JP3432692B2 - Binuclear iron complex catalyst - Google Patents

Binuclear iron complex catalyst

Info

Publication number
JP3432692B2
JP3432692B2 JP05523397A JP5523397A JP3432692B2 JP 3432692 B2 JP3432692 B2 JP 3432692B2 JP 05523397 A JP05523397 A JP 05523397A JP 5523397 A JP5523397 A JP 5523397A JP 3432692 B2 JP3432692 B2 JP 3432692B2
Authority
JP
Japan
Prior art keywords
oxygen
reduction
catalyst
iron
iron complex
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP05523397A
Other languages
Japanese (ja)
Other versions
JPH10249208A (en
Inventor
英俊 土田
公寿 山元
研一 小柳津
ハリヨノ アグス
潤一郎 名取
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Science and Technology Agency
Original Assignee
Japan Science and Technology Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Science and Technology Corp filed Critical Japan Science and Technology Corp
Priority to JP05523397A priority Critical patent/JP3432692B2/en
Publication of JPH10249208A publication Critical patent/JPH10249208A/en
Application granted granted Critical
Publication of JP3432692B2 publication Critical patent/JP3432692B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】この出願の発明は、鉄二核錯
体触媒に関するものである。さらに詳しくは、この出願
の発明は、水および有機溶媒中の溶存酸素の還元や、燃
料電池の酸素還元電極触媒、あるいは酸素酸化触媒等と
して有用な、新しい鉄二核錯体触媒に関するものであ
る。
TECHNICAL FIELD The invention of this application relates to an iron binuclear complex catalyst. More specifically, the invention of this application relates to a novel iron dinuclear complex catalyst useful as a reduction of dissolved oxygen in water and an organic solvent, an oxygen reduction electrode catalyst of a fuel cell, an oxygen oxidation catalyst, and the like.

【0002】[0002]

【従来の技術とその課題】従来より、酸素や電解還元に
ついては、1電子還元によるスーパーオキシドの生成
や、2電子還元による過酸化水素の生成が知られている
が、4電子還元による水の生成を可能とする方法やその
ための触媒に関してはあまり知られていない。4電子還
元では最も高い電位で酸素を還元することになるので、
この4電子還元を可能とする触媒が見出されるとする
と、この触媒は酸化力の強い酸化剤として利用されるこ
とにもなる。しかも4電子還元では水を生成するため、
そのための触媒は、クリーンなエネルギー変換系を提供
することができることになる。
2. Description of the Related Art Conventionally, for oxygen and electrolytic reduction, it has been known to generate superoxide by one-electron reduction and hydrogen peroxide by two-electron reduction. Little is known about the methods by which it can be produced and the catalysts therefor. In 4-electron reduction, oxygen is reduced at the highest potential, so
If a catalyst that enables this four-electron reduction is found, this catalyst will also be used as an oxidizing agent having a strong oxidizing power. Moreover, since 4-electron reduction produces water,
The catalyst therefor can provide a clean energy conversion system.

【0003】たとえばこれまでにも、平滑な白金電極
は、強酸性下で酸素4電子還元を可能とする酸素還元と
して燃料電池に使用されている。しかしながら、これま
での酸素4電子還元系では過電圧が大きいことから、こ
のエネルギーロスを解決することを必要となる。そこ
で、これまでにも、そのための手段として数多くの電子
移動速度増加剤、すなわち電極触媒系の提案がなされて
きている。まず、コバルトポルフィリン二核錯体による
解決方法が試みられている(たとえば、F.C. Ansonet,
al., J. Am. Chem. Soc.,1980,102,602
7)。だが、触媒の作動速度が遅く、酸素還元電流が低
いレベルに留まる結果となっている。しかも、錯体の合
成が極めて困難で収率も悪く、酸素と錯体の反応機構も
充分に解明されていない。
For example, until now, a smooth platinum electrode has been used in a fuel cell as an oxygen reduction that enables oxygen four-electron reduction under strong acidity. However, in the conventional oxygen four-electron reduction system, the overvoltage is large, so it is necessary to solve this energy loss. Therefore, many electron transfer rate increasing agents, that is, electrode catalyst systems have been proposed as means for that purpose. First, a solution using a binuclear cobalt porphyrin complex has been tried (for example, FC Ansonet,
al., J. Am. Chem. Soc., 1980, 102, 602.
7). However, the operation speed of the catalyst is slow, and the result is that the oxygen reduction current remains at a low level. Moreover, the synthesis of the complex is extremely difficult and the yield is poor, and the reaction mechanism between oxygen and the complex has not been sufficiently clarified.

【0004】また、酸素の4電子還元触媒として、一つ
のコバルトポルフィリン錯体に複数の電子供与錯体(た
とえばルテニウムアンミン錯体)を連結した多核錯体系
が報告されている(たとえば、F.C. Anson et, al., J.
Am. Chem. Soc.,1991,113,9564)。だ
が、観測された還元作動電位は期待されたほど高いもの
ではなく、しかも、錯体が分解したり、あるいは電極表
面から溶液中に溶け出す場合があり、とても実用に耐え
得ないのが実情である。
As a four-electron reducing catalyst for oxygen, a polynuclear complex system in which one cobalt porphyrin complex and a plurality of electron-donating complexes (for example, a ruthenium ammine complex) are linked has been reported (for example, FC Anson et. Al. , J.
Am. Chem. Soc., 1991, 113, 9564.). However, the observed reduction operating potential is not as high as expected, and moreover, the complex may decompose or may be dissolved from the electrode surface into the solution, which is not practically practical. .

【0005】そこでこの出願の発明は、以上のとおりの
従来の技術的限界を越えて、酸素還元電位が高く、触媒
活性が高いと共にその安定性にも優れ、その調製も容易
な、酸素4電子還元を可能とする、鉄二核錯体触媒を提
供することを目的としている。
Therefore, the invention of this application exceeds the conventional technical limits as described above, and the oxygen reduction potential is high, the catalytic activity is high, the stability is excellent, and the oxygen 4 electron is easily prepared. It is intended to provide an iron binuclear complex catalyst that enables reduction.

【0006】[0006]

【課題を解決するための手段】この出願の発明は、上記
の課題を解決するものとして、二核鉄錯体からなる酸素
還元用鉄錯体触媒であって、二核鉄錯体において二つの
鉄原子は、酸素原子により架橋されたμ−オキソ錯体で
あり、かつテトラフェニルポルフィリンを配位子として
有することを特徴とする酸素還元用鉄錯体触媒を提供す
。そして、この発明は、上記の態様として、二核鉄錯
体が0〜2Vの酸化還元電位を有する前記の酸素還元用
鉄錯体触媒も提供する。
In order to solve the above-mentioned problems, the invention of the present application provides oxygen containing a dinuclear iron complex.
An iron complex catalyst for reduction, which comprises two
The iron atom is a μ-oxo complex bridged by an oxygen atom.
Yes, and tetraphenylporphyrin as a ligand
To provide an iron complex catalyst for oxygen reduction characterized by having
It Then, as the present invention, the above aspects, diiron complex
For oxygen reduction as described above, wherein the body has a redox potential of 0 to 2V
An iron complex catalyst is also provided.

【0007】また、この出願の発明は、上記のいずれか
の酸素還元用鉄錯体触媒を含有する酸性溶液中、該酸素
還元用鉄錯体の鉄の還元電位で電解還元することを特徴
とする酸素の4電子還元方法を提供する。
Further, the invention of this application is based on any one of the above.
In an acidic solution containing the iron complex catalyst for reducing oxygen
Characterized by electrolytic reduction at the reduction potential of iron in the reducing iron complex
And a four-electron reduction method for oxygen .

【0008】[0008]

【発明の実施の形態】この出願の発明は、上記のとおり
の鉄錯体を触媒とすることにより酸素還元を可能とする
ものであるが、以下にさらに詳細に説明する。まず、こ
の発明の酸素還元触媒に用いる鉄錯体は、配位子がテト
ラフェニルポルフィリンで構成される二核錯体である。
ここでは、二つの鉄はオキソ配位子によって架橋されて
る。
BEST MODE FOR CARRYING OUT THE INVENTION The invention of this application enables oxygen reduction by using the iron complex as a catalyst as described above, which will be described in more detail below. First, in the iron complex used in the oxygen reduction catalyst of the present invention , the ligand is
It is a binuclear complex composed of laphenylporphyrin .
Here, two iron Ru have <br/> are bridged by oxo ligands.

【0009】そしてこの発明の鉄系酸素還元触媒では、
活性状態での鉄の数が重要である。たとえば、この発明
により提供されるμ−オキソ型の二核錯体は単核の鉄錯
体よりも高い4電子還元反応選択性を持っていること
で、触媒活性が発現する。この発明に使用することので
きる鉄錯体を例示すれば、μ−オキソビス(テトラフェ
ニルポルフィリナート鉄(III))錯体が挙げられる。
In the iron-based oxygen reduction catalyst of the present invention,
The number of iron in the active state is important. For example, the μ-oxo type binuclear complex provided by the present invention has a higher 4-electron reduction reaction selectivity than the mononuclear iron complex, and thus exhibits catalytic activity. An example of an iron complex that can be used in the present invention is a μ-oxobis (tetraphenylporphyrinatoiron (III)) complex .

【0010】いずれのものにおいても、この発明では中
心金属の鉄の2価〜4価の原子価変換が触媒活性の役割
を担い、配位子は主に酸化還元電位の調節に寄与される
ものと考えている。このため、前記に例示の配位子以外
であっても、溶液中で安定に鉄二核錯体を形成するもの
は、この触媒に含まれるものである。この発明の酸素還
元触媒は、構造が明確であるうえ、これを溶存させると
酸性下で0V以上の高い電位で酸素の2電子、または4
電子での電解還元を選択度高く可能とする。そして、4
電子還元の選択性が高いため、均一系で、有機化合物の
酸素酸化反応を促進させる触媒としても働く。また、触
媒を電極表面に固定して、不均一系電極触媒とすること
もでき、燃料電池の酸素還元電極、酸素検出用センサー
などに利用することができる。
In any of these, in the present invention, the valence conversion of divalent to tetravalent iron of the central metal plays a role of catalytic activity, and the ligand mainly contributes to the regulation of the redox potential. I believe. Therefore, other than the above-exemplified ligands, those which stably form a dinuclear iron complex in a solution are included in this catalyst. The oxygen reduction catalyst of the present invention has a clear structure, and when it is dissolved, it has two electrons or four of oxygen at a high potential of 0 V or more under acidic conditions.
Allows electrolytic reduction with electrons with high selectivity. And 4
Since it has high electron reduction selectivity, it also functions as a catalyst that promotes the oxygen oxidation reaction of organic compounds in a homogeneous system. Further, the catalyst can be fixed on the electrode surface to form a heterogeneous electrode catalyst, which can be used for an oxygen reduction electrode of a fuel cell, an oxygen detection sensor, and the like.

【0011】この発明の酸素還元触媒は、系の酸素還元
等に応じて選択的な酸素4電子還元が可能のほか、たと
えば活性酸素の溶存が好ましくないような酸素酸化反
応、高電位(酸素4電子還元熱力学電位)での酸素還元
等の利用目的に応じての使い分けが可能である。以下、
実施例を示し、さらに詳しく発明の実施の形態について
説明する。
The oxygen reduction catalyst of the present invention is capable of performing selective oxygen four-electron reduction in accordance with the oxygen reduction of the system, for example, an oxygen oxidation reaction in which the dissolution of active oxygen is unfavorable, and high potential (oxygen 4 Electron reduction thermodynamic potential) can be used properly depending on the purpose of use such as oxygen reduction. Less than,
Examples will be shown to describe the embodiments of the present invention in more detail.

