JP3441653B2 - Method for manufacturing semiconductor device - Google Patents

Method for manufacturing semiconductor device

Info

Publication number
JP3441653B2
JP3441653B2 JP28195598A JP28195598A JP3441653B2 JP 3441653 B2 JP3441653 B2 JP 3441653B2 JP 28195598 A JP28195598 A JP 28195598A JP 28195598 A JP28195598 A JP 28195598A JP 3441653 B2 JP3441653 B2 JP 3441653B2
Authority
JP
Japan
Prior art keywords
wafer
film
concentration
semiconductor layer
type
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP28195598A
Other languages
Japanese (ja)
Other versions
JP2000100741A (en
Inventor
淳哉 植川
研治 福井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sansha Electric Manufacturing Co Ltd
Original Assignee
Sansha Electric Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sansha Electric Manufacturing Co Ltd filed Critical Sansha Electric Manufacturing Co Ltd
Priority to JP28195598A priority Critical patent/JP3441653B2/en
Publication of JP2000100741A publication Critical patent/JP2000100741A/en
Application granted granted Critical
Publication of JP3441653B2 publication Critical patent/JP3441653B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Weting (AREA)

Description

【発明の詳細な説明】 【0001】 【発明の属する技術分野】本発明は,フィルム状拡散ソ
ースを用いてウェハに不純物を拡散して,半導体層を形
成させる半導体装置の製造方法に関するものである。 【0002】 【従来の技術】フィルム状拡散ソースを用いてウェハに
不純物を拡散して,半導体層を形成させる半導体装置の
製造方法(以下フィルム拡散法という)は,P型不純物
とN型不純物とを同時に拡散できる利点を有している
が,拡散後,ウェハに残さが残りこの残さを除く必要が
ある。 【0003】フィルム拡散法を用いてダイオードと形成
させる場合,例えば図2のようにN型で低濃度のウェハ
41の上にP型で高濃度のフィルム状拡散ソース42を
搭載し,このフィルム状拡散ソース42の上にN型で低
濃度のウェハ43を搭載する。さらに,このウェハ43
の上にN型で高濃度のフィルム状拡散ソース44を搭載
する。このフィルム状拡散ソース44の上に,N型で低
濃度のウェハ45を搭載する。さらに,このウェハ45
の上にP型で高濃度のフィルム状拡散ソース46を搭載
し,このフィルム状拡散ソース46の上にN型で低濃度
のウェハ47を搭載する。さらにこのウェハ47の上に
N型で高濃度のフィルム状拡散ソース48を搭載し,こ
のフィルム状拡散ソース48の上にN型で低濃度のN型
のウェハー49を搭載する。 【0004】このようにウェハとフィルム状拡散ソース
を重ねたブロックは,拡散炉に入れられ,高温,例えば
1250℃で90分拡散される。例えば下から3段目の
ウェハ45は,図3に示すように低濃度のN型の半導体
基板45aの下側に高濃度のN型半導体層45bが形成
し,上側には高濃度のP型半導体層45cが形成され
る。 さらに,N+半導体層45bの下部には非常に高
濃度のN++半導体層45dと,P+半導体層45cの
上部に非常に高濃度のP++半導体層45eが約数μm
で形成されている。 【0005】フィルム状拡散ソースの拡散後,フィルム
状拡散ソースは,フィルム残さとしてウェハとウェハと
の間に残っている。このため,図4の1に示すように,
ウェハのブロックをフッ酸に,例えば約24時間浸漬さ
せると,フィルム残さが除かれる。この時,ウェハとウ
ェハとの間に上記フッ酸が残り,隣り合うウェハが貼り
付いた状態となっている。このため,図4の2に示すよ
うに,水中で超音波放射しつつ洗浄を行い,図4の3に
示すように手作業により隣り合うウェハを分離させてい
る。 【0006】このようにして形成されたウェハは,図3
に示すように,N++半導体層45dの下部及びP++
半導体層45eの上部には,それぞれフィルムの有機物
を含み,半導体特性に供しない不純物層45fと45g
が形成されている。このため,図4の4で示すように弱
酸を用いて半導体特性を供しない薄い不純物層45f,
45gを含み,半導体層45d,45eをシリコンエッ
チングする。これにより,不純物層45fと非常に高濃
度のN++半導体層45dとは,高濃度のN型半導体層
45bから浮き上がった状態の被膜となっている。ま
た,不純物層45gと非常に高濃度のP++半導体層4
5eとは,高濃度のP型半導体層45cから浮き上がっ
た状態の被膜となっている。このシリコンエッチング
後,図4の5で示すように洗浄を行う。 【0007】シリコンエッチングされ洗浄されたウェハ
のN+半導体層45bの下部と,P+半導体層45cの
上部に薄い皮膜が形成されており,この被膜は図4の6
に示すようにスクラブされて除かれ,さらに図4の7に
示すように洗浄される。この後,図4の8に示すように
ウェハはドライブ拡散され,所定のウェハが得られる。 【0008】 【発明が解決しようとする課題】ところが,スクラブは
ウェハ一枚一枚行われるため,作業工数のかかる工程で
あった。また,不純物層45f,45gの除去精度は,
図4の4のシリコンエッチング時のエッチング量に大き
く影響されるため,エッチング量の管理が必要である。
このエッチング量の管理は非常に難しく,工程の安定が
困難であった。 【0009】 【課題を解決するための手段】本発明の半導体装置の製
造方法は,低濃度のウェハと高濃度のフィルム状拡散ソ
ースとを積み重ねて加熱する拡散工程と,上記拡散後フ
ッ酸により上記フィルム拡散ソースのフィルム残さを除
き,上記ウェハを分離する工程と,上記ウェハを分離
後,低温で酸化しウェハの表面に酸化膜を形成する工程
と,上記酸化膜形成後希フッ酸により上記酸化膜を除去
する工程と,上記酸化膜除去後シリコンエッチングする
エッチング工程と,エッチング後ドライブ拡散する工程
からなるものである。 【0010】低濃度のウェハと,高濃度のフィルム状拡
散ソースとを積み重ねて加熱し,フィルム状拡散ソース
から不純物をウェハに拡散する。拡散後,フィルム状拡
散ソースのフィルム残さを取り除き,ウェハを一枚一枚
に分離する。分離後各ウェハを低温で酸化し,ウェハの
表面に酸化膜を形成する。酸化膜形成後希フッ酸により
酸化膜とともにウェハ表面の不純物層を除去する。酸化
膜を除去後ウェハ表面の非常に高濃度に拡散された半導
体層をエッチングにより除去する。さらにエッチング後
ドライブ拡散し安定したウェハの半導体装置を得る。 【0011】 【発明の実施の形態】本発明を,その実施の形態を示し
た図1に基づいて説明する。図1において,図4と異な
る点は,従来の図4のものはN+半導体層45bの下部
に形成された薄い被膜と,P+半導体層45cの上部に
形成された薄い被覆をシリコンエッチング後にスクラブ
によって除かれていたのに対し,図1のものは各ウェハ
を分離した後,低温でN+半導体層45bの下部及びP
+半導体層45cの上部まで酸化膜を形成し,この酸化
膜とともに不純物を希フッ酸により除くものである。 【0012】すなわち,図2に示すように,ウェハと高
濃度のN型フィルム状拡散ソースと,ウェハと高濃度の
P型フィルム状拡散ソースとを交互に重ねたブロック
を,図1の1に示すように高温,例えば1250℃で9
0分拡散する。拡散後,図1の2に示すようにブロック
をフッ酸に,例えば24時間浸漬させると,フィルム状
拡散ソースの残さが除かれる。さらに図1の3に示すよ
うに,純水中で超音波照射しつつ洗浄を行い,手作業に
より隣り合うウェハ同志を一枚一枚を分離させる。この
時,例えば図3に示すように中央の低濃度のN型半導体
層45aと,その下側に高濃度のN+型半導体層45b
が形成され,N型半導体層45aの上側に高濃度のP+
型半導体層45cが形成される。さらにN+半導体層4
5bの下部及びP+半導体層45cの上部には,それぞ
れ厚みが数μmで非常に高濃度のN++半導体層45d
及び非常に高濃度のP++半導体層45eが形成され,
さらにN++半導体層45dの下部及びP++半導体層
45eの上部にはそれぞれフィルム状拡散ソースの有機
物を含めた半導体特性に供しない不純物層45f,45
gが形成されている。 【0013】このウェハを図1の4に示すように,低濃
度,例えば800℃で約1時間低温酸化させる。この
時,N++半導体層45dの表面及びP++半導体層4
5eの表面に酸化膜が形成される。この後,図1の5に
示すように,希フッ酸に約5分間浸漬すると,酸化膜と
ともに不純物層45f,45gが取り除かれる。 【0014】不純物45f,45gが除かれたウェハ
は,図1の6に示すようにシリコンエッチングされる
と,N++半導体層45d及びP++半導体層45eが
除かれ,図1の7に示すように洗浄される。この後,図
1の8に示すように,ウェハはドライブ拡散されて,所
定の安定した半導体のウェハが得られる。 【0015】このようにして得られたウェハは,不純物
層並びに非常に高濃度で半導体特性に供しないN++半
導体層及びP++半導体層の除去がバッチによって数多
くのウェハを一度に処理することができる。 【0016】上記実施の形態では,フィルム状拡散ソー
スをN型半導体の拡散ソースと,P型の拡散ソースを交
互に行っているが,これに限定されることがなくウェハ
の両面をN型の拡散ソースにすることも,また,ウェハ
の両面をP型の拡散ソースにすることもできる。また,
上記実施の形態では,ダイオードについて説明したが,
他の半導体装置にも適用することができる。 【0017】 【発明の効果】本発明の半導体の製造方法によれば,不
純物層並びに半導体特性に供しない非常に高濃度の半導
体層の除去を一度に数多く行うことができ,製造工程が
簡潔化され安価な半導体装置を提供することができる。
Description: BACKGROUND OF THE INVENTION [0001] 1. Field of the Invention [0002] The present invention relates to a method of manufacturing a semiconductor device in which a semiconductor layer is formed by diffusing impurities into a wafer using a film-like diffusion source. . 2. Description of the Related Art A method of manufacturing a semiconductor device in which a semiconductor layer is formed by diffusing impurities into a wafer by using a film-like diffusion source (hereinafter referred to as a film diffusion method) includes a P-type impurity and an N-type impurity. Have the advantage that they can be simultaneously diffused, but after the diffusion, a residue remains on the wafer and it is necessary to remove this residue. When a diode is formed by the film diffusion method, for example, as shown in FIG. 2, a P-type high-concentration film-type diffusion source 42 is mounted on an N-type low-concentration wafer 41, and this film-type diffusion source is mounted. An N-type low-concentration wafer 43 is mounted on the diffusion source 42. Further, the wafer 43
An N-type high-concentration film-like diffusion source 44 is mounted thereon. An N-type low-concentration wafer 45 is mounted on the film-like diffusion source 44. Further, the wafer 45
A P-type high-concentration film-type diffusion source 46 is mounted on the substrate, and an N-type low-concentration wafer 47 is mounted on the film-type diffusion source 46. Further, an N-type high-concentration film-type diffusion source 48 is mounted on the wafer 47, and an N-type low-concentration N-type wafer 49 is mounted on the film-type diffusion source 48. [0004] The block in which the wafer and the film-like diffusion source are overlapped in this manner is placed in a diffusion furnace and diffused at a high temperature, for example, 1250 ° C for 90 minutes. For example, in the third wafer 45 from the bottom, as shown in FIG. 3, a high-concentration N-type semiconductor layer 45b is formed below a low-concentration N-type semiconductor substrate 45a, and a high-concentration P-type semiconductor layer 45b is formed on the upper side. The semiconductor layer 45c is formed. Further, a very high-concentration N ++ semiconductor layer 45d is formed below the N + semiconductor layer 45b, and a very high-concentration P ++ semiconductor layer 45e is formed about several μm above the P + semiconductor layer 45c.
It is formed with. After diffusion of the film-form diffusion source, the film-form diffusion source remains between the wafers as a film residue. Therefore, as shown in FIG.
When the block of the wafer is immersed in hydrofluoric acid, for example, for about 24 hours, the film residue is removed. At this time, the hydrofluoric acid remains between the wafers, and the adjacent wafers are stuck. Therefore, as shown in FIG. 4B, cleaning is performed while radiating ultrasonic waves in water, and adjacent wafers are manually separated as shown in FIG. [0006] The wafer thus formed is shown in FIG.
As shown in the figure, the lower part of the N ++ semiconductor layer 45d and P ++
Above the semiconductor layer 45e, impurity layers 45f and 45g each containing a film organic substance and not providing semiconductor characteristics are provided.
Are formed. For this reason, as shown by 4 in FIG. 4, a thin impurity layer 45f which does not provide semiconductor characteristics by using a weak acid is used.
The semiconductor layers 45d and 45e are etched by silicon, including 45g. As a result, the impurity layer 45f and the very high-concentration N ++ semiconductor layer 45d form a coating that is raised from the high-concentration N-type semiconductor layer 45b. Further, the impurity layer 45g and the very high concentration P ++ semiconductor layer 4
5e is a film in a state of being lifted from the high concentration P-type semiconductor layer 45c. After this silicon etching, cleaning is performed as shown by 5 in FIG. [0007] Thin films are formed on the lower portion of the N + semiconductor layer 45b and on the upper portion of the P + semiconductor layer 45c of the silicon-etched and cleaned wafer.
Then, it is scrubbed away as shown in FIG. 4 and further washed as shown in FIG. Thereafter, the wafer is drive-diffused as shown at 8 in FIG. 4 to obtain a predetermined wafer. However, since the scrubbing is performed one by one, the process requires a lot of man-hours. The removal accuracy of the impurity layers 45f and 45g is as follows.
Since the amount of etching at the time of silicon etching of 4 in FIG. 4 is greatly affected, it is necessary to control the amount of etching.
It was very difficult to control the amount of etching, and it was difficult to stabilize the process. According to the present invention, there is provided a method of manufacturing a semiconductor device, comprising: a diffusion step in which a low-concentration wafer and a high-concentration film diffusion source are stacked and heated; Removing the film residue from the film diffusion source, separating the wafer, oxidizing at a low temperature after separating the wafer, and forming an oxide film on the surface of the wafer; The method comprises a step of removing an oxide film, an etching step of etching silicon after removing the oxide film, and a step of drive diffusion after etching. A low-concentration wafer and a high-concentration film-form diffusion source are stacked and heated to diffuse impurities from the film-form diffusion source to the wafer. After the diffusion, the film residue of the film-form diffusion source is removed, and the wafers are separated one by one. After the separation, each wafer is oxidized at a low temperature to form an oxide film on the surface of the wafer. After the oxide film is formed, the impurity layer on the wafer surface is removed together with the oxide film using diluted hydrofluoric acid. After removing the oxide film, the semiconductor layer diffused to a very high concentration on the wafer surface is removed by etching. Further, after etching, drive diffusion is performed to obtain a stable wafer semiconductor device. DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described with reference to FIG. 1 showing an embodiment thereof. In FIG. 1, the point different from FIG. 4 is that the conventional thin film shown in FIG. 4 is formed by scrubbing a thin film formed under the N + semiconductor layer 45b and a thin film formed above the P + semiconductor layer 45c after silicon etching. On the other hand, in the case of FIG. 1, after separating each wafer, the lower part of the N + semiconductor layer 45b and the P
+ An oxide film is formed up to the upper portion of the semiconductor layer 45c, and impurities are removed together with the oxide film by dilute hydrofluoric acid. That is, as shown in FIG. 2, a block in which a wafer and a high-concentration N-type film-like diffusion source and a wafer and a high-concentration P-type film-like diffusion source are alternately stacked is shown in FIG. As shown, 9 ° C at high temperature, eg 1250 ° C
Spread for 0 minutes. After diffusion, the block is immersed in hydrofluoric acid, for example, for 24 hours as shown in FIG. Further, as shown in FIG. 1C, cleaning is performed while irradiating ultrasonic waves in pure water, and adjacent wafers are manually separated one by one. At this time, for example, as shown in FIG. 3, a low-concentration N-type semiconductor layer 45a at the center and a high-concentration N +
Is formed, and a high concentration of P + is formed on the upper side of the N-type semiconductor layer 45a.
A type semiconductor layer 45c is formed. Further, N + semiconductor layer 4
5b and an upper part of the P + semiconductor layer 45c, each having a thickness of several μm and a very high concentration of the N ++ semiconductor layer 45d.
And a very high concentration P ++ semiconductor layer 45e is formed,
Further, impurity layers 45f and 45 which are not used for semiconductor characteristics including an organic substance of a film-form diffusion source are provided below the N ++ semiconductor layer 45d and above the P ++ semiconductor layer 45e, respectively.
g is formed. The wafer is oxidized at a low concentration, for example, at 800 ° C. for about 1 hour at a low temperature, as shown in FIG. At this time, the surface of the N ++ semiconductor layer 45d and the P ++
An oxide film is formed on the surface of 5e. Thereafter, as shown by 5 in FIG. 1, when the substrate is immersed in dilute hydrofluoric acid for about 5 minutes, the impurity layers 45f and 45g are removed together with the oxide film. The wafer from which the impurities 45f and 45g have been removed is subjected to silicon etching as shown at 6 in FIG. 1, so that the N ++ semiconductor layer 45d and the P ++ semiconductor layer 45e are removed and the wafer is cleaned as shown at 7 in FIG. Is done. Thereafter, as shown at 8 in FIG. 1, the wafer is drive-diffused to obtain a predetermined stable semiconductor wafer. In the wafer thus obtained, a large number of wafers can be processed at one time in batches by removing impurity layers and N ++ semiconductor layers and P ++ semiconductor layers which do not provide semiconductor characteristics at a very high concentration. In the above embodiment, the film-type diffusion source is an N-type semiconductor diffusion source and a P-type diffusion source alternately. However, the present invention is not limited to this. A diffusion source can be used, or both sides of the wafer can be P-type diffusion sources. Also,
In the above embodiment, the diode has been described.
The present invention can be applied to other semiconductor devices. According to the method of manufacturing a semiconductor of the present invention, a large number of impurity layers and very high-concentration semiconductor layers that do not contribute to semiconductor characteristics can be removed at once, and the manufacturing process can be simplified. Thus, an inexpensive semiconductor device can be provided.

【図面の簡単な説明】 【図1】本発明の半導体装置の製造方法の一実施の形態
の工程のフローチャートである。 【図2】図1の工程中のブロックの説明図である。 【図3】図1により製造される半導体装置の概略断面図
である。 【図4】従来の半導体装置の製造方法の工程フローチャ
ートである。 【符号の説明】 41,43,45,47,49 ウェハ 42,46 (高濃度のP型の)フィルム状拡散ソース 44,48 (高濃度のN型の)フィルム状拡散ソース 45a (低濃度の)N型半導体層 45b (高濃度の)N+型半導体層 45c (高濃度の)P+型半導体層 45d (非常に高濃度の)N++型半導体層 45e (非常に高濃度の)P++型半導体層 45f,45g 不純物層
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a flowchart of a process in an embodiment of a method for manufacturing a semiconductor device according to the present invention. FIG. 2 is an explanatory diagram of a block in the process of FIG. 1; FIG. 3 is a schematic sectional view of the semiconductor device manufactured according to FIG. 1; FIG. 4 is a process flowchart of a conventional semiconductor device manufacturing method. DESCRIPTION OF SYMBOLS 41, 43, 45, 47, 49 Wafers 42, 46 (high-concentration P-type) film-like diffusion sources 44, 48 (high-concentration N-type) film-like diffusion sources 45a (low-concentration ) N type semiconductor layer 45b (high concentration) N + type semiconductor layer 45c (high concentration) P + type semiconductor layer 45d (very high concentration) N ++ type semiconductor layer 45e (very high concentration) P ++ type semiconductor layer 45f , 45g impurity layer

Claims (1)

(57)【特許請求の範囲】 【請求項1】 低濃度のウェハと高濃度のフィルム状拡
散ソースとを積み重ねて加熱する拡散工程と,上記拡散
後フッ酸により上記フィルム拡散ソースのフィルム残さ
を除き,上記ウェハを分離する工程と,上記ウェハを分
離後低温で酸化し,ウェハの表面に酸化膜を形成する工
程と,上記酸化膜形成後希フッ酸により上記酸化膜を除
去する工程と,上記酸化膜除去後シリコンエッチングす
るエッチング工程と,エッチング後ドライブ拡散する工
程からなる半導体装置の製造方法。
(57) [Claims 1] A diffusion step of stacking and heating a low-concentration wafer and a high-concentration film-like diffusion source, and removing the film residue of the film diffusion source with hydrofluoric acid after the diffusion. Removing the wafer, oxidizing the wafer at a low temperature after the separation to form an oxide film on the surface of the wafer, and removing the oxide film with diluted hydrofluoric acid after the oxide film is formed. A method for manufacturing a semiconductor device, comprising: an etching step of performing silicon etching after removing an oxide film; and a drive diffusion step after etching.
JP28195598A 1998-09-17 1998-09-17 Method for manufacturing semiconductor device Expired - Fee Related JP3441653B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28195598A JP3441653B2 (en) 1998-09-17 1998-09-17 Method for manufacturing semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28195598A JP3441653B2 (en) 1998-09-17 1998-09-17 Method for manufacturing semiconductor device

Publications (2)

Publication Number Publication Date
JP2000100741A JP2000100741A (en) 2000-04-07
JP3441653B2 true JP3441653B2 (en) 2003-09-02

Family

ID=17646243

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28195598A Expired - Fee Related JP3441653B2 (en) 1998-09-17 1998-09-17 Method for manufacturing semiconductor device

Country Status (1)

Country Link
JP (1) JP3441653B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6100471B2 (en) * 2012-03-29 2017-03-22 東京応化工業株式会社 Method for diffusing impurity diffusion component and method for manufacturing solar cell

Also Published As

Publication number Publication date
JP2000100741A (en) 2000-04-07

Similar Documents

Publication Publication Date Title
JP2980497B2 (en) Method of manufacturing dielectric-isolated bipolar transistor
JPH05251292A (en) Manufacture of semiconductor device
JP3441653B2 (en) Method for manufacturing semiconductor device
JP3921823B2 (en) Manufacturing method of SOI wafer and SOI wafer
EP0418737A1 (en) Method of manufacturing a semiconductor substrate dielectric isolating structure
JPH11162874A (en) Ohmic joint electrode and semiconductor device using the same
JP4581349B2 (en) Manufacturing method of bonded SOI wafer
JP2930194B2 (en) SOI wafer and method for manufacturing the same
JP2807717B2 (en) Manufacturing method of semiconductor substrate
JP2004119498A (en) Method for manufacturing semiconductor device
JP3173392B2 (en) Solar cell element and method of manufacturing the same
WO2022001779A1 (en) Method for manufacturing semiconductor-on-insulator structure
JP2001144273A (en) Method for fabricating semiconductor device
JPH08191138A (en) Manufacture of soi substrate
JPS5935421A (en) Manufacture of semiconductor device
JPH05129170A (en) Manufacture of semiconductor device
CN113097068A (en) Method for manufacturing semiconductor device
JPH03227023A (en) Manufacture of bipolar transistor
JP2004186442A (en) Method for manufacturing power semiconductor chip
JP2674964B2 (en) Method for manufacturing semiconductor device
JPH01238058A (en) Manufacture of high-speed bipolar transistor
JPH05326685A (en) Manufacature of semiconductor substrate
JPS58168237A (en) Silicon substrate
JPS6028388B2 (en) Manufacturing method of semiconductor device
JPH08213578A (en) Soi substrate and manufacturing method thereof

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080620

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090620

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090620

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100620

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110620

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110620

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120620

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130620

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140620

Year of fee payment: 11

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees