一方を前記切替弁に接続し、他方を前記逆止弁と前記製氷用冷却器との間に接続して、前記第2の絞り装置を前記第1の絞り装置、前記冷蔵用冷却器および逆止弁の直列回路と並列に設けた構成としたので、製氷専用冷却モードと庫内冷却モードを切替ることができ、製氷専用冷却では、冷却能力を集中でき、製氷時間のさらなる短縮化をはかれる効果を有する。
【0061】
この発明の請求項10に係る冷蔵庫によれば、圧縮機、凝縮器、切替弁、第1の絞り装置、冷蔵用冷却器、逆止弁を冷媒配管で順次接続し冷媒回路を形成すると共に、前記第1の絞り装置とは絞り量が異なり、且つ管内径の異なる第2の絞り装置の一方を前記切替弁に接続し、他方を前記製氷用冷却器に接続して、前記第2の絞り装置、前記製氷用冷却器及び冷凍冷蔵用冷却器と直列接続した回路を前記第1の絞り装置、前記冷蔵用冷却器および前記逆止弁との直列回路と並列に設けた構成としたので、それぞれの冷却器における蒸発温度を最適化することによって、冷凍サイクルのロスを低減でき省エネ化が図れ、さらに、各温度帯をきめ細かに温度コントロールできる効果を有する。
【図面の簡単な説明】
【図1】 この発明の実施の形態1による冷蔵庫の横断面図である。
【図2】 この発明の実施の形態1による冷蔵庫の要部を示す断面図である。
【図3】 この発明の実施の形態1による冷蔵庫を示す冷媒回路図である。
【図4】 この発明の実施の形態1による冷蔵庫のガラス管ヒータを示す正面図である。
【図5】 この発明の実施の形態1による冷蔵庫のコードヒータを示す正面図である。
【図6】 この発明の実施の形態1による製氷制御フローチャートである。
【図7】 この発明の実施の形態1による他の実施例を示す概略説明図である。
【図8】 この発明の実施の形態1による他の実施例を示す概略説明図である。
【図9】 この発明の実施の形態1による他の実施例を示す概略説明図である。
【図10】 この発明の実施の形態2による冷蔵庫の要部を示す側面図である。
【図11】 この発明の実施の形態3による冷蔵庫の冷媒回路図である。
【図12】 この発明の実施の形態4による冷蔵庫の冷媒回路図である。
【図13】 この発明の実施の形態5による冷蔵庫の冷媒回路図である。
【図14】 この発明の実施の形態6による冷蔵庫の冷媒回路図である。
【図15】 従来の冷蔵庫の横断面図である。
【図16】 従来の冷蔵庫の冷媒回路図である。
【符号の説明】
1 冷蔵庫本体、2 冷蔵室、3 製氷室、4 切替室、5 野菜室、6 冷凍室、7 冷却器室、8 冷凍冷蔵用冷却器、11圧縮機、14冷気通路、19自動製氷装置、25 製氷室専用区部、25a 前面扉、25b 区画壁、26 製氷用冷却器、27 製氷用冷却器室、28 製氷用冷却器霜取ヒータ、29 製氷室専用区部ドレン排水路、32 製氷室送風機、33 製氷室温度センサ、34切替弁、35 製氷用冷却器霜取センサ、36 冷却板、37 逆止弁、38製氷室専用冷媒回路、39 冷凍用冷媒回路。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a refrigerator, and more particularly to a refrigerator provided with an automatic ice making device.
[0002]
[Prior art]
The control apparatus in the conventional refrigerator is demonstrated using FIG. 15 and FIG. FIG. 15 is a cross-sectional view of a conventional refrigerator. In FIG. 15, reference numeral 1 denotes a refrigerator body, which is partitioned into a refrigerator compartment 2, an ice making compartment 3, a switching compartment 4, a vegetable compartment 5, and a freezer compartment 6 from above. Reference numeral 7 denotes a cooler chamber provided on the back surface of the refrigerator main body 1, and a cooler for freezing and refrigeration 8 and a cool air circulation blower 9 for circulating cool air are disposed in the cooler room. Reference numeral 10 denotes a defrost heater that periodically melts and removes frost attached to the refrigerator 8 for freezing and refrigeration provided below the cooler 8, 11 is a compressor, 12 is a drain pan, and the defrost heater 10 The melted drain water is evaporated using the heat radiation of the compressor 11 through a drain pipe 13 for discharging the drain water to the outside. 14 is a cold air passage for communicating the refrigerator compartment 2, ice making chamber 3, switching chamber 4, vegetable compartment 5 and freezer compartment 6 with the cooler compartment 7, 15 is a refrigerator compartment temperature sensor, 16 is a refrigerator compartment temperature sensor, 17 Is a switching chamber temperature sensor, 18 is a damper provided at the outlet of the cold air passage 14 to the refrigerating chamber 2 and the switching chamber 4, 19 is an automatic ice making device provided in the ice making chamber 3, an ice making tray 19a, an ice making tray The temperature detection sensor 19b, the ice storage box 19c, an ice detecting lever 19d for detecting the amount of ice in the ice storage box 19c, a water supply pump 20, and a water supply tank 21 are included.
[0003]
FIG. 16 is a front view showing a refrigerant circuit and an air passage of a conventional refrigerator. In the figure, 22 is a condenser, 23 is a throttle device, and the compressor 11, the refrigerator / freezer 8 and the condenser 22 are connected by a refrigerant pipe 24 to form a refrigerant circuit.
[0004]
In the refrigerator having the above-described structure, the amount of ice in the ice storage box 19c is detected by the ice detecting lever 19d, the amount is equal to or less than a specified amount (hereinafter referred to as full ice), and the bottom of the back side of the ice tray 19a. When the detection temperature of the ice tray temperature detection sensor 19b that detects the temperature of the ice tray 19a is equal to or lower than the set temperature, the automatic ice making device 19 twists the ice tray 19a and performs ice removal. Thereafter, the water supply pump 20 is actuated to supply water to the ice tray 19a from a water supply tank 21 provided in the refrigerator compartment, and the same ice making operation is repeated.
[0005]
In addition, the first heat exchanger and the second heat exchanger are connected in series, an expansion valve is connected upstream, the first heat exchanger is the main indoor unit, and the second heat exchanger is the sub indoor unit. A technique for configuring a refrigerant circuit for an air conditioner is disclosed in Japanese Patent Laid-Open No. 09-178277.
[0006]
In addition, the first heat exchanger and the second heat exchanger are connected in series, a capillary tube is connected to the upstream side of each heat exchanger, and a three-way valve is arranged upstream of the first heat exchanger. Japanese Patent Application Laid-Open No. 2001-99543 discloses a technology of a refrigerator-freezer having an independent air passage configuration with a fan for the refrigerator compartment and the second heat exchanger for the freezer compartment.
[0007]
[Problems to be solved by the invention]
In the conventional refrigerator as described above, the cold air of one freezer / refrigerator is distributed to each storage room by opening and closing the damper 17 installed in the air passage, and each room is cooled. There is a problem that the cooling capacity of the chamber tends to be lowered, and therefore ice making takes time.
[0008]
Further, the operation / stop of the compressor is often controlled by a temperature sensor in the freezer compartment, and the rotation speed of the compressor is controlled by the outside air temperature. For example, when the load of food stored in the freezer compartment is small, when the number of times the door is opened or closed, or when the outside air temperature is low, the operating rate and rotation speed of the compressor will be low, so the cooling capacity There was a problem that the time required for ice making increased.
[0009]
In addition, the odor emitted from the stored food circulates through the circulation in which the air returned from each room storing food is cooled by a cooler and sent out again to cool each storage room, and ice is generated. For this reason, there has been a problem of odor transfer to ice by dissolving in water poured into an ice tray.
[0010]
The present invention has been made in order to solve such problems, and it is an object of the present invention to not include food odor and to shorten the ice making time to reduce the power consumed for ice making.
[0011]
[Means for Solving the Problems]
  The refrigerator of claim 1 according to this invention isA circuit formed by sequentially connecting a compressor, a condenser, a switching valve capable of selecting a flow path, a first throttling device, an ice-making cooler dedicated to ice making, and a check valve by refrigerant piping, and the first throttling The second throttle device and the freezer / refrigerator cooler, which are different from the device, are connected in series, the second throttle device side is connected to the switching valve, and the freezer / refrigerator cooler side is the reverse A bypass path connected to a refrigerant pipe between the stop valve and the compressor, andEquipped with ice tray, ice storage box and water supply tankCooled by the ice making coolerAn automatic ice making device that repeats ice making operation and water supply in the ice tray,Cooled by the freezer / refrigeratorMultiple food storage roomsAnd beforeIce tray,Ice storage boxAnd the ice making coolerThe ice compartment is designed to be isolated from other food storage rooms and formed independently, and the air passages form a closed cycle so that the other food storage rooms do not mix with the cooled cold air.The aboveAn ice making blower dedicated to ice making that circulates the cold air of the ice making cooler disposed in the ice making room exclusive sectionThe switching valve allows the first throttle device, the ice making cooler and the check valve to be connected to the flow path, and the bypass path to be selected.It is a thing.
[0013]
  Claims related to this invention2The refrigeratorDedicated ice making roomThe front door can be opened and closed.
[0015]
  Claims related to this invention3The refrigeratorOf ice-making roomMeans for removing frost adhering to the ice making cooler is provided in the ice making cooler chamber.
  According to a fourth aspect of the present invention, the refrigerator includes an ice tray temperature detection sensor for detecting the temperature of the ice tray and an ice chamber temperature detection sensor for detecting the temperature in the ice chamber dedicated section, and the ice tray The operation / stop of the ice making blower and the rotation speed are controlled by the temperature detection sensor and the temperature detected by the ice making chamber temperature detection sensor.
[0016]
  Claims related to this invention5The refrigeratorIn a refrigerator having an ice making tray, an ice storage box and a water supply tank and repeating ice making and water supply making operations in the ice making tray, and a plurality of food storage rooms, the ice making tray and the ice storage box are arranged. And the ice making room dedicated section, which is formed independently of the other food storage rooms and has a closed cycle so that the other food storage rooms are not mixed with the cooled cold air. The ice making cooler dedicated to ice making arranged in the section, and the ice making tray is directly cooled by contacting the ice making tray connected to the ice making cooler, and there is an obstacle when rotating the ice making tray for ice removal. A cold plate driven so as not to becomeIs provided.
[0017]
  Claims related to this invention6Refrigerator, compressor, condenser, switching valve, first throttle device,SaidThe ice making cooler and the refrigerator for freezing and refrigeration are sequentially connected by a refrigerant pipe to form a refrigerant circuit, and the second throttling device having a throttling amount different from that of the first throttling device and having a pipe inner diameter different from that of the first throttling device. 1 in parallel with the aperture device.
[0018]
  Claims related to this invention7Refrigerator, compressor, condenser, switching valve, first throttle device,SaidAn ice making cooler, a check valve and a refrigerator for freezing and refrigeration are sequentially connected by a refrigerant pipe to form a refrigerant circuit, and a second throttle having a different throttle amount and a different pipe inner diameter from the first throttle device. apparatusOne of the two is connected to the switching valve, and the other is connected between the check valve and the refrigerator for refrigeration, and the second expansion deviceThe first diaphragm device,SaidIce making cooler andSaidThis is provided in parallel with the check valve series circuit.
[0019]
  Claims related to this invention8Refrigerator, compressor, condenser, switching valve, first throttle device,SaidThe ice making cooler and the check valve are sequentially connected by a refrigerant pipe to form a refrigerant circuit, and the second throttle device having a throttle amount different from that of the first throttle device and having a different pipe inner diameter.One of these is connected to the switching valve, the other is connected to a refrigerator for freezing and refrigeration,Said2With the aperture deviceSaidThe first expansion device includes a refrigerating refrigerant pipe connected in series with a refrigerator for freezing and refrigeration,SaidIce making cooler andSaidThis is provided in parallel with the check valve series circuit.
[0020]
  Claims related to this invention9Refrigerator, compressor, condenser, switching valve, first throttle device, refrigeration cooler, check valve,SaidThe ice making cooler and the refrigerator for freezing and refrigeration are sequentially connected by a refrigerant pipe to form a refrigerant circuit, and the second throttling device having a throttling amount different from that of the first throttling device and having a different pipe inner diameter.One end of the second throttle device is connected to the switching valve, and the other is connected between the check valve and the ice making cooler.The first diaphragm device,RefrigeratedThis is provided in parallel with the series circuit of the cooling device and the check valve.
[0021]
  Claims related to this invention10In the refrigerator, a compressor, a condenser, a switching valve, a first throttle device, a refrigeration cooler, and a check valve are sequentially connected by a refrigerant pipe to form a refrigerant circuit, and the first throttle device is a throttle. Second throttle device with different amount and different pipe inner diameterIs connected to the switching valve, the other is connected to the ice making cooler,The second diaphragm device;SaidA circuit connected in series with an ice making cooler and a refrigerator for freezing and refrigeration, the first throttle device;SaidRefrigeration cooler andSaidIt is provided in parallel with a series circuit with a check valve.
[0022]
DETAILED DESCRIPTION OF THE INVENTION
Embodiment 1 FIG.
Hereinafter, the refrigerator according to Embodiment 1 of the present invention will be described. FIG. 1 is a transverse sectional view showing a refrigerator according to Embodiment 1 of the present invention, FIG. 2 is a detailed view showing essential parts according to Embodiment 1 of the present invention, and FIG. 3 shows a refrigerator according to Embodiment 1 of the present invention. It is a refrigerant circuit diagram. In the figure, reference numeral 1 denotes a refrigerator body, which is partitioned into a refrigerator compartment 2, an ice making compartment 3, a switching compartment 4, a vegetable compartment 5, and a freezer compartment 6. Reference numeral 7 denotes a refrigerator compartment for freezing and refrigeration provided on the back surface of the refrigerator main body 1, and a refrigerator for freezing and refrigeration 8 and a cold air circulation blower 9 for circulating cold air are disposed in the upper part thereof. Reference numeral 10 denotes a defrost heater that periodically melts and removes frost attached to the freezer / refrigerator 8 provided below the freezer / refrigerator 8, 11 is a compressor, 12 is a drain pan, and the defrost heater Through the drain pipe 13 for discharging the drain water melted by 10 to the outside of the warehouse, it is evaporated using the heat radiation of the compressor 11 or the like. Reference numeral 14 denotes a cold air passage that connects the refrigerator compartment 2, the switching compartment 4, the vegetable compartment 5, the freezer compartment 6, and the refrigerator compartment 7 for freezing and refrigeration.
[0023]
25 is an ice making room exclusive section of the ice making room 3 which is closed at the front by a front door 25a and the other is separated from the refrigerator room 2, the switching room 4, the vegetable room 5 and the freezer room 6 independently. Then, an automatic ice making device 19 comprising an ice tray 19a, an ice tray temperature detection sensor 19b, an ice storage box 19c, an ice detecting lever 19d for detecting the amount of ice in the ice storage box 19c, a water supply pump 20 and a water supply tank 21 is disposed. is doing. Reference numeral 26 denotes an ice making cooler which is partitioned by a partition wall 25b and disposed in the ice making cooler chamber 27 as a cooling means dedicated to ice making and is separated from the automatic ice making device 19 at the rear of the ice making chamber dedicated section 25. An ice making cooler defrost heater 28 for melting the frost of the ice making cooler is disposed. Reference numeral 29 denotes an ice making room exclusive drain drainage channel that guides drain water melted by the ice making cooler defrost heater 28 to the drain pan 12.
[0024]
Reference numerals 30 and 31 denote outlets and suction openings provided in the partition wall 25b, and reference numeral 32 denotes an ice making unit provided in the ice making cooler chamber 27 in order to circulate the cold air of the ice making cooler 26 to the automatic ice making device 19. It is an air blower. The ice making blower 32 is attached to the bottom of the ice making tray 19a and detects the temperature of the ice making tray 19a. For example, an ice making temperature detecting sensor 19b such as a thermistor, or an ice making temperature detecting device 25 is used. The operation / stop and the rotation speed are controlled by the temperature detected by the room temperature detection sensor 33.
[0025]
Next, the ice making wind path will be described. In the figure, the cold air of the ice making cooler 26 is circulated by the ice making blower 21 arranged in the vicinity, blown out from the blowout opening 30, and generated in the automatic ice making machine 19 and stored in the ice storage box 19c. The ice is prevented from melting and returned to the ice-making cooler 26 from the suction port 31 again.
[0026]
That is, the air passage in the ice making room exclusive section 25 forms a closed cycle and is not mixed with the cold air of other food storage room cooling circulated by the cold air circulation blower 9. Therefore, it is possible to completely block odor transfer from other foods to ice.
[0027]
Next, a refrigerant circuit diagram showing the refrigerator according to Embodiment 1 of the present invention shown in FIG. 3 will be described. In the figure, 11 is a compressor, 22 is a condenser, 23a is a first throttle device, 23b is a second throttle device having a throttle amount different from that of the first throttle device 23a, and a capillary having a different pipe inner diameter is used. One is connected to the condenser 22 in parallel with the first throttling device 23 a via the switching valve 34, and the other is connected to the ice making cooler 26 provided in the ice making room exclusive section 25. The refrigerant circuit is formed by connecting the refrigerant pipe 24 together with the refrigerator / refrigerator 8 and the condenser 22.
[0028]
Next, operation | movement of the refrigerant circuit of this Embodiment 1 is demonstrated. In the figure, the high-temperature and high-pressure refrigerant compressed by the compressor 11 is condensed and liquefied by the condenser 22, switched by the switching valve 34, depressurized by the first expansion device 23a or the second expansion device 23b, and made into ice. Heat is exchanged with the air in the refrigerator in the refrigerator 26 for cooling and the refrigerator 8 for freezing and refrigeration, evaporates and returns to the compressor 11.
[0029]
In the refrigerator according to the first embodiment, the ice making cooler 26 and the freezer / refrigerator cooler 8 are arranged in series, and when ice is not generated, the ice making blower 32 is stopped and the ice making cooler 26 is operated. By suppressing heat exchange as much as possible, the same ability as the conventional refrigeration cycle is maintained. Further, a closed cycle air passage only for ice making is provided separately in the ice making room exclusive section 25, so that the pressure loss of the air passage circulating through the cooler can be reduced as compared with the conventional case, that is, energy saving can be achieved accordingly. .
[0030]
Next, the defrosting heater will be described. An ice-making cooler defrost heater 28 and a drain pipe 29 are provided in the vicinity of the ice-making cooler 26, and the adhering frost is melted and discharged out of the cabinet to prevent icing. In the vicinity of the ice making cooler 26, for example, an energization start and stop is controlled by an ice making cooler defrosting sensor 35 such as a thermistor.
[0031]
However, in the refrigerator of the present invention, the energization control means for the ice-making cooler defrosting heater 22 is not limited to this. For example, the energization start timing and energization time are controlled by time, and the defrosting is periodically performed. It may be what performs. Further, the type of ice making cooler defroster heater 22 is not limited. For example, as shown in FIG. 4, a glass tube heater comprising a heater wire 22b and a glass tube 22c widely used as a main defroster heater. 22a is used. Alternatively, the cord heater 22d as shown in FIG. 5 may be attached to the adhesive sheet 22e, or a plate-like heater (not shown) may be attached to the back side wall surface or the like. Further, the defrosting means is not limited to the heater, and for example, means for operating the blower during the stoppage of the refrigeration cycle to promote frost melting may be used.
[0032]
In the refrigerator of the first embodiment, drain water that has passed through the drain pipe 29 is discharged to the drain pan 12 via the main drain pipe 13, but the outlet of the drain pipe 29 is directly connected to the drain pan 12. May be.
[0033]
Next, a control flowchart of the ice making blower shown in FIG. 6 will be described. In the figure, water supply is started in step S1. In step S2, the ice tray thermistor temperature t is detected. Then, the process proceeds to step S3, where the detected temperature is t ≧ 0 ° C.? If t is greater than or equal to 0 ° C., the process proceeds to step S4, and the ice making blower is turned on in step S4. When the ice making blower is driven, the process proceeds to step S5, and the ice tray thermistor temperature t is detected again. Thereafter, the process proceeds to step S6, where the temperature detected in step S6 is t ≦ −11 ° C.? If t is less than −11 ° C., the process proceeds to step S7 where ice making is completed and the ice blower is turned off. If t is greater than −11 ° C. in step S6, the process returns to step S4 to turn on the ice making blower again.
[0034]
Thus, the water supply is sensed based on the detected temperature, and while the ice making is performed, the ice making blower 32 is operated to promote heat transfer by forced convection, thereby shortening the ice making time. Similarly, the completion of ice making is sensed based on the detected temperature, and after the ice making is completed, the ice making blower 32 is stopped to suppress wasteful power consumption.
[0035]
By operating the above-mentioned ice making blower 32, the cooling capacity in the ice making room exclusive section 25 is improved as compared with the conventional one, and therefore the ice making time can be shortened. In addition, sufficient cold air can be stably supplied into the ice compartment dedicated section 25 without being affected by load fluctuations applied to the refrigerator such as the outside air temperature, the amount of stored food, or the number of times the door is opened and closed. Stable and rapid ice making can be realized. Furthermore, if the ice making chamber door can be opened and closed independently, it is possible to grasp the load fluctuation due to the door opening and closing and to control the cooling.
[0036]
Moreover, in the refrigerator as Embodiment 1 shown in FIG. 1, the upper and lower sides as shown in FIG. 7 are independent ice making room exclusive sections in a position sandwiched between refrigeration room 2 and vegetable room 5 such as refrigeration room. Although the thing regarding the refrigerator of the form which comprises 25 was shown, in this invention, it is not limited to this.
[0037]
For example, as shown in FIG. 8, it may be a refrigerator having an automatic ice making device 19 and an ice making corner 19e provided with an ice storage box 19c at one corner of the freezer compartment 3.
[0038]
Further, as shown in FIG. 9, the upper part of the refrigerator 1 is a refrigeration temperature zone room 2a and the lower part is a refrigeration temperature zone room 6a, which is divided into different upper and lower temperature zones. The refrigerator of the form by which the part 25 is arrange | positioned may be sufficient.
[0039]
In the first embodiment, the function for ice making has been described. For example, depending on the temperature detected by the ice making chamber temperature detection sensor 33 such as a thermistor installed in the ice making chamber exclusive section 25, the blower It can also control ice speed and operation / stop and only store ice. Also, by controlling in the same way, it is possible to set the inside of the ice making room 25 to a desired temperature range, and when the refrigerator user does not need ice, use it as another food storage room. It is also possible. As means for changing the temperature zone, the ice making cooler defrost heater 22 may be energized.
[0040]
Embodiment 2. FIG.
Hereinafter, the refrigerator in Embodiment 2 of this invention is demonstrated, using a figure. FIG. 10 is a side view of an essential part showing a refrigerator according to Embodiment 2 of the present invention. In the figure, reference numeral 36 denotes a cooling plate directly connected to the ice making cooler 26, which constitutes a direct cooling type ice making system by being brought into contact with the ice making tray 19a of the automatic ice making device 19. The cooling plate 36 is driven as indicated by an arrow shown in FIG. 10, for example, so that the cooling plate 36 does not become an obstacle when the ice tray is rotated for deicing. Further, the positional relationship between the ice making cooler 26 or the cooling plate 36 and the ice tray 19a is not limited, and may be, for example, a side surface or a floor surface of the ice tray 19a. In the second embodiment, the means for bringing the cooling plate 36 connected to the ice making cooler 26 into contact with the ice making tray 19a is shown. However, the present invention is not limited to this. Means for contacting the surfaces may be used.
[0041]
Embodiment 3 FIG.
Embodiment 3 of the present invention will be described below with reference to the drawings. FIG. 11 is a refrigerant circuit diagram showing a refrigerator according to Embodiment 3 of the present invention. In the figure, 11 is a compressor, a condenser 22, a switching valve 34, a first throttle device pipe 23c provided with a first throttle device 23a, an ice making cooler 26 provided in the ice making chamber exclusive section 25, A refrigerant circuit is formed by the refrigerant pipe 24 in order of the check valve 37 and the refrigerator / refrigerator 8. 23d is a second throttling device pipe provided with a second throttling device 23b using a capillary tube having a different throttling amount and having a different pipe inner diameter from the first throttling device 23a. The other end is connected to the condenser 22, and the other end is connected to the refrigerant pipe 24 between the check valve 34 and the refrigerating refrigerator 8.
[0042]
In the refrigerator according to 3 of this embodiment, the switching valve 34 can switch between a simultaneous cooling mode in which ice making and the entire interior are simultaneously cooled, and an in-compartment cooling mode in which only the entire interior is cooled. Can be realized.
[0043]
Embodiment 4 FIG.
Embodiment 4 of the present invention will be described below with reference to the drawings. FIG. 12 is a refrigerant circuit diagram showing a refrigerator according to Embodiment 4 of the present invention. In the figure, 11 is a compressor, a condenser 22, a switching valve 34, a first throttle device pipe 23c provided with a first throttle device 23a, an ice making cooler 26 provided in the ice making chamber exclusive section 25, and The ice making dedicated refrigerant circuit 38 is formed by the refrigerant pipe 24 with the check valves 37 arranged in series. 39 is a refrigerating refrigerant pipe provided with a second throttle device 23b which uses a capillary tube having a different throttle amount and a different pipe inner diameter from the first throttle device 23a, and one of the condensers via the switching valve 34 22 is connected to the refrigerant pipe 24 between the check valve 34 and the compressor 11 in series with the refrigerator 8 for freezing and refrigeration, and is provided in the ice making chamber exclusive section 25. The ice making cooler 26 forms a bypass path in parallel.
[0044]
In the refrigerator according to the fourth embodiment, the circuits of the first throttle device pipe 23c and the ice making cooler 26, which are the ice making throttle mechanism, and the second throttle device pipe 23d and the cooler 8, which are the main throttle mechanism, are provided. The bypass passage is arranged in parallel, and the flow path can be selected by the upstream switching valve 34, that is, the ice making-only cooling mode is realized, and the ability can be further made rapidly by concentrating the ability to ice making. It is.
[0045]
Embodiment 5 FIG.
Embodiment 5 of the present invention will be described below with reference to the drawings. FIG. 13 is a refrigerant circuit diagram showing a refrigerator according to Embodiment 5 of the present invention. In the figure, reference numeral 11 denotes a compressor, a condenser 22, a switching valve 34, a first throttle device pipe 23c provided with a first throttle device 23a which is a refrigeration throttle mechanism, and a refrigeration cooler 40 provided in the refrigeration chamber 2. A refrigerant circuit is formed by the refrigerant pipe 24 in the order of the check valve 37, the ice making cooler 26 provided in the ice making chamber exclusive section 25, and the freezer / refrigerator 8 in series. 23d is a second throttle device pipe provided with a second throttle device 23b, which is a refrigeration throttle mechanism using a capillary tube having a different throttle amount and a different pipe inner diameter from the first throttle device 23a. Connected to the condenser 22 via a valve 34, the other connected to the refrigerant pipe 24 between the check valve 34 and the ice making cooler 26 provided in the ice making chamber exclusive section 25, A bypass path in parallel with the refrigeration cooler 40 provided in the refrigeration chamber is formed. Reference numeral 41 denotes a refrigerating room blower.