【0012】[0012]

【実施例】実施例1 蒸留精製ジクロロメタン25mLにμ−オキソビス(テ
トラフェニルポルフィリナート鉄(III))錯体0.01
7gとテトラブチルアンモニウムテトラフルオロホウ酸
塩0.83gを加え、純粋アルゴン気流下、常温で攪拌
しながらトリフルオロ酢酸5滴を滴下した。これを常温
で10分程度攪拌したあと、アルゴン気流下で3室式電
気化学測定セルに移動し、密閉の後、系を酸素ガスで置
換した。
Example 1 μ-oxobis (tetraphenylporphyrinatoiron (III)) complex 0.01 was added to 25 mL of distilled and purified dichloromethane.
7 g and tetrabutylammonium tetrafluoroborate 0.83 g were added, and 5 drops of trifluoroacetic acid were added dropwise while stirring at room temperature under a stream of pure argon. After stirring this at room temperature for about 10 minutes, it was moved to a three-chamber electrochemical measurement cell under an argon stream, sealed, and then the system was replaced with oxygen gas.

【0013】次いで、上記セルを用いて電解を行った。
電解には、作用電極にグラッシーカーボンディスク電
極、白金リング電極、対極に白金ワイヤー電極、参照電
極に銀/塩化銀電極を用いた。ディスク電極電位を掃引
して酸素還元電位に設定し、同時に生成する過酸化水素
を独立に一定電位に設定したリング電極で酸化すること
により検出した。
Next, electrolysis was performed using the above cell.
For electrolysis, a glassy carbon disk electrode, a platinum ring electrode was used as a working electrode, a platinum wire electrode was used as a counter electrode, and a silver / silver chloride electrode was used as a reference electrode. The disk electrode potential was swept and set to the oxygen reduction potential, and hydrogen peroxide produced at the same time was detected by being independently oxidized by the ring electrode set to a constant potential.

【0014】測定は静止系(サイクリックボルタンメト
リー)と対流系(回転リングディスクボルタンメトリ
ー)の両方で実施し、検出電流をX−Yレコーダーを用
いてグラフ用紙に記録した。検出測定の結果、0.2V
に酸素4電子還元に由来する還元電流がディスク上で検
出された。リング電極で検出された過酸化水素の電流値
にごくわずかであった。使用した回転リングディスク電
極の形状に由来する補足率Nは、フェロセン/フェロセ
ニウム対を用いて0.39と決定された。アルゴン雰囲
気下では、上述の酸素還元由来の還元電流は当然観測さ
れず、溶存錯体由来の酸化還元波(0.05V)のみと
なる。酸素雰囲気下での補足率の値より、4電子還元の
選択性は90%以上と決定された。
The measurement was carried out in both a static system (cyclic voltammetry) and a convection system (rotating ring disc voltammetry), and the detected current was recorded on a graph paper using an XY recorder. As a result of detection measurement, 0.2V
A reduction current derived from oxygen four-electron reduction was detected on the disk. The current value of hydrogen peroxide detected at the ring electrode was negligible. The capture rate N due to the shape of the rotating ring disc electrode used was determined to be 0.39 with the ferrocene / ferrocenium pair. Under an argon atmosphere, the above-mentioned reduction current derived from oxygen reduction is not naturally observed, and only a redox wave (0.05 V) derived from a dissolved complex is obtained. The selectivity of 4-electron reduction was determined to be 90% or more from the value of the supplementation rate in an oxygen atmosphere.

【0015】この触媒系を用いてアルゴン雰囲気下で過
酸化水素の電解還元を実施したが、接触還元波は見られ
なかった。以上の事実より、触媒を介した酸素の直接4
電子還元による水生成が確認された。実施例2 超純水25mLにアンモニウムヘキサフルオロリン酸塩
0.41gをいれ、純粋アルゴン気流下、常温で攪拌し
ながらテトラフルオロホウ酸を0.5Mになるまで滴下
した。これを常温で10分程度攪拌したあと、アルゴン
気流下で3室式電気化学測定セルに移動し、密閉の後、
系を酸素ガスで置換した。0.5mMトルエン溶液5μ
Lのμ−オキソビス(テトラフェニルポルフィリナート
鉄(III))錯体をスピンコーティングにより電極に修飾
した。
Using this catalyst system, hydrogen peroxide was electrolytically reduced under an argon atmosphere, but no catalytic reduction wave was observed. From the above facts, the direct 4
Water production by electron reduction was confirmed. Example 2 0.41 g of ammonium hexafluorophosphate was added to 25 mL of ultrapure water, and tetrafluoroboric acid was added dropwise to 0.5 M while stirring at room temperature under a pure argon stream. After stirring this at room temperature for about 10 minutes, it was moved to a three-chamber electrochemical measurement cell under an argon stream, and after sealing,
The system was replaced with oxygen gas. 0.5 mM toluene solution 5μ
L of μ-oxobis (tetraphenylporphyrinatoiron (III)) complex was applied to the electrode by spin coating.

【0016】電解には、作用電極にグラッシーカーボン
ディスク電極、白金リング電極、対極に白金ワイヤー電
極、参照電極に飽和カロメル電極を用い、ディスク電極
電位を掃引して酸素還元電位に設定、同時に生成する過
酸化水素を独立に一定電位に設定したリング電極で酸化
することにより検出した。測定は静止系(サイクリック
ボルタンメトリー)と対流系(回転リングディスクボル
タンメトリー)の両方で実施し、検出電流をX−Yレコ
ーダーを用いてグラフ用紙に記録した。
In the electrolysis, a glassy carbon disk electrode, a platinum ring electrode, a platinum wire electrode as a counter electrode, and a saturated calomel electrode as a reference electrode are used for the working electrode, and the disk electrode potential is swept to set the oxygen reduction potential and simultaneously generated. It was detected by oxidizing hydrogen peroxide independently with a ring electrode set to a constant potential. The measurement was performed by both a static system (cyclic voltammetry) and a convection system (rotating ring disc voltammetry), and the detected current was recorded on a graph paper using an XY recorder.

【0017】検出測定の結果、−0.2Vに酸素4電子
還元に由来する還元電流がディスク上で検出された。リ
ング電極で検出された過酸化水素の電流値にごくわずか
であった。使用した回転リングディスク電極の形状に由
来する補足率Nは、フェロシアン/フェリシアン対を用
いて0.36と決定された。アルゴン雰囲気下では、上
述の酸素還元由来の還元電流は当然観測されず、溶存錯
体由来の酸化還元電位(−0.35)のみとなる。酸素
雰囲気下での補足率の値より、4電子還元の選択性は8
8%以上と決定された。
As a result of the detection measurement, a reduction current derived from oxygen four-electron reduction at -0.2 V was detected on the disk. The current value of hydrogen peroxide detected at the ring electrode was negligible. The capture rate N due to the shape of the rotating ring disc electrode used was determined to be 0.36 using the ferrocyan / ferricyan pair. Under an argon atmosphere, the above-mentioned reduction current derived from oxygen reduction is not naturally observed, and only the redox potential (−0.35) derived from the dissolved complex is obtained. The selectivity of 4-electron reduction is 8 from the value of the supplementation rate in an oxygen atmosphere.
It was decided to be 8% or more.

【0018】この触媒系を用いてアルゴン雰囲気下で過
酸化水素の電解還元を実施したが、接触還元波は見られ
なかった。以上の事実より、触媒を介した酸素の直接4
電子還元による水生成が確認された。
Using this catalyst system, hydrogen peroxide was electrolytically reduced under an argon atmosphere, but no catalytic reduction wave was observed. From the above facts, the direct 4
Water production by electron reduction was confirmed.

【0019】[0019]

【発明の効果】この発明の酸素還元触媒は、酸素還元電
位が高く、触媒活性が高く、その安定性にも優れてい
る。そして、これを均一系触媒として使用することによ
り、有機化合物の酸素酸化を図ることができ、進んで選
択的な4電子酸化による水の生成を伴う高い酸化電位を
引き出すことができる。また、不均一系電極表面触媒と
して用いることにより、燃料電池の酸素還元電極、酸素
センサーとしての用途を提供するため、産業に資すると
ころが極めて大きい。
INDUSTRIAL APPLICABILITY The oxygen reduction catalyst of the present invention has a high oxygen reduction potential, high catalytic activity, and excellent stability. By using this as a homogeneous catalyst, oxygen oxidation of the organic compound can be achieved, and a high oxidation potential accompanied by generation of water by selective 4-electron oxidation can be derived. Further, the use as a heterogeneous electrode surface catalyst provides the use as an oxygen reduction electrode of a fuel cell and an oxygen sensor, which greatly contributes to the industry.

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平7−278152(JP,A) (58)調査した分野(Int.Cl.7,DB名) B01J 21/00 - 37/36 JICSTファイル(JOIS)─────────────────────────────────────────────────── ─── Continuation of the front page (56) Reference JP-A-7-278152 (JP, A) (58) Fields investigated (Int.Cl. 7 , DB name) B01J 21/00-37/36 JISST file ( JOIS)

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 二核鉄錯体からなる酸素還元用鉄錯体触
媒であって、二核鉄錯体において二つの鉄原子は、酸素
原子により架橋されたμ−オキソ錯体であり、かつテト
ラフェニルポルフィリンを配位子として有することを特
徴とする酸素還元用鉄錯体触媒
1. An iron complex catalyst for oxygen reduction comprising a binuclear iron complex.
In the binuclear iron complex, the two iron atoms are oxygen and
A μ-oxo complex bridged by atoms, and
It has a special feature of having laphenylporphyrin as a ligand.
An iron complex catalyst for oxygen reduction .
【請求項2】 二核鉄錯体は、0〜2Vの酸化還元電位
を有する請求項1の酸素還元用鉄錯体触媒
2. The dinuclear iron complex has a redox potential of 0 to 2V.
The iron complex catalyst for oxygen reduction according to claim 1, which comprises:
【請求項3】 酸素の4電子還元方法であって、酸素
を、少なくとも請求項1または2のいずれかの酸素還元
用鉄錯体触媒を含有する酸性溶液中、該酸素還元用鉄錯
体の鉄の還元電位で電解還元することを特徴とする酸素
還元方法
3. A four-electron reduction method of oxygen, which comprises:
Is at least the oxygen reduction according to claim 1 or 2.
In an acidic solution containing an iron complex catalyst for oxygen reduction
Oxygen characterized by electrolytic reduction at the reduction potential of body iron
How to reduce .
JP05523397A 1997-03-10 1997-03-10 Binuclear iron complex catalyst Expired - Fee Related JP3432692B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP05523397A JP3432692B2 (en) 1997-03-10 1997-03-10 Binuclear iron complex catalyst

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP05523397A JP3432692B2 (en) 1997-03-10 1997-03-10 Binuclear iron complex catalyst

Publications (2)

Publication Number Publication Date
JPH10249208A JPH10249208A (en) 1998-09-22
JP3432692B2 true JP3432692B2 (en) 2003-08-04

Family

ID=12992895

Family Applications (1)

Application Number Title Priority Date Filing Date
JP05523397A Expired - Fee Related JP3432692B2 (en) 1997-03-10 1997-03-10 Binuclear iron complex catalyst

Country Status (1)

Country Link
JP (1) JP3432692B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4646463B2 (en) * 2001-08-13 2011-03-09 大阪瓦斯株式会社 Electrode material-complex complex, electrode, electrode for oxidation, and method for synthesizing alkanol
JP4635248B2 (en) * 2004-08-18 2011-02-23 独立行政法人産業技術総合研究所 Cathode electrode catalyst for polymer electrolyte fuel cell and production method thereof
JP2006202688A (en) * 2005-01-24 2006-08-03 Asahi Kasei Corp Electrode catalyst for fuel cell of metal complex
JP2006202686A (en) * 2005-01-24 2006-08-03 Asahi Kasei Corp Electrode catalyst for fuel cell of metallic compound
EP1854539B1 (en) 2005-02-03 2015-06-10 Toyota Jidosha Kabushiki Kaisha Catalytic material and method for preparation thereof
JP2008258150A (en) * 2007-03-09 2008-10-23 Sumitomo Chemical Co Ltd Electrode catalyst for fuel cell
JP7303556B2 (en) * 2018-04-18 2023-07-05 国立大学法人東海国立大学機構 Method for decomposing persistent organic matter using super-strong catalyst and super-strong catalyst

Also Published As

Publication number Publication date
JPH10249208A (en) 1998-09-22

Similar Documents

Publication Publication Date Title
Collin et al. Electrocatalytic properties of (tetraazacyclotetradecane) nickel (2+) and Ni2 (biscyclam) 4+ with respect to carbon dioxide and water reduction
Song et al. Electrocatalytic oxygen reduction reaction
Zhang et al. Homogeneous Catalysts Based on First‐Row Transition‐Metals for Electrochemical Water Oxidation
Wang Recent development of non-platinum catalysts for oxygen reduction reaction
Liu et al. Catalysis of the electroreduction of dioxygen and hydrogen peroxide by an anthracene-linked dimeric cobalt porphyrin
Collman et al. Electrocatalytic reduction of dioxygen to water by iridium porphyrins adsorbed on edge plane graphite electrodes
Che et al. Effects of electrode surface pretreatments on the electrochemistry of a macrocyclic dioxoruthenium (VI) complex
JP2006314871A (en) Porphyrin based electrode catalyst
Collomb-Dunand-Sauthier et al. Electrocatalytic reduction of CO 2 in water on a polymeric [{Ru 0 (bpy)(CO) 2} n](bpy= 2, 2′-bipyridine) complex immobilized on carbon electrodes
Shi et al. Electrocatalysts for the four-electron reduction of dioxygen based on adsorbed cobalt tetrapyridylporphyrin molecules linked by aquaammine complexes of ruthenium (II)
Tanaka et al. Oxygen reduction on adsorbed iron tetrapyridinoporphyrazine
Das et al. Electrocatalytic Water Oxidation by a Phosphorus–Nitrogen O═ PN3-Pincer Cobalt Complex
JP3432692B2 (en) Binuclear iron complex catalyst
JP3366566B2 (en) Manganese complex catalyst for oxygen reduction
Chiericato Jr et al. Electrocatalytic reduction of carbon dioxide mediated by transition metal complexes with terdentate ligands derived from diacetylpyridine
KR101352015B1 (en) Organometal/polymer composite and preparing method of the same, and catalyst for reducing carbon dioxide including the same
Patrick Sullivan Reduction of carbon dioxide with platinum metals electrocatalysts
JP3469022B2 (en) Vanadium complex catalyst
Moulton et al. Synthesis and electrochemistry of (CO) 2 (PMe3) Fe (. mu. 2-tert-Bu2P)(. mu. 2-CO) Rh (PMe3) L (Fe-Rh)(L= CO, PMe3). Digital simulation of modified ECE mechanism. X-ray crystal structures of (CO) 2 (PMe3) Fe (. mu. 2-tert-Bu2P)(. mu. 2-CO) Rh (PMe3) 2 and [Me3PO. cntdot. Na (15-crown-5)]+[(CO) 3Fe (. mu. 2-tert-Bu2P) Rh (PMe3)(CO)]-
Feng et al. Mononuclear ruthenium (II) complex covalently anchored on melem and g-C3N4 as efficient heterogeneous catalysts for chemical water oxidation
JP2002255502A (en) Light energy conversion by iodine compound and semiconductor photocatalyst
Shi et al. Coordination chemistry in electrocatalysis
JP4212411B2 (en) Ruthenium trivalent ammine complex compound
Bujno et al. Electroreduction of CO2 catalyzed by Ni (II) tetraazamacrocyclic complexes—reasons of poisoning of the catalytic surfaces
Yang et al. Structural evolution of the Ru-bms complex to the real water oxidation catalyst of Ru-bda: the bite angle matters

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090523

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090523

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100523

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees