JPWO2004087830A1 - Absorption chiller working medium, absorption chiller, and method for producing cooling and heating medium - Google Patents

Absorption chiller working medium, absorption chiller, and method for producing cooling and heating medium Download PDF

Info

Publication number
JPWO2004087830A1
JPWO2004087830A1 JP2005504231A JP2005504231A JPWO2004087830A1 JP WO2004087830 A1 JPWO2004087830 A1 JP WO2004087830A1 JP 2005504231 A JP2005504231 A JP 2005504231A JP 2005504231 A JP2005504231 A JP 2005504231A JP WO2004087830 A1 JPWO2004087830 A1 JP WO2004087830A1
Authority
JP
Japan
Prior art keywords
temperature
cooling
absorption
water
refrigerant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005504231A
Other languages
Japanese (ja)
Inventor
燦吉 高橋
燦吉 高橋
英彦 野田
英彦 野田
雅成 工藤
雅成 工藤
山田 章
章 山田
高良 小嶋
高良 小嶋
能文 功刀
能文 功刀
Original Assignee
学校法人八戸工業大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 学校法人八戸工業大学 filed Critical 学校法人八戸工業大学
Publication of JPWO2004087830A1 publication Critical patent/JPWO2004087830A1/en
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B15/00Sorption machines, plants or systems, operating continuously, e.g. absorption type
    • F25B15/02Sorption machines, plants or systems, operating continuously, e.g. absorption type without inert gas
    • F25B15/06Sorption machines, plants or systems, operating continuously, e.g. absorption type without inert gas the refrigerant being water vapour evaporated from a salt solution, e.g. lithium bromide
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K5/00Heat-transfer, heat-exchange or heat-storage materials, e.g. refrigerants; Materials for the production of heat or cold by chemical reactions other than by combustion
    • C09K5/02Materials undergoing a change of physical state when used
    • C09K5/04Materials undergoing a change of physical state when used the change of state being from liquid to vapour or vice versa
    • C09K5/047Materials undergoing a change of physical state when used the change of state being from liquid to vapour or vice versa for absorption-type refrigeration systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B15/00Sorption machines, plants or systems, operating continuously, e.g. absorption type
    • F25B15/12Sorption machines, plants or systems, operating continuously, e.g. absorption type with resorber
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2500/00Problems to be solved
    • F25B2500/05Cost reduction
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation
    • Y02A30/27Relating to heating, ventilation or air conditioning [HVAC] technologies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/62Absorption based systems
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/10Process efficiency

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Combustion & Propulsion (AREA)
  • Organic Chemistry (AREA)
  • Sorption Type Refrigeration Machines (AREA)

Abstract

吸収冷凍機に、従来から一般的に用いられている臭化リチウム−水系作動媒体の蒸気圧特性、溶解度ならびに冷媒の蒸気圧とは大幅に異なる特性を有する臭化リチウム−水−1,4−ジオキサン系作動媒体を用いることとし、一重効用吸収冷凍機において、機器の小型・低廉化、空気冷却化、氷点下の冷熱発生および熱源温度の低温度化を可能にした。これにより、高品位の熱エネルギー・高温熱源を用いずに100℃以下の低温熱源により冷熱を得ることができる。Lithium bromide-water-1,4-having significantly different characteristics from the vapor pressure characteristics, solubility, and refrigerant vapor pressure of lithium bromide-water working media that are commonly used in absorption refrigerators. By using a dioxane-based working medium, it is possible to reduce the size and cost of the equipment, to cool the air, to generate cold heat below freezing point, and to lower the heat source temperature in the single-effect absorption refrigerator. Thereby, cold can be obtained with a low-temperature heat source of 100 ° C. or lower without using high-quality heat energy / high-temperature heat source.

Description

本発明は吸収冷凍機用作動媒体、吸収冷凍機および冷熱熱媒体製造方法に係り、特に作動媒体として臭化リチウム−水系を用いる際好適な吸収冷凍機用作動媒体、吸収冷凍機および冷熱熱媒体製造方法に関する。  TECHNICAL FIELD The present invention relates to a working medium for an absorption refrigeration machine, an absorption refrigeration machine, and a method for producing a cooling / heating medium, and in particular, when using a lithium bromide-water system as the working medium, the working medium for an absorption chiller, an absorption chiller, and a cooling / heating medium. It relates to a manufacturing method.

従来の吸収冷凍機に一般的に用いられている作動媒体は、臭化リチウム−水系であり、冷媒が水、吸収液が臭化リチウム水溶液である(参考文献;高田秋一著「吸収冷凍機とヒートポンプ」)。
従来、臭化リチウム−水系の作動媒体を用いる吸収冷凍機は以下に箇条書きで示す制約条件の下で設計・製作されていた。
i) 冷媒が水であるため、通常仕様の冷水出口温度7℃を得るためには、希釈器内の蒸発器における冷媒(水)の温度は通常4℃に設定しており、(前記7℃と前記4℃との温度差を熱交換終端温度差と称し、以降、当該熱交換終端温度差をTTDと記す。当該例ではTTDは7−4=3Kである。)蒸発器と吸収器を内蔵している希釈器の操作圧力は、4℃の水の飽和圧力である6.1mmHg(813Pa)である。
一方、標準仕様の冷却塔により得られる夏季の冷却水温度は31℃であり、かつ前記吸収器の熱交換器出口の冷却水の温度は36℃である。吸収器におけるTTDは通常5Kであるから、前述した圧力6.1mmHgの制約条件下では、吸収溶液である臭化リチウム水溶液の温度は41℃(=36+5)となり、希釈後の濃度は、58wt%となる。
熱交換量が一定であれば、当該TTDが大きくなることは、熱交換時の対数平均温度差θmが増大し、熱交換器の伝熱面積が削減され、逆にTTDが小さくなると伝熱面積が増大することは自明である。
前述したように吸収冷凍機は、濃縮器を形成する再生器と凝縮器、および希釈器を形成する蒸発器と吸収器から構成されており、すべての機器において主要な構成部品は熱交換器である。
これらの各機器における熱交換の形態は多様であるが、吸収器においては、吸収現象を伴う伝熱形態であるために、他の機器に収納されている熱交換器よりも、伝熱性能、つまり総括熱伝達係数が小さく、必然的に他の機器内に収納されている熱交換器の伝熱面積よりも極めて大きくならざるを得ないのが現状であり、吸収冷凍機本体の小型化実現における最大の課題である。
従来かかる制約条件の下で、吸収器の熱交換器伝熱面積を削減すべく、各種の吸収伝熱性能向上策が研究・開発され、提案されている(文献1;特開2002−243309号)。
ii) 前述した標準型の冷却塔により、吸収器において熱交換し昇温された冷却水は、36℃の温度で凝縮器の熱交換器に導入され、40℃で排出される。したがって、TTDを4Kとすると、凝縮器の温度は44℃(=40+4)となり、当該凝縮器を内蔵している濃縮器の操作圧力は、冷媒である水の44℃における飽和圧力70mmHg(9.33kPa)となる。したがって、再生器における操作は、当該条件と吸収溶液の温度、飽和蒸気圧、濃度の特性(以降、当該特性をT−P−C特性と記す。)および、標準仕様の定格操作における吸収溶液の濃度差5wt%とすると、濃厚吸収溶液の濃度は63wt%(=58+5)である。
したがって、圧力70mmHg、濃度63wt%の条件ならびにTTD確保の観点から、吸収溶液を加熱するための加熱源の温度は最低でも100℃以上が必要である。当該加熱源を得るために、高品位な熱エネルギーである化石燃料を用いているのが通常である。
iii) 冷媒が水であるため、通常の仕様の一重効用吸収冷凍機では氷点下の温度の熱媒体を製造することは困難である。なぜならば、冷熱を製造する蒸発器において、冷媒である水が蒸発器内に収納している熱交換器で凍結するからである。
これを解決すべく、蒸発器内の冷媒中に一定量の吸収溶液を混入した混合冷媒を製造し、当該混合冷媒の凝固点降下により、凍結を防止する方策が採られており、特公昭58−15703号に記載されている。しかしながら、前述したように蒸発器内の冷媒中に一定量の吸収溶液を混入するためには、冷媒中の吸収溶液濃度を厳密に制御する手段を必要とし、特開平10−205909号、特開昭60−10326号および特開昭59−18355号にその詳細が記されているが、混合冷媒の飛散問題、濃度制御の問題等がある。これらを解決する手段として、氷温発生吸収冷凍機(文献2;特許第3077977号)が提案されている。
The working medium generally used in the conventional absorption refrigerator is a lithium bromide-water system, the refrigerant is water, and the absorption liquid is an aqueous solution of lithium bromide (reference: Akiichi Takada, “Absorption refrigerator). And heat pump ").
Conventionally, an absorption refrigerator using a lithium bromide-water working medium has been designed and manufactured under the constraints shown in the following bullets.
i) Since the refrigerant is water, in order to obtain a normal cold water outlet temperature of 7 ° C., the temperature of the refrigerant (water) in the evaporator in the diluter is usually set to 4 ° C. And the temperature difference of 4 ° C. is referred to as a heat exchange end temperature difference, and the heat exchange end temperature difference is hereinafter referred to as TTD (in this example, TTD is 7−4 = 3 K). The operating pressure of the built-in diluter is 6.1 mmHg (813 Pa) which is the saturation pressure of water at 4 ° C.
On the other hand, the summer cooling water temperature obtained by the standard cooling tower is 31 ° C., and the cooling water temperature at the heat exchanger outlet of the absorber is 36 ° C. Since the TTD in the absorber is normally 5K, the temperature of the lithium bromide aqueous solution, which is the absorbing solution, is 41 ° C. (= 36 + 5) under the restriction condition of the pressure of 6.1 mmHg described above, and the concentration after dilution is 58 wt%. It becomes.
If the heat exchange amount is constant, the increase in the TTD means that the logarithmic average temperature difference θm during the heat exchange increases, the heat transfer area of the heat exchanger is reduced, and conversely, if the TTD becomes small, the heat transfer area. It is self-evident that increases.
As described above, the absorption refrigerator is composed of a regenerator and a condenser that form a concentrator, and an evaporator and an absorber that form a diluter. The main component of all the equipment is a heat exchanger. is there.
Although the form of heat exchange in each of these devices is diverse, in the absorber, since it is a heat transfer form accompanied by an absorption phenomenon, the heat transfer performance than the heat exchanger housed in other equipment, In other words, the overall heat transfer coefficient is small, and it must inevitably be much larger than the heat transfer area of the heat exchanger housed in other equipment. Is the biggest issue.
Conventionally, various absorption heat transfer performance improvement measures have been researched and proposed in order to reduce the heat exchanger heat transfer area of the absorber under such constraints (Document 1; JP 2002-243309 A). ).
ii) The cooling water heated and raised in the absorber by the standard cooling tower described above is introduced into the condenser heat exchanger at a temperature of 36 ° C. and discharged at 40 ° C. Therefore, when TTD is 4K, the temperature of the condenser is 44 ° C. (= 40 + 4), and the operation pressure of the concentrator incorporating the condenser is a saturation pressure of 70 mmHg (9. 33 kPa). Therefore, the operation in the regenerator includes the conditions, the characteristics of the temperature, saturated vapor pressure, and concentration of the absorbing solution (hereinafter, the characteristics will be referred to as TPC characteristics) and the absorption solution in the standard rated operation. If the concentration difference is 5 wt%, the concentration of the concentrated absorbent solution is 63 wt% (= 58 + 5).
Therefore, the temperature of the heating source for heating the absorbing solution needs to be at least 100 ° C. from the viewpoint of pressure 70 mmHg, concentration 63 wt% and securing TTD. In order to obtain the heating source, fossil fuel, which is high-grade thermal energy, is usually used.
iii) Since the refrigerant is water, it is difficult to produce a heat medium having a temperature below the freezing point in a normal single-effect absorption refrigerator. This is because, in an evaporator for producing cold heat, water as a refrigerant is frozen in a heat exchanger housed in the evaporator.
In order to solve this problem, a mixed refrigerant in which a certain amount of absorbing solution is mixed in the refrigerant in the evaporator is manufactured, and measures are taken to prevent freezing by lowering the freezing point of the mixed refrigerant. No. 15703. However, as described above, in order to mix a certain amount of absorption solution into the refrigerant in the evaporator, means for strictly controlling the concentration of the absorption solution in the refrigerant is required. The details are described in Japanese Patent Application Laid-Open No. 60-10326 and Japanese Patent Application Laid-Open No. 59-18355. However, there are a problem of scattering of the mixed refrigerant, a problem of concentration control, and the like. As means for solving these problems, an ice temperature generation absorption refrigerator (Reference 2; Patent No. 3077977) has been proposed.

しかし、上述の各制約条件により、下記のような問題があった。
i)吸収冷凍機本体の小型化実現のため、吸収器の熱交換器伝熱面積削減すべく、吸収伝熱性能向上の面からアプローチがなされているが、小型化実現手段としては充分なものが得られていない。
ii)吸収溶液を加熱するために必要な100℃以上の温度の加熱源を得るために、通常、高品位な熱エネルギーである化石燃料が用いられている。近年、地球温暖化を阻止すべく多方面からの取り組みがなされており、二酸化炭素の排出抑制は、最も有力な温暖化対策の手段である。当該手段の具体例としては、工場内で廃棄されている熱(例えば温排水等)や、各種エンジンの高温の冷却水ならびに排ガスから回収した高温の温水等を、当該吸収冷凍機の加熱源として用いる工夫、いわゆる熱のカスケード利用が盛んになってきている。しかしながら、従来の吸収冷凍機においては、下限100℃程度の温度の排熱しか利用できないため、より低温まで利用できる機器の開発が望まれている。
さらには、太陽熱温水器により得られる温水の利用も実施段階にあるが、100℃以上の高温水を太陽熱集熱器で製造するためには、集熱効率の低下を余儀なくされ、必然的に集熱面積が増大するため実用面においてマイナス要因となる、等の課題を有している。
iii)食品の冷蔵、冷凍用途を始めとして、氷点下の冷熱を吸収冷凍機において実現することの意義は大きい。かかる氷点下の冷熱を得る手段として提案されている前記特許文献2に開示された技術によれば、蒸発器と吸収器をそれぞれ2個設け、冷媒貯蔵タンクを設置する等、極めて複雑なサイクル構成となっており、装置の簡易化、小型化、製造コストと運転コストの低減の面から、大いに改善の余地がある。
本願発明が解決しようとする課題は、従来技術における上記各問題点を踏まえ、吸収器の大型化を抑制することによって小型化・高性能化の可能な吸収冷凍機および冷熱熱媒体製造方法を提供することである。また、そのような吸収冷凍機に用いる作動媒体を提供することである。併せて、空気冷却式吸収冷凍機およびそれを用いた冷熱製造方法を提供することである。
また本発明の課題は、高品位の熱エネルギー・高温熱源を用いず、100℃以下の低温熱源により冷熱を得ることのできる吸収冷凍機および冷熱熱媒体製造方法を提供することである。また、そのような吸収冷凍機に用いる作動媒体を提供することである。
また本発明の課題は、複雑な手段と機器構成を用いず、氷点下の冷熱を得ることのできる吸収冷凍機および冷熱熱媒体製造方法を提供することである。また、そのような吸収冷凍機に用いる作動媒体を提供することである。
上記の目的を達成するために、本願発明者らが鋭意検討した結果、従来の臭化リチウム−水系の作動媒体に対して1,4−ジオキサンを添加した三成分系作動媒体を用いることにより、これらの課題を解決できることを見出した。すなわち本願で開示される発明は、以下の通りである。
(1) 冷媒が水であり、吸収液がリチウム化合物を第一成分とする系からなるか、または、これに加えてアルカリ金属もしくはアルカリ土類金属化合物の少なくともいずれか一方を第二成分以降として含有する系からなる吸収冷凍機用作動媒体であって、該冷媒の系には、水との間で共沸現象を呈する有機物が添加されていることを特徴とする、吸収冷凍機用作動媒体。
(2) 前記有機物は、水に対してそのクラスター構造を細分化し五員体構造水の形成を促進させる機能を有するものであることを特徴とする、(1)に記載の吸収冷凍機用作動媒体。
(3) 前記有機物が1,4−ジオキサンであることを特徴とする、(2)に記載の吸収冷凍機用作動媒体。
(4) 前記リチウム化合物がリチウムハロゲン化物であることを特徴とする(1)ないし(3)のいずれかに記載の吸収冷凍機用作動媒体。
(5) 前記リチウムハロゲン化物が臭化リチウムであり、すなわち臭化リチウム−水系の作動媒体を形成していることを特徴とする、(4)に記載の吸収冷凍機用作動媒体。
(6) 1,4−ジオキサン添加量が、水を第一成分としたモル分率で、0.80以上であることを特徴とする、(3)ないし(5)のいずれかに記載の吸収冷凍機用作動媒体。
(7) 1,4−ジオキサン添加量が、水を第一成分としたモル分率で、0.93以上であることを特徴とする、より望ましくは0.93以上0.97以下であることを特徴とする、(6)に記載の吸収冷凍機用作動媒体。
(8) 再生器と凝縮器とを内蔵する吸収液の濃縮器(以下、単に「濃縮器」という。)、ならびに蒸発器と吸収器とを内蔵する吸収液の希釈器(以下、単に「希釈器」という。)を有し、該再生器において吸収液を加熱して冷媒を蒸発させることによって該吸収液が濃縮された濃厚吸収液を得、該凝縮器で前記蒸発した冷媒蒸気を冷却して冷媒液とし、高温の前記濃厚吸収液を後述する低温の希薄吸収液と熱交換した後該吸収器に導入させるとともに、前記冷媒液を該蒸発器に導入させ、該濃厚吸収液を該吸収器で冷却することによって該蒸発器の冷媒液を蒸発させ、それにより発生した冷媒蒸気を該吸収器内の濃厚吸収液に吸収させ、それにより希釈された希薄吸収液を溶液ポンプ等の手段で該吸収器内から抜き出し、高温の前記濃厚吸収液と熱交換して降温後、該再生器に導入する一方、前記蒸発器における冷媒の蒸発潜熱で冷却された熱媒体(以下、「冷水」ともいう。)を冷却需要先に供給し、需要先で昇温された冷水は再び該蒸発器で冷却することにより需要先を冷却する吸収冷凍機であって、該吸収冷凍機は、標準仕様の冷却塔(冷却塔出口温度31℃)を用いて標準仕様温度(7℃)の冷水を発生させることができ、該吸収器の熱交換器における前記冷却水出口の温度と、該吸収器出口における吸収液の温度差が5K以上であることを特徴とする、(1)ないし(7)のいずれかに記載の作動媒体を用いた吸収冷凍機。
(9) 前記蒸発器と吸収器とが分離して設けられている希釈器において、発生した冷媒蒸気への飛沫の同伴を防止するために該蒸発器内に設けられる飛沫同伴防止具を通過する該冷媒蒸気の流速を低減させることができ、それにより該飛沫同伴防止具を簡素化または小型化できることを特徴とする、(8)に記載の吸収冷凍機。
(10) 前記吸収器の冷却手段は、冷却塔で冷却された冷却水を用いることなく大気温度の空気によりなされる空気冷却手段であることを特徴とする、(8)または(9)に記載の吸収冷凍機。
(11) 前記凝縮器の冷却手段は、冷却塔で冷却された冷却水を用いることなく大気温度の空気によりなされる空気冷却手段であることを特徴とする、(8)ないし(10)のいずれかに記載の吸収冷凍機。
(12) 前記再生器の伝熱面積を増大することなく、該再生器における吸収液濃縮のための加熱熱源温度が90℃以下であることを特徴とする、(8)ないし(11)のいずれかに記載の吸収冷凍機。
(13) 前記加熱熱源温度が85℃以下であることを特徴とする、(12)に記載の吸収冷凍機。
(14) 前記加熱熱源温度が70℃以上80℃以下であることを特徴とする、(13)に記載の吸収冷凍機。
(15) 吸収液の濃縮が一段で行われる一重効用吸収冷凍機であって、前記再生器、凝縮器、吸収器、および蒸発器のいずれの伝熱面積をも増大させることなく、氷点下の温度の冷熱を発生させることが可能なことを特徴とする、(12)ないし(14)のいずれかに記載の吸収冷凍機。
(16) 再生器ならびに凝縮器を内蔵する濃縮器と、および、蒸発器ならびに吸収器を内蔵する希釈器と、からなる吸収冷凍機を用いて行う冷熱熱媒体製造方法であって、該製造方法は、
(P−I)再生器において吸収液を加熱して冷媒を蒸発させて冷媒蒸気とし、それによって該吸収液が濃縮された濃厚吸収液を得る、吸収液再生過程と、
(P−II)前記吸収液再生過程において蒸発した冷媒蒸気を凝縮器で冷却して冷媒液とする、冷媒蒸気凝縮過程と、
(P−III)前記吸収液再生過程において得られた高温の濃厚吸収液を、熱交換器において、後述する低温の希薄吸収液と熱交換した後吸収器に導入させる、再生吸収液還送過程と、
(P−IV)前記冷媒蒸気凝縮過程において得られた冷媒液を蒸発器に導入するとともに、該濃厚吸収液を吸収器で冷却する(後記冷媒蒸気吸収過程)ことによって蒸発器の冷媒液を蒸発させる冷媒液蒸発過程と、
(P−V)前記冷媒液蒸発過程において発生した冷媒蒸気を、吸収器内の濃厚吸収液に吸収させる、冷媒蒸気吸収過程と、
(P−VI)前記冷媒蒸気吸収過程において希釈されて希薄吸収液となった吸収液を、溶液ポンプ等の手段で吸収器内から抜き出し、高温の前記濃厚吸収液と熱交換して昇温後再生器に導入する、希薄吸収液移送過程と、
(P−VII)前記冷媒液蒸発過程において蒸発した冷媒の蒸発潜熱で製造された冷熱を、冷熱需要先から還送される昇温した熱媒体によって冷却需要先に供給する冷熱熱媒体製造供給過程と、
の各過程からなり、かつ、
(C−VIII)作動媒体としては、冷媒が水であり吸収液が臭化リチウムである臭化リチウム−水系の作動媒体に、1,4−ジオキサンを添加した作動媒体を用い、
(C−IX)吸収器および凝縮器の冷却のための冷却水供給には標準仕様の冷却塔(冷却塔出口温度31℃)が用いられ、
(C−X)吸収器の熱交換器における前記冷却水出口の温度と、吸収器出口における吸収液の温度差が5K以上である、
条件下において、標準仕様温度(7℃)の冷熱を製造することのできることを特徴とする、冷熱熱媒体製造方法。
(17) (16)に記載の冷熱熱媒体製造方法であって、
(C−XI)前記冷媒蒸気吸収過程または前記冷媒蒸気凝縮過程の少なくともいずれか一方における冷却を、大気温度の空気によりなされる空気冷却手段とする条件下において、標準仕様温度(7℃)の冷熱熱媒体製造が行われることを特徴とする、冷熱熱媒体製造方法。
(18) (16)または(17)に記載の冷熱熱媒体製造方法であって、(C−XII)前記吸収液再生過程における吸収液濃縮のための加熱熱源温度を70℃以上90℃以下とする条件下において、標準仕様温度(7℃)の冷熱熱媒体製造が行われることを特徴とする、冷熱熱媒体製造方法。
(19) (16)に記載の冷熱熱媒体製造方法であって、
(C−XIII)前記吸収液再生過程での吸収液の濃縮が一段で行われ、
(C−IX)前記冷媒蒸気吸収過程および冷媒蒸気凝縮過程での冷却に用いる冷却水の冷却塔出口温度を20℃とする、
条件下において、氷点下の温度の冷熱熱媒体製造が行われることを特徴とする、冷熱熱媒体製造方法。
(20) (16)に記載の冷熱熱媒体製造方法であって、
(C−X)前記冷媒蒸気吸収過程および冷媒蒸気凝縮過程での冷却に係る冷却塔における冷却水出口温度を31℃、冷却水の使用温度差を5K、冷却塔への冷却水戻り温度を40℃とし、
(C−XI)前記再生吸収液還送過程および希薄吸収液移送過程に用いられる熱交換器の熱交換終端温度差(以下、「TTD」という。)を3Kとし、
(C−XII)吸収液(66wt%)の希釈後の濃度を61wt%とする場合の熱交換器の温度を45℃とし、
(C−XIII)前記冷媒液蒸発過程および冷媒蒸気吸収過程に係る希釈器内の操作圧力を8.5mmHgとし、
(C−XIV)前記冷媒液蒸発過程における蒸発器内温度を4℃とし、
(C−XV)冷水入口温度を12℃とする、
条件下において、標準仕様温度(7℃)の冷熱熱媒体製造が行われることを特徴とする、冷熱熱媒体製造方法。
(21) (16)に記載の冷熱熱媒体製造方法であって、
(C−XIII)前記吸収液再生過程での吸収液の濃縮が一段で行われ、
(C−XVI)前記冷媒蒸気吸収過程および冷媒蒸気凝縮過程での冷却に用いる冷却水の入口温度を20℃、系外への排出温度を23℃とし、
(C−XVII)前記冷媒蒸気吸収過程に係る吸収器のTTDを5Kとし、
(C−XVIII)前記冷媒蒸気凝縮過程に係る凝縮器のTTDを5Kとし、
(C−XIX)吸収液の濃縮後の濃度を63wt%とし、
(C−XX)前記吸収液再生過程および冷媒蒸気凝縮過程に係る濃縮器内の操作圧力を36mmHgとし、
(C−XXI)前記吸収液再生過程における熱源温度を70℃以上とする
条件下において、氷点下の温度の冷熱熱媒体製造が行われることを特徴とする、冷熱熱媒体製造方法。
本発明に係る作動媒体は発明者らの長年の研究により得られたものである。つまり、高濃度強電解質の水和構造、水分子の水素結合と水和構造に関する研究、ならびに五員体構造水の理論に基づいて開発された一成果であり、具体的には、1,4−ジオキサンの有する水液体構造制御作用に着目して、水−1,4−ジオキサン/臭化リチウム−水−1,4−ジオキサン系の新作動媒体を開発したものである。
臭化リチウム水溶液に1,4−ジオキサンを加えると、1,4−ジオキサンのプロトン受容作用により水のクラスター構造が細分化される。細分化された水分子は、さらに安定な立体構造を持つ五員体構造水へと収束していく。五員体構造水の一部は、リチウムイオンの水和圏に取り込まれる。溶解度の向上は、イオンに水和する水分子の構造化により促進されるため、五員体構造水が形成されることにより溶解度は向上する。また、水のクラスター構造が細分化されることにより、沸点降下がおこる。さらに蒸発潜熱は、強固な水素結合を持つ五員体構造水が安定的に存在するため大きくなる。これらの現象は、臭化リチウムの濃度が高くなるほど顕著に起こる。
一方、1,4−ジオキサンは水と共沸点を持つ沸点降下型の有機物であるため、再生器で蒸発する気体は水と1,4−ジオキサンの混合冷媒である。発明者らが得た研究成果によれば、水と1,4−ジオキサンは共沸領域ともいうべき非常に広い、溶液とほぼ同組成の蒸気を発生する濃度範囲を持っている。このため、本発明による吸収冷凍機の稼動濃度範囲においては、1,4−ジオキサンは局所に濃縮することなく系内を循環すると考える。
このように、臭化リチウムの水溶解性の向上、沸点降下、蒸発潜熱増大の各効果を有する作動媒体を用いて、吸収器の大型化を排して小型化・高性能化の可能な吸収冷凍機および冷熱熱媒体製造方法を構成することができる。また、高品位な熱エネルギー・高温熱源を用いず、100℃以下の低温熱源により冷熱を得られる吸収冷凍機および冷熱熱媒体製造方法を構成することができる。また、複雑な手段と機器構成を用いず、氷点下の冷熱を得られる吸収冷凍機および冷熱熱媒体製造方法を構成することができる。
However, due to the above-mentioned constraints, there are the following problems.
i) In order to reduce the size of the absorption chiller body, an approach has been made to improve the heat transfer performance of the absorber in order to reduce the heat transfer area of the heat exchanger of the absorber. Is not obtained.
ii) In order to obtain a heating source having a temperature of 100 ° C. or higher necessary for heating the absorbing solution, fossil fuel that is high-grade thermal energy is usually used. In recent years, various efforts have been made to prevent global warming, and the suppression of carbon dioxide emissions is the most effective means of countering global warming. Specific examples of the means include heat discarded in the factory (for example, hot waste water), high-temperature cooling water of various engines, high-temperature hot water recovered from exhaust gas, and the like as a heating source of the absorption refrigerator. The device used, so-called cascade use of heat, has become popular. However, in the conventional absorption refrigerator, only exhaust heat at a temperature of the lower limit of about 100 ° C. can be used.
Furthermore, although the use of hot water obtained by a solar water heater is also in the implementation stage, in order to produce high-temperature water of 100 ° C. or higher with a solar heat collector, the heat collection efficiency is inevitably lowered, and inevitably heat collection. Since the area increases, there are problems such as a negative factor in practical use.
iii) Significance of realizing cold heat below freezing point in an absorption refrigerator, including refrigeration and freezing for foods, is significant. According to the technique disclosed in Patent Document 2 proposed as means for obtaining the cold temperature below the freezing point, an extremely complicated cycle configuration such as two evaporators and two absorbers and a refrigerant storage tank are provided. Therefore, there is much room for improvement in terms of simplification and downsizing of the apparatus, and reduction in manufacturing cost and operating cost.
The problem to be solved by the present invention is to provide an absorption refrigerator and a cooling / heating medium manufacturing method capable of reducing the size and improving the performance by suppressing the increase in size of the absorber based on the above-mentioned problems in the prior art. It is to be. Moreover, it is providing the working medium used for such an absorption refrigerator. In addition, the object is to provide an air-cooled absorption refrigerator and a method for producing cold using the same.
Moreover, the subject of this invention is providing the absorption refrigerator which can obtain cold with a low-temperature heat source of 100 degrees C or less, and a cold-heating-heat-medium manufacturing method, without using a high-grade heat energy and high temperature heat source. Moreover, it is providing the working medium used for such an absorption refrigerator.
Another object of the present invention is to provide an absorption refrigerator and a method for producing a cooling / heating medium that can obtain cold heat below freezing point without using complicated means and equipment configuration. Moreover, it is providing the working medium used for such an absorption refrigerator.
In order to achieve the above object, as a result of intensive studies by the present inventors, by using a ternary working medium in which 1,4-dioxane is added to a conventional lithium bromide-water working medium, We found that these problems can be solved. That is, the invention disclosed in the present application is as follows.
(1) The refrigerant is water and the absorption liquid is a system containing a lithium compound as a first component, or in addition to this, at least one of an alkali metal or an alkaline earth metal compound is used as the second component or later. A working medium for an absorption refrigeration machine comprising a containing system, wherein an organic substance exhibiting an azeotropic phenomenon with water is added to the refrigerant system. .
(2) The operation for an absorption refrigerator according to (1), wherein the organic matter has a function of subdividing the cluster structure with respect to water and promoting the formation of pentahedral water. Medium.
(3) The working medium for an absorption refrigerator according to (2), wherein the organic substance is 1,4-dioxane.
(4) The working medium for an absorption refrigerator according to any one of (1) to (3), wherein the lithium compound is a lithium halide.
(5) The working medium for an absorption refrigerator according to (4), wherein the lithium halide is lithium bromide, that is, forms a lithium bromide-water working medium.
(6) The absorption according to any one of (3) to (5), wherein the amount of 1,4-dioxane added is 0.80 or more in terms of a molar fraction containing water as the first component. Working medium for refrigerators.
(7) The amount of 1,4-dioxane added is 0.93 or more, more preferably 0.93 or more and 0.97 or less, in terms of the molar fraction of water as the first component. The working medium for absorption refrigerators as described in (6) characterized by these.
(8) Absorbent liquid concentrator (hereinafter simply referred to as “concentrator”) incorporating a regenerator and a condenser, and an absorbent diluter (hereinafter simply referred to as “dilution”) including an evaporator and an absorber. A thick absorption liquid in which the absorption liquid is concentrated by heating the absorption liquid in the regenerator and evaporating the refrigerant, and cooling the evaporated refrigerant vapor in the condenser. The refrigerant liquid is heated, and the high-temperature concentrated absorbent is heat-exchanged with a low-temperature diluted absorbent described below, and then introduced into the absorber, and the refrigerant liquid is introduced into the evaporator, and the concentrated absorbent is absorbed. The refrigerant liquid of the evaporator is evaporated by cooling with a vacuum vessel, and the generated refrigerant vapor is absorbed by the concentrated absorbent in the absorber, and the diluted absorbent diluted thereby is absorbed by means such as a solution pump. Extracted from the absorber, the concentrated absorption at high temperature After the temperature is lowered by heat exchange with the liquid, it is introduced into the regenerator, while a heat medium (hereinafter, also referred to as “cold water”) cooled by the latent heat of vaporization of the refrigerant in the evaporator is supplied to the cooling customer. The cold water heated up earlier is an absorption refrigerator that cools the customer by cooling again with the evaporator, and the absorption refrigerator uses a standard cooling tower (cooling tower outlet temperature 31 ° C.). That can generate cold water having a standard specification temperature (7 ° C.), and that the temperature difference between the cooling water outlet in the heat exchanger of the absorber and the temperature of the absorbing liquid at the absorber outlet is 5K or more. An absorption refrigerator using the working medium according to any one of (1) to (7).
(9) In a diluter in which the evaporator and the absorber are separately provided, the droplet passes through a droplet entrainment prevention device provided in the evaporator in order to prevent entrainment of the generated refrigerant vapor. The absorption refrigerator according to (8), characterized in that the flow velocity of the refrigerant vapor can be reduced, whereby the splash entrainment prevention device can be simplified or miniaturized.
(10) The cooling means of the absorber is an air cooling means made by air at an atmospheric temperature without using cooling water cooled by a cooling tower, (8) or (9), Absorption refrigerator.
(11) The cooling means for the condenser is an air cooling means made by air at an atmospheric temperature without using cooling water cooled by a cooling tower, and any of (8) to (10) Absorption refrigerator according to crab.
(12) The heating heat source temperature for concentrating the absorbent in the regenerator is 90 ° C. or less without increasing the heat transfer area of the regenerator, any of (8) to (11) Absorption refrigerator according to crab.
(13) The absorption refrigerator according to (12), wherein the heating heat source temperature is 85 ° C. or lower.
(14) The absorption refrigerator according to (13), wherein the heating heat source temperature is 70 ° C or higher and 80 ° C or lower.
(15) A single-effect absorption refrigerator in which the absorption liquid is concentrated in one stage, and the temperature below freezing point is increased without increasing the heat transfer area of any of the regenerator, condenser, absorber, and evaporator. The absorption refrigerating machine according to any one of (12) to (14), which is capable of generating the cold heat of
(16) A method for producing a cooling and heating medium that uses an absorption refrigerator comprising a regenerator and a concentrator incorporating a condenser, and a diluter incorporating an evaporator and an absorber, the production method Is
(PI) Absorption liquid regeneration process in which the absorption liquid is heated in the regenerator to evaporate the refrigerant to form refrigerant vapor, thereby obtaining a concentrated absorption liquid in which the absorption liquid is concentrated;
(P-II) a refrigerant vapor condensation process in which the refrigerant vapor evaporated in the absorption liquid regeneration process is cooled by a condenser to obtain a refrigerant liquid;
(P-III) Regeneration absorption liquid return process in which the high-temperature concentrated absorption liquid obtained in the absorption liquid regeneration process is introduced into the absorber after heat exchange with a low-temperature dilute absorption liquid described later in the heat exchanger. When,
(P-IV) The refrigerant liquid obtained in the refrigerant vapor condensation process is introduced into the evaporator, and the concentrated absorbent is cooled by the absorber (refrigerant vapor absorption process described later) to evaporate the refrigerant liquid in the evaporator. The refrigerant liquid evaporation process,
(P-V) a refrigerant vapor absorption process in which the refrigerant vapor generated in the refrigerant liquid evaporation process is absorbed by the concentrated absorbent in the absorber;
(P-VI) The absorption liquid diluted in the refrigerant vapor absorption process to become a diluted absorption liquid is extracted from the absorber by means of a solution pump or the like, and after heat exchange with the high-temperature concentrated absorption liquid, the temperature is raised. The dilute absorbent transfer process to be introduced into the regenerator,
(P-VII) Chilled heat medium manufacturing and supplying process for supplying the cooling heat produced by the latent heat of vaporization of the refrigerant evaporated in the refrigerant liquid evaporation process to the cooling demand destination by the heated heat medium returned from the cold demand destination When,
And each process
(C-VIII) As a working medium, a working medium in which 1,4-dioxane is added to a lithium bromide-water working medium in which the refrigerant is water and the absorbing liquid is lithium bromide,
(C-IX) Standard cooling tower (cooling tower outlet temperature 31 ° C.) is used to supply cooling water for cooling the absorber and condenser.
(C-X) The temperature difference between the cooling water outlet in the heat exchanger of the absorber and the temperature of the absorbing liquid at the absorber outlet is 5K or more.
A method for producing a cold / hot heat medium, characterized in that cold heat at a standard specification temperature (7 ° C.) can be produced under conditions.
(17) The method of manufacturing a cooling / heating medium according to (16),
(C-XI) Cooling at a standard specification temperature (7 ° C.) under the condition that the cooling in at least one of the refrigerant vapor absorption process and the refrigerant vapor condensation process is air cooling means performed by air at atmospheric temperature. A method of manufacturing a cold / heat medium, wherein the heat medium is manufactured.
(18) The method for producing a cooling / heating medium according to (16) or (17), wherein (C-XII) a heating heat source temperature for absorption liquid concentration in the absorption liquid regeneration process is 70 ° C. or higher and 90 ° C. or lower. A method for producing a cooling / heating medium at a standard specification temperature (7 ° C.) is performed under the following conditions.
(19) The method of manufacturing a cooling / heating medium according to (16),
(C-XIII) Absorption liquid concentration in the absorption liquid regeneration process is performed in one stage,
(C-IX) The cooling tower outlet temperature of cooling water used for cooling in the refrigerant vapor absorption process and the refrigerant vapor condensation process is set to 20 ° C.
A method for producing a cooling / heating medium, wherein the production of a cooling / heating medium at a temperature below freezing point is performed under conditions.
(20) The method of manufacturing a cooling / heating medium according to (16),
(C-X) The cooling water outlet temperature in the cooling tower related to the cooling in the refrigerant vapor absorption process and the refrigerant vapor condensation process is 31 ° C., the use temperature difference of the cooling water is 5K, and the cooling water return temperature to the cooling tower is 40 ℃,
(C-XI) The heat exchange termination temperature difference (hereinafter referred to as “TTD”) of the heat exchanger used in the regeneration absorbent return process and the diluted absorbent transfer process is 3K,
(C-XII) The temperature of the heat exchanger when the concentration after dilution of the absorption liquid (66 wt%) is 61 wt% is 45 ° C.,
(C-XIII) The operating pressure in the diluter according to the refrigerant liquid evaporation process and the refrigerant vapor absorption process is 8.5 mmHg,
(C-XIV) The temperature in the evaporator in the refrigerant liquid evaporation process is 4 ° C.,
(C-XV) The cold water inlet temperature is 12 ° C.
A method for producing a cooling / heating medium, wherein the production of a cooling / heating medium at a standard specification temperature (7 ° C.) is performed under conditions.
(21) The method of manufacturing a cooling / heating medium according to (16),
(C-XIII) Absorption liquid concentration in the absorption liquid regeneration process is performed in one stage,
(C-XVI) The inlet temperature of the cooling water used for cooling in the refrigerant vapor absorption process and the refrigerant vapor condensation process is 20 ° C., the discharge temperature to the outside of the system is 23 ° C.,
(C-XVII) The TTD of the absorber related to the refrigerant vapor absorption process is 5K,
(C-XVIII) The TTD of the condenser related to the refrigerant vapor condensation process is set to 5K,
The concentration after concentration of the (C-XIX) absorbent is 63 wt%,
(C-XX) The operation pressure in the concentrator related to the absorption liquid regeneration process and the refrigerant vapor condensation process is set to 36 mmHg,
(C-XXI) A method for producing a chilled heat medium, wherein the chilled heat medium is produced at a temperature below freezing point under the condition that the heat source temperature in the absorption liquid regeneration process is 70 ° C or higher.
The working medium according to the present invention has been obtained through many years of research by the inventors. In other words, this is a result developed based on the research on the hydration structure of high-concentration strong electrolytes, hydrogen bonding and hydration structure of water molecules, and the theory of five-membered structure water. -A new working medium based on water-1,4-dioxane / lithium bromide-water-1,4-dioxane was developed by focusing on the water liquid structure control action of dioxane.
When 1,4-dioxane is added to the lithium bromide aqueous solution, the cluster structure of water is subdivided by the proton accepting action of 1,4-dioxane. The subdivided water molecules converge into pentahedral water with a more stable three-dimensional structure. Part of the pentahedral water is taken up by the lithium ion hydration sphere. Since the improvement in solubility is promoted by the structuring of water molecules hydrated to ions, the solubility is improved by the formation of five-membered structure water. Moreover, the boiling point drop occurs by subdividing the water cluster structure. Furthermore, the latent heat of vaporization increases due to the stable existence of five-membered water with a strong hydrogen bond. These phenomena become more prominent as the concentration of lithium bromide increases.
On the other hand, since 1,4-dioxane is a boiling point lowering organic substance having an azeotropic point with water, the gas evaporated in the regenerator is a mixed refrigerant of water and 1,4-dioxane. According to the research results obtained by the inventors, water and 1,4-dioxane have a very wide concentration range which should be called an azeotropic region, and generate a vapor having almost the same composition as the solution. For this reason, in the working concentration range of the absorption refrigerator according to the present invention, 1,4-dioxane is considered to circulate in the system without being concentrated locally.
In this way, using a working medium that has the effects of improving water solubility, lowering boiling point, and increasing latent heat of vaporization of lithium bromide, it is possible to reduce the size of the absorber and improve its performance. A refrigerator and a method for producing a cooling / heating medium can be configured. In addition, an absorption refrigerator and a cooling / heating medium manufacturing method that can obtain cooling with a low-temperature heat source of 100 ° C. or lower without using high-grade heat energy / high-temperature heat source can be configured. In addition, an absorption refrigerator and a method for producing a cooling and heating medium that can obtain cold heat below freezing can be configured without using complicated means and equipment configuration.

図1は、本発明に係る作動媒体のT−P−C特性を、従来の作動媒体と比較してグラフに示した図(デューリング線図)。
図2は、本発明を実施するに好適な吸収冷凍機の機器構成と系統を示す図。
図3は、本発明の吸収冷凍機の性能に大きく関与する吸収液の濃度差と循環比の関係をグラフに示した図。
図4は、図1に示したデューリング線図のうち、本発明に係る臭化リチウム−水−1,4−ジオキサン系作動媒体による操作状況を示したデューリング線図。
図5は、図4と同一温度の冷水を得るための、本発明による臭化リチウム−水−1,4−ジオキサン系作動媒体を用いて作動させる他の実施例を示すデューリング線図。
図6は、本発明に係る臭化リチウム−水−1,4−ジオキサン系作動媒体を用いた他の実施例(氷点以下の冷熱発生)を示すデューリング線図。
図7は、図4との比較として、従来の臭化リチウム−水系作動媒体の操作状況を示したデューリング線図。
図8は、図5との比較として、従来の臭化リチウム−水系作動媒体を用いて作動させる操作状況を示したデューリング線図。
各図において用いられる符号は、それぞれ下記を表す。
1…濃縮器、 2…希釈器、 3…熱回収器、 10、11…隔壁、 12、13…吸収液分配具、 14…冷媒液分配具、 20、21、22、23、24…熱交換器、 30、31、32…ポンプ、 40、41、42、43、44、45、46、47…吸収液流路、 50、51…冷媒液流路、 60…再生器、 61…凝縮器、 70…蒸発器、71…吸収器、 80、81…飛沫同伴防止具、 100、101…加熱源流路、 200、201、202、203…冷却水流路、 300,301…冷却熱媒体流路
図1、4、5、6、7、8で横軸は温度、縦軸は飽和蒸気圧である。
図1でwt%表示のない実線グラフは臭化リチウム−水−1,4−ジオキサン系、同じく破線グラフは臭化リチウム劫水系である。
図3で横軸は濃度差、縦軸は循環比、実線は60wt%、破線は50wt%、点線は40wt%の、各濃溶液である。
図4で点A、Cを含むグラフは、水−1,4−ジオキサンである。
図5、6で点A、Cを含むグラフは、水−1,4−ジオキサン、Laは晶析線A、Lbは晶析線Bである。
図7で点A’、C’を含むグラフは水である。
図8で点A、Cを含むグラフは水、Laは晶析線A、Lbは晶析線Bである。
FIG. 1 is a graph (During diagram) showing the TPC characteristics of a working medium according to the present invention in comparison with a conventional working medium.
FIG. 2 is a diagram showing an equipment configuration and a system of an absorption refrigerator suitable for carrying out the present invention.
FIG. 3 is a graph showing the relationship between the concentration difference of the absorbent and the circulation ratio, which are largely involved in the performance of the absorption refrigerator of the present invention.
FIG. 4 is a Dueling diagram showing an operation state using the lithium bromide-water-1,4-dioxane-based working medium according to the present invention in the Dueling diagram shown in FIG. 1.
FIG. 5 is a During diagram showing another embodiment operated using the lithium bromide-water-1,4-dioxane-based working medium according to the present invention to obtain cold water having the same temperature as FIG.
FIG. 6 is a Duhring diagram showing another example (cooling generation below freezing point) using the lithium bromide-water-1,4-dioxane-based working medium according to the present invention.
FIG. 7 is a During diagram showing the operation status of a conventional lithium bromide-water based working medium as a comparison with FIG.
FIG. 8 is a Duhring diagram showing an operation state in which a conventional lithium bromide-water-based working medium is operated as a comparison with FIG. 5.
The symbols used in each figure represent the following.
DESCRIPTION OF SYMBOLS 1 ... Concentrator, 2 ... Diluter, 3 ... Heat recovery device, 10, 11 ... Partition, 12, 13 ... Absorbing liquid distributor, 14 ... Refrigerant liquid distributor, 20, 21, 22, 23, 24 ... Heat exchange , 30, 31, 32 ... pump, 40, 41, 42, 43, 44, 45, 46, 47 ... absorption liquid flow path, 50, 51 ... refrigerant liquid flow path, 60 ... regenerator, 61 ... condenser, DESCRIPTION OF SYMBOLS 70 ... Evaporator, 71 ... Absorber, 80, 81 ... Splash entrainment prevention device, 100, 101 ... Heat source flow path, 200, 201, 202, 203 ... Cooling water flow path, 300, 301 ... Cooling heat medium flow path 4, 5, 6, 7, and 8, the horizontal axis represents temperature, and the vertical axis represents saturated vapor pressure.
In FIG. 1, the solid line graph without wt% display is a lithium bromide-water-1,4-dioxane system, and the broken line graph is a lithium bromide flooded system.
In FIG. 3, the horizontal axis is the concentration difference, the vertical axis is the circulation ratio, the solid line is 60 wt%, the broken line is 50 wt%, and the dotted line is 40 wt%.
The graph including points A and C in FIG. 4 is water-1,4-dioxane.
5 and 6, the graphs including points A and C are water-1,4-dioxane, La is the crystallization line A, and Lb is the crystallization line B.
In FIG. 7, the graph including the points A ′ and C ′ is water.
In FIG. 8, the graph including the points A and C is water, La is the crystallization line A, and Lb is the crystallization line B.

以下、本発明をさらに詳細に説明する。
本発明の吸収冷凍機用作動媒体は、冷媒が水であり、吸収液がリチウム化合物を第一成分とする系からなるか、または、これに加えてアルカリ金属もしくはアルカリ土類金属化合物の少なくともいずれか一方を第二成分以降として含有する系からなる吸収冷凍機用作動媒体であって、該冷媒の系には、水との間で共沸現象を呈する有機物が添加されていることを主たる構成とする。該有機物としては、水に対してそのクラスター構造を細分化し五員体構造水の形成を促進させる機能を有するものとして、上述したような特性を有する1,4−ジオキサンを用いることができる。また、該リチウム化合物としてはリチウムハロゲン化物、特に、従来から吸収冷凍機用作動媒体に用いられている臭化リチウムが用いられ、以上より本発明の作動媒体の典型例は、従来の水/臭化リチウム−水系(冷媒/吸収液 の組み合わせ。)に対し1,4−ジオキサンを添加した、水−1,4−ジオキサン/臭化リチウム−水−1,4−ジオキサン系である。
本発明作動媒体が有する主な特性および作用は以下のとおりである。
<1>モル分率(Xc)=0.80以上の、つまり0.80以上1未満の1,4−ジオキサン(1,4−dioxane)は五員体構造水を増加させ,臭化リチウム(LiBr)の水溶解性を向上させる。特にモル分率(Xc)=0.90以上、つまり0.90以上1未満の、とりわけ090以上0.97以下の1,4−ジオキサン(1,4−dioxane)は五員体構造水を増加させ,臭化リチウム(LiBr)の水溶解性を向上させる。
<2>モル分率=0.93以上の、つまり0.93以上1未満の1,4−ジオキサン添加により、特に0.93以上0.97以下の1,4−ジオキサン添加により、二水塩脱水エネルギーは無添加時の約半分の16kJ/H20−molに低減される。
<3>高濃度塩水溶液中でも、1,4−ジオキサンは水の液体構造を制御する。
<4>溶解度の増大はリチウムイオン(Li+)周りにおける水分子の構造化の急速な進行に基因する。
<5>臭化リチウム−水−1,4−ジオキサン溶液の沸点は、大気圧下で、同濃度の臭化リチウム水溶液より約50℃(K)低い。
<6>該溶液の蒸発潜熱は同濃度の臭化リチウム水溶液より70wt%で約18%、60wt%および65wt%では約9%高く,高濃度ほど増大率は高い。
<7>本発明の作動媒体により、加熱熱源の温度を85℃まで低下でき、従来の加熱熱源温度100℃より15K低温域まで利用できる。20℃の冷却水を用いれば、加熱熱源を70℃にまで低下させることも可能である。
<8>従来の作動媒体では吸収器は水冷であるが、本発明の作動媒体ではその空冷化ができ、システムの簡易化、コストダウンが可能である。
本発明の吸収冷凍機について説明する。本吸収冷凍機は、上述の本発明作動媒体を構成する吸収液である臭化リチウム水溶液の濃縮のための再生器ならびに凝縮器からなる濃縮器、該作動媒体を構成する冷媒である水−1,4−ジオキサンの蒸発器ならびに蒸発した蒸気の吸収操作を行うための吸収器からなる希釈器、該再生器から流出する高温の濃厚吸収液と、該吸収器から流出する低温の希薄吸収液との熱交換を行わせるための熱回収器、および吸収液循環ポンプ、から、基本的に構成される。
上述の本発明作動媒体の特性を生かし、本吸収冷凍機では、標準仕様の冷却塔(冷却塔出口温度31℃)を用いて標準仕様温度(7℃)の冷水を発生させることができ、該吸収器の熱交換器における前記冷却水出口の温度と、該吸収器出口における吸収液の温度差が5K以上とすることができる。
また該作動媒体の特性により、前記希釈器において、発生した冷媒蒸気への飛沫の同伴を防止するために前記蒸発器内に設けられる飛沫同伴防止具を通過する冷媒蒸気の流速を低減させることができるため、本吸収冷凍機においては該飛沫同伴防止具の構造をより簡素化したり、または小型化することができる。
また、前記吸収器または凝縮器のうち両方もしくは少なくともいずれか一方の冷却手段として空気冷却方式を用いることができる点は、上述のとおりである。
本発明の吸収冷凍機は前記作動媒体の特性を生かして、前記再生器の伝熱面積を増大させることなく、該再生器における吸収液濃縮のための加熱熱源温度を90℃以下、あるいは85℃以下、さらには実施例において後述するような操作条件により70℃以上80℃以下とすることができる。また、前記再生器、凝縮器、吸収器、および蒸発器のいずれの伝熱面積をも増大させることなく、氷点下の温度の冷熱を発生させる吸収冷凍機を構成することもできる。
上述の作動媒体の特性を生かした本発明の吸収冷凍機を用い、適宜の操作条件を設定することにより、冷熱熱媒体を製造することができる。すなわち、
(P−I)吸収液再生過程:再生器において、吸収液を加熱して冷媒を蒸発させて冷媒蒸気とし、それによって該吸収液が濃縮された濃厚吸収液を得る、
(P−II)冷媒蒸気凝縮過程:凝縮器において、前記吸収液再生過程で蒸発した冷媒蒸気を冷却して冷媒液とする、
(P−III)再生吸収液還送過程:熱交換器において、前記吸収液再生過程で得られた高温の濃厚吸収液を、後述する低温の希薄吸収液と熱交換した後吸収器に導入させる、
(P−IV)冷媒液蒸発過程:蒸発器において、前記冷媒蒸気凝縮過程で得られた冷媒液を導入するとともに、該濃厚吸収液を吸収器で冷却する(後記冷媒蒸気吸収過程)ことによって、該冷媒液を蒸発させる、
(P−V)冷媒蒸気吸収過程:吸収器において、前記冷媒液蒸発過程で発生した冷媒蒸気を、内部の濃厚吸収液に吸収させる、
(P−VI)希薄吸収液移送過程:前記冷媒蒸気吸収過程で希釈されて希薄吸収液となった吸収液を、溶液ポンプ等の手段で吸収器内から抜き出し、高温の前記濃厚吸収液と熱交換して昇温後再生器に導入する、
(P−VII)冷熱熱媒体製造供給過程:蒸発器において、前記冷媒液蒸発過程で蒸発した冷媒の蒸発潜熱で製造された冷熱を、冷熱需要先から還送される昇温した熱媒体によって冷却需要先に供給する、
の各過程を経ることによって標準仕様温度(7℃)の冷熱熱媒体を製造する際、
(C−VIII)作動媒体:臭化リチウム−水系の作動媒体に1,4−ジオキサンを添加した作動媒体。
(C−IX)吸収器および凝縮器への冷却水供給:冷却塔出口温度31℃の冷却水。
(C−X)吸収器の熱交換器における前記冷却水出口の温度と、吸収器出口における吸収液の温度差:5K以上。
の各条件を設定することにより、上記冷熱熱媒体を製造できる。
前記冷熱熱媒体製造方法において、
(C−XI)前記冷媒蒸気吸収過程または前記冷媒蒸気凝縮過程の両方もしくは少なくともいずれか一方における冷却を、大気温度の空気によりなされる空気冷却手段としてもよい。また、
(C−XII)前記吸収液再生過程における吸収液濃縮のための加熱熱源温度を70℃以上90℃以下としてもよい。
また、前記冷熱熱媒体製造方法において、
(C−XIII)前記吸収液再生過程における吸収液の濃縮を一段で行い、
(C−IX)前記冷媒蒸気吸収過程および冷媒蒸気凝縮過程での冷却に用いる冷却水の冷却塔出口温度を20℃としてもよい。
あるいはまた、前記冷熱熱媒体製造方法において、
(C−X)前記冷媒蒸気吸収過程および冷媒蒸気凝縮過程での冷却に係る冷却塔における冷却水出口温度を31℃、冷却水の使用温度差を5K、冷却塔への冷却水戻り温度を40℃とし、
(C−XI)前記再生吸収液還送過程および希薄吸収液移送過程に用いられる熱交換器のTTDを3Kとし、
(C−XII)吸収液(66wt%)の希釈後の濃度を61wt%とする場合の熱交換器の温度を45℃とし、
(C−XIII)前記冷媒液蒸発過程および冷媒蒸気吸収過程に係る希釈器内の操作圧力を8.5mmHgとし、
(C−XIV)前記冷媒液蒸発過程における蒸発器内の温度を4℃とし、
(C−XV)冷水入口温度を12℃としてもよい。
さらにはまた、氷点下の温度の冷熱熱媒体製造方法とするために、
(C−XIII)前記吸収液再生過程における吸収液の濃縮を一段で行い、
(C−XVI)前記冷媒蒸気吸収過程および冷媒蒸気凝縮過程での冷却に用いる冷却水の入口温度を20℃、系外への排出温度を23℃とし、
(C−XVII)前記冷媒蒸気吸収過程に係る吸収器のTTDを5Kとし、
(C−XVIII)前記冷媒蒸気凝縮過程に係る凝縮器のTTDを5Kとし、
(C−XIX)吸収液の濃縮後の濃度を63wt%とし、
(C−XX)前記吸収液再生過程および冷媒蒸気凝縮過程に係る濃縮器内の操作圧力を36mmHgとし、
(C−XXI)前記吸収液再生過程における熱源温度を70℃以上としてもよい。
Hereinafter, the present invention will be described in more detail.
The working medium for an absorption refrigerating machine of the present invention is a system in which the refrigerant is water and the absorbing liquid is a system containing a lithium compound as a first component, or in addition to this, at least one of an alkali metal or an alkaline earth metal compound A working medium for an absorption refrigerating machine comprising a system containing one of the components as the second component or later, wherein the refrigerant system includes an organic substance that exhibits an azeotropic phenomenon with water. And As the organic substance, 1,4-dioxane having the above-mentioned characteristics can be used as a substance having a function of subdividing the cluster structure with respect to water and promoting the formation of five-membered structure water. As the lithium compound, lithium halide, in particular, lithium bromide conventionally used for working mediums for absorption refrigerators is used. From the above, typical examples of working media of the present invention are conventional water / odor. It is a water-1,4-dioxane / lithium bromide-water-1,4-dioxane system in which 1,4-dioxane is added to a lithium fluoride-water system (combined refrigerant / absorbent).
The main characteristics and actions of the working medium of the present invention are as follows.
1,4-dioxane having a <1> molar fraction (Xc) = 0.80 or more, that is, 0.80 or more and less than 1, increases pentagonal structure water, lithium bromide ( LiBr) is improved in water solubility. In particular, 1,4-dioxane having a molar fraction (Xc) of 0.90 or more, that is, 0.90 or more and less than 1, especially 090 or more and 0.97 or less, increases pentagonal structure water. To improve the water solubility of lithium bromide (LiBr).
<2> Molar fraction = 0.93 or more, that is, 0.93 or more and less than 1,1,4-dioxane addition, especially 0.93 or more and 0.97 or less 1,4-dioxane addition, dihydrate The dehydration energy is reduced to 16 kJ / H20-mol, which is about half of that when no additive is added.
<3> 1,4-Dioxane controls the liquid structure of water even in a high-concentration salt aqueous solution.
The increase in <4> solubility is attributed to the rapid progress of structuring of water molecules around lithium ions (Li +).
The boiling point of the <5> lithium bromide-water-1,4-dioxane solution is about 50 ° C. (K) lower than the aqueous lithium bromide solution of the same concentration under atmospheric pressure.
<6> The latent heat of vaporization of the solution is about 18% at 70 wt%, about 9% at 60 wt% and 65 wt% than the lithium bromide aqueous solution of the same concentration, and the increase rate is higher as the concentration is higher.
<7> With the working medium of the present invention, the temperature of the heating heat source can be lowered to 85 ° C., and the temperature can be utilized from the conventional heating heat source temperature of 100 ° C. to a low temperature range of 15K. If cooling water of 20 ° C. is used, the heating heat source can be lowered to 70 ° C.
<8> Although the absorber is water-cooled in the conventional working medium, the air-cooling can be performed in the working medium of the present invention, and the system can be simplified and the cost can be reduced.
The absorption refrigerator of the present invention will be described. This absorption refrigerator includes a regenerator for concentrating a lithium bromide aqueous solution, which is an absorption liquid constituting the above-described working medium of the present invention, a concentrator comprising a condenser, and water-1 as a refrigerant constituting the working medium. A diluter comprising an evaporator for 1,4-dioxane and an absorber for absorbing evaporated vapor, a hot concentrated absorbent flowing out of the regenerator, and a low-temperature diluted absorbent flowing out of the absorber The heat recovery device for performing the heat exchange and the absorption liquid circulation pump are basically configured.
Taking advantage of the characteristics of the working medium of the present invention described above, the absorption refrigerator can generate cold water having a standard specification temperature (7 ° C.) using a standard specification cooling tower (cooling tower outlet temperature 31 ° C.). The temperature difference between the cooling water outlet in the heat exchanger of the absorber and the temperature of the absorbing liquid at the absorber outlet can be 5K or more.
Further, due to the characteristics of the working medium, in the diluter, the flow rate of the refrigerant vapor passing through the splash entrainment prevention device provided in the evaporator can be reduced in order to prevent the entrainment of the splash to the generated refrigerant vapor. Therefore, in this absorption refrigerator, the structure of the splash entrainment prevention device can be further simplified or downsized.
Moreover, the point which can use an air cooling system as a cooling means of both or at least any one among the said absorber or a condenser is as above-mentioned.
The absorption refrigerator of the present invention takes advantage of the characteristics of the working medium, and does not increase the heat transfer area of the regenerator, and the heating heat source temperature for absorbing liquid concentration in the regenerator is 90 ° C. or lower, or 85 ° C. Hereinafter, the temperature can be set to 70 ° C. or higher and 80 ° C. or lower under the operating conditions described later in the examples. An absorption refrigerator that generates cold at a temperature below freezing can also be configured without increasing the heat transfer area of any of the regenerator, condenser, absorber, and evaporator.
By using the absorption refrigerator of the present invention that takes advantage of the characteristics of the above-described working medium and setting appropriate operating conditions, a cooling and heating medium can be manufactured. That is,
(PI) Absorption liquid regeneration process: In the regenerator, the absorption liquid is heated to evaporate the refrigerant to form refrigerant vapor, thereby obtaining a concentrated absorption liquid in which the absorption liquid is concentrated.
(P-II) Refrigerant vapor condensation process: In the condenser, the refrigerant vapor evaporated in the absorption liquid regeneration process is cooled to obtain a refrigerant liquid.
(P-III) Regeneration absorption liquid return process: In the heat exchanger, the high-temperature concentrated absorption liquid obtained in the absorption liquid regeneration process is heat-exchanged with a low-temperature dilute absorption liquid described later and then introduced into the absorber. ,
(P-IV) Refrigerant liquid evaporation process: In the evaporator, the refrigerant liquid obtained in the refrigerant vapor condensation process is introduced, and the concentrated absorbent is cooled in the absorber (refrigerant vapor absorption process described later). Evaporating the refrigerant liquid;
(P-V) Refrigerant vapor absorption process: In the absorber, the refrigerant vapor generated in the refrigerant liquid evaporation process is absorbed by the concentrated absorbent inside.
(P-VI) Diluted absorbent transfer process: Absorbed liquid diluted in the refrigerant vapor absorption process to become a diluted absorbent is extracted from the absorber by means of a solution pump or the like, and the high-temperature concentrated absorbent and heat are removed. Replace and introduce to the regenerator after the temperature rises,
(P-VII) Cold heat medium production supply process: In the evaporator, the cold produced by the latent heat of vaporization of the refrigerant evaporated in the refrigerant liquid evaporation process is cooled by the heated heat medium returned from the cold demand destination. Supply to customers,
When manufacturing a cooling / heating medium with a standard specification temperature (7 ° C) by going through each process of
(C-VIII) Working medium: A working medium obtained by adding 1,4-dioxane to a lithium bromide-water working medium.
(C-IX) Cooling water supply to absorber and condenser: Cooling water having a cooling tower outlet temperature of 31 ° C.
(C-X) Temperature difference between the cooling water outlet temperature in the heat exchanger of the absorber and the absorption liquid at the absorber outlet: 5K or more.
By setting each of the above conditions, the cold heat medium can be manufactured.
In the above-described method for producing a cooling and heating medium,
(C-XI) Cooling in both or at least one of the refrigerant vapor absorption process and the refrigerant vapor condensation process may be air cooling means that is performed by air at ambient temperature. Also,
(C-XII) The heating heat source temperature for the absorption liquid concentration in the absorption liquid regeneration process may be 70 ° C or higher and 90 ° C or lower.
In the method for producing a cooling and heating medium,
(C-XIII) The absorption liquid is concentrated in one stage in the absorption liquid regeneration process,
(C-IX) The cooling tower outlet temperature of cooling water used for cooling in the refrigerant vapor absorption process and the refrigerant vapor condensation process may be 20 ° C.
Alternatively, in the above-described method for producing a cooling / heating medium,
(C-X) The cooling water outlet temperature in the cooling tower related to the cooling in the refrigerant vapor absorption process and the refrigerant vapor condensation process is 31 ° C., the use temperature difference of the cooling water is 5K, and the cooling water return temperature to the cooling tower is 40 ℃,
(C-XI) The TTD of the heat exchanger used in the regeneration absorbent return process and the diluted absorbent transfer process is 3K,
(C-XII) The temperature of the heat exchanger when the concentration after dilution of the absorption liquid (66 wt%) is 61 wt% is 45 ° C.,
(C-XIII) The operating pressure in the diluter according to the refrigerant liquid evaporation process and the refrigerant vapor absorption process is 8.5 mmHg,
(C-XIV) The temperature in the evaporator in the refrigerant liquid evaporation process is set to 4 ° C.,
(C-XV) The cold water inlet temperature may be 12 ° C.
Furthermore, in order to provide a method for producing a cooling / heating medium having a temperature below freezing point,
(C-XIII) The absorption liquid is concentrated in one stage in the absorption liquid regeneration process,
(C-XVI) The inlet temperature of the cooling water used for cooling in the refrigerant vapor absorption process and the refrigerant vapor condensation process is 20 ° C., the discharge temperature to the outside of the system is 23 ° C.,
(C-XVII) The TTD of the absorber related to the refrigerant vapor absorption process is 5K,
(C-XVIII) The TTD of the condenser related to the refrigerant vapor condensation process is set to 5K,
The concentration after concentration of the (C-XIX) absorbent is 63 wt%,
(C-XX) The operation pressure in the concentrator related to the absorption liquid regeneration process and the refrigerant vapor condensation process is set to 36 mmHg,
(C-XXI) The heat source temperature in the absorption liquid regeneration process may be 70 ° C. or higher.

以下、本発明の実施例を図を用いてさらに詳細に説明するが、本発明はこれら実施例に限定されるものではない。
図1は、本発明に係る作動媒体のT−P−C特性を示した図である。本発明の臭化リチウム−水−1,4−ジオキサン系作動媒体の優位性を明確にすべく、従来技術である臭化リチウム−水系作動媒体と比較して図示している。
図1に示すグラフの横軸は温度Tを、縦軸は飽和蒸気圧Pを示し、図中の実線は臭化リチウム−水−1,4−ジオキサン系作動媒体の特性を示し、破線は臭化リチウム−水系作動媒体の特性を示している。縦軸の飽和蒸気圧力は、純冷媒の温度と該温度における飽和蒸気圧力との関係を直線で示すことができるように目盛った図で、一般的にデューリング線図と呼ばれている。
図1中に示すように、実線中に記載している水−1,4−ジオキサンは臭化リチウム−水−1,4−ジオキサン系作動媒体における冷媒である水−1,4−ジオキサンのP−T特性であり、破線中に記載している水は、従来の臭化リチウム−水系作動媒体における冷媒である水のP−T特性を示している。さらに、実線中に示す数字(例えば60wt%等)は臭化リチウム−水−1,4−ジオキサン系作動媒体における臭化リチウムの濃度を示し、破線中に示す数字は臭化リチウム−水系作動媒体における臭化リチウムの濃度を示している。本図により、それぞれの作動媒体におけるP−T−Cの関係が把握される。
図1から把握される、従来の臭化リチウム−水系作動媒体と本発明作動媒体(臭化リチウム−水−1,4−ジオキサン系作動媒体)との相違点を、以下に列挙する。
<1> 臭化リチウム−水−1,4−ジオキサン系作動媒体では、冷媒である水−1,4−ジオキサンの飽和蒸気圧力は、臭化リチウム−水系作動媒体における冷媒である水の飽和蒸気圧力よりも高い。
<2> 吸収液である臭化リチウムの濃度が同一でも、臭化リチウム−水−1,4−ジオキサン系作動媒体の方が、臭化リチウム−水系作動媒体よりも、飽和蒸気圧が高く、かつその傾向は高温領域においてより一層強い。つまり同一の飽和蒸気圧下において、同一濃度における飽和温度は、臭化リチウム−水系作動媒体よりも臭化リチウム−水−1,4−ジオキサン系作動媒体の方が低く、飽和蒸気圧力が高いほどその傾向は強くなっている。すなわち図1において、臭化リチウム−水−1,4−ジオキサン系作動媒体の方が、臭化リチウム−水系作動媒体よりも、勾配が大きいといえる。
かかるP−T−C特性を有する作動媒体を用いて、従来技術の諸課題を解決する操作方法を以下に述べる。
図2は本発明を実施するに好適な吸収冷凍機の機器構成と系統を示す図であり、以下、定性的にその作動状況を説明する。主な構成要素は、濃縮器1、希釈器2、熱回収器3、および濃厚吸収液ポンプ30ならびに希薄吸収液ポンプ31である。
濃縮器1内には隔壁10が設けられ、これにより内部は再生器60と凝縮器61に区画され、隔壁10の上部に位置する蒸気通路には飛沫同伴防止具80が設けられている。再生器60内には、熱交換器20および吸収液分配具12が収納されており、凝縮器61内には、熱交換器21が収納されている。
希釈器2内には隔壁11が設けられ、これにより内部は蒸発器70と吸収器71に区画されており、隔壁11の上部に位置する蒸気通路には飛沫同伴防止具81が設けられている。蒸発器70内には、熱交換器23および冷媒液分配具14が収納されており、吸収器71内には、熱交換器22および吸収液分配具13が収納されている。
熱回収器3は高温かつ高濃度の吸収液と、低温かつ低濃度の吸収液との熱交換を行わせるために設けられた機器で、熱交換器24を内蔵している。
図2により、本例の吸収冷凍機における作動状況を説明する。濃縮器1および希釈器2はいずれも非凝縮性ガスが排除された状態(図には、非凝縮性ガス排除設備は明示していない。)に保たれている。再生器60内では、流路系統40(以下、「流路系統」を単に「系」という。)から導入される希薄吸収液が、吸収液分配具12により、熱交換器20の伝熱面に均一に散布されて分布している。熱交換器20には、系100から加熱用の蒸気や温水等が供給されており、伝熱面を介して、前述した希薄吸収液は加熱され、蒸気を発生する。
他方、凝縮器61内に収納されている熱交換器21には、系202により冷却水が供給されており、前述の発生蒸気は、飛沫同伴防止具80を通過して、飛沫が除去され、熱交換器21により冷却され凝縮液となる。該凝縮液が冷媒である。系100から供給された蒸気は潜熱を放出して復水し、また温水の場合は温度が低下して、系101から系外へ排出され、系202から供給された冷却水は昇温し、冷却塔(図示していない。)へ戻る。
濃縮器1では上述した操作により吸収液が濃縮され、濃厚吸収液が再生器60の底部に、また冷媒は凝縮器61の底部に、それぞれ溜まる。
再生器60の底部に溜まった濃厚吸収液はポンプ30により引き抜かれ、一部は系42へ、他は系41を経て再び系40に合流する。系42へ流れた濃厚かつ高温の吸収液は熱回収器3に導入され、系45によって熱交換器24に導入されている低温かつ希薄吸収液と、伝熱面を介して熱交換して降温した後、系43、系46へと流れ、希釈器2内の吸収器71内の吸収液分配具13に導入され、熱交換器22の伝熱面に均一に分配される。
熱交換器22には、系200により冷却塔(図示していない。)からの冷却水が供給されており、前述の均一に分配された濃厚吸収液は伝熱面を介して冷却される。この時、濃厚吸収液は極めて低い飽和蒸気圧力であるため、希釈器2内では、極めて圧力の低い状態が形成される。
一方、希釈器2内の蒸発器70には、前述の操作で凝縮器61の底部に溜まった冷媒が、系50により冷媒液分配具14から熱交換器23の伝熱面上に均一に散布される。蒸発器70は、前述のように極めて低い圧力に保持されているため、散布された冷媒は蒸発し、蒸気となって、飛沫同伴防止具81により飛沫が除去された後、吸収器71側へ移動し、吸収液分散具13により散布されている濃厚吸収液に吸収され、したがって吸収液は希釈され、吸収器71の底部に溜まる。
一方、蒸発器70の熱交換器23に散布された冷媒が蒸発する際の蒸発潜熱により、熱交換器23の伝熱面は冷却される。熱交換器23には系300により熱媒体液(一般的に水が用いられており、以下、該熱媒体液を「冷水」という。)が供給されており、熱交換器23の冷却された伝熱面を介して冷水はさらに冷却され、系301から冷熱需要先へ供給され、当該需要先にて昇温されて、系300へ戻ってくる。
冷媒蒸気を吸収して希薄となり吸収器71の底部に溜まった吸収液は、ポンプ31により抜き出され、系47を経て、一部は系45から熱回収器3の熱交換器24へ導入され、前述のように高温濃厚溶液と熱交換して昇温された後、系40へと流れる。
系41は熱交換器20の伝熱面に濃厚吸収液を均一に分散させるための再循環系であり、また、系44は熱交換器22の伝熱面に希薄吸収液を均一に分散させるための再循環系である。
また、ポンプ32および系51は熱交換器23の伝熱面に冷媒液を均一に分散させるための系で、省略することも可能であり、必須構成要素ではない。
以上説明した定性的な作動状況により、冷熱が系301から得られることが把握される。これを踏まえて以下には、本発明に係る臭化リチウム−水−1,4−ジオキサン系作動媒体の優位性を定量的に示すために、従来技術である臭化リチウム−水系作動媒体と比較しながら詳述する。
図3は、本発明の吸収冷凍機の性能に大きく関与する吸収液の濃度差と循環比の関係をグラフに示した図である。ここで濃度差とは、前述の濃厚吸収溶液と希薄吸収溶液との濃度の差である。また、循環比とは、濃縮器1内で発生させる冷媒蒸気量に対する該濃縮器1内に供給する希薄吸収溶液量の比である。図3から分かるように、濃度差が小さいほど循環比が増大しており、濃度差が増加するにつれて急激に循環比が低下し、濃度差が5wt%程度からは循環比の低下も緩やかとなっている。循環比が大きいと、つまり濃度差が小さいと、ポンプ30の動力が増大するのみならず、後述する理由から吸収液を濃縮するために必要な入熱量(図2に示した熱交換器20に投入する熱量。)が増大することになり、結果として、吸収冷凍機の性能である成績係数(得られる冷熱量に対する入熱量の比で、以下、「COP」という。)が低下する。そこで一般的な濃度差としては、5wt%程度が設計点である。
図4は、図1に示したデューリング線図のうち、本発明に係る臭化リチウム−水−1,4−ジオキサン系作動媒体による操作状況を示したデューリング線図である。
図7は一方、比較検討のために従来の臭化リチウム−水系作動媒体の操作状況を示したデューリング線図である。
図4には、吸収冷凍機における標準仕様の冷水入口温度(12℃)、出口温度(7℃)、標準仕様の冷却塔における冷却水出口温度(31℃)、および冷却塔への冷却水戻り温度(40℃)を基準に、当該吸収冷凍機の操作状況を示した。
まず、冷水の入口温度が12℃(図2において系300により流入する冷水の温度が12℃である。以下、「図2、系300の温度」等と記す。)であり、冷水の出口温度が7℃(図2、系301の温度)であること、ならびに該蒸発器(図2の70のことで、以下、「図2の70」等と記す。)の熱交換器(図2の23)の通常仕様におけるTTDが3Kであることから、蒸発器(図2の70)内の温度は、4℃(=7−3)である必要がある。
図4を用いて前記作動状況を検討すると、A点(冷媒である水−1,4−ジオキサンの4℃における飽和蒸気圧線との交点。)が得られる。当該A点における蒸気圧は8.5mmHgとなっている。つまり、希釈器(図2の2)内の圧力は8.5mmHgで操作されることが必要である。
一方、上述したように標準仕様の冷却塔で得られる冷却水の温度は31℃(図2、系200の温度)であるから、当該冷却水の顕熱を5K使うと、熱交換器(図2の22。)出口の冷却水温度(図2、系201の温度。)は、 36℃(=31+5)である。
図4において、飽和蒸気圧8.5mmHgの線を高温側に延長した線上において、仮に吸収液の希釈後の濃度を61wt%とすると交点Bが得られ、当該点Bにおける温度は45℃となっている。したがって、TTDは9K(=45−36)となり、当該条件下における熱交換器(図2の22)の対数熱交換温度差θmは、
11.3K(=((45−31)−(45−36))/LN((45−31)/(45−36)) である。
図7に、従来の臭化リチウム−水系作動媒体を用いた際の作動状況を示す。冷水および冷却水の温度条件、ならびに蒸発器(図2の2)内の熱交換器(図2の23)のTTD値は、図4における例と全く同一の値を用いる。したがって、冷媒の蒸発温度は4℃であり、当該温度を図7に示すと点A’(冷媒である水の4℃における飽和蒸気圧線との交点。)が得られる。当該A’点における蒸気圧は6.0mmHgとなっている。すなわち、希釈器(図2の2)内の圧力は6.0mmHgで操作されることが必要である。
本発明に係る臭化リチウム−水−1,4−ジオキサン系作動媒においては、図4のA点で示したように、当該希釈器内の圧力は8.5mmHgである。かかる操作圧力の違いによって発生する蒸気の比容積の違いが生じる。具体的には、圧力6.0mmHgにおける蒸気の比容積は蒸気1kg当り160立方メートル(以下、当該単位をm/kgと記す。)であるのに対し、圧力8.5mmHgにおける蒸気の比容積は、115m/kgであり、本発明作動媒体により希釈器内で発生する蒸気の比容積は、従来の作動媒体と比較して約28%小さいものとなっている。
前掲図2により、このような比容積の減少の効果を説明すると、蒸発器70の熱交換器23で発生した冷媒蒸気は、隔壁11の上部に存在する空間に設置してある飛沫同伴防止具81を介して移動し、吸収器71の熱交換器22に散布されている吸収液に吸収される。従来の飛沫同伴防止具は、蒸気が高速になるほどこれを複雑な形状にすることによって飛沫の同伴を防止しており、形状を複雑にすれば、当然、当該飛沫同伴防止具による流動抵抗が増大して圧力損失が生じ、蒸発器70と吸収器71に圧力差が発生して、設計通りの冷水温度が得られなくなる現象を招く。かかる現象発生防止のため、従来は、空間をできるだけ広く確保すべく希釈器2の容器を大きくして対処していたため、吸収冷凍機の小型化は困難であった。これに対し、本発明に係る臭化リチウム−水−1,4−ジオキサン系作動媒の使用によれば、前記比容積が約28%低減することから、該空間を28%低減することが可能となる。
図7において、飽和蒸気圧6.0mmHgの線を高温側に延長した線上で、吸収液の希釈後の濃度を図4と同一条件である61wt%とすると、交点B’が得られ、当該点B’における温度は43℃となっている。したがってTTDは、 7K(=43−36) となり、当該条件下における熱交換器(図2の22)の対数熱交換温度差θmは、
9.2K(=((43−31)−(43−36))/LN((43−31)/(43−36)) である。
本発明に係る臭化リチウム−水−1,4−ジオキサン系作動媒を用いた場合の対数熱交換温度差θmは11.3Kであるのに対し、従来の臭化リチウム−水系作動媒を用いた場合のθmは9.2Kである。このような対数平均熱交換温度差の違いは、図2における吸収器71の熱交換器22の伝熱面積の違いとなる。具体的には、本発明の臭化リチウム−水−1,4−ジオキサン系作動媒を用いた場合の該伝熱面積は、従来の臭化リチウム−水系作動媒を用いた場合と比較して、18%程度の低減が可能である。
吸収冷凍機の各機器内に収納されている熱交換器の中で、吸収器71内に設置されている熱交換器22は他の熱交換器(図2中の熱交換器20、21、23を示す。)より伝熱性能が悪く、サイズが最大の熱交換器である。この原因は、他の熱交換器(図2中の熱交換器20、21、23を示す。)が、いずれも伝熱面の一方が熱伝達率の大きい凝縮もしくは蒸発を伴う現象であるのに対し、該熱交換器22は、吸収現象を伴う伝熱形態であって伝熱面の両方が液体であり、したがって熱伝達率が小さいからである。
吸収器71の熱交換器22の伝熱面積を低減すべく、前述したとおり各種の研究開発がなされているが、本発明による臭化リチウム−水−1,4−ジオキサン系作動媒体を用いることにより、かかる問題は解決でき、吸収冷凍機全体の小型化を図ることができる。なお、従来提案されている各種の伝熱面積低減技術においても、本発明の作動媒体を用いることによって効果を顕著に高めることができる。
以上、希釈器2における本発明の特徴を述べたが、次に濃縮器1における本発明の作用効果を、図4と図7を用いて説明する。
図2に示した濃縮器1内に収納された凝縮器61の熱交換器21には、系202から冷却水が導入されている。該冷却水は通常、系201からの流出水を用いている。したがって、熱交換器21の冷却水の入口温度は、前述の系201の冷却水温度である36℃であり、該冷却水の利用温度を4Kとすると、系203を流出する温度は40℃である。熱交換器21における一般的なTTDの値は5Kであるから、凝縮器61の温度は45℃(=40+5)であり、図4に示すように、凝縮器61の圧力は、冷媒である水−1,4−ジオキサンの前記45℃における飽和圧力となり、当該圧力は図4中のC点で示すように、93mmHgである。
したがって、濃縮器(図2の1)は圧力93mmHg下で作動することになり、希薄吸収溶液(濃度61wt%)を5%濃縮して66%の濃厚吸収溶液にするためには、再生器(図2の60)の温度は97℃となる。当該温度を図4中のD点で示す。
前掲の図2に示すように、再生器60の熱交換器20には、系100から蒸気または高温熱媒体等が加熱源として供給され、熱交換器20に均一に散布されている吸収溶液を前述の97℃に加熱して、吸収液中の冷媒蒸気を発生させ、該蒸気は飛沫同伴防止具80を通過して、凝縮器61の熱交換器21に接触し、凝縮(図4のC点)して冷媒液となり、凝縮器61の底部に溜まる。再生器60の熱交換器20におけるTTDは、これを小さく取れば、前述の加熱源は低い温度領域のものまで利用可能となるが、熱交換器20の伝熱面積は増大することとなる。逆に伝熱面積を小さくすると、加熱源は低い温度領域のものまでは利用できなくなるが、系100により流入する加熱源である熱媒体の温度は97℃以上が必要な条件となる。
図7に、従来の臭化リチウム−水系作動媒体を用いた場合であって、前述の冷却水の入口、出口温度を図4に示した値と同一温度条件としたときの作動状況を示す。冷却水の温度とTTDが図4に記した値と同一であるから、冷媒である水の凝縮温度は45℃と同じ温度であるが、該温度に対する飽和蒸気圧力は72mmHgとなり、この値を図7中にC’で示す。したがって、図2に示す濃縮器1は圧力72mmHg下で作動することになる。
図4における場合と同様の条件で濃度66wt%の濃厚吸収液を得るには、図7からわかるように、熱交換器(図2の20)に均一に散布されている吸収溶液を、103℃に加熱する必要がある。したがって、加熱源である熱媒体の温度は103℃以上が必要となる。
すなわち、吸収溶液を濃縮するために必要な加熱源温度の下限は、本発明の臭化リチウム−水−1,4−ジオキサン系作動媒体を用いることにより、従来の臭化リチウム−水系作動媒体を用いる場合よりも低下させることが可能となり、従来利用価値の少なかったより低い温度領域の加熱源を利用することができる。
加熱源温度が低減可能であることは、従来は利用できずに廃棄されていた熱の利用が可能となることであり、上述のように、各種エンジンからの排ガスならびに冷却水が有する熱等、各種廃熱の有効利用の有力な手段である熱のカスケード利用のためのシステム構成を促進することが可能となる。
本発明作動媒体および吸収冷凍機において加熱源温度の低下が可能であることにより、単に熱の有効利用が可能になるだけではなく、吸収冷凍機を構成する部材の腐食が低減されるという効果も奏される。一重吸収冷凍機の構成部材は一般的に容器には鉄鋼材、熱交換器には銅材が用いられており、吸収液は一般に腐食性が強いため、これには各種の腐食抑制剤が添加されている。かかる金属材料の腐食現象は高温になるほど激しくなる傾向がある。したがって、前記加熱源温度の低下が可能であることは、吸収冷凍機における腐食現象を低下させる効果をもたらす。
さらに、図2に示した濃縮器1内に設置してある飛沫同伴防止具80を通過する蒸気(過熱状態)の比容積は、本発明の作動媒体を用いた場合には、14.5m/kgであるのに対し、従来の作動媒体を用いた場合には17.5m/kgとなっており、本発明による作動媒体を用いることにより、上述の希釈器2と同様の理由で、飛沫同伴防止具の通路面積を低減できる効果も有している。
図4においてはこのようにして、吸収媒体はD、G、E、B、H、Fの順番でこれらの各点を結ぶサイクルで、図7においては、D’、G’、E’、B’、H’、F’の順番でこれらの各点を結ぶサイクルで、吸収冷凍機が作動する。
図2の熱交換器20における加熱源の熱量は、図4に示したH−F点間の顕熱上昇分とF−D点における濃縮のための蒸発潜熱分の合計量となる。(当該現象は図7においても同様であることから、図7における説明は省略する。)
先に述べたように、吸収液の濃度変化幅が小さいと循環比が増大するために、前記H−F点間の顕熱上昇分に要する熱量が増加し、その結果COPが低下する。逆に濃度変化幅を増大させると、加熱源温度の上昇となる。そこで、前掲図3において説明したように、濃度変化幅については通常、5wt%程度が設計点である。
図5は、図4と同一温度の冷水を得るための、本発明による臭化リチウム−水−1,4−ジオキサン系作動媒体を用いて作動させる他の実施例を示すデューリング線図であり、図8の従来の臭化リチウム−水系作動媒体を用いて作動させる操作状況と比較して示したものである。
上述したように、本発明による臭化リチウム−水−1,4−ジオキサン系作動媒体における冷媒である水−1,4−ジオキサンは、従来の作動媒体における冷媒である水よりも蒸気圧が高いために、希釈器における操作圧力が高い。そのために、吸収器における冷却温度を上昇させることが容易となる。図8に示した実施例は、希釈後の濃度を63wt%とし、濃度変化幅を5wt%とした場合の操作線図であり、濃厚溶液の濃度は68wt%となっている。
希釈後の濃度を63wt%としたことにより、吸収器(図2の71)の熱交換器(図2の22)、および凝縮器(図2の61)の熱交換器(図2の21)における冷却温度は図5中の点Bで示すように49℃である。通常、国内の夏季における平均的な大気温度は最高でも32℃程度であることを前提にすると、前述の冷却温度49℃との温度差は17℃程度を確保できる。
一般に空気による冷却を行う熱交換器においては、当該熱交換器の空気側の熱伝達率が水等の液体による熱伝達率に比較して極端に小さいために、極めて大きな伝熱面積が必要となる。この課題を解決すべく、従来は、伝熱面の空気側にフィン等を設けて伝熱面積の拡大を図ったことによって、水を用いた冷却器よりも極端な大型化を招いていた。
しかしながら、本発明に係る臭化リチウム−水−1,4−ジオキサン系作動媒体およびそれを用いた吸収冷凍機によれば、図5に示したように温度差を17℃程度確保できることから、熱交換器を大型化することなしに空気冷却方式を採用することが可能であり、かかる空気冷却方式を、前掲図2中に示す熱交換器22および21の両方もしくはその片方に適用することができる。
図8には、従来の臭化リチウム−水系作動媒体によって同様の空冷化を実施すべく、吸収液の濃度を図5と同様に63wt%と68wt%との間で操作した場合の状況を示した。図8から明らかなように、サイクル中のE’点において結晶線Aに接触している。すなわち、E’点で吸収液が晶析し固化してしまい、吸収冷凍機は作動不能となる。これを回避するためには濃縮後の吸収液濃度を66wt%程度に抑制することになるが、濃度差が3wt%と低下し、これはCOPの低下になる。
これに対して、本発明の臭化リチウム−水−1,4−ジオキサン系作動媒体によれば、図5から明らかなように、サイクル中のE点は結晶線Aとは接触しておらず、したがって晶析することはなく、高いCOPを維持して運転可能な空気冷却式吸収冷凍機を提供できる。
図6は、本発明に係る臭化リチウム−水−1,4−ジオキサン系作動媒体を用いた他の実施例を示すデューリング線図である。作動媒体の冷媒である水−1,4−ジオキサンにおいては従来の冷媒である水と異なり、氷点下でも凍結しない現象、いわゆる凝固点降下の特性を有しており、当該凝固点降下を実測値した結果、−6℃であった。すなわち、本発明に係る臭化リチウム−水−1,4−ジオキサン系作動媒体を用いることにより、一重効用吸収冷凍機で氷点下の冷熱を得ることが可能となる。その作用を、図6を用いて説明する。
周知の如く、我が国の北海道や東北地方の太平洋側沿岸には、寒流である親潮が流れており、海水の表層温度は夏季でも20℃程度であることが実測されている。そこで、当該海水を冷却水として用いて、本発明の臭化リチウム−水−1,4−ジオキサン系作動媒体を適用した作動状況を図6に示した。
図6に示すように、冷媒である水−1,4−ジオキサンの氷点である−6℃の飽和圧力は4.0mmHgであるから、A点が決定される。したがって、該圧力下で希釈器(図2の2)は作動される。ここで、20℃程度の海水を吸収器(図2の71)の熱交換器(図2の22)へ導入(図2の200)し、3K上昇した23℃で系外へ排出(図2の201)して海へ戻すことにし、さらに、当該熱交換器(図2の22)のTTD=5Kを設計点とすると、図6のB点で示すように、希釈後の吸収液の温度は28℃(=23+5)で、濃度は58%となる。
この時、蒸発器(図2の70)の熱交換器(図2の23)は、TTD=3Kを設計点とすると、−3℃の冷熱が得られる。すなわち、一重効用吸収冷凍機において、氷点下の冷熱が得られることになる。これは、従来の臭化リチウム−水系作動媒体を用いた一重効用吸収冷凍機では、冷媒である水が氷結するために得ることができなかったものである。
さらに、前述の条件と同様に20℃程度の海水を凝縮器(図2の61)の熱交換器(図2の21)へ導入(図2の202)し、3K温度上昇した23℃で系外に排出(図2の203)して海へ戻すこととし、凝縮器(図2の61)におけるTTDを5Kとして設計すると、濃縮器(図2の1)の温度は28℃(=23+5)となり、28℃における当該冷媒の飽和圧力は36mmHgであるから、図6中に示すC点が決定され、濃縮器(図2の1)は36mmHgの圧力下で作動する。
再生器(図2の60)において、58wt%の吸収液(図6中のF点)を、濃度差5wt%を確保すべく63wt%まで濃縮するには、図6のD点で示すように、温度70℃となる。したがって本実施例においては、吸収液を加熱濃縮するのに必要な熱源温度は、70℃以上であればよいことになる。すなわち、従来利用価値がなく廃棄されていた低品位の廃熱を、より有効に活用することが可能となった。
Hereinafter, examples of the present invention will be described in more detail with reference to the drawings. However, the present invention is not limited to these examples.
FIG. 1 is a graph showing TPC characteristics of a working medium according to the present invention. In order to clarify the superiority of the lithium bromide-water-1,4-dioxane-based working medium of the present invention, it is illustrated in comparison with the lithium bromide-water-based working medium as the prior art.
The horizontal axis of the graph shown in FIG. 1 indicates the temperature T, the vertical axis indicates the saturated vapor pressure P, the solid line in the figure indicates the characteristics of the lithium bromide-water-1,4-dioxane-based working medium, and the broken line indicates the odor. 2 shows the characteristics of a lithium bromide-water working medium. The saturated vapor pressure on the vertical axis is a graph scaled so that the relationship between the temperature of the pure refrigerant and the saturated vapor pressure at the temperature can be shown by a straight line, and is generally called a Düring diagram.
As shown in FIG. 1, the water-1,4-dioxane described in the solid line is P of water-1,4-dioxane, which is a refrigerant in a lithium bromide-water-1,4-dioxane-based working medium. -T characteristics, and the water described in the broken line indicates the PT characteristics of water which is a refrigerant in a conventional lithium bromide-water working medium. Further, the numbers shown in the solid line (for example, 60 wt%) indicate the concentration of lithium bromide in the lithium bromide-water-1,4-dioxane working medium, and the numbers shown in the broken line are the lithium bromide-water working medium. The concentration of lithium bromide in is shown. From this figure, the relationship of PTC in each working medium is grasped.
Differences between the conventional lithium bromide-water-based working medium and the working medium of the present invention (lithium bromide-water-1,4-dioxane-based working medium) grasped from FIG. 1 are listed below.
<1> In the lithium bromide-water-1,4-dioxane-based working medium, the saturated vapor pressure of water-1,4-dioxane, which is a refrigerant, is the saturated vapor of water, which is the refrigerant in the lithium bromide-water-based working medium. Higher than pressure.
<2> Even if the concentration of the lithium bromide as the absorbent is the same, the lithium bromide-water-1,4-dioxane-based working medium has a higher saturated vapor pressure than the lithium bromide-water working medium, And the tendency is much stronger in the high temperature region. That is, under the same saturated vapor pressure, the saturation temperature at the same concentration is lower in the lithium bromide-water-1,4-dioxane-based working medium than in the lithium bromide-water-based working medium, and the higher the saturated steam pressure, the higher the saturation temperature. The trend is getting stronger. That is, in FIG. 1, it can be said that the gradient of the lithium bromide-water-1,4-dioxane-based working medium is larger than that of the lithium bromide-water-based working medium.
An operation method for solving the problems of the prior art using the working medium having such PTC characteristics will be described below.
FIG. 2 is a diagram showing an equipment configuration and a system of an absorption refrigerator suitable for carrying out the present invention. Hereinafter, the operation state will be described qualitatively. The main components are a concentrator 1, a diluter 2, a heat recovery device 3, a concentrated absorbent pump 30 and a diluted absorbent pump 31.
A partition wall 10 is provided in the concentrator 1, whereby the inside is partitioned into a regenerator 60 and a condenser 61, and a splash entrainment prevention device 80 is provided in the vapor passage located above the partition wall 10. In the regenerator 60, the heat exchanger 20 and the absorbing liquid distributor 12 are accommodated, and in the condenser 61, the heat exchanger 21 is accommodated.
A partition wall 11 is provided in the diluter 2, whereby the inside is partitioned into an evaporator 70 and an absorber 71, and a splash entrainment prevention device 81 is provided in the vapor passage located above the partition wall 11. . The heat exchanger 23 and the refrigerant liquid distributor 14 are accommodated in the evaporator 70, and the heat exchanger 22 and the absorbent liquid distributor 13 are accommodated in the absorber 71.
The heat recovery unit 3 is a device provided for performing heat exchange between a high-temperature and high-concentration absorption liquid and a low-temperature and low-concentration absorption liquid, and has a built-in heat exchanger 24.
The operation state in the absorption refrigerator of this example will be described with reference to FIG. Both the concentrator 1 and the diluter 2 are maintained in a state where non-condensable gas is excluded (non-condensable gas exclusion equipment is not clearly shown in the figure). In the regenerator 60, the diluted absorbent introduced from the flow path system 40 (hereinafter, “flow path system” is simply referred to as “system”) is transferred by the absorbent distributor 12 to the heat transfer surface of the heat exchanger 20. It is distributed evenly. The heat exchanger 20 is supplied with heating steam, hot water, and the like from the system 100, and the above-described diluted absorbent is heated through the heat transfer surface to generate steam.
On the other hand, the heat exchanger 21 accommodated in the condenser 61 is supplied with cooling water by the system 202, and the generated steam passes through the splash entrainment prevention device 80, and the splash is removed. It is cooled by the heat exchanger 21 and becomes a condensate. The condensate is a refrigerant. The steam supplied from the system 100 releases latent heat and condensates, and in the case of hot water, the temperature decreases and is discharged from the system 101 to the outside of the system, and the cooling water supplied from the system 202 rises in temperature, Return to the cooling tower (not shown).
In the concentrator 1, the absorbing solution is concentrated by the above-described operation, and the concentrated absorbing solution is stored at the bottom of the regenerator 60 and the refrigerant is stored at the bottom of the condenser 61.
The concentrated absorbent accumulated at the bottom of the regenerator 60 is drawn out by the pump 30, and part of the concentrated absorbent is joined to the system 42 and the other is joined to the system 40 again through the system 41. The rich and high-temperature absorption liquid that has flowed into the system 42 is introduced into the heat recovery unit 3, and the temperature is lowered by heat exchange with the low-temperature and dilute absorption liquid introduced into the heat exchanger 24 by the system 45 via the heat transfer surface. After that, it flows to the system 43 and the system 46, is introduced into the absorbing liquid distributor 13 in the absorber 71 in the diluter 2, and is uniformly distributed to the heat transfer surface of the heat exchanger 22.
Cooling water from a cooling tower (not shown) is supplied to the heat exchanger 22 by the system 200, and the above-described uniformly distributed concentrated absorbent is cooled via the heat transfer surface. At this time, since the concentrated absorbent has an extremely low saturated vapor pressure, a very low pressure state is formed in the diluter 2.
On the other hand, in the evaporator 70 in the diluter 2, the refrigerant accumulated at the bottom of the condenser 61 by the above-described operation is uniformly spread from the refrigerant liquid distributor 14 onto the heat transfer surface of the heat exchanger 23 by the system 50. Is done. Since the evaporator 70 is maintained at an extremely low pressure as described above, the sprayed refrigerant evaporates and becomes vapor, and after the splash is removed by the splash entrainment prevention device 81, the evaporator 70 is moved to the absorber 71 side. It moves and is absorbed by the concentrated absorbent dispersed by the absorbent dispersion tool 13, so that the absorbent is diluted and accumulates at the bottom of the absorber 71.
On the other hand, the heat transfer surface of the heat exchanger 23 is cooled by the latent heat of evaporation when the refrigerant sprayed on the heat exchanger 23 of the evaporator 70 evaporates. The heat exchanger 23 is supplied with a heat medium liquid (generally water is used, hereinafter, the heat medium liquid is referred to as “cold water”) by the system 300, and the heat exchanger 23 is cooled. The chilled water is further cooled via the heat transfer surface, supplied from the system 301 to the cold demand destination, raised in temperature at the demand destination, and returned to the system 300.
Absorbed liquid that has become diluted due to absorption of the refrigerant vapor and accumulated at the bottom of the absorber 71 is extracted by the pump 31, and partly introduced from the system 45 to the heat exchanger 24 of the heat recovery unit 3 through the system 47. As described above, the temperature is increased by exchanging heat with the high-temperature concentrated solution, and then flows into the system 40.
The system 41 is a recirculation system for uniformly dispersing the concentrated absorbent on the heat transfer surface of the heat exchanger 20, and the system 44 uniformly disperses the diluted absorbent on the heat transfer surface of the heat exchanger 22. For the recirculation system.
The pump 32 and the system 51 are systems for uniformly dispersing the refrigerant liquid on the heat transfer surface of the heat exchanger 23 and can be omitted, and are not essential components.
From the qualitative operating state described above, it is understood that the cold energy is obtained from the system 301. Based on this, in order to quantitatively show the superiority of the lithium bromide-water-1,4-dioxane-based working medium according to the present invention, it is compared with the lithium bromide-water-based working medium that is the prior art. Details will be described.
FIG. 3 is a graph showing the relationship between the concentration difference of the absorbent and the circulation ratio, which are largely involved in the performance of the absorption refrigerator of the present invention. Here, the concentration difference is a difference in concentration between the above-described concentrated absorbing solution and diluted absorbing solution. The circulation ratio is the ratio of the amount of diluted absorbent solution supplied into the concentrator 1 to the amount of refrigerant vapor generated in the concentrator 1. As can be seen from FIG. 3, the circulation ratio increases as the concentration difference decreases, and the circulation ratio rapidly decreases as the concentration difference increases, and the decrease in the circulation ratio becomes moderate from the concentration difference of about 5 wt%. ing. When the circulation ratio is large, that is, when the concentration difference is small, not only the power of the pump 30 increases, but also the amount of heat input necessary for concentrating the absorbing liquid for the reason described later (in the heat exchanger 20 shown in FIG. 2). As a result, the coefficient of performance, which is the performance of the absorption chiller (hereinafter, referred to as “COP”, which is the ratio of the heat input to the obtained cold heat amount) is reduced. Therefore, as a general concentration difference, about 5 wt% is a design point.
FIG. 4 is a Dueling diagram showing an operation state using the lithium bromide-water-1,4-dioxane-based working medium according to the present invention in the Dueling diagram shown in FIG.
On the other hand, FIG. 7 is a Duhring diagram showing the operation status of a conventional lithium bromide-water-based working medium for comparison.
FIG. 4 shows the standard cold water inlet temperature (12 ° C.), the outlet temperature (7 ° C.) in the absorption refrigerator, the cooling water outlet temperature (31 ° C.) in the standard cooling tower, and the cooling water return to the cooling tower. The operation status of the absorption refrigerator was shown based on the temperature (40 ° C.).
First, the inlet temperature of the cold water is 12 ° C. (the temperature of the cold water flowing in by the system 300 in FIG. 2 is 12 ° C., hereinafter referred to as “FIG. 2, the temperature of the system 300”). Is 7 ° C. (FIG. 2, the temperature of the system 301), and the heat exchanger (FIG. 2, 70 of FIG. 2, hereinafter referred to as “70 of FIG. 2”). Since the TTD in the normal specification of 23) is 3K, the temperature in the evaporator (70 in FIG. 2) needs to be 4 ° C. (= 7-3).
If the said operation condition is examined using FIG. 4, A point (intersection with the saturated vapor pressure line in 4 degreeC of the water 1, 4- dioxane which is a refrigerant | coolant) will be obtained. The vapor pressure at point A is 8.5 mmHg. That is, the pressure in the diluter (2 in FIG. 2) needs to be operated at 8.5 mmHg.
On the other hand, as described above, the temperature of the cooling water obtained in the standard cooling tower is 31 ° C. (FIG. 2, the temperature of the system 200). 2 of 22.) Cooling water temperature at the outlet (FIG. 2, temperature of system 201) is 36 ° C. (= 31 + 5).
In FIG. 4, on the line obtained by extending the saturated vapor pressure 8.5 mmHg line to the high temperature side, assuming that the concentration after dilution of the absorbent is 61 wt%, an intersection point B is obtained, and the temperature at the point B is 45 ° C. ing. Therefore, TTD is 9K (= 45-36), and the logarithmic heat exchange temperature difference θm of the heat exchanger (22 in FIG. 2) under the conditions is
11.3K (= ((45-31)-(45-36)) / LN ((45-31) / (45-36)).
FIG. 7 shows an operating situation when a conventional lithium bromide-water-based working medium is used. The temperature conditions of the cold water and the cooling water, and the TTD values of the heat exchanger (23 in FIG. 2) in the evaporator (2 in FIG. 2) are the same as those in the example in FIG. Therefore, the evaporation temperature of the refrigerant is 4 ° C., and when this temperature is shown in FIG. 7, a point A ′ (intersection with the saturated vapor pressure line at 4 ° C. of water as the refrigerant) is obtained. The vapor pressure at the point A ′ is 6.0 mmHg. That is, the pressure in the diluter (2 in FIG. 2) needs to be operated at 6.0 mmHg.
In the lithium bromide-water-1,4-dioxane-based working fluid according to the present invention, the pressure in the diluter is 8.5 mmHg as shown by point A in FIG. A difference in the specific volume of the steam generated due to such a difference in operating pressure occurs. Specifically, the specific volume of steam at a pressure of 6.0 mmHg is 160 cubic meters per kg of steam (hereinafter, the unit is m 3 / Kg. In contrast, the specific volume of steam at a pressure of 8.5 mmHg is 115 m. 3 The specific volume of steam generated in the diluter by the working medium of the present invention is about 28% smaller than that of the conventional working medium.
The effect of reducing the specific volume will be described with reference to FIG. 2 described above. The refrigerant vapor generated in the heat exchanger 23 of the evaporator 70 is a splash entrainment prevention device installed in the space above the partition wall 11. It moves through 81 and is absorbed by the absorbing liquid sprayed on the heat exchanger 22 of the absorber 71. The conventional splash entrainment prevention device prevents the entrainment of the splash by making it more complex as the steam speed increases, and naturally, if the shape is complicated, the flow resistance by the splash entrainment prevention device increases. As a result, a pressure loss occurs, and a pressure difference is generated between the evaporator 70 and the absorber 71, resulting in a phenomenon that the designed cold water temperature cannot be obtained. In order to prevent the occurrence of such a phenomenon, conventionally, since the container of the diluter 2 has been dealt with by enlarging the space in order to secure as much space as possible, it has been difficult to reduce the size of the absorption refrigerator. On the other hand, according to the use of the lithium bromide-water-1,4-dioxane-based working fluid according to the present invention, the specific volume is reduced by about 28%, so that the space can be reduced by 28%. It becomes.
In FIG. 7, on the line obtained by extending the saturated vapor pressure 6.0 mmHg line to the high temperature side and the concentration after dilution of the absorbent is 61 wt%, which is the same condition as in FIG. 4, an intersection point B ′ is obtained. The temperature at B ′ is 43 ° C. Therefore, TTD is 7K (= 43-36), and the logarithmic heat exchange temperature difference θm of the heat exchanger (22 in FIG. 2) under the condition is
It is 9.2K (= ((43-31)-(43-36)) / LN ((43-31) / (43-36)).
The logarithmic heat exchange temperature difference θm when the lithium bromide-water-1,4-dioxane-based working fluid according to the present invention is used is 11.3 K, whereas a conventional lithium bromide-water working fluid is used. Θm is 9.2K. Such a difference in the logarithm average heat exchange temperature difference is a difference in the heat transfer area of the heat exchanger 22 of the absorber 71 in FIG. Specifically, the heat transfer area when the lithium bromide-water-1,4-dioxane-based working fluid of the present invention is used is compared with the case where a conventional lithium bromide-water-based working fluid is used. , About 18% reduction is possible.
Among the heat exchangers housed in each device of the absorption chiller, the heat exchanger 22 installed in the absorber 71 is another heat exchanger (the heat exchangers 20, 21, This is a heat exchanger having a smaller size and a larger size. This is because the other heat exchangers (showing the heat exchangers 20, 21, and 23 in FIG. 2) are phenomena in which one of the heat transfer surfaces is accompanied by condensation or evaporation having a large heat transfer coefficient. On the other hand, the heat exchanger 22 is a heat transfer mode accompanied by an absorption phenomenon, and both of the heat transfer surfaces are liquid, and therefore the heat transfer coefficient is small.
In order to reduce the heat transfer area of the heat exchanger 22 of the absorber 71, various research and development have been performed as described above, but the lithium bromide-water-1,4-dioxane-based working medium according to the present invention is used. Thus, such a problem can be solved, and the overall size of the absorption refrigerator can be reduced. In various conventionally proposed heat transfer area reduction techniques, the effect can be remarkably enhanced by using the working medium of the present invention.
The features of the present invention in the diluter 2 have been described above. Next, the operational effects of the present invention in the concentrator 1 will be described with reference to FIGS. 4 and 7.
Cooling water is introduced from the system 202 into the heat exchanger 21 of the condenser 61 accommodated in the concentrator 1 shown in FIG. As the cooling water, the outflow water from the system 201 is usually used. Therefore, the cooling water inlet temperature of the heat exchanger 21 is 36 ° C., which is the cooling water temperature of the system 201 described above, and when the cooling water use temperature is 4K, the temperature flowing out of the system 203 is 40 ° C. is there. Since the general TTD value in the heat exchanger 21 is 5K, the temperature of the condenser 61 is 45 ° C. (= 40 + 5), and as shown in FIG. The saturation pressure at 45 ° C. of -1,4-dioxane is 93 mmHg, as indicated by point C in FIG.
Therefore, the concentrator (1 in FIG. 2) will operate under a pressure of 93 mmHg, and in order to concentrate the diluted absorbent solution (concentration 61 wt%) 5% to a 66% concentrated absorbent solution, the regenerator ( The temperature of 60) in FIG. The temperature is indicated by point D in FIG.
As shown in FIG. 2 above, the heat exchanger 20 of the regenerator 60 is supplied with steam, a high-temperature heat medium, or the like from the system 100 as a heating source, and an absorption solution that is uniformly dispersed in the heat exchanger 20. Heating to the aforementioned 97 ° C. to generate refrigerant vapor in the absorbing liquid, the vapor passes through the splash entrainment preventive device 80, contacts the heat exchanger 21 of the condenser 61, and condenses (C in FIG. 4). The refrigerant liquid is collected and collected at the bottom of the condenser 61. If the TTD in the heat exchanger 20 of the regenerator 60 is small, the heat source described above can be used even in a low temperature region, but the heat transfer area of the heat exchanger 20 increases. On the other hand, if the heat transfer area is reduced, the heat source cannot be used up to a low temperature range, but the temperature of the heat medium that is the heat source flowing in by the system 100 is required to be 97 ° C. or higher.
FIG. 7 shows an operating state in the case where a conventional lithium bromide-water-based working medium is used and the cooling water inlet and outlet temperatures are the same as those shown in FIG. Since the temperature of the cooling water and the TTD are the same as the values shown in FIG. 4, the condensation temperature of the water as the refrigerant is the same as 45 ° C., but the saturated vapor pressure with respect to the temperature is 72 mmHg. Indicated by C ′ in FIG. Therefore, the concentrator 1 shown in FIG. 2 operates under a pressure of 72 mmHg.
In order to obtain a concentrated absorbent having a concentration of 66 wt% under the same conditions as in FIG. 4, as can be seen from FIG. 7, the absorbent solution uniformly dispersed in the heat exchanger (20 in FIG. 2) Need to be heated. Therefore, the temperature of the heat medium as a heating source needs to be 103 ° C. or higher.
That is, the lower limit of the heating source temperature necessary for concentrating the absorbing solution is that the conventional lithium bromide-water working medium is obtained by using the lithium bromide-water-1,4-dioxane working medium of the present invention. It becomes possible to lower than the case where it is used, and it is possible to use a heat source in a lower temperature region that has been less useful in the prior art.
The fact that the temperature of the heating source can be reduced means that it is possible to use the heat that has been discarded without being used, and as described above, the exhaust gas from various engines and the heat of the cooling water, etc. It becomes possible to promote the system configuration for the cascade use of heat, which is an effective means of effectively using various types of waste heat.
Since the heat source temperature can be lowered in the working medium and the absorption refrigerator of the present invention, not only the heat can be effectively used, but also the effect of reducing the corrosion of the members constituting the absorption refrigerator. Played. The components of single absorption refrigerators are generally made of steel for containers, and copper for heat exchangers. Absorbents are generally highly corrosive, so various corrosion inhibitors are added to them. Has been. The corrosion phenomenon of such metal materials tends to become more severe as the temperature increases. Therefore, the fact that the temperature of the heating source can be lowered brings about an effect of reducing the corrosion phenomenon in the absorption refrigerator.
Furthermore, the specific volume of the steam (overheated state) passing through the splash entrainment prevention device 80 installed in the concentrator 1 shown in FIG. 2 is 14.5 m when the working medium of the present invention is used. 3 17.5m when using a conventional working medium. 3 / Kg, and the use of the working medium according to the present invention also has the effect of reducing the passage area of the splash entrainment prevention tool for the same reason as in the diluter 2 described above.
In this way, in FIG. 4, the absorbing medium is a cycle connecting these points in the order of D, G, E, B, H, F, and in FIG. 7, D ′, G ′, E ′, B The absorption refrigerator operates in a cycle connecting these points in the order of ', H' and F '.
The amount of heat of the heating source in the heat exchanger 20 in FIG. 2 is the total amount of the sensible heat rise between the HF points and the evaporation latent heat for concentration at the FD points shown in FIG. (This phenomenon is the same in FIG. 7, and the description in FIG. 7 is omitted.)
As described above, since the circulation ratio increases when the concentration change width of the absorbing solution is small, the amount of heat required for the increase in sensible heat between the HF points increases, and as a result, COP decreases. Conversely, when the concentration change width is increased, the heating source temperature rises. Therefore, as described with reference to FIG. 3, the design point is usually about 5 wt% for the concentration change width.
FIG. 5 is a Duhring diagram showing another embodiment of the present invention operated using the lithium bromide-water-1,4-dioxane-based working medium according to the present invention to obtain cold water having the same temperature as FIG. FIG. 9 shows a comparison with the operation situation of operating using the conventional lithium bromide-water based working medium of FIG.
As described above, water-1,4-dioxane, which is a refrigerant in the lithium bromide-water-1,4-dioxane-based working medium according to the present invention, has a higher vapor pressure than water, which is a refrigerant in the conventional working medium. Therefore, the operating pressure in the diluter is high. Therefore, it becomes easy to raise the cooling temperature in an absorber. The embodiment shown in FIG. 8 is an operation diagram when the concentration after dilution is 63 wt% and the concentration change width is 5 wt%. The concentration of the concentrated solution is 68 wt%.
By setting the concentration after dilution to 63 wt%, the heat exchanger (22 in FIG. 2) of the absorber (71 in FIG. 2) and the heat exchanger (21 in FIG. 2) of the condenser (61 in FIG. 2) The cooling temperature is 49 ° C. as indicated by point B in FIG. In general, assuming that the average atmospheric temperature in summer in Japan is about 32 ° C. at the maximum, the temperature difference from the aforementioned cooling temperature of 49 ° C. can be about 17 ° C.
Generally, in a heat exchanger that performs cooling by air, the heat transfer coefficient on the air side of the heat exchanger is extremely small compared to the heat transfer coefficient by a liquid such as water, and therefore a very large heat transfer area is required. Become. Conventionally, in order to solve this problem, fins and the like are provided on the air side of the heat transfer surface to increase the heat transfer area, leading to an extreme increase in size compared to a cooler using water.
However, according to the lithium bromide-water-1,4-dioxane-based working medium and the absorption refrigerator using the same according to the present invention, a temperature difference of about 17 ° C. can be secured as shown in FIG. It is possible to adopt an air cooling method without increasing the size of the exchanger, and such an air cooling method can be applied to both or one of the heat exchangers 22 and 21 shown in FIG. .
FIG. 8 shows the situation when the concentration of the absorbing liquid is operated between 63 wt% and 68 wt% in the same manner as in FIG. 5 in order to perform the same air cooling with a conventional lithium bromide-water working medium. It was. As is apparent from FIG. 8, the crystal line A is touched at the point E ′ during the cycle. That is, the absorption liquid crystallizes and solidifies at the point E ′, and the absorption refrigerator becomes inoperable. In order to avoid this, the concentration of the absorbing solution after concentration is suppressed to about 66 wt%, but the concentration difference decreases to 3 wt%, which results in a reduction in COP.
On the other hand, according to the lithium bromide-water-1,4-dioxane-based working medium of the present invention, the point E in the cycle is not in contact with the crystal line A, as is apparent from FIG. Therefore, there is no crystallization, and an air-cooled absorption refrigerator that can be operated while maintaining a high COP can be provided.
FIG. 6 is a Düring diagram showing another embodiment using the lithium bromide-water-1,4-dioxane working medium according to the present invention. Unlike water, which is a conventional refrigerant, water-1,4-dioxane, which is a refrigerant of a working medium, has a phenomenon that does not freeze even below freezing point, a so-called freezing point depression characteristic. It was −6 ° C. That is, by using the lithium bromide-water-1,4-dioxane-based working medium according to the present invention, it is possible to obtain cold below freezing with a single effect absorption refrigerator. The operation will be described with reference to FIG.
As is well known, Oyashio, which is a cold current, flows along the Pacific coast of Hokkaido and Tohoku in Japan, and the surface temperature of seawater has been measured to be about 20 ° C. even in summer. Therefore, FIG. 6 shows an operating state in which the lithium bromide-water-1,4-dioxane-based working medium of the present invention is applied using the seawater as cooling water.
As shown in FIG. 6, since the saturation pressure at −6 ° C., which is the freezing point of water-1,4-dioxane, which is the refrigerant, is 4.0 mmHg, the point A is determined. Thus, the diluter (2 in FIG. 2) is activated under this pressure. Here, seawater at about 20 ° C. is introduced into the heat exchanger (22 in FIG. 2) of the absorber (71 in FIG. 2) (200 in FIG. 2), and discharged outside the system at 23 ° C. increased by 3K (FIG. 2). 201) and returning to the sea, and assuming that TTD = 5K of the heat exchanger (22 in FIG. 2) is the design point, as shown by point B in FIG. Is 28 ° C. (= 23 + 5), and the concentration is 58%.
At this time, the heat exchanger (23 in FIG. 2) of the evaporator (70 in FIG. 2) can obtain a cold temperature of −3 ° C. when TTD = 3K is a design point. That is, in the single effect absorption refrigerator, cold heat below freezing point is obtained. This is a conventional single-effect absorption refrigerator using a lithium bromide-water working medium, which cannot be obtained because water as a refrigerant freezes.
Furthermore, seawater at about 20 ° C. is introduced into the heat exchanger (21 in FIG. 2) (202 in FIG. 2) of the condenser (61 in FIG. 2) as in the above-described conditions, and the system is increased at 3 ° C. to 23 ° C. If it is discharged outside (203 in FIG. 2) and returned to the sea, and the TTD in the condenser (61 in FIG. 2) is designed to be 5K, the temperature of the condenser (1 in FIG. 2) is 28 ° C. (= 23 + 5) Since the saturation pressure of the refrigerant at 28 ° C. is 36 mmHg, the point C shown in FIG. 6 is determined, and the concentrator (1 in FIG. 2) operates under a pressure of 36 mmHg.
In the regenerator (60 in FIG. 2), in order to concentrate 58 wt% absorption liquid (F point in FIG. 6) to 63 wt% so as to ensure a concentration difference of 5 wt%, as shown by D point in FIG. The temperature becomes 70 ° C. Therefore, in the present embodiment, the heat source temperature necessary for heating and concentrating the absorbing solution may be 70 ° C. or higher. In other words, it has become possible to more effectively utilize low-grade waste heat that has been discarded without any utility value.

本発明の吸収冷凍機用作動媒体、吸収冷凍機および冷熱熱媒体製造方法は上述のように構成されているため、吸収器の大型化を抑制することによって、吸収冷凍機の小型化・高性能化を実現して、かつ、標準仕様温度(7℃)の冷熱熱媒体を容易に製造することができる。また、高品位の熱エネルギー・高温熱源を用いず、100℃以下の低温熱源により冷熱熱媒体を容易に製造することができる。さらに、複雑な手段と機器構成を用いずに、氷点下の冷熱熱媒体を容易に得ることもできる。
特に本発明によれば、臭化リチウム−水−1,4−ジオキサン系作動媒体を用いる一重効用吸収冷凍機において、以下の各効果を有する。
〔1〕上述のとおり、吸収冷凍機の小型化、特に吸収器内に収納してある熱交換器の大幅な小型化が可能であるため、熱交換器の主な素材である銅等の使用量を大幅に削減でき、吸収冷凍機の低廉化が可能となる。
〔2〕飛沫同伴防止具を通過する蒸気の比容積を低減できるため、結果として、希釈器ならびに濃縮器の小型化が可能となる。
〔3〕吸収器および凝縮器の両方、もしくはいずれか片方を空気冷却方式とすることが可能であり、従来の冷却塔設備に係る設計、操作上の煩雑さを解消することができる。
〔4〕上述のとおり、従来の吸収冷凍機では使用できなかった低い温度領域の熱を利用することが可能となり、排熱の有効利用が図れるとともに、太陽熱集熱器の集熱効率が高い温度の温水を利用できる。
Since the working medium for an absorption refrigerator, the absorption refrigerator, and the cooling / heating medium manufacturing method of the present invention are configured as described above, the absorption refrigerator can be reduced in size and performance by suppressing the increase in the size of the absorber. In addition, it is possible to easily manufacture a cooling / heating medium having a standard specification temperature (7 ° C.). In addition, a cooling / heating medium can be easily manufactured using a low-temperature heat source of 100 ° C. or less without using high-grade heat energy / high-temperature heat source. Furthermore, a cold heat medium below freezing can be easily obtained without using complicated means and equipment configuration.
In particular, according to the present invention, a single effect absorption refrigerator using a lithium bromide-water-1,4-dioxane-based working medium has the following effects.
[1] As mentioned above, the absorption refrigerator can be downsized, especially the heat exchanger housed in the absorber can be greatly downsized, so the use of copper as the main material of the heat exchanger The amount can be greatly reduced, and the absorption refrigerator can be made cheaper.
[2] Since the specific volume of the vapor passing through the splash entrainment prevention device can be reduced, the diluter and the concentrator can be downsized as a result.
[3] Both the absorber and the condenser, or one of them can be air-cooled, and the design and operation complexity associated with the conventional cooling tower facility can be eliminated.
[4] As described above, it is possible to use heat in a low temperature region that could not be used in the conventional absorption refrigerator, and effective use of exhaust heat can be achieved, and the heat collection efficiency of the solar heat collector is high. Hot water is available.

Claims (21)

冷媒が水であり、吸収液がリチウム化合物を第一成分とする系からなるか、または、これに加えてアルカリ金属もしくはアルカリ土類金属化合物の少なくともいずれか一方を第二成分以降として含有する系からなる吸収冷凍機用作動媒体であって、該冷媒の系には、水との間で共沸現象を呈する有機物が添加されていることを特徴とする、吸収冷凍機用作動媒体。The refrigerant is water, and the absorption liquid is a system containing a lithium compound as a first component, or a system containing at least one of an alkali metal or alkaline earth metal compound as a second component or more in addition to this. A working medium for an absorption refrigeration machine, comprising: an organic substance exhibiting an azeotropic phenomenon with water added to the refrigerant system. 前記有機物は、水に対してそのクラスター構造を細分化し五員体構造水の形成を促進させる機能を有するものであることを特徴とする、1.に記載の吸収冷凍機用作動媒体。The organic substance has a function of subdividing its cluster structure with respect to water and promoting the formation of pentahedral water. The working medium for absorption refrigerators described in 1. 前記有機物が1,4−ジオキサンであることを特徴とする、2.に記載の吸収冷凍機用作動媒体。1. The organic substance is 1,4-dioxane, The working medium for absorption refrigerators described in 1. 前記リチウム化合物が、リチウムハロゲン化物であることを特徴とする、1.ないし3.のいずれかに記載の吸収冷凍機用作動媒体。The lithium compound is a lithium halide. Or 3. The working medium for absorption refrigerators in any one of Claims 1-3. 前記リチウムハロゲン化物が臭化リチウムであり、すなわち臭化リチウム−水系の作動媒体を形成していることを特徴とする、4.に記載の吸収冷凍機用作動媒体。3. The lithium halide is lithium bromide, that is, forms a lithium bromide-water working medium. The working medium for absorption refrigerators described in 1. 1,4−ジオキサン添加量が、水を第一成分としたモル分率で、0.80以上であることを特徴とする、3.ないし5.のいずれかに記載の吸収冷凍機用作動媒体。2. The amount of 1,4-dioxane added is 0.80 or more in terms of a mole fraction containing water as the first component; Or 5. The working medium for absorption refrigerators in any one of Claims 1-3. 1,4−ジオキサン添加量が、水を第一成分としたモル分率で、0.93以上0.97以下であることを特徴とする、6.に記載の吸収冷凍機用作動媒体。5. The amount of 1,4-dioxane added is 0.93 or more and 0.97 or less in terms of a molar fraction with water as the first component, The working medium for absorption refrigerators described in 1. 再生器と凝縮器とを内蔵する吸収液の濃縮器(以下、単に「濃縮器」という。)、ならびに蒸発器と吸収器とを内蔵する吸収液の希釈器(以下、単に「希釈器」という。)を有し、該再生器において吸収液を加熱して冷媒を蒸発させることによって該吸収液が濃縮された濃厚吸収液を得、該凝縮器で前記蒸発した冷媒蒸気を冷却して冷媒液とし、高温の前記濃厚吸収液を後述する低温の希薄吸収液と熱交換した後該吸収器に導入させるとともに、前記冷媒液を該蒸発器に導入させ、該濃厚吸収液を該吸収器で冷却することによって該蒸発器の冷媒液を蒸発させ、それにより発生した冷媒蒸気を該吸収器内の濃厚吸収液に吸収させ、それにより希釈された希薄吸収液を溶液ポンプ等の手段で該吸収器内から抜き出し、高温の前記濃厚吸収液と熱交換して昇温後、該再生器に導入する一方、前記蒸発器における冷媒の蒸発潜熱で冷却された熱媒体(以下、「冷水」ともいう。)を冷却需要先に供給し、需要先で昇温された冷水は再び該蒸発器で冷却することにより需要先を冷却する吸収冷凍機であって、該吸収冷凍機は、標準仕様の冷却塔(冷却塔出口温度31℃)を用いて標準仕様温度(7℃)の冷水を発生させることができ、該吸収器の熱交換器における前記冷却水出口の温度と、該吸収器出口における吸収液の温度差が5K以上であることを特徴とする、1.ないし7.のいずれかに記載の作動媒体を用いた吸収冷凍機。Absorber concentrator containing a regenerator and condenser (hereinafter simply referred to as “concentrator”), as well as an absorbent diluter containing an evaporator and absorber (hereinafter simply referred to as “diluter”). In the regenerator, the absorption liquid is heated to evaporate the refrigerant to obtain a concentrated absorption liquid in which the absorption liquid is concentrated. The evaporated refrigerant vapor is cooled in the condenser to cool the refrigerant liquid. The high-temperature concentrated absorbent is heat-exchanged with a low-temperature dilute absorbent described below and then introduced into the absorber, and the refrigerant liquid is introduced into the evaporator, and the concentrated absorbent is cooled by the absorber. By evaporating the refrigerant liquid of the evaporator, the refrigerant vapor generated thereby is absorbed by the concentrated absorbent in the absorber, and the diluted absorbent diluted thereby is absorbed by the means such as a solution pump. Take out from the inside, the high concentration absorbent and heat In other words, after the temperature rises, the heat medium cooled by the latent heat of vaporization of the refrigerant in the evaporator (hereinafter also referred to as “cold water”) is supplied to the cooling customer while being introduced into the regenerator. The cooled chilled water is an absorption chiller that cools the customer by cooling again with the evaporator, and the absorption chiller is standard using a cooling tower of standard specifications (cooling tower outlet temperature 31 ° C.). Cold water having a specified temperature (7 ° C.) can be generated, and the temperature difference between the cooling water outlet in the heat exchanger of the absorber and the temperature of the absorbent at the absorber outlet is 5K or more. 1. Or 7. An absorption refrigerator using the working medium according to any one of the above. 前記蒸発器と吸収器とが分離して設けられている希釈器において、発生した冷媒蒸気への飛沫の同伴を防止するために該蒸発器内に設けられる飛沫同伴防止具を通過する該冷媒蒸気の流速を低減させることができ、それにより該飛沫同伴防止具を簡素化または小型化できることを特徴とする、8.に記載の吸収冷凍機。In the diluter in which the evaporator and the absorber are separately provided, the refrigerant vapor that passes through the splash entrainment prevention device provided in the evaporator in order to prevent the entrainment of the splash on the generated refrigerant vapor 7. The flow rate of the droplets can be reduced, whereby the splash entrainment prevention device can be simplified or miniaturized. Absorption refrigerator as described in. 前記吸収器の冷却手段は、冷却塔で冷却された冷却水を用いることなく大気温度の空気によりなされる空気冷却手段であることを特徴とする、8.または9.に記載の吸収冷凍機。The cooling means of the absorber is an air cooling means made by air at an atmospheric temperature without using cooling water cooled by a cooling tower. Or 9. Absorption refrigerator as described in. 前記凝縮器の冷却手段は、冷却塔で冷却された冷却水を用いることなく大気温度の空気によりなされる空気冷却手段であることを特徴とする、8.ないし10.のいずれかに記載の吸収冷凍機。The cooling means of the condenser is an air cooling means made by air at an atmospheric temperature without using cooling water cooled by a cooling tower. Or 10. The absorption refrigerator according to any one of the above. 前記再生器の伝熱面積を増大することなく、該再生器における吸収液濃縮のための加熱熱源温度が90℃以下であることを特徴とする、8.ないし11.のいずれかに記載の吸収冷凍機。7. The heating heat source temperature for absorbing liquid concentration in the regenerator is 90 ° C. or less without increasing the heat transfer area of the regenerator, To 11. The absorption refrigerator according to any one of the above. 前記加熱熱源温度が85℃以下であることを特徴とする、12.に記載の吸収冷凍機。The heating heat source temperature is 85 ° C. or lower, 12. Absorption refrigerator as described in. 前記加熱熱源温度が70℃以上80℃以下であることを特徴とする、13.に記載の吸収冷凍機。12. The heating heat source temperature is 70 ° C. or higher and 80 ° C. or lower, Absorption refrigerator as described in. 吸収液の濃縮が一段で行われる一重効用吸収冷凍機であって、前記再生器、凝縮器、吸収器、および蒸発器のいずれの伝熱面積をも増大させることなく、氷点下の温度の冷水を発生させることが可能なことを特徴とする、12.ないし14.のいずれかに記載の吸収冷凍機。It is a single effect absorption refrigerator in which the absorption liquid is concentrated in one stage, and the cold water having a temperature below freezing point is increased without increasing the heat transfer area of any of the regenerator, condenser, absorber, and evaporator. 11. It can be generated, Or 14. The absorption refrigerator according to any one of the above. 再生器ならびに凝縮器を内蔵する濃縮器と、および、蒸発器ならびに吸収器を内蔵する希釈器と、からなる吸収冷凍機を用いて行う冷熱熱媒体製造方法であって、該製造方法は、
(P−I)再生器において吸収液を加熱して冷媒を蒸発させて冷媒蒸気とし、それによって該吸収液が濃縮された濃厚吸収液を得る、吸収液再生過程と、
(P−II)前記吸収液再生過程において蒸発した冷媒蒸気を凝縮器で冷却して冷媒液とする、冷媒蒸気凝縮過程と、
(P−III)前記吸収液再生過程において得られた高温の濃厚吸収液を、熱交換器において、後述する低温の希薄吸収液と熱交換した後吸収器に導入させる、再生吸収液還送過程と、
(P−IV)前記冷媒蒸気凝縮過程において得られた冷媒液を蒸発器に導入するとともに、該濃厚吸収液を吸収器で冷却する(後記冷媒蒸気吸収過程)ことによって蒸発器の冷媒液を蒸発させる、冷媒液蒸発過程と、
(P−V)前記冷媒液蒸発過程において発生した冷媒蒸気を、吸収器内の濃厚吸収液に吸収させる、冷媒蒸気吸収過程と、
(P−VI)前記冷媒蒸気吸収過程において希釈されて希薄吸収液となった吸収液を、溶液ポンプ等の手段で吸収器内から抜き出し、高温の前記濃厚吸収液と熱交換して昇温後再生器に導入する、希薄吸収液移送過程と、
(P−VII)前記冷媒液蒸発過程において蒸発した冷媒の蒸発潜熱で製造された冷熱を、冷熱需要先から還送される昇温した熱媒体によって冷却需要先に供給する冷熱熱媒体製造供給過程と、
の各過程からなり、かつ、
(C−VIII)作動媒体としては、冷媒が水であり吸収液が臭化リチウムである臭化リチウム−水系の作動媒体に、1,4−ジオキサンを添加した作動媒体を用い、
(C−IX)吸収器および凝縮器の冷却のための冷却水供給には標準仕様の冷却塔(冷却塔出口温度31℃)が用いられ、
(C−X)吸収器の熱交換器における前記冷却水出口の温度と、吸収器出口における吸収液の温度差が5K以上である、
条件下において、標準仕様温度(7℃)の冷熱熱媒体を製造することのできることを特徴とする、冷熱熱媒体製造方法。
A cooling / heating medium manufacturing method performed using an absorption refrigerator comprising a regenerator and a concentrator containing a condenser, and a diluter containing an evaporator and an absorber, the manufacturing method comprising:
(PI) Absorption liquid regeneration process in which the absorption liquid is heated in the regenerator to evaporate the refrigerant to form refrigerant vapor, thereby obtaining a concentrated absorption liquid in which the absorption liquid is concentrated;
(P-II) a refrigerant vapor condensation process in which the refrigerant vapor evaporated in the absorption liquid regeneration process is cooled by a condenser to obtain a refrigerant liquid;
(P-III) Regeneration absorption liquid return process in which the high-temperature concentrated absorption liquid obtained in the absorption liquid regeneration process is introduced into the absorber after heat exchange with a low-temperature dilute absorption liquid described later in the heat exchanger. When,
(P-IV) The refrigerant liquid obtained in the refrigerant vapor condensation process is introduced into the evaporator, and the concentrated absorbent is cooled by the absorber (refrigerant vapor absorption process described later) to evaporate the refrigerant liquid in the evaporator. The refrigerant liquid evaporation process,
(P-V) a refrigerant vapor absorption process in which the refrigerant vapor generated in the refrigerant liquid evaporation process is absorbed by the concentrated absorbent in the absorber;
(P-VI) The absorption liquid diluted in the refrigerant vapor absorption process to become a diluted absorption liquid is extracted from the absorber by means of a solution pump or the like, and after heat exchange with the high-temperature concentrated absorption liquid, the temperature is raised. The dilute absorbent transfer process to be introduced into the regenerator,
(P-VII) Chilled heat medium manufacturing and supplying process for supplying the cooling heat produced by the latent heat of vaporization of the refrigerant evaporated in the refrigerant liquid evaporation process to the cooling demand destination by the heated heat medium returned from the cold demand destination When,
And each process
(C-VIII) As a working medium, a working medium in which 1,4-dioxane is added to a lithium bromide-water working medium in which the refrigerant is water and the absorbing liquid is lithium bromide,
(C-IX) Standard cooling tower (cooling tower outlet temperature 31 ° C.) is used to supply cooling water for cooling the absorber and condenser.
(C-X) The temperature difference between the cooling water outlet in the heat exchanger of the absorber and the temperature of the absorbing liquid at the absorber outlet is 5K or more.
A method for producing a cooling and heating medium, characterized in that a cooling and heating medium having a standard specification temperature (7 ° C) can be produced under conditions.
16.に記載の冷熱熱媒体製造方法であって、
(C−XI)前記冷媒蒸気吸収過程または前記冷媒蒸気凝縮過程の両方若しくは少なくともいずれか一方における冷却を、大気温度の空気によりなされる空気冷却手段とする条件下において、標準仕様温度(7℃)の冷熱熱媒体製造が行われることを特徴とする、冷熱熱媒体製造方法。
16. A method for producing a cooling / heating medium according to claim 1,
(C-XI) Standard specification temperature (7 ° C.) under the condition that the cooling in both or at least one of the refrigerant vapor absorption process and the refrigerant vapor condensation process is air cooling means performed by air at ambient temperature. A method for producing a cooling / heating medium is provided.
16.または17.に記載の冷熱熱媒体製造方法であって、
(C−XII)前記吸収液再生過程における吸収液濃縮のための加熱熱源温度を70℃以上90℃以下とする条件下において、標準仕様温度(7℃)の冷熱熱媒体製造が行われることを特徴とする、冷熱熱媒体製造方法。
16. Or 17. A method for producing a cooling / heating medium according to claim 1,
(C-XII) Under the condition that the heating heat source temperature for absorption liquid concentration in the absorption liquid regeneration process is 70 ° C. or higher and 90 ° C. or lower, the production of a cold heat medium at a standard specification temperature (7 ° C.) A method for producing a cold / hot heat medium, which is characterized.
16.に記載の冷熱熱媒体製造方法であって、
(C−XIII)前記吸収液再生過程における吸収液の濃縮が一段で行われ、
(C−IX)前記冷媒蒸気吸収過程および冷媒蒸気凝縮過程での冷却に用いる冷却水の冷却塔出口温度を20℃とする、
条件下において、氷点下の温度の冷熱熱媒体製造が行われることを特徴とする、冷熱熱媒体製造方法。
16. A method for producing a cooling / heating medium according to claim 1,
(C-XIII) Absorption liquid concentration in the absorption liquid regeneration process is performed in one stage,
(C-IX) The cooling tower outlet temperature of cooling water used for cooling in the refrigerant vapor absorption process and the refrigerant vapor condensation process is set to 20 ° C.
A method for producing a cooling / heating medium, wherein the production of a cooling / heating medium at a temperature below freezing point is performed under conditions.
16.に記載の冷熱熱媒体製造方法であって、
(C−X)前記冷媒蒸気吸収過程および冷媒蒸気凝縮過程での冷却に係る冷却塔における冷却水出口温度を31℃、冷却水の使用温度差を5K、冷却塔への冷却水戻り温度を40℃とし、
(C−XI)前記再生吸収液還送過程および希薄吸収液移送過程に用いられる熱交換器の熱交換終端温度差(以下、「TTD」という。)を3Kとし、
(C−XII)吸収液(66wt%)の希釈後の濃度を61wt%とする場合の熱交換器の温度を45℃とし、
(C−XIII)前記冷媒液蒸発過程および冷媒蒸気吸収過程に係る希釈器内の操作圧力を8.5mmHgとし、
(C−XIV)前記冷媒液蒸発過程における蒸発器内の温度を4℃とし、
(C−XV)冷水入口温度を12℃とする、
条件下において、標準仕様温度(7℃)の冷熱熱媒体製造が行われることを特徴とする、冷熱熱媒体製造方法。
16. A method for producing a cooling / heating medium according to claim 1,
(C-X) The cooling water outlet temperature in the cooling tower related to the cooling in the refrigerant vapor absorption process and the refrigerant vapor condensation process is 31 ° C., the use temperature difference of the cooling water is 5K, and the cooling water return temperature to the cooling tower is 40 ℃,
(C-XI) The heat exchange termination temperature difference (hereinafter referred to as “TTD”) of the heat exchanger used in the regeneration absorbent return process and the diluted absorbent transfer process is 3K,
(C-XII) The temperature of the heat exchanger when the concentration after dilution of the absorption liquid (66 wt%) is 61 wt% is 45 ° C.,
(C-XIII) The operating pressure in the diluter according to the refrigerant liquid evaporation process and the refrigerant vapor absorption process is 8.5 mmHg,
(C-XIV) The temperature in the evaporator in the refrigerant liquid evaporation process is set to 4 ° C.,
(C-XV) The cold water inlet temperature is 12 ° C.
A method for producing a cooling / heating medium, wherein the production of a cooling / heating medium at a standard specification temperature (7 ° C.) is performed under conditions.
16.に記載の冷熱熱媒体製造方法であって、
(C−XIII)前記吸収液再生過程における吸収液の濃縮が一段で行われ、
(C−XVI)前記冷媒蒸気吸収過程および冷媒蒸気凝縮過程での冷却に用いる冷却水の入口温度を20℃、系外への排出温度を23℃とし、
(C−XVII)前記冷媒蒸気吸収過程に係る吸収器の熱交換終端温度差(以下、「TTD」という。)を5Kとし、
(C−XVIII)前記冷媒蒸気凝縮過程に係る凝縮器の熱交換終端温度差(以下、「TTD」という。)を5Kとし、
(C−XIX)吸収液の濃縮後の濃度を63wt%とし、
(C−XX)前記吸収液再生過程および冷媒蒸気凝縮過程に係る濃縮器内の操作圧力を36mmHgとし、
(C−XXI)前記吸収液再生過程における熱源温度を70℃以上とする、
条件下において、氷点下の温度の冷熱熱媒体製造が行われることを特徴とする、冷熱熱媒体製造方法。
16. A method for producing a cooling / heating medium according to claim 1,
(C-XIII) Absorption liquid concentration in the absorption liquid regeneration process is performed in one stage,
(C-XVI) The inlet temperature of the cooling water used for cooling in the refrigerant vapor absorption process and the refrigerant vapor condensation process is 20 ° C., the discharge temperature to the outside of the system is 23 ° C.,
(C-XVII) The heat exchange termination temperature difference (hereinafter referred to as “TTD”) of the absorber related to the refrigerant vapor absorption process is set to 5K,
(C-XVIII) The heat exchange termination temperature difference (hereinafter referred to as “TTD”) of the condenser in the refrigerant vapor condensation process is set to 5K,
The concentration after concentration of the (C-XIX) absorbent is 63 wt%,
(C-XX) The operation pressure in the concentrator related to the absorption liquid regeneration process and the refrigerant vapor condensation process is set to 36 mmHg,
(C-XXI) The heat source temperature in the absorption liquid regeneration process is set to 70 ° C. or higher.
A method for producing a cooling / heating medium, wherein the production of a cooling / heating medium at a temperature below freezing point is performed under conditions.
JP2005504231A 2003-03-28 2004-03-29 Absorption chiller working medium, absorption chiller, and method for producing cooling and heating medium Pending JPWO2004087830A1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2003091384 2003-03-28
JP2003091384 2003-03-28
PCT/JP2004/004468 WO2004087830A1 (en) 2003-03-28 2004-03-29 Operating medium for absorption refrigerator, absorption refrigerator and process for producing cold heat heating medium

Publications (1)

Publication Number Publication Date
JPWO2004087830A1 true JPWO2004087830A1 (en) 2006-07-06

Family

ID=33127282

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005504231A Pending JPWO2004087830A1 (en) 2003-03-28 2004-03-29 Absorption chiller working medium, absorption chiller, and method for producing cooling and heating medium

Country Status (2)

Country Link
JP (1) JPWO2004087830A1 (en)
WO (1) WO2004087830A1 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4744330B2 (en) * 2005-03-11 2011-08-10 株式会社コベルコ マテリアル銅管 Heat transfer tube for falling film evaporator and method of use
WO2010113276A1 (en) * 2009-03-31 2010-10-07 本田技研工業株式会社 Cooling liquid composition
CN103175332B (en) * 2013-04-07 2015-01-07 东南大学 Two-stage absorption refrigeration circulation system based on double working pairs and refrigeration method thereof
JP6325951B2 (en) * 2014-09-11 2018-05-16 日立ジョンソンコントロールズ空調株式会社 Working medium for absorption refrigerator and absorption refrigerator using the same
JP6992234B2 (en) * 2017-07-27 2022-01-13 学校法人八戸工業大学 Liquid composition measuring device and liquid composition measuring method in absorption chiller

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61153353A (en) * 1984-12-27 1986-07-12 株式会社荏原製作所 Absorption refrigerator
JPH10280122A (en) * 1997-04-02 1998-10-20 Hitachi Ltd Manufacturing method of absorption refrigerator
JPH116664A (en) * 1997-06-17 1999-01-12 Daikin Ind Ltd Air-cooled absorption refrigeration system
JP2001208443A (en) * 2000-01-25 2001-08-03 Sanyo Electric Co Ltd Absorption freezer
JP2001263852A (en) * 2000-03-16 2001-09-26 Sanyo Electric Co Ltd Absorption refrigerating machine

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11237137A (en) * 1998-02-23 1999-08-31 Daikin Ind Ltd Absorption refrigeration equipment

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61153353A (en) * 1984-12-27 1986-07-12 株式会社荏原製作所 Absorption refrigerator
JPH10280122A (en) * 1997-04-02 1998-10-20 Hitachi Ltd Manufacturing method of absorption refrigerator
JPH116664A (en) * 1997-06-17 1999-01-12 Daikin Ind Ltd Air-cooled absorption refrigeration system
JP2001208443A (en) * 2000-01-25 2001-08-03 Sanyo Electric Co Ltd Absorption freezer
JP2001263852A (en) * 2000-03-16 2001-09-26 Sanyo Electric Co Ltd Absorption refrigerating machine

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
JPN7010001418, Masanari KUDO et al., "Thermodynamics properties of LiBr−H2O−1,4−dioxane Solution", The Bulletin of H.I.T., 2002, Vol.21, p53−61 *

Also Published As

Publication number Publication date
WO2004087830A1 (en) 2004-10-14

Similar Documents

Publication Publication Date Title
JP4101373B2 (en) Heat absorption system
JPH07139844A (en) Absorption refrigerator
JPWO2004087830A1 (en) Absorption chiller working medium, absorption chiller, and method for producing cooling and heating medium
JP2012068019A (en) Absorption refrigerating machine
JP2011196580A (en) Absorbing liquid for absorption refrigeration machine
JP2007333342A (en) Multi-effect absorption refrigerating machine
KR101127521B1 (en) Single-effect, double stage generator, hot water driven absorption chiller
JP3715157B2 (en) 2-stage double-effect absorption refrigerator
JP5260895B2 (en) Absorption refrigerator
JP2668063B2 (en) Absorbent composition for absorption air conditioner
JPH04309756A (en) Mixed absorbing liquid and absorption heat exchanger using the same liquid
JP3407659B2 (en) Air conditioning equipment
JP3451237B2 (en) 2-stage double effect absorption refrigerator
JP2004198087A (en) Absorption refrigerating device, and absorption refrigerating system
JPS5832301B2 (en) absorption refrigerator
JPS6356918B2 (en)
JPS5944498B2 (en) Exhaust heat utilization equipment
JP2000319646A (en) Absorption liquid for absorption refrigerator and absorption refrigerator
JPS6356915B2 (en)
Chin et al. An Effect on the Solution Crystallization Temperature Difference and Cooling Capacity of the Absorption Chiller by a Solution Cooler in the Absorber
KR100381373B1 (en) Absorbent solution composition for use with absorption refrigeration and heating apparatus
JP2004156815A (en) Absorption type energy storage refrigerating system
JPS5918354A (en) Absorption cold and hot water machine
JPH04143555A (en) Absorption type refrigerating plant and controlling method thereof
JPS6249539B2 (en)

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070312

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100513

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20101025