[0046]
In the refrigerator of the fifth embodiment, not only rapid ice making by a dedicated cooler but also a dedicated cooler is arranged in each room, and it is possible to set an evaporation temperature suitable for each use condition. It is possible to realize energy saving by reducing loss and fine temperature control of each room.
[0047]
Embodiment 6 FIG.
Embodiment 6 of the present invention will be described below with reference to the drawings. FIG. 14 is a refrigerant circuit diagram showing a refrigerator according to Embodiment 6 of the present invention. In the figure, reference numeral 11 denotes a compressor, a condenser 22, a switching valve 34, a first throttle device pipe 23c provided with a first throttle device 23a which is a refrigeration throttle mechanism, and a refrigeration cooler 40 provided in the refrigeration chamber 2. A refrigerant circuit is formed by the refrigerant pipe 24 with the check valves 37 in series. 23d is a second throttling device pipe provided with a second throttling device 23b which is a throttling mechanism for ice making and refrigeration using capillaries having different throttling amounts from the first throttling device 23a. The ice making cooler 26 and the freezer / refrigerator cooler 8 provided in the room exclusive section 25 are connected in series, and one is connected to the condenser 22 via the switching valve 34 and the other is the check valve. Connected to the refrigerant pipe 24 between the compressor 34 and the compressor 11, and forms a bypass path in parallel with the refrigeration cooler 40 provided in the refrigeration chamber. Reference numeral 41 denotes a refrigerating room blower.
[0048]
Further, in the refrigerator of the present invention, a throttle function is added to the switching valve 34 in the refrigerators of the first to sixth embodiments, so that further energy saving can be achieved by optimizing the throttle amount. For example, by detecting the outlet temperature of the condenser 22, the degree of heating of the refrigerant is estimated by detecting the degree of supercooling of the refrigerant near the outlet of the condenser 22 or the temperature of the inlet of the compressor 13. It may be variable linearly so as to obtain a proper aperture amount.
[0049]
Furthermore, in the refrigerator of the present invention, in the refrigerators of the first to sixth embodiments, the compressor 11 is stopped when the switching valve 34 is added with a fully-closed function that does not allow the refrigerant to flow through either flow path. It is possible to cut off the movement of the refrigerant and to save energy by suppressing the rise in the cooler temperature during the stop.
[0050]
Furthermore, in the refrigerator of the present invention, in the refrigerators of the first to sixth embodiments, the switching valve 34 has a full-open function for flowing the refrigerant through either flow path, so that the high-temperature and high-pressure refrigerant can be supplied during defrosting. It is intended to save energy by actively sending it to the cooler and shortening the defrosting time.
[0051]
【The invention's effect】
  As described in detail above, according to the refrigerator according to claim 1 of the present invention,A circuit formed by sequentially connecting a compressor, a condenser, a switching valve capable of selecting a flow path, a first throttling device, an ice-making cooler dedicated to ice making, and a check valve by refrigerant piping, and the first throttling The second throttle device and the freezer / refrigerator cooler, which are different from the device, are connected in series, the second throttle device side is connected to the switching valve, and the freezer / refrigerator cooler side is the reverse A bypass path connected to a refrigerant pipe between the stop valve and the compressor, andEquipped with ice tray, ice storage box and water supply tankCooled by the ice making coolerAn automatic ice making device that repeats ice making operation and water supply in the ice tray,Cooled by the freezer / refrigeratorMultiple food storage roomsAnd beforeIce tray,Ice storage boxAnd the ice making coolerThe ice compartment is designed to be isolated from other food storage rooms and formed independently, and the air passages form a closed cycle so that the other food storage rooms do not mix with the cooled cold air.The aboveAn ice making blower dedicated to ice making that circulates the cold air of the ice making cooler disposed in the ice making room exclusive sectionThe flow path connecting the first throttling device, the ice making cooler and the check valve and the bypass path can be selected by the switching valve.Therefore, the ice making time can be shortened, the ice making time can be stably shortened without being affected by the load fluctuations applied to the refrigerator, and the smell of food from the food in the other storage rooms It has the effect of reliably blocking the transfer. Moreover, since it was set as the structure provided with the air blower only for ice making, more effective cooling is possible by having a forced convection system, and there exists an effect which can aim at the further ice making time reduction. In addition, since the cooling means dedicated to ice making is provided, there is an effect that rapid ice making can be realized efficiently.In addition, a cooling mode dedicated to ice making is realized, and the ability to concentrate on ice making makes it possible to make ice quickly.
[0053]
  Claims of the invention2According to the refrigerator according toDedicated ice making roomSince the front door can be opened and closed, the cooling control of the ice making chamber can be independently performed.
[0055]
  Claims of the invention3According to the refrigerator according toOf ice-making roomSince the ice making cooler chamber is provided with means for removing frost attached to the ice making cooler, icing around the cooler can be prevented, and the reliability is improved.
  According to the refrigerator of claim 4 of the present invention, an ice tray temperature detection sensor for detecting the temperature of the ice tray and an ice chamber temperature detection sensor for detecting the temperature in the ice chamber dedicated section are installed, and the ice tray Since the operation / stop of the ice making blower and the rotation speed are controlled by the temperature detection sensor and the temperature detected by the ice making chamber temperature detection sensor, wasteful power consumption is suppressed.
[0056]
  Claims of the invention5According to the refrigerator according toIn a refrigerator having an ice making tray, an ice storage box and a water supply tank and repeating ice making and water supply making operations in the ice making tray, and a plurality of food storage rooms, the ice making tray and the ice storage box are arranged. And the ice making room dedicated section, which is formed independently of the other food storage rooms and has a closed cycle so that the other food storage rooms are not mixed with the cooled cold air. The ice making cooler dedicated to ice making arranged in the section, and the ice making tray is directly cooled by contacting the ice making tray connected to the ice making cooler, and there is an obstacle when rotating the ice making tray for ice removal. A cold plate driven so as not to becomeBecause it was configured withThe ice making time can be shortened, the ice making time can be shortened stably without being affected by the load fluctuation on the refrigerator, and the smell transfer from the food in other storage rooms to the ice is ensured. Has the effect of blocking. Also,A direct cooling system that directly cools the ice trayEspeciallyTherefore, it has the effect of realizing further rapid ice making.
[0057]
  Claims of the invention6According to the refrigerator according to the above, the compressor, the condenser, the switching valve, the first throttling device,SaidThe ice making cooler and the refrigerator for freezing and refrigeration are sequentially connected by a refrigerant pipe to form a refrigerant circuit, and the second throttling device having a throttling amount different from that of the first throttling device and having a pipe inner diameter different from that of the first throttling device. Since the configuration is provided in parallel with the first throttle device, the ice making time can be shortened while maintaining the conventional energy saving performance.
[0058]
  Claims of the invention7According to the refrigerator according to the above, the compressor, the condenser, the switching valve, the first throttling device,SaidAn ice making cooler, a check valve and a refrigerator for freezing and refrigeration are sequentially connected by a refrigerant pipe to form a refrigerant circuit, and a second throttle having a different throttle amount and a different pipe inner diameter from the first throttle device. apparatusOne of the two is connected to the switching valve, and the other is connected between the check valve and the refrigerator for refrigeration, and the second expansion deviceThe first diaphragm device,SaidIce making cooler andSaidSince the configuration is provided in parallel with the series circuit of the check valve, not only the ice making time is shortened, but also energy saving can be realized by optimizing the amount of throttling according to the load on the refrigerator.
[0059]
  Claims of the invention8According to the refrigerator according to the above, the compressor, the condenser, the switching valve, the first throttling device,SaidThe ice making cooler and the check valve are sequentially connected by a refrigerant pipe to form a refrigerant circuit, and the second throttle device having a throttle amount different from that of the first throttle device and having a different pipe inner diameter.One of these is connected to the switching valve, the other is connected to a refrigerator for freezing and refrigeration,Said2With the aperture deviceSaidThe first expansion device includes a refrigerating refrigerant pipe connected in series with a refrigerator for freezing and refrigeration,SaidIce making cooler andSaidSince the structure is provided in parallel with the series circuit of the check valves, it is possible to switch between ice making and the simultaneous cooling mode in the warehouse and the cooling mode in the warehouse, and it is possible to realize fine cooling of each room.
[0060]
  Claims of the invention9According to the refrigerator, the compressor, the condenser, the switching valve, the first throttling device, the refrigerator for refrigeration, the check valve,SaidThe ice making cooler and the refrigerator for freezing and refrigeration are sequentially connected by a refrigerant pipe to form a refrigerant circuit, and the second throttling device having a throttling amount different from that of the first throttling device and having a different pipe inner diameter.One end of the second throttle device is connected to the switching valve, and the other is connected between the check valve and the ice making cooler.The first diaphragm device,RefrigeratedThe cooling circuit and the check valve are arranged in parallel with each other, so the cooling mode can be switched between the ice-making cooling mode and the interior cooling mode. With ice-making cooling, the cooling capacity can be concentrated and the ice making time can be reduced. This has the effect of further shortening.
[0061]
  Claims of the invention10According to the refrigerator, a compressor, a condenser, a switching valve, a first throttling device, a refrigeration cooler, and a check valve are sequentially connected by a refrigerant pipe to form a refrigerant circuit, and the first throttling device The second throttle device with a different throttle amount and a different pipe inner diameterOne of the two is connected to the switching valve, the other is connected to the ice making cooler, the second expansion device,A circuit connected in series with an ice making cooler and a refrigerator for freezing and refrigeration, the first throttle device;SaidRefrigeration cooler andSaidBecause it is configured in parallel with the series circuit with the check valve, by optimizing the evaporation temperature in each cooler, loss of the refrigeration cycle can be reduced, energy saving can be achieved, and each temperature range is finely defined. It has the effect of controlling the temperature.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view of a refrigerator according to Embodiment 1 of the present invention.
FIG. 2 is a cross-sectional view showing a main part of a refrigerator according to Embodiment 1 of the present invention.
FIG. 3 is a refrigerant circuit diagram illustrating a refrigerator according to Embodiment 1 of the present invention.
FIG. 4 is a front view showing a glass tube heater of the refrigerator according to Embodiment 1 of the present invention.
FIG. 5 is a front view showing the code heater of the refrigerator according to the first embodiment of the present invention.
FIG. 6 is an ice making control flowchart according to Embodiment 1 of the present invention.
FIG. 7 is a schematic explanatory diagram showing another example according to the first embodiment of the present invention.
FIG. 8 is a schematic explanatory diagram showing another example according to the first embodiment of the present invention.
FIG. 9 is a schematic explanatory diagram showing another example according to the first embodiment of the present invention.
FIG. 10 is a side view showing a main part of a refrigerator according to Embodiment 2 of the present invention.
FIG. 11 is a refrigerant circuit diagram of a refrigerator according to Embodiment 3 of the present invention.
FIG. 12 is a refrigerant circuit diagram of a refrigerator according to Embodiment 4 of the present invention.
FIG. 13 is a refrigerant circuit diagram of a refrigerator according to Embodiment 5 of the present invention.
FIG. 14 is a refrigerant circuit diagram of a refrigerator according to Embodiment 6 of the present invention.
FIG. 15 is a cross-sectional view of a conventional refrigerator.
FIG. 16 is a refrigerant circuit diagram of a conventional refrigerator.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Refrigerator main body, 2 Refrigeration room, 3 Ice making room, 4 Switching room, 5 Vegetable room, 6 Freezing room, 7 Cooler room, 8 Refrigeration refrigerator, 11 Compressor, 14 cold air passage, 19 Automatic ice making apparatus, 25 Dedicated ice making compartment, 25a Front door, 25b Partition wall, 26 Ice making cooler, 27 Ice making cooler room, 28 Ice making cooler defrost heater, 29 Ice making room exclusive drain drain, 32 Ice making blower , 33 Ice making chamber temperature sensor, 34 switching valve, 35 ice making cooler defrost sensor, 36 cooling plate, 37 check valve, 38 ice making chamber dedicated refrigerant circuit, 39 freezing refrigerant circuit.

Claims (10)

圧縮機、凝縮器、流路を選択できる切替弁、第1の絞り装置、製氷専用の製氷用冷却器及び逆止弁を冷媒配管で順次接続して形成された回路と、前記第1の絞り装置とは絞り量が異なる第2の絞り装置及び冷凍冷蔵用冷却器を直列に接続して形成され、前記第2の絞り装置側が前記切替弁に接続され、前記冷凍冷蔵用冷却器側が前記逆止弁と前記圧縮機の間の冷媒配管に接続されたバイパス路と、を備えるとともに、製氷皿、貯氷箱及び給水タンクを備え、前記製氷用冷却器により冷却されて前記製氷皿で離氷と給水の製氷動作を繰り返す自動製氷装置と、前記冷凍冷蔵用冷却器により冷却される複数の食品貯蔵室と、前記製氷皿前記貯氷箱及び前記製氷用冷却器を配置し、他の食品貯蔵室と隔離されて独立的に形成され、他の食品貯蔵室を冷却した冷気と混ざらないように風路が閉サイクルをなす製氷室専用区部と、前記製氷室専用区部に配置され前記製氷用冷却器の冷気を循環させる製氷専用の製氷用送風機と、を設け、前記切替弁により前記第1の絞り装置、前記製氷用冷却器及び前記逆止弁を接続した流路と、前記バイパス路を選択できるようにしたことを特徴とする冷蔵庫。 A circuit formed by sequentially connecting a compressor, a condenser, a switching valve capable of selecting a flow path, a first throttling device, an ice-making cooler dedicated to ice making, and a check valve by refrigerant piping, and the first throttling The second throttle device and the freezer / refrigerator cooler, which are different from the device, are connected in series, the second throttle device side is connected to the switching valve, and the freezer / refrigerator cooler side is the reverse A bypass passage connected to a refrigerant pipe between the stop valve and the compressor, and an ice tray, an ice storage box, and a water supply tank, and cooled by the ice making cooler and deiced in the ice tray. an automatic ice making apparatus to repeat the water supply of the ice making operation, a plurality of food storage compartment to be cooled by the refrigerated cooler, before Symbol ice tray, placing the ice box and the ice cooler, other food storage Other food storage rooms formed independently and isolated from the chamber And Freezer dedicated wards the air passage so as not to mix with the cooled cold air forms a closed cycle, and ice dedicated ice blower which is disposed in the ice making chamber only wards circulating cold air of the ice cooler, the A refrigerator characterized in that the flow path connecting the first throttling device, the ice making cooler, and the check valve and the bypass path can be selected by the switching valve . 前記製氷室専用区部に前面扉を開閉可能に設けたことを特徴とする請求項1に記載の冷蔵庫。  The refrigerator according to claim 1, wherein a front door can be opened and closed in the ice making room exclusive section. 前記製氷室専用区部の製氷用冷却器室に、前記製氷用冷却器に付着した霜を除去する手段を設けたことを特徴とする請求項1又は請求項2に記載の冷蔵庫。  The refrigerator according to claim 1 or 2, wherein means for removing frost adhering to the ice making cooler is provided in the ice making cooler room of the ice making room exclusive section. 前記製氷皿の温度を検出する製氷皿温度検出センサと前記製氷室専用区部内の温度を検出する製氷室温度検出センサを設置し、前記製氷皿温度検出センサと前記製氷室温度検出センサの検出温度によって前記製氷用送風機の運転・停止や回転数を制御することを特徴とする請求項1乃至請求項3のいずれかに記載の冷蔵庫。  An ice-making tray temperature detection sensor for detecting the temperature of the ice-making tray and an ice-making chamber temperature detection sensor for detecting the temperature in the ice-making chamber dedicated section are installed, and the detection temperatures of the ice-making tray temperature detection sensor and the ice-making chamber temperature detection sensor The refrigerator according to any one of claims 1 to 3, wherein operation / stop and rotation speed of the ice blower are controlled. 製氷皿、貯氷箱及び給水タンクを備えて前記製氷皿で離氷と給水の製氷動作を繰り返す自動製氷装置と、複数の食品貯蔵室と、を有する冷蔵庫において、前記製氷皿と前記貯氷箱を配置し、他の食品貯蔵室と隔離されて独立的に形成され、他の食品貯蔵室を冷却した冷気と混ざらないように風路が閉サイクルをなす製氷室専用区部と、前記製氷室専用区部に配置された製氷専用の製氷用冷却器と、前記製氷用冷却器に接続され前記製氷皿に接触させることで前記製氷皿を直接冷却し、離氷のための前記製氷皿回転時に障害とならないように駆動される冷却板と、を設けたことを特徴とする冷蔵庫。  In a refrigerator having an ice tray, an ice storage box, and a water supply tank, the ice making tray that repeats ice making and water supply operations in the ice tray, and a plurality of food storage rooms, the ice tray and the ice storage box are arranged. And the ice making room exclusive section formed independently of the other food storage rooms and having a closed cycle so that the air passages are not mixed with the cold air that has cooled the other food storage rooms. The ice making cooler dedicated to ice making disposed in the section, and the ice making tray directly cooled by contacting the ice making tray connected to the ice making cooler, And a cooling plate that is driven so as not to become a refrigerator. 圧縮機、凝縮器、切替弁、第1の絞り装置、前記製氷用冷却器及び冷凍冷蔵用冷却器を冷媒配管で順次接続し冷媒回路を形成すると共に、前記第1の絞り装置とは絞り量が異なり、且つ管内径の異なる第2の絞り装置を前記第1の絞り装置と並列に設けたことを特徴とする請求項5に記載の冷蔵庫。A compressor, a condenser, a switching valve, a first throttling device, the ice making cooler, and a freezing / refrigeration cooler are sequentially connected by a refrigerant pipe to form a refrigerant circuit, and the first throttling device is the amount of throttling 6. The refrigerator according to claim 5, wherein a second throttle device having a different pipe inner diameter is provided in parallel with the first throttle device. 圧縮機、凝縮器、切替弁、第1の絞り装置、前記製氷用冷却器、逆止弁及び冷凍冷蔵用冷却器を冷媒配管で順次接続し冷媒回路を形成すると共に、前記第1の絞り装置とは絞り量が異なり、且つ管内径の異なる第2の絞り装置の一方を前記切替弁に接続し、他方を前記逆止弁と前記冷凍冷蔵用冷却器との間に接続して、前記第2の絞り装置を前記第1の絞り装置、前記製氷用冷却器および前記逆止弁の直列回路と並列に設けたことを特徴とする請求項5に記載の冷蔵庫。A compressor, a condenser, a switching valve, a first throttling device, the ice making cooler, a check valve, and a freezing / refrigeration cooler are sequentially connected by a refrigerant pipe to form a refrigerant circuit, and the first throttling device One of the second throttle devices having different throttle amounts and different pipe inner diameters is connected to the switching valve, and the other is connected between the check valve and the refrigerator for freezing and refrigeration. 6. The refrigerator according to claim 5, wherein two throttle devices are provided in parallel with a series circuit of the first throttle device, the ice making cooler, and the check valve. 圧縮機、凝縮器、切替弁、第1の絞り装置、前記製氷用冷却器及び逆止弁を冷媒配管で順次接続し冷媒回路を形成すると共に、前記第1の絞り装置とは絞り量が異なり、且つ管内径の異なる第2の絞り装置の一方を前記切替弁に接続し、他方を冷凍冷蔵用冷却器に接続して、前記第2の絞り装置と前記冷凍冷蔵用冷却器の直列接続した冷凍用冷媒配管を前記第1の絞り装置、前記製氷用冷却器および前記逆止弁の直列回路と並列に設けたことを特徴とする請求項5に記載の冷蔵庫。A compressor, a condenser, a switching valve, a first throttling device, the ice making cooler and a check valve are sequentially connected by a refrigerant pipe to form a refrigerant circuit, and the throttling amount is different from that of the first throttling device. In addition, one of the second throttle devices having different pipe inner diameters is connected to the switching valve, the other is connected to a refrigerator for freezing / refrigeration, and the second throttle device and the refrigerator for freezing / refrigeration are connected in series. The refrigerator according to claim 5, wherein a refrigerant pipe for refrigeration is provided in parallel with a series circuit of the first throttle device, the ice making cooler, and the check valve. 圧縮機、凝縮器、切替弁、第1の絞り装置、冷蔵用冷却器、逆止弁、前記製氷用冷却器及び冷凍冷蔵用冷却器を冷媒配管で順次接続し冷媒回路を形成すると共に、前記第1の絞り装置とは絞り量が異なり、且つ管内径の異なる第2の絞り装置の一方を前記切替弁に接続し、他方を前記逆止弁と前記製氷用冷却器との間に接続して、前記第2の絞り装置を前記第1の絞り装置、前記冷蔵用冷却器および逆止弁の直列回路と並列に設けたことを特徴とする請求項5に記載の冷蔵庫。A compressor, a condenser, a switching valve, a first throttling device, a refrigeration cooler, a check valve, the ice making cooler and the refrigeration refrigerator are sequentially connected by a refrigerant pipe to form a refrigerant circuit, and One of the second throttle devices having different throttle amounts and different pipe inner diameters from the first throttle device is connected to the switching valve, and the other is connected between the check valve and the ice making cooler. The refrigerator according to claim 5 , wherein the second throttle device is provided in parallel with a series circuit of the first throttle device, the refrigeration cooler, and a check valve. 圧縮機、凝縮器、切替弁、第1の絞り装置、冷蔵用冷却器、逆止弁を冷媒配管で順次接続し冷媒回路を形成すると共に、前記第1の絞り装置とは絞り量が異なり、且つ管内径の異なる第2の絞り装置の一方を前記切替弁に接続し、他方を前記製氷用冷却器に接続して、前記第2の絞り装置、前記製氷用冷却器及び冷凍冷蔵用冷却器と直列接続した回路を前記第1の絞り装置、前記冷蔵用冷却器および前記逆止弁との直列回路と並列に設けたことを特徴とする請求項5に記載の冷蔵庫。A compressor, a condenser, a switching valve, a first throttling device, a refrigeration cooler, and a check valve are sequentially connected by a refrigerant pipe to form a refrigerant circuit, and the throttling amount is different from that of the first throttling device, One of the second throttle devices having different pipe inner diameters is connected to the switching valve, and the other is connected to the ice making cooler, so that the second throttle device, the ice making cooler and the refrigerator for freezing and refrigeration are connected. 6. The refrigerator according to claim 5, wherein a circuit connected in series is provided in parallel with a series circuit of the first throttling device, the refrigeration cooler, and the check valve.
JP2001393585A 2001-12-26 2001-12-26 refrigerator Expired - Fee Related JP4103384B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001393585A JP4103384B2 (en) 2001-12-26 2001-12-26 refrigerator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001393585A JP4103384B2 (en) 2001-12-26 2001-12-26 refrigerator

Publications (2)

Publication Number Publication Date
JP2003194448A JP2003194448A (en) 2003-07-09
JP4103384B2 true JP4103384B2 (en) 2008-06-18

Family

ID=27600545

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001393585A Expired - Fee Related JP4103384B2 (en) 2001-12-26 2001-12-26 refrigerator

Country Status (1)

Country Link
JP (1) JP4103384B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20050023788A (en) * 2003-09-02 2005-03-10 엘지전자 주식회사 A temperature control apparatus of refrigerator
JP2006226635A (en) * 2005-02-18 2006-08-31 Toshiba Corp Refrigerator
KR100712483B1 (en) 2005-09-16 2007-04-30 삼성전자주식회사 Refrigerator and operation control method therof
KR101140711B1 (en) * 2006-03-17 2012-05-03 삼성전자주식회사 Refrigerator and method for control operating thereof
JP6955348B2 (en) * 2017-03-03 2021-10-27 東芝ライフスタイル株式会社 refrigerator

Also Published As

Publication number Publication date
JP2003194448A (en) 2003-07-09

Similar Documents

Publication Publication Date Title
EP1426711B1 (en) Cooling apparatus and method for controlling the same
US6935127B2 (en) Refrigerator
JP4059474B2 (en) refrigerator
US20220042739A1 (en) Refrigerator control method
JP5178771B2 (en) Freezer refrigerator
KR20060051551A (en) Refrigerator
JP2001082850A (en) Refrigerator
JP4624223B2 (en) Refrigeration system
KR100348068B1 (en) Controlling method of refrigerator
JPH11173729A (en) Refrigerator
JP3611447B2 (en) refrigerator
JP4206792B2 (en) refrigerator
JP4103384B2 (en) refrigerator
JP2003035481A (en) Refrigerator
JP2002071255A (en) Refrigerator and its controlling method
JPH09236369A (en) Refrigerator
US20220235977A1 (en) Method for controlling refrigerator
KR101723284B1 (en) A refrigerator and a method for controlling the same
JP2000283626A (en) Refrigerator
JP3600009B2 (en) Refrigerator control method
JP2002206840A (en) Refrigerator
JP2007085720A (en) Refrigeration system
KR100557438B1 (en) Refrigerator and method for controlling
KR100425114B1 (en) defrosting method in the refrigerator with 2 evaporators
JP2003287331A (en) Refrigerator

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20040706

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041112

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070403

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070717

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070913

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071023

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071221

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080304

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080317

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110404

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120404

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120404

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130404

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130404

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140404

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees