JP3448011B2 - Manufacturing method of polarizing film - Google Patents

Manufacturing method of polarizing film

Info

Publication number
JP3448011B2
JP3448011B2 JP2000123890A JP2000123890A JP3448011B2 JP 3448011 B2 JP3448011 B2 JP 3448011B2 JP 2000123890 A JP2000123890 A JP 2000123890A JP 2000123890 A JP2000123890 A JP 2000123890A JP 3448011 B2 JP3448011 B2 JP 3448011B2
Authority
JP
Japan
Prior art keywords
film
pva
width
stretching
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2000123890A
Other languages
Japanese (ja)
Other versions
JP2001305347A (en
Inventor
孝徳 磯▲ざき▼
直樹 藤原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kuraray Co Ltd
Original Assignee
Kuraray Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kuraray Co Ltd filed Critical Kuraray Co Ltd
Priority to JP2000123890A priority Critical patent/JP3448011B2/en
Publication of JP2001305347A publication Critical patent/JP2001305347A/en
Application granted granted Critical
Publication of JP3448011B2 publication Critical patent/JP3448011B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Polarising Elements (AREA)
  • Liquid Crystal (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Shaping By String And By Release Of Stress In Plastics And The Like (AREA)

Description

【発明の詳細な説明】 【0001】 【発明の属する技術分野】本発明は、大面積においても
均一で良好な光学性能を発揮し、偏光性能にも優れた大
画面液晶ディスプレイ用素材として好適な偏光フィルム
の製造法に関するものである。 【0002】 【従来の技術】光の透過および遮蔽機能を有する偏光板
は、光のスイッチング機能を有する液晶とともに、液晶
ディスプレイ(LCD)の基本的な構成要素である。こ
のLCDの適用分野も、開発初期の頃の電卓および腕時
計などの小型機器から、近年では、ラップトップパソコ
ン、ワープロ、液晶カラープロジェクター、車載用ナビ
ゲーションシステム、液晶テレビ等の広範囲に広がり、
大画面で使用されるようになってきたことから、従来品
以上に大画面における光学性能の均一性に優れた偏光板
が求められている。 【0003】偏光板は、一般にポリビニルアルコールフ
ィルム(以下、これを「PVAフィルム」、これの原料
であるポリビニルアルコール系重合体を「PVA」と略
記することがある)を一軸延伸し染色して得られた偏光
フィルムの両面に、三酢酸セルロース(TAC)膜など
の保護膜を貼り合わせた構成となっている。このとき、
均一で優れた偏光性能を有する偏光板を得るためには、
均一厚さのPVAフィルムを用いること、二色性染料を
均一に染めること、ムラなく貼り合わせることなど多く
の注意点があるが、PVAフィルムを長さ方向に均一に
延伸することが最も重要である。 【0004】前記一軸延伸には、大きく分けて自由幅一
軸延伸と固定幅一軸延伸の二つの方法があるが、光学用
偏光フィルムを得る場合には、優れた光学性能が得られ
ることから、主に自由幅一軸延伸法が行われている。 【0005】 【発明が解決しようとする課題】しかし、自由幅一軸延
伸は、固定幅一軸延伸に比べて優れた偏光性能が得られ
る利点があるが、延伸に伴いネックインと呼ばれる幅方
向の収縮が起こり、幅方向に厚さムラが発生する。その
ため、得られた偏光フィルムの幅方向に対して中心部付
近の狭い範囲では、偏光性能は非常に良好であり光学性
能も比較的均一であるが、幅方向全体にわたって光学性
能が均一な偏光フィルムは得られにくい。このため従来
では、幅広の偏光フィルムを得るとき、これを圧延する
ことでネックイン防止を行っていたが、偏光性能も光学
性能の均一性も不充分であった。 【0006】そこで、本発明の目的は、幅方向全体にわ
たって均一で良好な光学性能を発揮し、偏光性能にも優
れている大画面液晶ディスプレイ用素材として好適な偏
光フィルムの製造方法を提供することにある。 【0007】 【課題を解決するための手段】上記目的を達成するた
め、本発明にかかる偏光フィルムの製造法は、フィルム
幅が3.5m以上6m以下、厚さ精度が10μm以下の
PVAフィルムを、ロール方式により長さ方向に4倍以
上に自由幅一軸延伸させることを特徴とする。 【0008】 【発明の実施の形態】以下、本発明について詳細に説明
する。本発明の偏光フィルムの素材であるPVAフィル
ムを構成するポリビニルアルコール系重合体(PVA)
としては、ビニルエステル系モノマーを重合して得られ
たビニルエステル系重合体をけん化し、ビニルエステル
単位をビニルアルコール単位としたものを用いることが
できる。このビニルエステル系モノマーとしては、例え
ば、ギ酸ビニル、酢酸ビニル、プロピオン酸ビニル、バ
レリン酸ビニル、ラウリン酸ビニル、ステアリン酸ビニ
ル、安息香酸ビニル、ピバリン酸ビニル、バーサティッ
ク酸ビニル等を挙げることができ、これらのなかでも酢
酸ビニルが好ましい。 【0009】ビニルエステル系モノマーを重合させる際
には、必要に応じて共重合可能な他のモノマーを、本発
明の趣旨を損なわない範囲内(好ましくは15モル%以
下、より好ましくは5モル%以下の割合)で共重合させ
ることもできる。 【0010】このようなビニルエステル系モノマーと共
重合可能なモノマーとしては、例えば、エチレン、プロ
ピレン、1−ブテン、イソブテンなどのオレフィン類;
アクリル酸およびその塩;アクリル酸メチル、アクリル
酸エチル、アクリル酸n−プロピル、アクリル酸i−プ
ロピル、アクリル酸n−ブチル、アクリル酸i−ブチ
ル、アクリル酸t−ブチル、アクリル酸2−エチルへキ
シル、アクリル酸ドデシル、アクリル酸オクタデシル等
のアクリル酸エステル類;メタクリル酸およびその塩;
メタクリル酸メチル、メタクリル酸エチル、メタクリル
酸n−プロピル、メタクリル酸i−プロピル、メタクリ
ル酸n−ブチル、メタクリル酸i−ブチル、メタクリル
酸t−ブチル、メタクリル酸2−エチルへキシル、メタ
クリル酸ドデシル、メタクリル酸オクタデシル等のメタ
クリル酸エステル類;アクリルアミド、N−メチルアク
リルアミド、N−エチルアクリルアミド、N,N−ジメ
チルアクリルアミド、ジアセトンアクリルアミド、アク
リルアミドプロパンスルホン酸およびその塩、アクリル
アミドプロピルジメチルアミンおよびその塩、N−メチ
ロールアクリルアミドおよびその誘導体等のアクリルア
ミド誘導体;メタクリルアミド、N−メチルメタクリル
アミド、N−エチルメタクリルアミド、メタクリルアミ
ドプロパンスルホン酸およびその塩、メタクリルアミド
プロピルジメチルアミンおよびその塩、N−メチロール
メタクリルアミドおよびその誘導体などのメタクリルア
ミド誘導体;N−ビニルホルムアミド、N−ビニルアセ
トアミド、N−ビニルピロリドンなどのN−ビニルアミ
ド類;メチルビニルエーテル、エチルビニルエーテル、
n−プロピルビニルエーテル、i−プロピルビニルエー
テル、n−ブチルビニルエーテル、i−ブチルビニルエ
ーテル、t−ブチルビニルエーテル、ドデシルビニルエ
ーテル、ステアリルビニルエーテル等のビニルエーテル
類;アクリロニトリル、メタクリロニトリルなどのニト
リル類;塩化ビニル、塩化ビニリデン、フッ化ビニル、
フッ化ビニリデンなどのハロゲン化ビニル類;酢酸アリ
ル、塩化アリルなどのアリル化合物;マレイン酸および
その塩またはそのエステル;イタコン酸およびその塩ま
たはそのエステル;ビニルトリメトキシシランなどのビ
ニルシリル化合物;酢酸イソプロペニル等を挙げること
ができる。 【0011】前記PVAフィルムを構成するPVAの重
合度は、フィルムの強度の点からは500以上が好まし
く、偏光性能の点からは1000以上がより好ましく、
2000以上がさらに好ましく、3500以上が最も好
ましい。さらに、PVAの重合度の上限は、フィルムの
製膜性の点から10000以下が好ましい。 【0012】前記PVAの重合度Po はJIS K 6
726に準じて測定される。すなわち、PVAを再けん
化して精製した後、30℃の水中で測定した極限粘度
[η](単位:デシリットル/g)から次式により求め
られる。 Po =([η]×103 /8.29)(1/0.62) 【0013】前記PVAフィルムを構成するPVAのけ
ん化度は、偏光フィルムの耐久性の点からは90モル%
以上が好ましく、95モル%以上がより好ましく、98
モル%以上が最も好ましい。また、PVAフィルムの染
色性の点からは99.99モル%以下が好ましい。前記
けん化度とは、けん化によりビニルアルコール単位に変
換されうる単位の中で、実際にビニルアルコール単位に
けん化されている単位の割合を示したものである。な
お、PVAのけん化度は、JIS記載の方法により測定
を行った。 【0014】前記PVAフィルムを製造する際には、可
塑剤として多価アルコールを添加することが好ましい。
多価アルコールとしては、例えばエチレングリコール、
グリセリン、プロピレングリコール、ジエチレングリコ
ール、トリエチレングリコール、テトラエチレングリコ
ール、トリメチロールプロパン等を挙げることができ、
これらのうち1種または2種以上を使用できる。これら
の中でも延伸性の向上効果からエチレングリコールある
いはグリセリンが好適に使用される。 【0015】多価アルコールの添加量としては、PVA
100重量部に対して1〜30重量部が好ましく、3〜
25重量部がより好ましく、5〜20重量部が最も好ま
しい。1重量部より少ないと、染色性や延伸性が低下す
る場合があり、30重量部より多いと、フィルムが柔軟
になりすぎて取り扱い性が低下する場合がある。 【0016】また、前記PVAフィルムを製造する際に
は、界面活性剤を添加することが好ましい。界面活性剤
の種類としては特に限定はないが、アニオン性あるいは
ノニオン性の界面活性剤が好ましい。アニオン性界面活
性剤としては、例えば、ラウリン酸カリウムなどのカル
ボン酸型、オクチルサルフェートなどの硫酸エステル
型、ドデシルベンゼンスルホネートなどのスルホン酸型
のアニオン性界面活性剤が好適である。ノニオン性界面
活性剤としては、例えば、ポリオキシエチレンオレイル
エーテルなどのアルキルエーテル型、ポリオキシエチレ
ンオクチルフェニルエーテルなどのアルキルフェニルエ
ーテル型、ポリオキシエチレンラウレートなどのアルキ
ルエステル型、ポリオキシエチレンラウリルアミノエー
テルなどのアルキルアミン型、ポリオキシエチレンラウ
リン酸アミドなどのアルキルアミド型、ポリオキシエチ
レンポリオキシプロピレンエーテルなどのポリプロピレ
ングリコールエーテル型、オレイン酸ジエタノールアミ
ドなどのアルカノールアミド型、ポリオキシアルキレン
アリルフェニルエーテルなどのアリルフェニルエーテル
型などのノニオン性界面活性剤が好適である。これらの
界面活性剤の1種あるいは2種以上の組み合わせで使用
することができる。 【0017】界面活性剤の添加量としては、PVA10
0重量部に対して0.01〜1重量部が好ましく、0.
02〜0.5重量部がより好ましく、0.05〜0.3
重量部が特に好ましい。0.01重量部より少ないと、
延伸性向上や染色性向上の効果が現れにくく、1重量部
より多いと、フィルム表面に溶出してブロッキングの原
因になり、取り扱い性が低下する場合がある。 【0018】前記PVAフィルムを製造する方法として
は、例えば、PVAを溶剤に溶解したPVA溶液を使用
して、流延製膜法、湿式製膜法(貧溶媒中への吐出)、
ゲル製膜法(PVA水溶液を一旦冷却ゲル化した後、溶
媒を抽出除去し、PVAフィルムを得る方法)、および
これらの組み合わせによる方法や、含水PVA(有機溶
剤などを含んでいても良い)を溶融して行う溶融押出製
膜法などを採用することができる。これらのなかでも流
延製膜法および溶融押出製膜法が、透明性の高いPVA
フィルムが得られることから好ましく、溶融押出製膜法
がより好ましく、さらには金属ドラム(ロール)を用い
て溶融押出製膜を行うドラム製膜法が特に好ましい。こ
のPVAフィルムを製造する際に使用されるPVA溶液
の揮発分濃度は50〜90重量%が好ましく、55〜8
0重量%がより好ましい。揮発分濃度が50%より小さ
いと粘度が高くなるため製膜が困難となる。揮発分濃度
が90%より大きいと粘度が低くなり過ぎてPVAフィ
ルムの厚さ均一性が損なわれ易いため好ましくない。 【0019】前記PVAフィルムの平均厚さは5〜15
0μmが好ましく、30〜100μmがより好ましい。
本発明にかかるPVAフィルムの厚さ精度(最大厚さと
最小厚さの差)は、10μm以下であり、6μm以下で
あることが好ましく、4μm以下であることがさらに好
ましい。厚さ精度が10μmを超えると、得られる偏光
フィルムの光学ムラが大きくなるため好ましくない。 【0020】本発明にかかる偏光フィルムを製造するに
は、前記PVAフィルムのフィルム幅を3.5m以上6
m以下とすることが重要である。フィルム幅が3.5m
より小さい場合は、一軸延伸時のネックインの影響をフ
ィルム中央部付近にまで受けやすく、光学性能が均一な
幅広の偏光フィルムが得られない。また、フィルム幅が
6mを超える場合には、一軸延伸で均一に延伸すること
が困難な場合があるので、フィルム幅は6m以下が好ま
しく、5m以下がより好ましい。 【0021】前記PVAフィルムから偏光フィルムを製
造するには、例えばPVAフィルムを染色、一軸延伸、
固定処理、乾燥処理、さらに必要に応じて熱処理を行え
ばよい。各工程の順序は特に限定はなく、染色と一軸延
伸などの二つの工程を同時に実施しても良い。また、各
工程を複数回繰り返しても良い。 【0022】染色は、一軸延伸の前、一軸延伸と同時、
一軸延伸後のいずれでも可能であるが、エチレン変性P
VAは一軸延伸により結晶化度が上がりやすく染色性が
低下することがあるため、一軸延伸に先立つ任意の工程
あるいは一軸延伸工程中において染色するのが好まし
い。 【0023】染色に用いる染料としては、ヨウ素−ヨウ
化カリウム;ダイレクトブラック17、19、154;
ダイレクトブラウン 44、106、195、210、
223;ダイレクトレッド 2、23、28、31、3
7、39、79、81、240、242、247;ダイ
レクトブルー 1、15、22、78、90、98、1
51、168、202、236、249、270;ダイ
レクトバイオレット9、12、51、98;ダイレクト
グリーン 1、85;ダイレクトイエロー8、12、4
4、86、87;ダイレクトオレンジ 26、39、1
06、107等の二色性染料などが使用できる。染色
は、通常PVAフィルムを上記染料を含有する溶液中に
浸漬させることにより行うことができるが、その処理条
件や処理方法は特に制限されるものではない。 【0024】前記PVAフィルムの長さ方向に行う自由
一軸延伸は、湿式延伸法あるいは乾熱延伸法を使用で
き、温水中(前記染料を含有する溶液中や後記固定処理
浴中でも良い)または吸水後のPVAフィルムを用いて
空気中で行ってもよい。光学性能の均一性の点から、延
伸装置は、ロール間の速度差等を利用したロール延伸法
を用いることが最も好ましい。 【0025】延伸倍率は4倍以上が好ましく、5倍以上
が最も好ましい。延伸倍率が4倍より小さいと、十分な
偏光性能や耐久性能が得られにくい。延伸は一段階で目
的の延伸倍率まで行ってもよいが、二段階以上の多段延
伸を行った方がさらにネックインが小さくなって、均一
な光学性能を得るのに効果がある。延伸温度は特に限定
されないが、PVAフィルムを温水中で延伸(湿式延
伸)する場合は30〜90℃が、また乾熱延伸する場合
は50〜180℃が好適である。延伸後のPVAフィル
ムの厚さは、3〜75μmが好ましく、10〜50μm
がより好ましい。 【0026】前記PVAフィルムへの上記染料の吸着を
強固にすることを目的に、固定処理を行うことができ
る。固定処理に使用する処理浴には、通常、ホウ酸およ
びホウ素化合物が添加される。また、必要に応じて処理
浴中にヨウ素化合物を添加してもよい。 【0027】前記PVAフィルムの乾燥処理(熱処理)
は、30〜150℃で行うのが好ましく、50〜150
℃で行うのがより好ましい。 【0028】以上のようにして得られる本発明の偏光フ
ィルムは、通常、その両面あるいは片面に、光学的に透
明で、かつ機械的強度を有した保護膜を貼り合わせて偏
光板として使用される。保護膜としては、通常、セルロ
ースアセテート系フィルム、アクリル系フィルム、ポリ
エステル系フィルム等が使用される。 【0029】 【実施例】以下、実施例を挙げて本発明を具体的に説明
するが、本発明はこれらにより何ら限定されるものでは
ない。なお、実施例中の二色性比は以下の方法により評
価した。 【0030】二色性比: 得られた偏光フィルムの偏光性能を評価する指標として
二色性比を使用した。この二色性比は、日本電子機械工
業会規格(EIAJ)LD−201−1983に準拠
し、分光光度計を用いて、C光源、2度視野にて測定・
計算して得た透過率Ts(%)と偏光度P(%)を使用
して下記の式から求めた。 二色性比=log(Ts/100−Ts/100×P/
100)/log(Ts/100+Ts/100×P/
100) 【0031】実施例1 けん化度99.9モル%で重合度4000のPVA10
0重量部、グリセリン10重量部、ラウリン酸ジエタノ
ールアミド0.1重量部および水からなる揮発分80%
の含水PVAチップを100℃に加熱溶融し、95℃の
クロームメッキした金属ロールに溶融押出製膜した。さ
らに金属ロール表面のPVA溶液を100℃の熱風で乾
燥し、フィルム幅3.6mで平均厚さ75μmのPVA
フィルムを得た。得られたPVAフィルムの幅方向中央
部の1m四方を短冊状に切り、その厚さを1cm間隔で
測定したところ、最も厚い部分が77.4μm、最も薄
い部分が72.5μmであり、厚さ精度は4.9μmで
あった。 【0032】このフィルム幅3.6mのPVAフィルム
を予備膨潤、染色、一軸延伸、固定処理、乾燥、熱処理
の順に処理して偏光フィルムを作製した。すなわち、前
記PVAフィルムを30℃の水中に3分間浸漬して予備
膨潤し、ヨウ素濃度0.4g/リットル、ヨウ化カリウ
ム濃度40g/リットルの40℃の水溶液中に4分間浸
漬した。続いて、ホウ酸4%の50℃の水溶液中で長さ
方向に5.5倍にロール方式で一軸延伸を行ったとこ
ろ、ネックイン率(延伸後の幅/延伸前の幅)は62%
であった。さらに、ヨウ化カリウム40g/リットル、
ホウ酸40g/リットルの30℃の水溶液中に5分間浸
漬して固定処理を行った。この後PVAフィルムを取り
出し、定長下、40℃で熱風乾燥し、さらに100℃で
5分間熱処理を行った。 【0033】得られた偏光フィルムの幅方向中心部の厚
さは22μmであり、透過率は43.3%、偏光度は9
9.7%、平均二色性比は45.7であった。この偏光
フィルムの幅方向中央部と、そこから幅方向端面に向か
った25cmの位置との透過率の差は、0.5%であっ
た。クロスニコル状態の2枚の偏光板の間に、得られた
偏光フィルムを45°の角度で挟み、透過光を目視で観
察すると、光学ムラはほとんど認められなかった。 【0034】参考例1 けん化度99.9モル%で重合度2400のPVA10
0重量部、グリセリン10重量部、ポリオキシエチレン
ラウリルエーテル0.1重量部および水からなる揮発分
70%の含水PVAチップを100℃で加熱溶融し、9
5℃のクロームメッキした金属ロールに溶融押出製膜し
た。さらに金属ロール表面のPVA溶液を100℃の熱
風で乾燥し、フィルム幅3.2mで平均厚さ75μmの
PVAフィルムを得た。得られたフィルムの幅方向中央
部の1m四方を短冊状に切り、その厚さを1cm間隔で
測定したところ、最も厚い部分が77.1μm、最も薄
い部分が72.8μmであり、厚さ精度は4.3μmで
あった。 【0035】このフィルム幅3.2mのPVAフィルム
を予備膨潤、染色、一軸延伸、固定処理、乾燥、熱処理
の順に処理して偏光フィルムを作製した。すなわち、前
記PVAフィルムを30℃の水中に3分間浸漬して予備
膨潤し、ヨウ素濃度0.4g/リットル、ヨウ化カリウ
ム濃度40g/リットルの40℃の水溶液中に4分間浸
漬した。続いて、ホウ酸4%の50℃の水溶液中で長さ
方向に5.0倍にロール方式で一軸延伸を行ったとこ
ろ、ネックイン率(延伸後の幅/延伸前の幅)は60%
であった。さらに、ヨウ化カリウム40g/リットル、
ホウ酸40g/リットルの30℃の水溶液中に5分間浸
漬して固定処理を行った。この後PVAフィルムを取り
出し、定長下、40℃で熱風乾燥し、さらに100℃で
5分間熱処理を行った。 【0036】得られた偏光フィルムの幅方向中心部の厚
さは25μmであり、透過率は42.6%、偏光度は9
9.6%、平均二色性比は39.3であった。この偏光
フィルムの幅方向中央部と、そこから幅方向端面に向か
った25cmの位置との透過率の差は、0.8%であっ
た。クロスニコル状態の2枚の偏光板の間に、得られた
偏光フィルムを45°の角度で挟み、透過光を目視で観
察すると、光学ムラはほとんど認められなかった。 【0037】参考例2 けん化度99.9モル%で重合度1700のPVA10
0重量部、グリセリン10重量部、ポリオキシエチレン
ラウリルエーテルサルフェート0.1重量部および水か
らなる揮発分60%の含水PVAチップを100℃で加
熱溶融し、95℃のクロームメッキした金属ロールに溶
融押出製膜した。さらに金属ロール表面のPVA溶液を
100℃の熱風で乾燥し、フィルム幅2.6mで平均厚
さ75μmのPVAフィルムを得た。得られたPVAフ
ィルムの幅方向中央部の1m四方を短冊状に切り、その
厚さを1cm間隔で測定したところ、最も厚い部分が7
6.8μm、最も薄い部分が73.7μmであり、厚さ
精度は3.1μmであった。 【0038】このフィルム幅2.6mのPVAフィルム
を予備膨潤、染色、一軸延伸、固定処理、乾燥、熱処理
の順に処理して偏光フィルムを作製した。すなわち、前
記PVAフィルムを30℃の水中に3分間浸漬して予備
膨潤し、ヨウ素濃度0.4g/リットル、ヨウ化カリウ
ム濃度40g/リットルの40℃の水溶液中に4分間浸
漬した。続いて、ホウ酸4%の50℃の水溶液中で長さ
方向に4.5倍にロール方式で一軸延伸を行ったとこ
ろ、ネックイン率(延伸後の幅/延伸前の幅)は57%
であった。さらに、ヨウ化カリウム40g/リットル、
ホウ酸40g/リットルの30℃の水溶液中に5分間浸
漬して固定処理を行った。この後PVAフィルムを取り
出し、定長下、40℃で熱風乾燥し、さらに100℃で
5分間熱処理を行った。 【0039】得られた偏光フィルムの幅方向中心部の厚
さは29μmであり、透過率は42.4%、偏光度は9
9.3%、平均二色性比は34.6であった。この偏光
フィルムの幅方向中央部と、そこから幅方向端面に向か
った25cmの位置との透過率の差は、1.0%であっ
た。クロスニコル状態の2枚の偏光板の間に、得られた
偏光フィルムを45°の角度で挟み、透過光を目視で観
察すると、光学ムラはほとんど認められなかった。 【0040】比較例1 けん化度99.9モル%で重合度4000のPVA10
0重量部、グリセリン10重量部、ラウリン酸ジエタノ
ールアミド0.1重量部および水からなる揮発分80%
の含水PVAチップを100℃で加熱溶融し、95℃の
クロームメッキした金属ロールに溶融押出製膜した。さ
らに金属ロール表面のPVA溶液を100℃の熱風で乾
燥し、フィルム幅1.6mで平均厚さ75μmのPVA
フィルムを得た。得られたフィルムの幅方向中央部の1
m四方を短冊状に切り、その厚さを1cm間隔で測定し
たところ、最も厚い部分が76.9μm、最も薄い部分
が73.7μmであり、厚さ精度は3.2μmであっ
た。 【0041】このフィルム幅1.6mのPVAフィルム
を予備膨潤、染色、一軸延伸、固定処理、乾燥、熱処理
の順に処理して偏光フィルムを作製した。すなわち、前
記PVAフィルムを30℃の水中に3分間浸漬して予備
膨潤し、ヨウ素濃度0.4g/リットル、ヨウ化カリウ
ム濃度40g/リットルの40℃の水溶液中に4分間浸
漬した。続いて、ホウ酸4%の50℃の水溶液中で長さ
方向に5.5倍にロール方式で一軸延伸を行ったとこ
ろ、ネックイン率(延伸後の幅/延伸前の幅)は40%
であった。さらに、ヨウ化カリウム40g/リットル、
ホウ酸40g/リットルの30℃の水溶液中に5分間浸
漬して固定処理を行った。この後PVAフィルムを取り
出し、定長下、40℃で熱風乾燥し、さらに100℃で
5分間熱処理を行った。 【0042】得られた偏光フィルムの幅方向中心部の厚
さは30μmであり、透過率は43.8%、偏光度は9
9.6%、平均二色性比は47.2であった。得られた
偏光フィルムの幅方向中央部と、そこから幅方向端面に
向かった25cmの位置との透過率の差は、5.2%で
あった。クロスニコル状態の2枚の偏光板の間に、得ら
れた偏光フィルムを45°の角度で挟み、透過光を目視
で観察すると大きな光学ムラが認められた。 【0043】上記の比較例や実施例1から明らかなよう
に、PVAフィルムのフィルム幅を3.5mより小さく
すると、偏光フィルムとしたときの幅方向の光学性能
(透過率の差)が不均一化する。このことから、幅方向
全体にわたって均一で良好な光学性能を発揮し、また優
れた偏光性能(二色性比)を得るには、フィルム幅が
3.5m以上6m以下のPVAフィルムを用いる必要の
あることが理解できる。 【0044】 【発明の効果】以上のように本発明によれば、幅方向全
体にわたって均一で良好な光学性能を発揮し、また偏光
性能にも優れた大画面液晶ディスプレイ用に好適な幅広
の偏光フィルムを得ることができる。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention is suitable as a material for a large-screen liquid crystal display which exhibits uniform and good optical performance even in a large area and has excellent polarization performance. The present invention relates to a method for producing a polarizing film. 2. Description of the Related Art A polarizing plate having a function of transmitting and blocking light is a fundamental component of a liquid crystal display (LCD) together with a liquid crystal having a function of switching light. The field of application of this LCD has expanded from small devices such as calculators and watches in the early stages of development to recent years, such as laptop computers, word processors, liquid crystal color projectors, in-car navigation systems, and liquid crystal televisions.
Since it has been used on a large screen, a polarizing plate having excellent uniformity of optical performance on a large screen has been demanded more than conventional products. [0003] A polarizing plate is generally obtained by uniaxially stretching and dyeing a polyvinyl alcohol film (hereinafter, this may be abbreviated as "PVA film", and a polyvinyl alcohol-based polymer as a raw material thereof may be abbreviated as "PVA"). A protective film such as a cellulose triacetate (TAC) film is bonded to both sides of the polarizing film thus obtained. At this time,
In order to obtain a polarizing plate with uniform and excellent polarization performance,
There are many precautions, such as using a PVA film with a uniform thickness, dyeing a dichroic dye uniformly, and bonding together evenly, but it is most important to stretch the PVA film uniformly in the length direction. is there. [0004] The uniaxial stretching is roughly classified into two methods, that is, free-width uniaxial stretching and fixed-width uniaxial stretching. When an optical polarizing film is obtained, excellent optical performance is obtained. The free-width uniaxial stretching method is performed. [0005] However, free-width uniaxial stretching has the advantage of obtaining superior polarization performance as compared with fixed-width uniaxial stretching, but shrinkage in the width direction called neck-in due to stretching. Occurs, and thickness unevenness occurs in the width direction. Therefore, in a narrow range near the center with respect to the width direction of the obtained polarizing film, the polarizing performance is very good and the optical performance is relatively uniform, but the polarizing film has uniform optical performance throughout the width direction. Is difficult to obtain. For this reason, in the related art, when a wide polarizing film is obtained, neck-in prevention is performed by rolling the film, but the uniformity of the polarizing performance and the optical performance is insufficient. Accordingly, an object of the present invention is to provide a method for producing a polarizing film which exhibits uniform and good optical performance over the entire width direction and is suitable as a material for a large-screen liquid crystal display having excellent polarization performance. It is in. In order to achieve the above object, a method for producing a polarizing film according to the present invention is directed to a method for producing a PVA film having a film width of 3.5 m or more and 6 m or less and a thickness accuracy of 10 μm or less. It is characterized in that it is uniaxially stretched four times or more in the length direction by a roll method in a length direction. Hereinafter, the present invention will be described in detail. Polyvinyl alcohol-based polymer (PVA) constituting the PVA film as the material of the polarizing film of the present invention
For example, those obtained by saponifying a vinyl ester-based polymer obtained by polymerizing a vinyl ester-based monomer and using a vinyl ester unit as a vinyl alcohol unit can be used. Examples of the vinyl ester monomer include vinyl formate, vinyl acetate, vinyl propionate, vinyl valerate, vinyl laurate, vinyl stearate, vinyl benzoate, vinyl pivalate, vinyl versatate, and the like. Of these, vinyl acetate is preferred. When polymerizing the vinyl ester monomer, other copolymerizable monomers may be added, if necessary, within a range not to impair the purpose of the present invention (preferably 15 mol% or less, more preferably 5 mol% or less. (The following ratio). The monomer copolymerizable with the vinyl ester monomer includes, for example, olefins such as ethylene, propylene, 1-butene and isobutene;
Acrylic acid and its salts; methyl acrylate, ethyl acrylate, n-propyl acrylate, i-propyl acrylate, n-butyl acrylate, i-butyl acrylate, t-butyl acrylate, 2-ethyl acrylate Acrylic esters such as xyl, dodecyl acrylate and octadecyl acrylate; methacrylic acid and salts thereof;
Methyl methacrylate, ethyl methacrylate, n-propyl methacrylate, i-propyl methacrylate, n-butyl methacrylate, i-butyl methacrylate, t-butyl methacrylate, 2-ethylhexyl methacrylate, dodecyl methacrylate, Methacrylic esters such as octadecyl methacrylate; acrylamide, N-methylacrylamide, N-ethylacrylamide, N, N-dimethylacrylamide, diacetoneacrylamide, acrylamidepropanesulfonic acid and salts thereof, acrylamidopropyldimethylamine and salts thereof, N Acrylamide derivatives such as methylol acrylamide and derivatives thereof; methacrylamide, N-methyl methacrylamide, N-ethyl methacrylamide, methacrylamide propane sulfo Methacrylamide derivatives such as acids and salts thereof, methacrylamidopropyldimethylamine and salts thereof, N-methylol methacrylamide and derivatives thereof; N-vinylamides such as N-vinylformamide, N-vinylacetamide and N-vinylpyrrolidone; methyl Vinyl ether, ethyl vinyl ether,
vinyl ethers such as n-propyl vinyl ether, i-propyl vinyl ether, n-butyl vinyl ether, i-butyl vinyl ether, t-butyl vinyl ether, dodecyl vinyl ether and stearyl vinyl ether; nitriles such as acrylonitrile and methacrylonitrile; vinyl chloride and vinylidene chloride , Vinyl fluoride,
Vinyl halides such as vinylidene fluoride; allyl compounds such as allyl acetate and allyl chloride; maleic acid and its salts or esters; itaconic acid and its salts or esters; vinylsilyl compounds such as vinyltrimethoxysilane; isopropenyl acetate And the like. The degree of polymerization of the PVA constituting the PVA film is preferably 500 or more from the viewpoint of film strength, and more preferably 1000 or more from the viewpoint of polarization performance.
It is more preferably at least 2,000, most preferably at least 3,500. Further, the upper limit of the degree of polymerization of PVA is preferably 10,000 or less from the viewpoint of film forming properties. The degree of polymerization Po of the PVA is JIS K6
726. That is, after PVA is re-saponified and purified, the intrinsic viscosity [η] (unit: deciliter / g) measured in water at 30 ° C. is determined by the following equation. Po = ([η] × 10 3 /8.29) (1 / 0.62) The degree of saponification of PVA constituting the PVA film is 90 mol% from the viewpoint of the durability of the polarizing film.
Or more, more preferably 95 mol% or more, and 98% or more.
Most preferred is at least mol%. Further, from the viewpoint of the dyeability of the PVA film, the content is preferably 99.99 mol% or less. The degree of saponification indicates the ratio of units actually saponified to vinyl alcohol units among units that can be converted into vinyl alcohol units by saponification. In addition, the saponification degree of PVA was measured by the method described in JIS. In producing the PVA film, it is preferable to add a polyhydric alcohol as a plasticizer.
Examples of polyhydric alcohols include ethylene glycol,
Glycerin, propylene glycol, diethylene glycol, triethylene glycol, tetraethylene glycol, trimethylolpropane, and the like,
One or more of these can be used. Among them, ethylene glycol or glycerin is preferably used from the viewpoint of improving the stretchability. The amount of the polyhydric alcohol to be added is PVA.
1 to 30 parts by weight, preferably 3 to 30 parts by weight, per 100 parts by weight
More preferably 25 parts by weight, most preferably 5 to 20 parts by weight. If the amount is less than 1 part by weight, the dyeing properties and the stretchability may be reduced. If the amount is more than 30 parts by weight, the film may be too flexible and the handleability may be reduced. In the production of the PVA film, it is preferable to add a surfactant. The type of the surfactant is not particularly limited, but an anionic or nonionic surfactant is preferable. As the anionic surfactant, for example, a carboxylic acid type such as potassium laurate, a sulfate type such as octyl sulfate, and a sulfonic acid type such as dodecylbenzenesulfonate are preferable. Nonionic surfactants include, for example, alkyl ether types such as polyoxyethylene oleyl ether, alkyl phenyl ether types such as polyoxyethylene octyl phenyl ether, alkyl ester types such as polyoxyethylene laurate, and polyoxyethylene lauryl amino. Alkylamine type such as ether, alkylamide type such as polyoxyethylene lauric amide, polypropylene glycol ether type such as polyoxyethylene polyoxypropylene ether, alkanolamide type such as oleic acid diethanolamide, polyoxyalkylene allyl phenyl ether Nonionic surfactants such as allyl phenyl ether type are preferred. One or a combination of two or more of these surfactants can be used. The amount of the surfactant added is PVA 10
0.01 to 1 part by weight is preferable for 0 part by weight, and 0.1 to 1 part by weight is preferable.
02 to 0.5 part by weight is more preferable, and 0.05 to 0.3 part by weight.
Part by weight is particularly preferred. If less than 0.01 parts by weight,
The effect of improving the stretchability and the dyeability is difficult to appear, and if it is more than 1 part by weight, it is eluted on the film surface, causing blocking, and the handleability may be reduced. As a method for producing the PVA film, for example, using a PVA solution in which PVA is dissolved in a solvent, a casting film forming method, a wet film forming method (discharging into a poor solvent),
Gel film forming method (a method in which a PVA aqueous solution is once cooled and gelled, and then a solvent is extracted and removed to obtain a PVA film), a method based on a combination thereof, and water-containing PVA (which may contain an organic solvent or the like) A melt extrusion film forming method performed by melting can be adopted. Among these, the casting film forming method and the melt extrusion film forming method are highly transparent PVA.
A film is preferably obtained because a film is obtained, a melt extrusion film forming method is more preferable, and a drum film forming method of performing a melt extrusion film formation using a metal drum (roll) is particularly preferable. The volatile concentration of the PVA solution used in producing this PVA film is preferably 50 to 90% by weight, and 55 to 8% by weight.
0% by weight is more preferred. When the volatile matter concentration is less than 50%, the viscosity becomes high, so that film formation becomes difficult. If the volatile matter concentration is more than 90%, the viscosity becomes too low and the uniformity of the thickness of the PVA film tends to be deteriorated, which is not preferable. The average thickness of the PVA film is 5 to 15
0 μm is preferable, and 30 to 100 μm is more preferable.
The thickness accuracy (difference between the maximum thickness and the minimum thickness) of the PVA film according to the present invention is 10 μm or less, preferably 6 μm or less, and more preferably 4 μm or less. If the thickness accuracy exceeds 10 μm, the optical unevenness of the obtained polarizing film increases, which is not preferable. In order to produce the polarizing film according to the present invention, the PVA film must have a film width of at least 3.5 m and at least 6 m.
m is important. 3.5m film width
If it is smaller, the influence of neck-in during uniaxial stretching is liable to be exerted even near the center of the film, and a wide polarizing film having uniform optical performance cannot be obtained. If the film width exceeds 6 m, it may be difficult to stretch the film uniformly by uniaxial stretching. Therefore, the film width is preferably 6 m or less, more preferably 5 m or less. In order to produce a polarizing film from the PVA film, for example, a PVA film is dyed, uniaxially stretched,
Fixing treatment, drying treatment and, if necessary, heat treatment may be performed. The order of each step is not particularly limited, and two steps such as dyeing and uniaxial stretching may be performed simultaneously. Further, each step may be repeated a plurality of times. The dyeing is performed before the uniaxial stretching, simultaneously with the uniaxial stretching,
Either after uniaxial stretching is possible, but ethylene-modified P
Since the degree of crystallinity of VA is easily increased by uniaxial stretching and the dyeability may be reduced, it is preferable to dye VA in any step prior to uniaxial stretching or during the uniaxial stretching step. The dyes used for dyeing include iodine-potassium iodide; direct black 17, 19, 154;
Direct Brown 44, 106, 195, 210,
223; Direct Red 2,23,28,31,3
7, 39, 79, 81, 240, 242, 247; Direct Blue 1, 15, 22, 78, 90, 98, 1
51, 168, 202, 236, 249, 270; Direct Violet 9, 12, 51, 98; Direct Green 1, 85; Direct Yellow 8, 12, 4
4, 86, 87; Direct Orange 26, 39, 1
Dichroic dyes such as 06 and 107 can be used. Dyeing can be usually performed by immersing the PVA film in a solution containing the dye, but the processing conditions and processing method are not particularly limited. Freedom to be made in the length direction of the PVA film
The width uniaxial stretching may be performed by a wet stretching method or a dry heat stretching method, and may be performed in warm water (which may be in a solution containing the dye or in a fixing bath described later) or in air using a PVA film after water absorption. Good. From the viewpoint of uniformity of optical performance, stretching device, not the most preferable to use a roll stretching method utilizing the speed difference or the like between rolls. The stretching ratio is preferably at least 4 times, most preferably at least 5 times. If the stretching ratio is smaller than 4 times, it is difficult to obtain sufficient polarization performance and durability performance. Stretching may be performed in one step up to a target stretching ratio, but performing multi-step stretching in two or more steps further reduces neck-in and is effective in obtaining uniform optical performance. The stretching temperature is not particularly limited, but is preferably 30 to 90 ° C. when the PVA film is stretched in warm water (wet stretching), and 50 to 180 ° C. when the dry stretching is performed by dry heat. The thickness of the stretched PVA film is preferably 3 to 75 μm, and 10 to 50 μm.
Is more preferred. For the purpose of strengthening the adsorption of the dye to the PVA film, a fixing treatment can be performed. Usually, boric acid and a boron compound are added to the treatment bath used for the fixing treatment. Further, an iodine compound may be added to the treatment bath as needed. Drying (heat treatment) of the PVA film
Is preferably performed at 30 to 150 ° C., and 50 to 150 ° C.
More preferably, it is carried out at a temperature of about 0 ° C. The polarizing film of the present invention obtained as described above is usually used as a polarizing plate by bonding an optically transparent protective film having mechanical strength to both surfaces or one surface thereof. . As the protective film, usually, a cellulose acetate film, an acrylic film, a polyester film, or the like is used. EXAMPLES Hereinafter, the present invention will be described specifically with reference to Examples, but the present invention is not limited thereto. The dichroic ratio in the examples was evaluated by the following method. Dichroic ratio: The dichroic ratio was used as an index for evaluating the polarizing performance of the obtained polarizing film. This dichroic ratio is measured with a spectrophotometer using a C light source and a 2-degree field of view in accordance with the standards of the Electronic Machinery Manufacturers Association of Japan (EIAJ) LD-201-1983.
Using the calculated transmittance Ts (%) and the degree of polarization P (%), it was determined from the following equation. Dichroic ratio = log (Ts / 100−Ts / 100 × P /
100) / log (Ts / 100 + Ts / 100 × P /
Example 1 PVA 10 having a saponification degree of 99.9 mol% and a polymerization degree of 4000
0% by weight, 10% by weight of glycerin, 0.1% by weight of lauric acid diethanolamide and 80% of volatile matter composed of water
Was heated and melted at 100 ° C., and a melt-extruded film was formed on a chrome-plated metal roll at 95 ° C. Further, the PVA solution on the surface of the metal roll is dried with hot air at 100 ° C., and PVA having a film width of 3.6 m and an average thickness of 75 μm is obtained.
A film was obtained. The obtained PVA film was cut into a strip of 1 m square at the center in the width direction, and its thickness was measured at 1 cm intervals. The thickest portion was 77.4 μm and the thinnest portion was 72.5 μm. The accuracy was 4.9 μm. The PVA film having a width of 3.6 m was preliminarily swelled, dyed, uniaxially stretched, fixed, dried and heat-treated in this order to produce a polarizing film. That is, the PVA film was immersed in water at 30 ° C. for 3 minutes for preliminary swelling, and immersed in an aqueous solution at a temperature of 40 ° C. having an iodine concentration of 0.4 g / l and a potassium iodide concentration of 40 g / l for 4 minutes. Subsequently, when the film was uniaxially stretched 5.5 times in the length direction by a roll method in a 50% aqueous solution of boric acid 4%, the neck-in ratio (width after stretching / width before stretching) was 62%.
Met. Furthermore, potassium iodide 40 g / liter,
It was immersed in an aqueous solution of boric acid 40 g / liter at 30 ° C. for 5 minutes to perform a fixing treatment. Thereafter, the PVA film was taken out, dried with hot air at 40 ° C. under a constant length, and further heat-treated at 100 ° C. for 5 minutes. The thickness of the obtained polarizing film at the center in the width direction is 22 μm, the transmittance is 43.3%, and the degree of polarization is 9
9.7%, average dichroic ratio was 45.7. The difference in transmittance between the central part in the width direction of the polarizing film and a position 25 cm from the central part in the width direction toward the end face in the width direction was 0.5%. When the obtained polarizing film was sandwiched between two polarizing plates in a crossed Nicols state at an angle of 45 ° and transmitted light was visually observed, almost no optical unevenness was observed. Reference Example 1 PVA 10 having a saponification degree of 99.9 mol% and a polymerization degree of 2400
0 parts by weight, 10 parts by weight of glycerin, 0.1 part by weight of polyoxyethylene lauryl ether and 70% of volatile matter containing water were melted by heating at 100 ° C. a water-containing PVA chip.
Melt extrusion was performed on a chrome-plated metal roll at 5 ° C. Further, the PVA solution on the surface of the metal roll was dried with hot air at 100 ° C. to obtain a PVA film having a film width of 3.2 m and an average thickness of 75 μm. The obtained film was cut into a strip of 1 m square at the center in the width direction, and the thickness was measured at 1 cm intervals. The thickness was 77.1 μm for the thickest part and 72.8 μm for the thinnest part. Was 4.3 μm. The PVA film having a film width of 3.2 m was preliminarily swollen, dyed, uniaxially stretched, fixed, dried and heat-treated to prepare a polarizing film. That is, the PVA film was immersed in water at 30 ° C. for 3 minutes for preliminary swelling, and immersed in an aqueous solution at a temperature of 40 ° C. having an iodine concentration of 0.4 g / l and a potassium iodide concentration of 40 g / l for 4 minutes. Subsequently, when uniaxial stretching was performed by a roll method in the length direction at 5.0 times in an aqueous solution of boric acid 4% at 50 ° C. by a roll method, the neck-in ratio (width after stretching / width before stretching) was 60%.
Met. Furthermore, potassium iodide 40 g / liter,
It was immersed in an aqueous solution of boric acid 40 g / liter at 30 ° C. for 5 minutes to perform a fixing treatment. Thereafter, the PVA film was taken out, dried with hot air at 40 ° C. under a constant length, and further heat-treated at 100 ° C. for 5 minutes. The thickness of the obtained polarizing film at the center in the width direction is 25 μm, the transmittance is 42.6%, and the degree of polarization is 9
9.6%, the average dichroic ratio was 39.3. The difference in transmittance between the central part in the width direction of the polarizing film and a position 25 cm from the central part in the width direction toward the end face in the width direction was 0.8%. When the obtained polarizing film was sandwiched between two polarizing plates in a crossed Nicols state at an angle of 45 ° and transmitted light was visually observed, almost no optical unevenness was observed. Reference Example 2 PVA10 having a saponification degree of 99.9 mol% and a polymerization degree of 1700
0 parts by weight, 10 parts by weight of glycerin, 0.1 part by weight of polyoxyethylene lauryl ether sulfate and water-containing PVA chips having a volatile content of 60%, which are heated and melted at 100 ° C., and melted on a chrome-plated metal roll at 95 ° C. Extruded film was formed. Further, the PVA solution on the surface of the metal roll was dried with hot air at 100 ° C. to obtain a PVA film having a film width of 2.6 m and an average thickness of 75 μm. The obtained PVA film was cut into a strip of 1 m square at the center in the width direction, and the thickness was measured at 1 cm intervals.
The thickness was 6.8 μm, the thinnest portion was 73.7 μm, and the thickness accuracy was 3.1 μm. The PVA film having a width of 2.6 m was preliminarily swelled, dyed, uniaxially stretched, fixed, dried and heat-treated in this order to produce a polarizing film. That is, the PVA film was immersed in water at 30 ° C. for 3 minutes for preliminary swelling, and immersed in an aqueous solution at a temperature of 40 ° C. having an iodine concentration of 0.4 g / l and a potassium iodide concentration of 40 g / l for 4 minutes. Subsequently, the film was uniaxially stretched 4.5 times in the longitudinal direction by a roll method in a 50% aqueous solution of boric acid 4%, and the neck-in ratio (width after stretching / width before stretching) was 57%.
Met. Furthermore, potassium iodide 40 g / liter,
It was immersed in an aqueous solution of boric acid of 40 g / liter at 30 ° C. for 5 minutes to perform a fixing treatment. Thereafter, the PVA film was taken out, dried with hot air at 40 ° C. under a constant length, and further heat-treated at 100 ° C. for 5 minutes. The thickness of the obtained polarizing film at the center in the width direction was 29 μm, the transmittance was 42.4%, and the degree of polarization was 9
9.3%, average dichroic ratio was 34.6. The difference in transmittance between the central part in the width direction of this polarizing film and the position 25 cm from the center part toward the end face in the width direction was 1.0%. When the obtained polarizing film was sandwiched between two polarizing plates in a crossed Nicols state at an angle of 45 ° and transmitted light was visually observed, almost no optical unevenness was observed. Comparative Example 1 PVA10 having a degree of saponification of 99.9 mol% and a degree of polymerization of 4000
0% by weight, 10% by weight of glycerin, 0.1% by weight of lauric acid diethanolamide and 80% of volatile matter composed of water
Was heated and melted at 100 ° C. and melt-extruded into a chrome-plated metal roll at 95 ° C. to form a film. Further, the PVA solution on the surface of the metal roll was dried with hot air at 100 ° C., and PVA having a film width of 1.6 m and an average thickness of 75 μm was obtained.
A film was obtained. 1 at the center in the width direction of the obtained film
m squares were cut into strips, and the thickness was measured at 1 cm intervals. As a result, the thickest part was 76.9 μm, the thinnest part was 73.7 μm, and the thickness accuracy was 3.2 μm. This 1.6 m-wide PVA film was pre-swelled, dyed, uniaxially stretched, fixed, dried and heat treated in this order to produce a polarizing film. That is, the PVA film was immersed in water at 30 ° C. for 3 minutes for pre-swelling, and immersed in an aqueous solution at a temperature of 40 ° C. having an iodine concentration of 0.4 g / l and a potassium iodide concentration of 40 g / l for 4 minutes. Subsequently, when the film was uniaxially stretched 5.5 times in the length direction by a roll method in a 50% aqueous solution of 4% boric acid, the neck-in ratio (width after stretching / width before stretching) was 40%.
Met. Furthermore, potassium iodide 40 g / liter,
It was immersed in an aqueous solution of boric acid 40 g / liter at 30 ° C. for 5 minutes to perform a fixing treatment. Thereafter, the PVA film was taken out, dried with hot air at 40 ° C. under a constant length, and further heat-treated at 100 ° C. for 5 minutes. The thickness of the obtained polarizing film at the center in the width direction was 30 μm, the transmittance was 43.8%, and the degree of polarization was 9
9.6%, average dichroic ratio was 47.2. The difference in transmittance between the central part in the width direction of the obtained polarizing film and a position 25 cm from the central part in the width direction to the end face in the width direction was 5.2%. When the obtained polarizing film was sandwiched between two polarizing plates in a crossed Nicols state at an angle of 45 ° and transmitted light was visually observed, large optical unevenness was observed. As is clear from the comparative example and Example 1 , when the film width of the PVA film is smaller than 3.5 m , the optical performance (difference in transmittance) in the width direction of the polarizing film becomes uneven. Become Therefore, in order to exhibit uniform and good optical performance over the entire width direction and to obtain excellent polarization performance (dichroic ratio), the film width must be
It can be understood that it is necessary to use a PVA film of 3.5 m or more and 6 m or less . As described above, according to the present invention, a wide polarization suitable for a large-screen liquid crystal display exhibiting uniform and good optical performance over the entire width direction and having excellent polarization performance. A film can be obtained.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI B29L 7:00 B29L 7:00 11:00 11:00 C08L 29:04 C08L 29:04 ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 7 Identification code FI B29L 7:00 B29L 7:00 11:00 11:00 C08L 29:04 C08L 29:04

Claims (1)

(57)【特許請求の範囲】 【請求項1】 フィルム幅が3.5m以上6m以下、厚
さ精度が10μm以下のポリビニルアルコールフィルム
を、ロール方式により長さ方向に4倍以上に自由幅一軸
延伸させることを特徴とする偏光フィルムの製造法。
(57) [Claims 1] A polyvinyl alcohol film having a film width of 3.5 m or more and 6 m or less and a thickness accuracy of 10 μm or less is rolled uniaxially with a free width of 4 times or more in the length direction. A method for producing a polarizing film, comprising stretching.
JP2000123890A 2000-04-25 2000-04-25 Manufacturing method of polarizing film Expired - Lifetime JP3448011B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000123890A JP3448011B2 (en) 2000-04-25 2000-04-25 Manufacturing method of polarizing film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000123890A JP3448011B2 (en) 2000-04-25 2000-04-25 Manufacturing method of polarizing film

Publications (2)

Publication Number Publication Date
JP2001305347A JP2001305347A (en) 2001-10-31
JP3448011B2 true JP3448011B2 (en) 2003-09-16

Family

ID=18634111

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000123890A Expired - Lifetime JP3448011B2 (en) 2000-04-25 2000-04-25 Manufacturing method of polarizing film

Country Status (1)

Country Link
JP (1) JP3448011B2 (en)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003240947A (en) * 2002-02-14 2003-08-27 Nitto Denko Corp Method for manufacturing polarizer, polarizer, polarizing plate, and image display device
JP4394431B2 (en) * 2003-12-11 2010-01-06 住友化学株式会社 Manufacturing method of polarizing film and manufacturing method of polarizing plate
JP4421886B2 (en) * 2003-12-15 2010-02-24 住友化学株式会社 Method for producing iodine polarizing film and method for producing polarizing plate
JP2007223242A (en) * 2006-02-24 2007-09-06 Jsr Corp Manufacturing method for phase difference film, phase difference film, and its use
JP5232465B2 (en) 2007-02-08 2013-07-10 日東電工株式会社 Manufacturing method of long optical laminate, manufacturing method of rectangular optical laminate, and liquid crystal panel
JP5064075B2 (en) * 2007-03-26 2012-10-31 日東電工株式会社 Manufacturing method of polarizing film
JP2008241910A (en) * 2007-03-26 2008-10-09 Nitto Denko Corp Method of manufacturing polarizing film
JP5232403B2 (en) * 2007-05-10 2013-07-10 日東電工株式会社 OPTICAL LAMINATED FILM, LONG OPTICAL LAMINATED FILM MANUFACTURING METHOD, AND LIQUID CRYSTAL DISPLAY DEVICE
JP5048120B2 (en) * 2010-03-31 2012-10-17 住友化学株式会社 Method for producing polarizing laminated film and method for producing polarizing plate
JP2012198449A (en) * 2011-03-23 2012-10-18 Nitto Denko Corp Polarizing membrane and polarizing film
JP6176827B2 (en) * 2012-03-14 2017-08-09 日東電工株式会社 Optical film roll

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3342517B2 (en) * 1992-10-27 2002-11-11 株式会社クラレ Method for producing PVA-based film and optical film

Also Published As

Publication number Publication date
JP2001305347A (en) 2001-10-31

Similar Documents

Publication Publication Date Title
KR20080053252A (en) Polyvinyl alcohol polymer film and polarization film
JP3448011B2 (en) Manufacturing method of polarizing film
JP3476135B2 (en) Method for producing polyvinyl alcohol film for polarizing film
JP3480920B2 (en) Method for producing polyvinyl alcohol film
JP4573404B2 (en) Manufacturing method of polarizing film
JP3514386B2 (en) Polyvinyl alcohol polymer film and process for producing the same
JP4592147B2 (en) Polyvinyl alcohol film and polarizing film
JP3473839B2 (en) Method for producing polyvinyl alcohol film for polarizing film
JP3496825B2 (en) Method for producing polyvinyl alcohol polymer film
JP3478534B2 (en) Polyvinyl alcohol film and polarizing film
JP2001311828A (en) Polyvinyl alcohol film for polarizing film, its manufacturing method and polarizing film
JP3478533B2 (en) Method for producing polyvinyl alcohol-based polymer film
JP2004020629A (en) Manufacturing method of polarizing film
JP3476137B2 (en) Method for producing polyvinyl alcohol-based polymer film
JP4504524B2 (en) Production method of stretched film
JP4926367B2 (en) Polarized film
JP2003248123A (en) Polyvinyl alcohol film and polarizing film
JP3429476B2 (en) Polyvinyl alcohol polymer film, its production method and polarizing film
JP3478536B2 (en) Polyvinyl alcohol film and polarizing film
JP3516394B2 (en) Method for producing polyvinyl alcohol film for polarizing film
JP3942923B2 (en) Polyvinyl alcohol film
JP4646356B2 (en) Production method of polyvinyl alcohol film
JP3473838B2 (en) Method for producing polyvinyl alcohol film
JP3796198B2 (en) Manufacturing method of polarizing film
JP3478535B2 (en) Polyvinyl alcohol film and polarizing film

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
R150 Certificate of patent or registration of utility model

Ref document number: 3448011

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080704

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090704

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100704

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110704

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120704

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130704

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140704

Year of fee payment: 11

EXPY Cancellation because of completion of term