JP3451237B2 - 2-stage double effect absorption refrigerator - Google Patents

2-stage double effect absorption refrigerator

Info

Publication number
JP3451237B2
JP3451237B2 JP2000134197A JP2000134197A JP3451237B2 JP 3451237 B2 JP3451237 B2 JP 3451237B2 JP 2000134197 A JP2000134197 A JP 2000134197A JP 2000134197 A JP2000134197 A JP 2000134197A JP 3451237 B2 JP3451237 B2 JP 3451237B2
Authority
JP
Japan
Prior art keywords
solution
absorber
evaporator
temperature regenerator
absorption refrigerator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000134197A
Other languages
Japanese (ja)
Other versions
JP2001317833A (en
Inventor
伸之 武田
Original Assignee
株式会社 日立インダストリイズ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社 日立インダストリイズ filed Critical 株式会社 日立インダストリイズ
Priority to JP2000134197A priority Critical patent/JP3451237B2/en
Publication of JP2001317833A publication Critical patent/JP2001317833A/en
Application granted granted Critical
Publication of JP3451237B2 publication Critical patent/JP3451237B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation
    • Y02A30/27Relating to heating, ventilation or air conditioning [HVAC] technologies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/62Absorption based systems

Landscapes

  • Sorption Type Refrigeration Machines (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は冷凍、空気調和に利
用される吸収冷凍機に係り、特に冷媒を水とし吸収剤を
塩類水溶液とした2段2重効用吸収冷凍機に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an absorption refrigerator used for refrigeration and air conditioning, and more particularly to a two-stage double-effect absorption refrigerator having water as a refrigerant and an aqueous salt solution as an absorbent.

【0002】[0002]

【従来の技術】従来の2段2重効用吸収冷凍機は、例えば
特開平7-139844号公報に記載のように、高温再生器、低
温再生器、凝縮器、第1蒸発器、第1吸収器、第2蒸発
器、第2吸収器、溶液熱交換器、溶液循環ポンプ、冷媒
ポンプを備えている。そして、第1吸収器および第2吸収
器の希溶液を、溶液熱交換器を経てそれぞれ高温再生器
と低温再生器へ平行に送り、高温再生器と低温再生器で
稀溶液を濃縮した後、溶液熱交換器を経て再び第1吸収
器と第2吸収器に戻している。これにより、2重効用吸収
冷凍サイクルが形成される。
2. Description of the Related Art A conventional two-stage two-effect double-effect absorption refrigerator has a high temperature regenerator, a low temperature regenerator, a condenser, a first evaporator, and a first absorption, as disclosed in, for example, JP-A-7-139844. It is equipped with a vessel, a second evaporator, a second absorber, a solution heat exchanger, a solution circulation pump, and a refrigerant pump. Then, the dilute solution of the first absorber and the second absorber is sent in parallel to the high temperature regenerator and the low temperature regenerator through the solution heat exchanger, respectively, and after diluting the dilute solution with the high temperature regenerator and the low temperature regenerator, It is returned to the first absorber and the second absorber again via the solution heat exchanger. As a result, a double-effect absorption refrigeration cycle is formed.

【0003】ここで、第2吸収器は第1吸収器よりも低圧
下で作動しており、その結果、第2蒸発器は第1蒸発器よ
りも低温の冷水またはブラインを生成する。この2段2
重効用吸収冷凍機は、通常の単段の2重効用吸収冷凍機
より低温が得られるという特徴を有している。第2蒸発
器で得られる冷水が、通常の単段の吸収冷凍機より低く
なることから、第2蒸発器内で冷媒が凍結する恐れを生
じる。そこで、第2蒸発器には水冷媒の凍結を防止する
ために吸収剤を混合した混合冷媒を使用している。
Here, the second absorber operates under a lower pressure than the first absorber, so that the second evaporator produces cold water or brine that is colder than the first evaporator. This 2 steps 2
The heavy-effect absorption refrigerator has a feature that a lower temperature can be obtained than a normal single-stage double-effect absorption refrigerator. Since the cold water obtained in the second evaporator is lower than that in a normal single-stage absorption refrigerator, the refrigerant may freeze in the second evaporator. Therefore, a mixed refrigerant mixed with an absorbent is used for the second evaporator in order to prevent freezing of the water refrigerant.

【0004】[0004]

【発明が解決しようとする課題】ところで、吸収器と蒸
発器を2個ずつ有する2段の吸収冷凍機では、あらゆる
運転条件において、どの吸収器においても溶液切れが生
じないように、各吸収器の下部や外部に溶液を保持する
溶液タンクまたは溶液保持部を形成している。例えば、
上記特開平7-139844号公報に記載のものは、各吸収器下
部に冷媒タンクまたは混合冷媒タンクを設けている。こ
のように、各吸収器毎に冷媒タンクを設け溶液タンクに
常時溶液を保持させるようにすると、吸収冷凍機内を循
環する吸収液量の他の停留する溶液量が増大する。溶液
量が増加すると吸収剤濃度を適正にするために、冷媒保
有量も多く必要となり、冷媒タンク容積が大きくなる。
この結果、吸収冷凍機が大型化するばかりでなく、負荷
応答性が低下する。
By the way, in a two-stage absorption refrigerating machine having two absorbers and two evaporators, each absorber is prevented from running out of solution under any operating condition. A solution tank or a solution holding portion for holding the solution is formed in the lower part or outside thereof. For example,
The device described in JP-A-7-139844 is provided with a refrigerant tank or a mixed refrigerant tank below each absorber. In this way, if a refrigerant tank is provided for each absorber so that the solution tank always holds the solution, the amount of the retained solution other than the amount of the absorbed liquid circulating in the absorption refrigerator increases. When the amount of solution increases, a large amount of refrigerant is required in order to make the absorbent concentration appropriate, and the refrigerant tank volume increases.
As a result, not only the absorption refrigerator is increased in size, but also the load response is deteriorated.

【0005】なお、吸収剤である塩類水溶液、例えば臭
化リチウム水溶液(LiBr水溶液)は、高濃度に濃縮された
まま冷却されると結晶固化するという性質を有してい
る。結晶固化すると、吸収冷凍機の各機器を破損する恐
れがある。特に、2段の吸収冷凍機では第2蒸発器の温度
が0℃程度まで低下するから、結晶固化を防止した吸収
冷凍機が強く望まれている。さらに、吸収液や冷媒が循
環する際に、不凝縮ガスが溶液中に残るのを抽気する必
要があるが、これを低圧側で実行すれば効率がよく、溶
液量が少ない場合には抽気効率が良い。したがって、吸
収冷凍機内の溶液量を少なくすることが望まれている。
An aqueous salt solution as an absorbent, for example, a lithium bromide aqueous solution (LiBr aqueous solution) has a property of crystallizing and solidifying when cooled while being concentrated to a high concentration. The solidification of crystals may damage each device of the absorption refrigerator. In particular, in a two-stage absorption refrigerator, the temperature of the second evaporator drops to about 0 ° C., so an absorption refrigerator that prevents crystallization solidification is strongly desired. Furthermore, when the absorbing liquid or the refrigerant circulates, it is necessary to extract the non-condensable gas remaining in the solution, but if this is performed on the low pressure side, the efficiency is good, and if the solution amount is small, the extraction efficiency is good. Is good. Therefore, it is desired to reduce the amount of solution in the absorption refrigerator.

【0006】本発明は上記従来の技術に鑑みなされたも
のであり、その目的は2段2重効用吸収冷凍機において、
溶液の保有量を削減して小型化を図ることにある。ま
た、2段2重効用吸収冷凍機において、確実に溶液を循環
させて負荷応答性を良くすることも目的とする。なお、
これらの目的は、いずれかが達成されればよい。
The present invention has been made in view of the above-mentioned conventional technique, and its object is to provide a two-stage, two-effect double-effect absorption refrigerator.
The aim is to reduce the amount of solution possessed and to achieve miniaturization. Further, in the two-stage double-effect absorption refrigerator, it is also an object to surely circulate the solution to improve load response. In addition,
Any of these purposes may be achieved.

【0007】[0007]

【課題を解決するための手段】上記目的を達成するため
の本発明の第1の特徴は、高温再生器、低温再生器、凝
縮器、第1蒸発器、第1の溶液タンクが下部に形成され
た第1吸収器、第2蒸発器および第2の溶液タンクが下部
に形成された第2吸収器を有し、第1吸収器内に散布され
た溶液を第2吸収器内に散布して第2蒸発器から冷熱を
取り出す2段2重効用吸収冷凍機において、第1蒸発器
と第1吸収器を同一の第1シェルで形成し、第2蒸発器
と第2吸収器とを同一の第2シェルで形成し、第1の溶
液タンクを第2の溶液タンクより下方に配置したもので
ある。
The first feature of the present invention for achieving the above object is to form a high temperature regenerator, a low temperature regenerator, a condenser, a first evaporator, and a first solution tank at the bottom. The first absorber, the second evaporator and the second solution tank which are formed in the lower part of the second absorber, and the solution dispersed in the first absorber is dispersed in the second absorber. In a two-stage double-effect absorption refrigerator that takes out cold heat from the second evaporator by using the same first shell, the first evaporator and the first absorber are formed by the same first shell, and the second evaporator and the second absorber are the same. The second solution tank is formed of a second shell, and the first solution tank is arranged below the second solution tank.

【0008】そして、第2の溶液タンクに貯留する溶液
の液面を検出するフロート弁を設け、このフロート弁は
第1吸収器から第2吸収器に流入する溶液量を制御す
る;第2の溶液タンクに貯留する溶液の液面を検出する
フロート弁を設け、このフロート弁は第2吸収器から低
温再生器及び高温再生器へ流入する溶液流量を制御す
る;第2吸収器から低温再生器及び高温再生器へ溶液を
送る配管を有し、この配管に溶液を送液するポンプを介
在させ、このポンプの吐出側と吸込側をバイパスするバ
イパス配管を設ける;塩類水溶液が溶液であり、第2蒸
発器内を流通する冷媒が溶液を含む混合冷媒であること
が望ましい。
A float valve for detecting the liquid level of the solution stored in the second solution tank is provided, and the float valve controls the amount of the solution flowing from the first absorber to the second absorber; A float valve for detecting the liquid level of the solution stored in the solution tank is provided, and the float valve controls the flow rate of the solution flowing from the second absorber to the low temperature regenerator and the high temperature regenerator; the second absorber to the low temperature regenerator. And a pipe for sending the solution to the high-temperature regenerator, and a pump for sending the solution is interposed in this pipe, and a bypass pipe for bypassing the discharge side and the suction side of the pump is provided; 2 It is desirable that the refrigerant flowing in the evaporator is a mixed refrigerant containing a solution.

【0009】上記目的を達成するための本発明の第2の
特徴は、高温再生器、低温再生器、凝縮器、第1蒸発
器、第1の溶液タンクが下部に形成された第1吸収器、
第2蒸発器および第2の溶液タンクが下部に形成された
第2吸収器を有し、第1吸収器内に散布された溶液を第2
吸収器内に散布して前記第2蒸発器から冷熱を取り出す
2段2重効用吸収冷凍機において、第1蒸発器と第1吸
収器を同一の第1シェルで形成し、第2蒸発器と第2吸
収器とを同一の第2シェルで形成し、第2吸収器内に貯
留される溶液量を検出する手段と、この検出手段が検出
した溶液量に基づいて第1吸収器から第2吸収器に流入
する溶液量と第2吸収器から低温再生器及び再生器へ流
入する溶液量の少なくともいずれか制御する制御手段を
設けたものである。そして、溶液量検出手段と制御手段
とをフロート弁が兼ねるようにしてもよい。
The second feature of the present invention for achieving the above object is to provide a high temperature regenerator, a low temperature regenerator, a condenser, a first evaporator, and a first absorber having a first solution tank formed in a lower portion thereof. ,
The second evaporator and the second solution tank have a second absorber formed in the lower part, and the second solution is dispersed in the first absorber.
In a two-stage two-effect double-effect absorption refrigerator in which the cold heat is extracted from the second evaporator by being sprayed in the absorber, the first evaporator and the first absorber are formed of the same first shell, and the second evaporator The second absorber is formed of the same second shell, and means for detecting the amount of solution stored in the second absorber, and the first absorber to the second absorber based on the amount of solution detected by the detector A control means for controlling at least one of the amount of solution flowing into the absorber and the amount of solution flowing from the second absorber to the low temperature regenerator and the regenerator is provided. Then, the float valve may serve as the solution amount detecting means and the control means.

【0010】[0010]

【発明の実施の形態】以下、本発明の一実施例を図1な
いし図3を用いて説明する。図1は本発明にかかる2段
2重効用吸収冷凍機の系統図である。2段2重効用吸収冷
凍機は、高温再生器1A、低温低温再生器1B、凝縮器2、
第1蒸発器3A、第2蒸発器3B、第1吸収器4A、第2吸収
器4B、液熱交換器5A、5B、5C、溶液散布ポンプ6A、6
B、溶液循環ポンプ6Cなどを配管で接続している。そし
て、冷媒と吸収液の循環経路を形成している。
BEST MODE FOR CARRYING OUT THE INVENTION An embodiment of the present invention will be described below with reference to FIGS. FIG. 1 is a system diagram of a two-stage double-effect absorption refrigerator according to the present invention. The two-stage double-effect absorption refrigerator has a high temperature regenerator 1A, a low temperature low temperature regenerator 1B, a condenser 2,
First evaporator 3A, second evaporator 3B, first absorber 4A, second absorber 4B, liquid heat exchangers 5A, 5B, 5C, solution spray pumps 6A, 6
B, solution circulation pump 6C, etc. are connected by piping. And the circulation path of a refrigerant and an absorption liquid is formed.

【0011】高温再生器1Aには排ガスや蒸気などが導か
れ、内部の吸収剤溶液を加熱する。その際、高温再生器
1A内に配置された伝熱面HAが、吸収剤溶液の沸騰を促進
する。同様に、低温再生器1B内にも伝熱面HBが配置さ
れており、高温再生器1Aで発生した冷媒蒸気の凝縮潜熱
を熱源として低温再生器1B内の溶液を加熱沸騰させ
る。高温再生器1Aで発生した冷媒蒸気は、低温再生器1
B内の吸収液を加熱して凝縮液化されて液冷媒になる。
その後、液冷媒は凝縮器2に導びかれる。低温再生器1B
で発生した冷媒蒸気は、凝縮器2に導びかれる。そし
て、例えば冷却塔等から送られて来た冷却水CWが内部を
流通する伝熱面で冷却され、凝縮液化されて液冷媒にな
る。
Exhaust gas, steam and the like are introduced into the high temperature regenerator 1A to heat the absorbent solution therein. At that time, high temperature regenerator
The heat transfer surface HA arranged in 1A promotes boiling of the absorbent solution. Similarly, the heat transfer surface HB is also arranged in the low temperature regenerator 1B, and the latent heat of condensation of the refrigerant vapor generated in the high temperature regenerator 1A is used as a heat source to heat and boil the solution in the low temperature regenerator 1B. The refrigerant vapor generated in the high temperature regenerator 1A is the low temperature regenerator 1
The absorbing liquid in B is heated to be condensed and liquefied to become a liquid refrigerant.
After that, the liquid refrigerant is guided to the condenser 2. Low temperature regenerator 1B
The refrigerant vapor generated in 1 is guided to the condenser 2. Then, for example, the cooling water CW sent from a cooling tower or the like is cooled by the heat transfer surface flowing inside, and condensed and liquefied to become a liquid refrigerant.

【0012】凝縮器2で発生した液冷媒は、液冷媒導管1
0を経て第1蒸発器3Aの下部に形成された液冷媒タンク8
Aに導かれる。液冷媒タンク8Aに溜まった液冷媒は、冷
媒散布ポンプ7Aにより第1蒸発器3Aの上部に導かれ、第1
蒸発器3A内に配置された伝熱管31A上に散布される。こ
のとき、伝熱管31A内の冷熱媒体と熱交換して蒸発し、
冷媒蒸気が発生する。発生した冷媒蒸気は、第1蒸発器3
Aと第1吸収器4Aとの境界に配置されたエリミネ−タの隙
間部を経由して、第1吸収器4Aに導かれる。
The liquid refrigerant generated in the condenser 2 is the liquid refrigerant conduit 1
Liquid refrigerant tank 8 formed below the first evaporator 3A through 0
Guided by A. The liquid refrigerant accumulated in the liquid refrigerant tank 8A is guided to the upper portion of the first evaporator 3A by the refrigerant spray pump 7A, and
It is sprayed on the heat transfer tubes 31A arranged in the evaporator 3A. At this time, heat is exchanged with the cold heat medium in the heat transfer tube 31A to evaporate,
Refrigerant vapor is generated. The generated refrigerant vapor is transferred to the first evaporator 3
It is guided to the first absorber 4A via the clearance of the eliminator arranged at the boundary between A and the first absorber 4A.

【0013】第1蒸発器3Aで液冷媒と熱交換して冷却さ
れた伝熱管31A内を流通する冷熱媒体を、後述する第2吸
収器4Bに導くために、循環水ポンプ27が冷熱媒体の流
路中に配設されている。エリミネータから第1吸収器4A
に流入した冷媒蒸気は、第1吸収器4A内に散布された吸
収溶液に吸収される。なお、第1吸収器4Aには、高温再
生器1A及び低温再生器1B内で濃縮された冷媒溶液が、配
管12を経由して導かれている。
In order to introduce the cold heat medium flowing in the heat transfer tube 31A, which is cooled by exchanging heat with the liquid refrigerant in the first evaporator 3A, to the second absorber 4B which will be described later, the circulating water pump 27 serves as a cold heat medium. It is arranged in the flow path. Eliminator to 1st absorber 4A
The refrigerant vapor flowing into is absorbed by the absorbing solution sprinkled in the first absorber 4A. The refrigerant solution concentrated in the high temperature regenerator 1A and the low temperature regenerator 1B is introduced into the first absorber 4A via the pipe 12.

【0014】第1蒸発器3Aで冷却された冷熱媒体は第2
吸収器4Bに導かれる。そして、第2吸収器内に配置され
た伝熱管30B内を流通する際に、第2吸収器4B内に散布さ
れた第1吸収器4Aからポンプ6Bにより導かれた吸収液と
熱交換する。その後、熱交換した冷熱媒体は再び第1蒸
発器3Aに戻される。この結果、第1蒸発器3A内の冷媒の
蒸発潜熱により、第2吸収器4B内に配置した伝熱管30B
内の冷熱媒体が冷却される。
The cold heat medium cooled by the first evaporator 3A is the second heat medium.
Guided to absorber 4B. Then, when flowing through the heat transfer tube 30B arranged in the second absorber, the heat exchange is performed with the absorbing liquid guided by the pump 6B from the first absorber 4A dispersed in the second absorber 4B. After that, the heat exchange cold heat medium is returned to the first evaporator 3A again. As a result, due to the latent heat of vaporization of the refrigerant in the first evaporator 3A, the heat transfer tube 30B arranged in the second absorber 4B.
The cooling medium inside is cooled.

【0015】第1蒸発器3Aに設けた冷媒タンク8A内の
液冷媒は、冷媒散布ポンプ7Aを経た後、その一部が流
入量制御手段としての電動弁18を経由して、第2蒸発器3
B下部に設けた混合冷媒タンク8Bに接続された混合冷媒
散布ポンプ7Bの吸込み側に導かれる。つまり、このポ
ンプ7Bの吸込み側には、第2蒸発器内で蒸発しきれなか
った混合冷媒と第1蒸発器の下部に貯留された液冷媒と
いう濃度の異なる冷媒が導かれている。そこで、流速の
速いポンプ7Bの吸込み側にこれらの液冷媒を導くこと
により、冷媒の混合が促進され、冷媒濃度差に起因する
濃淡電池形成、および濃淡電池による腐蝕や氷の形成を
防止できる。
The liquid refrigerant in the refrigerant tank 8A provided in the first evaporator 3A passes through the refrigerant distribution pump 7A, and then a part of the liquid refrigerant passes through the electric valve 18 serving as the inflow amount control means and then the second evaporator. 3
It is guided to the suction side of the mixed refrigerant spray pump 7B connected to the mixed refrigerant tank 8B provided at the lower part of B. That is, on the suction side of the pump 7B, the mixed refrigerant which has not been completely evaporated in the second evaporator and the liquid refrigerant stored in the lower portion of the first evaporator are introduced with different concentrations. Therefore, by introducing these liquid refrigerants to the suction side of the pump 7B having a high flow velocity, the mixing of the refrigerants is promoted, and it is possible to prevent the concentration cell formation and the corrosion and ice formation due to the concentration cell due to the refrigerant concentration difference.

【0016】混合冷媒散布ポンプ7Bを経た液冷媒(混合
冷媒)は、第2蒸発器3B内の上部に配置された図示しな
い冷媒散布装置から第2蒸発器3B内に配置された伝熱管3
1B上に散布されて蒸発する。その際、伝熱管31B内を流
れる水またはブラインを冷却する。なお、混合冷媒タン
ク8Bの吸収剤濃度を濃度センサー24が検出し、この検出
した吸収剤濃度に基づいて図示しない制御装置が電動弁
18を制御する。また、混合冷媒タンク8Bの混合冷媒量を
液面検出手段28が検出し、検出した冷媒量に基づいて吸
収剤の補給を図示しない制御装置が指示する。具体的に
は、以下の通りである。
The liquid refrigerant (mixed refrigerant) that has passed through the mixed refrigerant distribution pump 7B is transferred from a refrigerant distribution device (not shown) arranged in the upper part of the second evaporator 3B to the heat transfer tube 3 arranged in the second evaporator 3B.
It is sprinkled on 1B and evaporated. At that time, the water or brine flowing in the heat transfer tube 31B is cooled. The concentration sensor 24 detects the concentration of the absorbent in the mixed refrigerant tank 8B, and a control device (not shown) operates an electrically operated valve based on the detected concentration of the absorbent.
Control 18 Further, the liquid level detection means 28 detects the amount of the mixed refrigerant in the mixed refrigerant tank 8B, and the control device (not shown) instructs the replenishment of the absorbent based on the detected amount of the refrigerant. Specifically, it is as follows.

【0017】適正濃度なのに液冷媒の保有量が少ないと
制御装置が判断した場合は、吸収剤が何らかの原因で流
出して不足している場合である。そこで、吸収剤を補
給するように警告表示するか、メンテナンス会社に通信
手段を介してデータを送信する。この表示または送信が
あったら、混合冷媒タンク8Bにメンテナンス員が吸収
剤を補給する、または、例えば後述する溶液散布ポン
プ6Aの吐出側から分岐した溶液配管を、混合冷媒散布ポ
ンプ7Bの吸込み側に接続する。この接続配管の途中
に、フィルター34、溶液流量制御手段36、銅イオン除去
手段35を配置する。高温再生器1Aおよび低温再生器1Bで
濃縮された濃溶液を混合冷媒タンク8Bに導き、吸収剤
を補給する。
When the control device determines that the amount of the liquid refrigerant held is small even though the concentration is proper, it means that the absorbent has run out for some reason and is insufficient. Therefore, a warning is displayed to replenish the absorbent, or the data is transmitted to the maintenance company via the communication means. When this message is displayed or transmitted, the maintenance staff replenishes the mixed refrigerant tank 8B with absorbent, or, for example, a solution pipe branched from the discharge side of the solution spray pump 6A described later is connected to the suction side of the mixed refrigerant spray pump 7B. Connecting. A filter 34, a solution flow rate control means 36, and a copper ion removal means 35 are arranged in the middle of this connection pipe. The concentrated solution concentrated in the high temperature regenerator 1A and the low temperature regenerator 1B is guided to the mixed refrigerant tank 8B to replenish the absorbent.

【0018】混合冷媒タンク8Bの液面位置と混合冷媒濃
度の双方が所定値に保たれるので、冷媒の凍結やポンプ
7Bの空転を防止できる。
Both the liquid surface position of the mixed refrigerant tank 8B and the mixed refrigerant concentration are maintained at predetermined values, so that the refrigerant is frozen or pumped.
7B idling can be prevented.

【0019】第2蒸発器3B内で蒸発した冷媒蒸気は、第2
吸収器4Bと境界をなすエリミネータの隙間から第2吸収
器4B内に流入し、第2吸収器4B内に散布された吸収溶液
に吸収され稀溶液を発生する。なお、第2吸収器4B内の
上部からこの第2吸収器4B内に配置された伝熱管30B上に
散布される吸収溶液は、第1蒸発器3A内に散布された冷
媒の蒸発潜熱により冷却された冷熱媒体と熱交換して冷
却される。
The refrigerant vapor evaporated in the second evaporator 3B is
It flows into the second absorber 4B through the gap of the eliminator that forms a boundary with the absorber 4B, is absorbed by the absorbing solution sprinkled in the second absorber 4B, and produces a dilute solution. The absorbing solution sprayed from the upper part of the second absorber 4B onto the heat transfer tubes 30B arranged in the second absorber 4B is cooled by the latent heat of vaporization of the refrigerant distributed in the first evaporator 3A. It is cooled by exchanging heat with the cooled heat medium.

【0020】なお、冷媒蒸気を吸収した希溶液は、伝熱
管30Bにより形成された管群の下部に配置した液流抽気
手段29を流れる際に、不凝縮ガスを巻き込んで、抽気さ
れる。第2吸収器下部に溜まった稀溶液は、第2吸収器4B
と低温再生器1B、高温再生器1Aとを結ぶ稀溶液導管13に
介在させた溶液循環ポンプ6C、低温液熱交換器5Cおよ
び溶液熱交換器5Bを経由して一部が低温再生器1Bに、残
りがさらに溶液熱交換器5Aを経て高温再生器1Aに送られ
る。
The dilute solution that has absorbed the refrigerant vapor is extracted by entraining the non-condensable gas when flowing through the liquid flow extraction means 29 arranged in the lower part of the tube group formed by the heat transfer tubes 30B. The dilute solution accumulated in the lower part of the second absorber is the second absorber 4B.
And a low temperature regenerator 1B and a high temperature regenerator 1A. A part of the low temperature regenerator 1B is passed through a solution circulation pump 6C, a low temperature liquid heat exchanger 5C and a solution heat exchanger 5B which are interposed in a dilute solution conduit 13. The rest is sent to the high temperature regenerator 1A via the solution heat exchanger 5A.

【0021】高温再生器1Aで冷媒蒸気を発生して濃縮さ
れた吸収溶液(濃溶液)は、溶液熱交換器5A、5Bを順に流
通する際に、第2吸収器4Bで冷媒を吸収して濃度が低下
した稀溶液と熱交換して温度が低下する。同様に、低温
再生器1Bで冷媒蒸気を発生して濃縮された吸収液は、溶
液熱交換器5Bにおいて稀溶液と熱交換して温度が低下す
る。これらの温度が低下した濃溶液は、濃溶液導管12に
介在させた溶液散布ポンプ6Aにより第1吸収器4Aに導か
れる。
The absorbing solution (concentrated solution) which is produced by generating the refrigerant vapor in the high temperature regenerator 1A and concentrated is passed through the solution heat exchangers 5A and 5B in order to absorb the refrigerant in the second absorber 4B. The temperature is lowered by exchanging heat with the diluted solution whose concentration has been lowered. Similarly, the absorption liquid generated by generating the refrigerant vapor in the low temperature regenerator 1B and concentrated is heat-exchanged with the dilute solution in the solution heat exchanger 5B to lower the temperature. The concentrated solution whose temperature has been lowered is introduced to the first absorber 4A by the solution spraying pump 6A interposed in the concentrated solution conduit 12.

【0022】次いで、第1吸収器4A内の上部に配置した
図示しない溶液散布装置から第1吸収器4A内に配置した
内部を冷却水が流通する伝熱管30A上に散布され、伝熱
管30A内を流れる冷却水により冷却される。そして、第
1蒸発器3Aで蒸発した冷媒蒸気を吸収して濃度の薄い溶
液になって第1吸収器4A下部の溶液タンク25Aに貯留され
る。溶液タンク25Aに貯留された吸収溶液は、溶液導管
14に介在させた溶液散布ポンプ6Bにより、低温液熱
交換器5Cを経由して第2吸収器4Bに送られる。
Then, from a solution spraying device (not shown) disposed in the upper portion of the first absorber 4A, cooling water is sprayed on the heat transfer tubes 30A through which the cooling water flows through the inside of the first absorber 4A. It is cooled by the cooling water flowing through. Then, the refrigerant vapor evaporated in the first evaporator 3A is absorbed to form a solution having a low concentration and stored in the solution tank 25A below the first absorber 4A. The absorbing solution stored in the solution tank 25A is sent to the second absorber 4B via the low temperature liquid heat exchanger 5C by the solution spraying pump 6B interposed in the solution conduit 14.

【0023】このように構成した2段2重効用吸収冷凍サ
イクルの作用を以下に述べる。第2蒸発器3Bと第2吸収
器4Bを一体化したシェルを、第1蒸発器3Aと第1吸収器
4Aを一体化したシェルよりも高い位置に配置してい
る。そして、第2吸収器3Bの下部に設けた溶液タンク25
B内には、負荷運転中であってサイクルの吸収剤濃度が
高濃度になっている運転状態では、ほとんど溶液がない
ように溶液量を設定する。その結果、第1吸収器4Aの溶
液タンク25Aを、希薄溶液を主として保有させるタンク
に設定できる。
The operation of the two-stage double-effect absorption refrigeration cycle configured as described above will be described below. The shell in which the second evaporator 3B and the second absorber 4B are integrated is used as the first evaporator 3A and the first absorber.
It is placed higher than the shell that integrates 4A. Then, the solution tank 25 provided below the second absorber 3B
In B, the amount of solution is set so that there is almost no solution in the operating state during load operation and high cycle absorbent concentration. As a result, the solution tank 25A of the first absorber 4A can be set as a tank that mainly holds a dilute solution.

【0024】溶液タンク25Aの吸収剤濃度は、第2吸収
器4Bで生成される溶液よりは濃い中間濃度であるか
ら、第2吸収器4Bの溶液タンク25Bに溶液を保有するよ
りも冷媒の保有量が少なくて済む。ブライン温度が低い
場合あるいは冷却水CW温度が高い場合には、吸収冷凍
機に形成される吸収サイクルを高濃度側にシフトさせ
て、第1蒸発器3A下部の冷媒タンク8Aに貯留させる冷媒
量を増す。そうすると、第1吸収器4Aの溶液タンク25A
の液保有量が減少して高濃度になる。もちろん、第2吸
収器4Bの濃度も濃くなるから、第2吸収器4Bの溶液タン
ク25Bに貯留される溶液の濃度も濃くなる。そこで、こ
の分の冷媒も第1蒸発器3Aの冷媒タンク8Aに貯留させ
る。このように、第2吸収器4Bの溶液タンク25Bの溶液
量を少なくしたので、冷媒保有量も少なくできる。した
がって、機器を小型軽量化できる。また、負荷応答性の
向上と原価低減が可能になる。
Since the concentration of the absorbent in the solution tank 25A is an intermediate concentration which is higher than that of the solution produced in the second absorber 4B, the refrigerant is retained rather than the solution is stored in the solution tank 25B of the second absorber 4B. The quantity is small. When the brine temperature is low or the cooling water CW temperature is high, the absorption cycle formed in the absorption refrigerator is shifted to the high-concentration side and the amount of refrigerant stored in the refrigerant tank 8A below the first evaporator 3A is changed. Increase. Then, the solution tank 25A of the first absorber 4A
The amount of liquid retained in the solution decreases and the concentration becomes high. Of course, the concentration of the second absorber 4B also becomes thicker, so the concentration of the solution stored in the solution tank 25B of the second absorber 4B also becomes thicker. Therefore, this amount of refrigerant is also stored in the refrigerant tank 8A of the first evaporator 3A. In this way, since the amount of solution in the solution tank 25B of the second absorber 4B is reduced, the amount of refrigerant retained can be reduced. Therefore, the device can be made smaller and lighter. In addition, load responsiveness can be improved and cost can be reduced.

【0025】なお本実施例においては、第2吸収器4Bの
下部に設けた溶液タンク25Bの液面をフロート弁40で検
出している。そして、この液面が所定の液面以上になる
ように第1吸収器から第2吸収器への溶液流量をフロー
ト弁40が制御する。これにより、溶液ポンプ6Cの空転を
防止できる。
In the present embodiment, the float valve 40 detects the liquid level of the solution tank 25B provided under the second absorber 4B. Then, the float valve 40 controls the flow rate of the solution from the first absorber to the second absorber so that the liquid level becomes equal to or higher than a predetermined liquid level. This can prevent the solution pump 6C from idling.

【0026】本発明の他の実施例を、図2に示す。図1に
示した実施例と同じ部品には同じ符号を付している。本
実施例が、図1に示した実施例と異なる点は、稀溶液導
管13aおよび溶液導管14aの経路を変えた点にある。す
なわち、第2吸収器4Bの下部に配置した溶液タンク25Bの
液面を検出するフロート弁40は、第2吸収器4B内の溶液
の高さを所定高さにするために、第2吸収器4Bから低温
再生器1Bおよび高温再生器1Aへの溶液流量を制御してい
る。一方、第1吸収器4Aの溶液タンク25Aに貯留された溶
液は、低温液熱交換器5Cを経た後、フロート弁40を経る
ことなく第2吸収器4B内の図示しない散布装置に導かれ
る。これにより、液ポンプ6Cの空転を防止できる。
Another embodiment of the present invention is shown in FIG. The same parts as those in the embodiment shown in FIG. 1 are designated by the same reference numerals. This embodiment is different from the embodiment shown in FIG. 1 in that the routes of the dilute solution conduit 13a and the solution conduit 14a are changed. That is, the float valve 40 for detecting the liquid level of the solution tank 25B arranged below the second absorber 4B has the second absorber 4B in order to set the height of the solution in the second absorber 4B to a predetermined height. The solution flow rate from 4B to the low temperature regenerator 1B and the high temperature regenerator 1A is controlled. On the other hand, the solution stored in the solution tank 25A of the first absorber 4A passes through the low temperature liquid heat exchanger 5C and is then guided to a spray device (not shown) in the second absorber 4B without passing through the float valve 40. This prevents the liquid pump 6C from idling.

【0027】本発明のさらに他の実施例を、図3に示
す。本図においても、図1に示した実施例と同じ部品に
は同じ符号を付している。本実施例が上記2実施例と異
なる点は、フロート弁を省き、稀溶液導管13にバイパ
ス配管を設けたことにある。すなわち、第1吸収器4Aの
下部に設けた溶液タンク25Aに貯留した溶液を、低温熱
交換器5Cを経た後、第2吸収器4B内の図示しない散布装
置に導く。また、第2吸収器4Bの下部に設けた溶液タン
ク25Bに貯留した溶液を低温再生器1B及び高温再生器1A
へ送る液ポンプ6Cの吐出側と吸込側をバイパスする配管
41を設けている。これにより、液ポンプ6Cの空転を防止
できる。
Yet another embodiment of the present invention is shown in FIG. Also in this figure, the same parts as those in the embodiment shown in FIG. 1 are designated by the same reference numerals. This embodiment differs from the above-mentioned two embodiments in that the float valve is omitted and the dilute solution conduit 13 is provided with a bypass pipe. That is, the solution stored in the solution tank 25A provided in the lower portion of the first absorber 4A is led to the spray device (not shown) in the second absorber 4B after passing through the low temperature heat exchanger 5C. Further, the solution stored in the solution tank 25B provided under the second absorber 4B is stored in the low temperature regenerator 1B and the high temperature regenerator 1A.
Piping that bypasses the discharge side and suction side of the liquid pump 6C
41 are provided. This prevents the liquid pump 6C from idling.

【0028】なお、上記いずれの実施例においても、第
1蒸発器3Aと第1吸収器4Aの一体シェルを、第2蒸発器3B
と第2吸収器4Bの一体シェルより上方に、より正確には
一体シェルの底面で比べて上方に配置しているが、必ず
しも上方である必要はない。図1および図2の実施例に示
したように、フロート弁を用いて、この第2吸収器4Bに
貯留される吸収溶液量をどんな運転でも溶液切れを起こ
さない必要最小限に制御する。このようにすると、溶液
量を低減でき、吸収冷凍機の小型化が可能になる。ま
た、第2吸収器内の溶液を少なくすると、低圧であるこ
とにより第2吸収器に不凝縮ガスが集まってくる。その
結果、不凝縮ガスの抽気を第2吸収器だけで実行すれば
よく、装置の小型化と原価低減が可能になる。さらに、
抽気を容易に行なえるという利点も有する。
In any of the above embodiments, the first
1 evaporator 3A and 1st absorber 4A integral shell, 2nd evaporator 3B
It is arranged above the integrated shell of the second absorber 4B and more accurately above the bottom surface of the integrated shell, but it is not necessarily above. As shown in the embodiments of FIGS. 1 and 2, a float valve is used to control the amount of the absorbing solution stored in the second absorber 4B to a necessary minimum value that does not cause the solution to run out in any operation. By doing so, the amount of solution can be reduced, and the absorption refrigerator can be downsized. Further, when the amount of the solution in the second absorber is reduced, the non-condensed gas collects in the second absorber due to the low pressure. As a result, it is sufficient to extract the non-condensable gas only by the second absorber, which enables downsizing of the device and cost reduction. further,
It also has an advantage that bleeding can be performed easily.

【0029】また、上記各実施例ではフロート弁により
液面高さを検出し、溶液流量を制御しているが、これら
を別々の手段で実行してもよいことは言うまでもない。
例えば、液面を液面計で測定し、この測定結果をコンピ
ュータ処理して流量制御するようにしてもよい。さらに
また、第2蒸発器から取り出す冷熱は、−3℃〜−10
℃程度であれば、最も本発明の効果が期待できる。
Further, in each of the above-mentioned embodiments, the height of the liquid surface is detected by the float valve and the flow rate of the solution is controlled, but it goes without saying that these may be executed by separate means.
For example, the liquid level may be measured by a liquid level gauge, and the measurement result may be computer processed to control the flow rate. Furthermore, the cold heat taken out from the second evaporator is −3 ° C. to −10.
The effect of the present invention can be expected most if the temperature is about ° C.

【0030】[0030]

【発明の効果】2段2重効用吸収冷凍機において、低温
側の吸収器下部に貯留する溶液量を制御するようにした
ので、吸収冷凍機の保有溶液量を低減でき、吸収冷凍機
の軽量化および小型化が可能になる。また、溶液の保有
量を削減できるので、負荷応答性が向上し吸収冷凍機の
吸収サイクルが早期に安定する。
EFFECTS OF THE INVENTION In a two-stage double-effect absorption refrigerator, the amount of solution stored in the lower part of the absorber on the low temperature side is controlled, so that the amount of solution stored in the absorption refrigerator can be reduced and the absorption refrigerator is lightweight. It is possible to reduce the size and size. Further, since the amount of the solution held can be reduced, the load responsiveness is improved and the absorption cycle of the absorption refrigerator is stabilized early.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係る2段2重効用吸収冷凍機の一実施
例のシステム図である。
FIG. 1 is a system diagram of an embodiment of a two-stage double-effect absorption refrigerator according to the present invention.

【図2】本発明に係る2段2重効用吸収冷凍機の他の実
施例のシステム図である。
FIG. 2 is a system diagram of another embodiment of a two-stage double-effect absorption refrigerator according to the present invention.

【図3】本発明に係る2段2重効用吸収冷凍機のさらに
他の一実施例のシステム図である。
FIG. 3 is a system diagram of still another embodiment of the two-stage double-effect absorption refrigerator according to the present invention.

【符号の説明】[Explanation of symbols]

1A…高温再生器、1B…低温再生器、2…凝縮器、3A…第
1蒸発器、3B…第2蒸発器、4A…第1吸収器、4B…第2
吸収器、5A…高温液熱交換器、5B…中温液熱交換器、5
C…低温液熱交換器、6A…溶液散布ポンプ、6B…溶液散
布ポンプ、6C…溶液循環ポンプ、7A…冷媒散布ポン
プ、7B…混合冷媒散布ポンプ、8A…冷媒タンク、8B…混
合冷媒タンク、10、11…冷媒導管、12…濃溶液導管、13
…稀溶液導管、14…溶液導管、18…冷媒流量制御手段、
25A…第1吸収溶液タンク、25B…第2吸収溶液タンク、
27…循環水ポンプ、28…液面検出器、29…液流抽気手
段、30A、30B、31A、31B、32…伝熱管、33…配管、34…溶液
流量制御手段、35…銅イオン除去手段、36…フィルタ
ー、40…フロート弁、41…バイパス配管、HA、HB…伝熱
面、CW…冷却水。
1A ... high temperature regenerator, 1B ... low temperature regenerator, 2 ... condenser, 3A ... first evaporator, 3B ... second evaporator, 4A ... first absorber, 4B ... second
Absorber, 5A ... High temperature liquid heat exchanger, 5B ... Medium temperature liquid heat exchanger, 5
C ... Low temperature liquid heat exchanger, 6A ... Solution spray pump, 6B ... Solution spray pump, 6C ... Solution circulation pump, 7A ... Refrigerant spray pump, 7B ... Mixed refrigerant spray pump, 8A ... Refrigerant tank, 8B ... Mixed refrigerant tank, 10, 11 ... Refrigerant conduit, 12 ... Concentrated solution conduit, 13
… Dilute solution conduit, 14… Solution conduit, 18… Refrigerant flow rate control means,
25A ... first absorbing solution tank, 25B ... second absorbing solution tank,
27 ... Circulating water pump, 28 ... Liquid level detector, 29 ... Liquid flow extraction means, 30A, 30B, 31A, 31B, 32 ... Heat transfer tube, 33 ... Piping, 34 ... Solution flow rate control means, 35 ... Copper ion removing means , 36 ... Filter, 40 ... Float valve, 41 ... Bypass piping, HA, HB ... Heat transfer surface, CW ... Cooling water.

───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.7,DB名) F25B 15/00 303 F25B 15/00 F25B 15/00 306 ─────────────────────────────────────────────────── ─── Continuation of the front page (58) Fields surveyed (Int.Cl. 7 , DB name) F25B 15/00 303 F25B 15/00 F25B 15/00 306

Claims (7)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】高温再生器、低温再生器、凝縮器、第1蒸
発器、第1の溶液タンクが下部に形成された第1吸収
器、第2蒸発器および第2の溶液タンクが下部に形成さ
れた第2吸収器を有し、前記第1吸収器内に散布された溶
液を第2吸収器内に散布して前記第2蒸発器から冷熱を
取り出す2段2重効用吸収冷凍機において、前記第1蒸
発器と第1吸収器を同一の第1シェルで形成し、前記第
2蒸発器と前記第2吸収器とを同一の第2シェルで形成
し、前記第1の溶液タンクを前記第2の溶液タンクより
下方に配置したことを特徴とする2段2重効用吸収冷凍
機。
1. A high temperature regenerator, a low temperature regenerator, a condenser, a first evaporator, a first absorber having a first solution tank formed at the bottom thereof, a second evaporator and a second solution tank provided at the bottom thereof. A two-stage double-effect absorption refrigerating machine having a second absorber formed, wherein the solution dispersed in the first absorber is dispersed in the second absorber to take out cold heat from the second evaporator. The first evaporator and the first absorber are formed of the same first shell, the second evaporator and the second absorber are formed of the same second shell, and the first solution tank is A two-stage double-effect absorption refrigerator, which is arranged below the second solution tank.
【請求項2】前記第2の溶液タンクに貯留する溶液の液
面を検出するフロート弁を設け、このフロート弁は前記
第1吸収器から前記第2吸収器に流入する溶液量を制御
することを特徴とする請求項1に記載の2段2重効用吸
収冷凍機。
2. A float valve for detecting a liquid level of a solution stored in the second solution tank is provided, and the float valve controls the amount of the solution flowing from the first absorber to the second absorber. The two-stage double-effect absorption refrigerator according to claim 1, wherein:
【請求項3】前記第2の溶液タンクに貯留する溶液の液
面を検出するフロート弁を設け、このフロート弁は前記
第2吸収器から低温再生器及び高温再生器へ流入する溶
液流量を制御することを特徴とする請求項1に記載の2
段2重効用吸収冷凍機。
3. A float valve for detecting the liquid level of the solution stored in the second solution tank is provided, and the float valve controls the flow rate of the solution flowing from the second absorber to the low temperature regenerator and the high temperature regenerator. 2. The method according to claim 1, wherein
Two-stage double-effect absorption refrigerator.
【請求項4】前記第2吸収器から前記低温再生器及び高
温再生器へ溶液を送る配管を有し、この配管に溶液を送
液するポンプを介在させ、このポンプの吐出側と吸込側
をバイパスするバイパス配管を設けたことを特徴とする
請求項1に記載の2段2重効用吸収冷凍機。
4. A pipe for sending a solution from the second absorber to the low temperature regenerator and the high temperature regenerator, wherein a pump for feeding the solution is interposed in the pipe, and a discharge side and a suction side of the pump are provided. The two-stage double-effect absorption refrigerator according to claim 1, wherein a bypass pipe for bypassing is provided.
【請求項5】塩類水溶液が溶液であり、前記第2蒸発器
内を流通する冷媒がこの溶液を含む混合冷媒であること
を特徴とする請求項1ないし4のいずれか1項に記載の
2段2重効用吸収冷凍機。
5. The method according to claim 1, wherein the aqueous salt solution is a solution, and the refrigerant flowing in the second evaporator is a mixed refrigerant containing this solution. Two-stage double-effect absorption refrigerator.
【請求項6】高温再生器、低温再生器、凝縮器、第1蒸
発器、第1の溶液タンクが下部に形成された第1吸収
器、第2蒸発器および第2の溶液タンクが下部に形成さ
れた第2吸収器を有し、前記第1吸収器内に散布された溶
液を第2吸収器内に散布して前記第2蒸発器から冷熱を
取り出す2段2重効用吸収冷凍機において、前記第1蒸
発器と第1吸収器を同一の第1シェルで形成し、前記第
2蒸発器と前記第2吸収器とを同一の第2シェルで形成
し、前記第2吸収器内に貯留される溶液量を検出する手
段と、この検出手段が検出した溶液量に基づいて前記第
1吸収器から前記第2吸収器に流入する溶液量と前記第
2吸収器から低温再生器及び高温再生器へ流入する溶液
量の少なくともいずれか制御する制御手段を設けたこと
を特徴とする2段2重効用吸収冷凍機。
6. A high temperature regenerator, a low temperature regenerator, a condenser, a first evaporator, a first absorber having a first solution tank formed at the bottom, a second evaporator and a second solution tank at the bottom. A two-stage double-effect absorption refrigerating machine having a second absorber formed, wherein the solution dispersed in the first absorber is dispersed in the second absorber to take out cold heat from the second evaporator. , The first evaporator and the first absorber are formed of the same first shell, the second evaporator and the second absorber are formed of the same second shell, and the second absorber is formed in the second absorber. Means for detecting the amount of solution stored, amount of solution flowing into the second absorber from the first absorber based on the amount of solution detected by the detector, low temperature regenerator and high temperature from the second absorber A two-stage double effect, characterized in that a control means for controlling at least one of the amounts of solution flowing into the regenerator is provided. Absorption refrigerator.
【請求項7】前記溶液量検出手段と前記制御手段とをフ
ロート弁が備えることを特徴とする請求項6に記載の2
段2重効用吸収冷凍機。
7. The float valve according to claim 6, wherein the solution amount detection means and the control means are provided in a float valve.
Two-stage double-effect absorption refrigerator.
JP2000134197A 2000-04-28 2000-04-28 2-stage double effect absorption refrigerator Expired - Fee Related JP3451237B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000134197A JP3451237B2 (en) 2000-04-28 2000-04-28 2-stage double effect absorption refrigerator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000134197A JP3451237B2 (en) 2000-04-28 2000-04-28 2-stage double effect absorption refrigerator

Publications (2)

Publication Number Publication Date
JP2001317833A JP2001317833A (en) 2001-11-16
JP3451237B2 true JP3451237B2 (en) 2003-09-29

Family

ID=18642518

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000134197A Expired - Fee Related JP3451237B2 (en) 2000-04-28 2000-04-28 2-stage double effect absorption refrigerator

Country Status (1)

Country Link
JP (1) JP3451237B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011007400A (en) * 2009-06-25 2011-01-13 Hitachi Appliances Inc Two-stage evaporation absorption type refrigerating machine

Also Published As

Publication number Publication date
JP2001317833A (en) 2001-11-16

Similar Documents

Publication Publication Date Title
JP3414249B2 (en) Absorption refrigerator
JP3013673B2 (en) Absorption refrigerator
US3491545A (en) Absorption refrigeration system
JPS61110853A (en) Absorption heat pump/refrigeration system
JP2008116173A (en) Absorption type refrigerating machine
JP3318222B2 (en) Absorption refrigerator
JP3451237B2 (en) 2-stage double effect absorption refrigerator
KR101060776B1 (en) Absorption Chiller
JPS62186178A (en) Absorption refrigerator
JPH074769A (en) Single and double effect absorption refrigerating device
JP3715157B2 (en) 2-stage double-effect absorption refrigerator
JP2007333342A (en) Multi-effect absorption refrigerating machine
JP3603006B2 (en) Absorption refrigerator and control method of absorption refrigerator
JPWO2004087830A1 (en) Absorption chiller working medium, absorption chiller, and method for producing cooling and heating medium
JP3889655B2 (en) Absorption refrigerator
CN211120100U (en) Integrated refrigerated lithium bromide refrigerator
JP3484142B2 (en) 2-stage double-effect absorption refrigerator
JP5260895B2 (en) Absorption refrigerator
JP2010007907A (en) Air conditioning system
JP2009068816A (en) Absorption refrigerating machine
JPH07218026A (en) Absorption type cooling and heating machine
JP3241498B2 (en) Absorption refrigerator
JP2823295B2 (en) Absorption refrigerator
JPS6138787B2 (en)
JPH11281187A (en) Absorption refrigerating machine

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees