JP2006202688A - Electrode catalyst for fuel cell of metal complex - Google Patents

Electrode catalyst for fuel cell of metal complex Download PDF

Info

Publication number
JP2006202688A
JP2006202688A JP2005015610A JP2005015610A JP2006202688A JP 2006202688 A JP2006202688 A JP 2006202688A JP 2005015610 A JP2005015610 A JP 2005015610A JP 2005015610 A JP2005015610 A JP 2005015610A JP 2006202688 A JP2006202688 A JP 2006202688A
Authority
JP
Japan
Prior art keywords
group
ring
electrode catalyst
metal
fuel cell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005015610A
Other languages
Japanese (ja)
Inventor
Tamikuni Komatsu
民邦 小松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Kasei Corp
Noguchi Institute
Original Assignee
Asahi Kasei Corp
Noguchi Institute
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Kasei Corp, Noguchi Institute filed Critical Asahi Kasei Corp
Priority to JP2005015610A priority Critical patent/JP2006202688A/en
Publication of JP2006202688A publication Critical patent/JP2006202688A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

<P>PROBLEM TO BE SOLVED: To provide a novel non-platinum group metal complex catalyst with a special molecular design applied so as be able to make oxidation reduction reaction on the surface of an electrode as electrode catalyst for a fuel cell. <P>SOLUTION: Mesh-like heterocyclic macrocyclic compounds formed from couplers coupling heterocyclic rings themselves are used as host molecules for introduction of metal atoms, and the metal atoms and/or metal clusters are introduced in structural void parts surrounding the heterocyclic rings possessed by the mesh-like heterocyclic macrocyclic compounds. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は非白金系金属錯体に関するものであり、白金族触媒に代わる燃料電池用電極触媒として使用することができる。   The present invention relates to a non-platinum-based metal complex and can be used as an electrode catalyst for a fuel cell instead of a platinum group catalyst.

従来、固体高分子型燃料電池、ダイレクトメタノール燃料電池、ジメチルエーテル燃料電池等の燃料電池用電極触媒として白金、パラジウム、ロジウム、ルテニウム、イリジウム等の白金族元素が使用されている。しかし、これらの白金族元素は希少資源であることから、上記燃料電池の普及が危ぶまれている。また、白金族触媒は水素、酸素、メタノール、ジメチルエーテル等の小分子に対する特異的な活性化能を有することから、従来、白金族触媒と代替可能な非白金族触媒に関する報告は非常に少なく、上記燃料電池用電極触媒としての遷移金属系化合物が非特許文献及び特許文献において数例報告されているにすぎない。例えば、非特許文献1では、カーボンに担持したポルフィリン金属錯体の熱処理物が酸性溶液中で高い酸素還元能を示すことが報告されている。非特許文献2では、μ-hydroxy遷移金属錯体の熱処理物がメタノール中で高い酸素還元能を示すことが報告されている。   Conventionally, platinum group elements such as platinum, palladium, rhodium, ruthenium, and iridium have been used as electrode catalysts for fuel cells such as polymer electrolyte fuel cells, direct methanol fuel cells, and dimethyl ether fuel cells. However, since these platinum group elements are rare resources, the spread of the fuel cell is in danger. In addition, since platinum group catalysts have specific activation ability for small molecules such as hydrogen, oxygen, methanol, dimethyl ether, etc., there are very few reports on non-platinum group catalysts that can replace platinum group catalysts. Only a few examples of transition metal compounds as fuel cell electrode catalysts have been reported in non-patent and patent documents. For example, Non-Patent Document 1 reports that a heat-treated product of a porphyrin metal complex supported on carbon exhibits a high oxygen reducing ability in an acidic solution. Non-Patent Document 2 reports that a heat-treated product of a μ-hydroxy transition metal complex exhibits high oxygen reducing ability in methanol.

特許文献1では、カーボンに担持したN,N’-bis(salicylidene)ethylenediamine、N,N’-mono-8-quinolyl-o-phenylenediamine等の遷移金属錯体と白金化合物の混合物の熱処理物を白金の補助触媒として用いることが開示されている。(なお、以上の生成物は熱処理物であるので元の金属錯体の化学構造が熱分解し原形を留めていないので、金属錯体ではない。)また、以上の熱処理前の金属錯体は酸性条件で容易に分解するので、酸性条件でも使えるように熱処理を行っている。特許文献2では、dithiooxamideの複核銅錯体を水素極として用いることが開示されている。(なお、dithiooxamideは脂肪族分子であり、本発明の複素環式化合物とは化学分類上異なる物質である。)これらの遷移金属系触媒の発見は、希少資源である白金族元素に代わる豊富で安価な電極触媒材料の開発を行なう上で価値ある知見を与えている。
E. Yeager, Electrochim. Acta, 29, 1527-1537 (1984). T. Okada, Y. Suzuki, T. hirose, T. Toda, and T. Ozawa, ChemicalCommunications, 23, 2492-2493 (2001). 特開2002‐329500号公報 特開2004−31174号公報
In Patent Document 1, a heat treatment product of a mixture of a transition metal complex such as N, N′-bis (salicylidene) ethylenediamine, N, N′-mono-8-quinolyl-o-phenylenediamine and a platinum compound supported on carbon is used as platinum. The use as an auxiliary catalyst is disclosed. (Note that the above product is a heat-treated product, so the chemical structure of the original metal complex is thermally decomposed and does not retain its original form, so it is not a metal complex.) The metal complex before the above heat treatment is under acidic conditions. Since it decomposes easily, it is heat-treated so that it can be used even under acidic conditions. Patent Document 2 discloses the use of a dithiooxamide dinuclear copper complex as a hydrogen electrode. (Dithiooxamide is an aliphatic molecule and is a substance that is chemically different from the heterocyclic compound of the present invention.) The discovery of these transition metal catalysts is abundant in place of the rare platinum group elements. It provides valuable knowledge for the development of inexpensive electrocatalyst materials.
E. Yeager, Electrochim. Acta, 29, 1527-1537 (1984). T. Okada, Y. Suzuki, T. hirose, T. Toda, and T. Ozawa, Chemical Communications, 23, 2492-2493 (2001). JP 2002-329500 A JP 2004-31174 A

本発明の目的は、上記の事情に鑑み、燃料電池用電極触媒として非白金系の電極触媒材料を提供することである。具体的には、白金族元素の得意としている電極表面での酸化還元反応を非白金族元素でできるように分子設計した新規の非白金系金属錯体を提供することである。   In view of the above circumstances, an object of the present invention is to provide a non-platinum-based electrode catalyst material as a fuel cell electrode catalyst. Specifically, it is to provide a novel non-platinum-based metal complex that is molecularly designed so that the oxidation-reduction reaction on the electrode surface, which is a platinum group element, can be performed with a non-platinum group element.

本発明者らは、上記の目的を達成するために鋭意研究を重ねた結果、特殊な構造を有する複素環式化合物に金属原子を導入して成る金属錯体が電極表面での酸化還元反応に有効であることを見いだし、この知見に基づいて本発明を完成させるに至った。すなわち、本発明は、複素環と複素環どうしを繋ぐ結合子から形成された網目状複素環式大環状化合物を金属原子又は金属クラスター導入のためのホスト分子として用い、該網目状複素環式大環状化合物が有する複素環包囲の構造的空孔部に非白金族金属原子及び/又は金属クラス
ターを導入して成る網目状複素環式大環状化合物の金属錯体を燃料電池用電極触媒として提供するものである。
As a result of intensive studies to achieve the above object, the present inventors have found that a metal complex formed by introducing a metal atom into a heterocyclic compound having a special structure is effective for redox reaction on the electrode surface. Based on this finding, the present invention has been completed. That is, the present invention uses a network-like heterocyclic macrocycle formed from a connector connecting heterocycles and heterocycles as a host molecule for introducing a metal atom or a metal cluster. Provided as an electrode catalyst for a fuel cell is a metal complex of a network-like heterocyclic macrocyclic compound obtained by introducing a non-platinum group metal atom and / or a metal cluster into a structural cavity surrounding a heterocyclic ring of a cyclic compound It is.

本発明の金属錯体は、従来非白金系触媒では非常に困難であった水素の解離吸着とプロトン捕捉の両方を行うことができる。例えば、トリアジン環が窒素原子を介して網目状に広がった構造をもつ大環状化合物の構造的空孔部に銅原子が導入された銅錯体は、室温で水素を解離吸着し生成プロトンを捕捉することができる。   The metal complex of the present invention can perform both hydrogen dissociation adsorption and proton trapping, which have been very difficult with conventional non-platinum catalysts. For example, a copper complex in which copper atoms are introduced into the structural vacancies of a macrocycle having a structure in which a triazine ring spreads in a network via nitrogen atoms dissociates and adsorbs hydrogen at room temperature to capture the generated protons. be able to.

以下、本発明を詳細に説明する。
本発明の網目状複素環式大環状化合物金属錯体の第1の特徴は、複素環と複素環どうしを繋ぐ結合子から成る網目状に広がった構造をもつ大環状化合物の構造的空孔部に金属原子及び/又は金属クラスターを導入したことである。複素環で包囲された構造的空孔部の大きさはベンゼン環が数個〜数10個程度入る大きさ(直径で約0.3〜1.0nm)であるので、この空間(いわゆるナノスペース)には金属原子が最大100個程度導入可能である。ナノスペースの周囲には配位性の酸素、窒素、ホウ素、りん、イオウ原子等のヘテロ原子が配置されているので、いわば分子篩とみなすことができる。この特殊配位空間に導入された金属原子及び/又は金属クラスターは従来それほどの活性化を示さなかったような水素、酸素、メタノール、ジメチルエーテル等の小分子に対しても好ましい触媒活性を示す。これは、金属のマクロ粒子表面にはでていない高次の結晶格子面が原子レベルまでの微細化によって表面に出現するからであると考えられる。近年のナノテクノロジーの発展によって、金属をナノサイズのレベルまで細かくすると従来不活性な金属と考えられていた金属が活性を示すことが報告されているが、この現象と本発明の効果は類似の現象であると考えられる。
Hereinafter, the present invention will be described in detail.
The first feature of the metal complex of the network-like heterocyclic macrocycle of the present invention is that the structural vacancies of the macrocycle having a network-like structure composed of a connector connecting the heterocycles and the heterocycles. That is, metal atoms and / or metal clusters are introduced. The size of the structural vacancies surrounded by the heterocycle is a size (about 0.3 to 1.0 nm in diameter) that can contain several to several tens of benzene rings. ) About 100 metal atoms can be introduced. Around the nanospace, coordinating heteroatoms such as oxygen, nitrogen, boron, phosphorus, and sulfur atoms are arranged, so that it can be regarded as a molecular sieve. The metal atoms and / or metal clusters introduced into the special coordination space exhibit favorable catalytic activity even for small molecules such as hydrogen, oxygen, methanol, dimethyl ether, etc., which have not so much activation. This is presumably because higher-order crystal lattice planes that do not appear on the surface of the metal macroparticles appear on the surface by miniaturization to the atomic level. With recent developments in nanotechnology, it has been reported that when metals are made finer to the nano-size level, metals that were previously considered to be inactive metals show activity, but this phenomenon and the effects of the present invention are similar. It is considered a phenomenon.

本発明の複素環式大環状化合物を形成するための複素環としては、周期律表における13族から16族の元素であるホウ素、炭素、窒素、りん、酸素、イオウ等の中の2元素以上から構成され、トリアジン環に代表されるようなヘテロ原子導入環である。本発明の複素環としては、トリアジン環、ピラジン環、ピリミジン環、ピリジン環、トリアゾール環、イミダゾール環、ビオロゲン、アクリジン環、フラン環、ピロール環、ボラジン環、カルバボラン、ホスファゼン環、チオフェン環、チアジン環、及び/又はこれらの縮合環、等を挙げることができる。これらの中で、トリアジン環、トリアジン環の縮合環であるトリストリアジン環、ホスファゼン環、及びチオフェン環は、環状π電子を有する複素芳香環であり、π電子をもつ結合子との結合によって多くの共鳴構造をとることができるので好ましく、また電子不足結合をもつボラジン環は電子受容体になるので好ましい。   As the heterocyclic ring for forming the heterocyclic macrocyclic compound of the present invention, two or more elements among boron, carbon, nitrogen, phosphorus, oxygen, sulfur and the like which are elements of groups 13 to 16 in the periodic table A heteroatom-introduced ring represented by a triazine ring. Examples of the heterocyclic ring of the present invention include triazine ring, pyrazine ring, pyrimidine ring, pyridine ring, triazole ring, imidazole ring, viologen, acridine ring, furan ring, pyrrole ring, borazine ring, carbaborane, phosphazene ring, thiophene ring, thiazine ring. And / or a condensed ring thereof. Among these, the triazine ring, the tristriazine ring, which is a condensed ring of the triazine ring, the phosphazene ring, and the thiophene ring are heteroaromatic rings having a cyclic π electron, and many of them are bonded with a binder having a π electron. A borazine ring having an electron-deficient bond is preferable because it can have a resonance structure, and an electron acceptor is preferable.

複素環どうしを繋ぐための結合子としては、アミノ基(−NH,−NH−,>N−)、シアノ基(−C≡N)、イソシアノ基(−N≡C−)、シアノアミノ基(−NH−C≡N)、カルボジイミド基(−N=C=N−)、シアン酸基(−O−C≡N)、チオシアン酸基(−S−C≡N)、イソシアネート基(−N=C=O)、チオイソシアネート基(−N=C=S)、カルバミン酸基(−O−CO−NH)、チオカルバミン酸基(−S−CS−NH)、ジチゾン基(−NH−NH−CS−N=N−)、チオカルボニル基(>C=S)、カルボニル基(>C=O)、カルボキシル基(−CO−)、シュウ酸基(−CO−CO−)、ビピリジル基、メチン基、エチニル基、エチレン基、シクロペンタジエン、第3級ホスフィン、亜リン酸基、チオ基(−S−)、チオール基、アゾ基(−N=N−)、ジアゾ基(−N≡N)、ニトロ基、スルホ基、スルホアミド基、水酸基、ハロゲン基、Schiffの塩基(−CH=N−)、オキシム基(>C=NOH)、等を挙げることができる。これらの中で、π電子を持つアミノ基、カルボニル基、チオカルボニル基、チオ基、ジアゾ基、カルボジイミド基、エチニル基、エチレン基は上記複素芳香環と結合する
ことにより共役π電子系をつくることができるので好ましい。
As a connector for connecting heterocycles, an amino group (—NH 2 , —NH—,> N—), a cyano group (—C≡N), an isocyano group (—N≡C—), a cyanoamino group ( -NH-C≡N), carbodiimide group (-N = C = N-), cyanate group (-O-C≡N), thiocyanate group (-S-C≡N), isocyanate group (-N = C = O), thioisocyanate group (-N = C = S), carbamic acid group (-O-CO-NH 2) , thiocarbamate group (-S-CS-NH 2) , dithizone group (-NH- NH-CS-N = N-) , a thiocarbonyl group (> C = S), carbonyl group (> C = O), carboxyl group (-CO 2 -), oxalic acid (-CO 2 -CO 2 -) , Bipyridyl group, methine group, ethynyl group, ethylene group, cyclopentadiene, tertiary phosphite Phosphite group, thio group (—S—), thiol group, azo group (—N═N—), diazo group (—N≡N), nitro group, sulfo group, sulfoamide group, hydroxyl group, halogen group, Schiff base (—CH═N—), oxime group (> C═NOH), and the like. Among these, amino groups having π electrons, carbonyl groups, thiocarbonyl groups, thio groups, diazo groups, carbodiimide groups, ethynyl groups, and ethylene groups form conjugated π electron systems by bonding to the above heteroaromatic rings. Is preferable.

本発明では、複素芳香環とπ電子を持つ結合子から構成される網目状複素環式大環状化合物を特に網目状複素芳香環式大環状化合物とよぶことにする。該網目状複素芳香環式大環状化合物は、以下のような特徴を有するので電極触媒の基本的性能に好ましい影響を与えることができる。すなわち、複素芳香環には共鳴構造が存在するので、π電子を持つ結合子を介して複素芳香環どうしのπ電子移動が可能である。15族元素である窒素と16族元素である酸素には最外殻軌道に孤立電子対があり、また、炭素よりも電気陰性度が大きいので若干負の電荷を帯びておりプロトンの受取に適している。したがって、本発明の網目状複素芳香環式大環状化合物は吸着水素から放出されるプロトンを捕捉し、吸着水素からの電子を金属原子とπ電子を持つ結合子を経由して電子求引することができる。また、複素芳香環のヘテロ原子の塩基性は低いので、これにプロトンが緩く結合したプロトン付加物の酸解離定数(pKa)は、通常、7〜10の範囲にあり、100℃以下の加熱と加湿によって容易にプロトンを放出することができる。また、本発明の化合物はエステル構造ではないので、一般に、強酸下(水素をプロトン化すると強酸性を示す)でも耐加水分解性が高い。   In the present invention, a network-like heterocyclic macrocycle composed of a heteroaromatic ring and a bond having π electrons is particularly called a network-like heteroaromatic macrocycle. Since the network-like heteroaromatic macrocyclic compound has the following characteristics, it can favorably influence the basic performance of the electrode catalyst. That is, since the resonance structure exists in the heteroaromatic ring, π electron movement between the heteroaromatic rings is possible through a bond having π electrons. Nitrogen, a group 15 element, and oxygen, a group 16 element, have a lone pair in the outer shell orbit, and are more negative than carbon, so they have a slightly negative charge and are suitable for receiving protons. ing. Therefore, the networked heteroaromatic macrocycle of the present invention captures protons released from adsorbed hydrogen, and withdraws electrons from adsorbed hydrogen via a bond having a metal atom and a π electron. Can do. In addition, since the heteroatom of the heteroaromatic ring is low in basicity, the acid dissociation constant (pKa) of the proton adduct in which protons are loosely bonded to this is usually in the range of 7 to 10, and heating at 100 ° C. or less Protons can be easily released by humidification. In addition, since the compound of the present invention does not have an ester structure, it generally has high hydrolysis resistance even under strong acid (indicating strong acidity when hydrogen is protonated).

本発明の第2の特徴は、網目状複素環式大環状化合物に導入する金属原子及び/又は金属クラスターとして非白金族金属原子及び/又は金属クラスターを用いたことである。すなわち、上記に成る金属錯体が非白金系金属錯体であることである。該非白金系金属錯体から成る本発明の燃料電池用電極触媒は以下のような特徴を有する。すなわち、従来使用されている白金触媒は水素のプロトン化能及びプロトンの酸素酸化能が高いのは当然のことであるが、反面、白金族触媒の欠点である一酸化炭素による触媒被毒を受けやすく、また、酸素極において水和プロトンから過酸化水素及びヒドロキシラジカルを発生するという問題がある。これに対して、非白金族金属原子及び/又は金属クラスターを導入した非白金系金属錯体から成る本発明の燃料電池用電極触媒はこのような問題がみられないので、固体高分子型燃料電池用電極材料として好ましい。本発明の非白金系金属錯体の金属原子としては、スカンジウム、チタン、バナジウム、クロム、マンガン、鉄、コバルト、ニッケル、銅、亜鉛、アルミニウム、ケイ素、ガリウム、ゲルマニウム、イットリウム、ジルコニウム、ニオブ、モリブデン、タングステン、銀、インジウム、スズ、ビスマス、ランタン、サマリウム、セリウム、等を挙げることができる。これらの中で、遷移元素は一般的に触媒活性が高く、安定な金属錯体を生成するので好ましい。遷移元素の中では、鉄、コバルト、ニッケル、及び銅が好ましい。   The second feature of the present invention is that non-platinum group metal atoms and / or metal clusters are used as metal atoms and / or metal clusters to be introduced into the network-like heterocyclic macrocycle. That is, the above metal complex is a non-platinum metal complex. The fuel cell electrode catalyst of the present invention comprising the non-platinum metal complex has the following characteristics. In other words, the platinum catalysts that have been used in the past naturally have high hydrogen protonation ability and proton oxygen oxidation ability, but on the other hand, they suffer from catalyst poisoning by carbon monoxide, which is a drawback of platinum group catalysts. There is also a problem that hydrogen peroxide and hydroxy radicals are generated from hydrated protons at the oxygen electrode. In contrast, the fuel cell electrode catalyst of the present invention comprising a non-platinum group metal atom and / or a metal cluster-introduced non-platinum metal complex does not have such a problem. Preferred as an electrode material. Examples of the metal atom of the non-platinum-based metal complex of the present invention include scandium, titanium, vanadium, chromium, manganese, iron, cobalt, nickel, copper, zinc, aluminum, silicon, gallium, germanium, yttrium, zirconium, niobium, molybdenum, Examples include tungsten, silver, indium, tin, bismuth, lanthanum, samarium, cerium, and the like. Among these, transition elements are preferable because they generally have high catalytic activity and generate stable metal complexes. Among the transition elements, iron, cobalt, nickel, and copper are preferable.

燃料電池の電極表面に供給される物質は水素、酸素、メタノール、ジメチルエーテル等であるが、以下では、代表的な水素の場合について触媒反応を説明する。白金触媒の場合、白金は金属であるので導電性は有するがプロトン伝導性は持たないので、通常、導電性の活性炭に担持した状態で用いられる。水素分子を白金触媒に接触させると、水素分子は活性点を持つ白金格子面上でラジカル解離した後、プロトンと電子に分離すると考えられている。発生したプロトンは活性炭の塩基点に捕捉され、電子は活性炭のπ電子系によって運ばれる。本発明の金属錯体を水素に接触させると、上記白金触媒と同様に水素分子はラジカル解離した後にプロトンと電子に分離する。しかし、白金触媒の場合とは異なり、発生したプロトンは金属のホスト分子である複素環式化合物に効率よく捕捉される。金属錯体が銅、亜鉛、ニッケル、コバルト、アルミニウム、銀、モリブデン、タングステンの錯体である場合には、これらの金属は白金よりも電気抵抗率が小さいので比較的高い導電率を与えることができる。   Substances supplied to the electrode surface of the fuel cell are hydrogen, oxygen, methanol, dimethyl ether, and the like. In the following, the catalytic reaction will be described in the case of typical hydrogen. In the case of a platinum catalyst, since platinum is a metal, it has conductivity but does not have proton conductivity. Therefore, it is usually used in a state of being supported on conductive activated carbon. When hydrogen molecules are brought into contact with a platinum catalyst, the hydrogen molecules are considered to separate into protons and electrons after radical dissociation on the platinum lattice plane having active sites. Generated protons are captured at the base point of the activated carbon, and electrons are carried by the π-electron system of the activated carbon. When the metal complex of the present invention is brought into contact with hydrogen, hydrogen molecules are separated into protons and electrons after radical dissociation in the same manner as the platinum catalyst. However, unlike the platinum catalyst, the generated protons are efficiently captured by the heterocyclic compound that is the metal host molecule. In the case where the metal complex is a complex of copper, zinc, nickel, cobalt, aluminum, silver, molybdenum, and tungsten, these metals have a lower electrical resistivity than that of platinum, and therefore can provide a relatively high conductivity.

本発明の金属錯体は、通常、複素環式大環状化合物と金属化合物を直接的に反応させることによって得られる。別の方法としては、複素環式大環状化合物にアルカリ金属、アルカリ土類金属を導入した後、金属交換によっても合成することができる。
前記に述べたように、本発明の金属錯体は水素の解離吸着を行いそれによって生成したプロトンと電子を効率的に捕捉することができるので、燃料電池用の電極触媒として特に水素極の電極触媒として有効に用いることができる。本発明の金属錯体を含有した水素極触媒は、通常、従来の方法、すなわち、活性炭と金属錯体の混合物を集電材料に塗布する(集電材料の片面には固体高分子電解質膜を塗布している)ことによって作成し、加湿下で使用することができる。
The metal complex of the present invention is usually obtained by directly reacting a heterocyclic macrocycle compound with a metal compound. As another method, an alkali metal or an alkaline earth metal is introduced into the heterocyclic macrocyclic compound, and thereafter, it can be synthesized by metal exchange.
As described above, since the metal complex of the present invention can dissociate and adsorb hydrogen and efficiently capture protons and electrons generated thereby, the electrode catalyst for a fuel cell is particularly an electrode catalyst for a hydrogen electrode. Can be used effectively. The hydrogen electrode catalyst containing the metal complex of the present invention is usually applied to a current collecting material by a conventional method, that is, a mixture of activated carbon and a metal complex (a solid polymer electrolyte membrane is applied to one side of the current collecting material). Can be used under humidification.

以下に実施例などを挙げて本発明を具体的に説明する。
[実施例1]
大環状ポリメラミン金属錯体の合成
メラミン50gと塩化亜鉛50gを混合しアルミナ製ルツボにいれ塩化カルシウムの粉末で覆う。これを容積300mlのステンレススチール製オートクレーブに入れ、650℃−1時間加熱する。反応後室温まで放冷し、取り出した生成物をビーカーに入れ蒸留水を加え1時間煮沸後、減圧濾過した。ピンク色の粉末生成物をビーカーに入れ35%塩酸100gを加えて1時間煮沸、減圧濾過、水洗、200℃−5時間真空乾燥を行い、淡黄色の粉末を34g得た。元素分析、IRスペクトル測定、質量分析、X線回折測定によって生成物を同定した。その結果、生成物は図1に示すような網状構造をもつ大環状ポリメラミンであることがわかった。10%アンモニア性硫酸銅水溶液100gに、上記大環状ポリメラミン10gを加え、室温で1時間攪拌後、減圧濾過、120℃−2時間真空乾燥を行い、緑青色の銅錯体を15g得た。同様にして、塩化第二鉄、硝酸ニッケル、硝酸コバルトからそれぞれ鉄錯体、ニッケル錯体、コバルト錯体を得た。
The present invention will be specifically described below with reference to examples.
[Example 1]
Synthesis of Macrocyclic Polymelamine Metal Complex 50 g of melamine and 50 g of zinc chloride are mixed and placed in an alumina crucible and covered with calcium chloride powder. This is placed in a 300 ml stainless steel autoclave and heated at 650 ° C. for 1 hour. After the reaction, the mixture was allowed to cool to room temperature, and the taken out product was put into a beaker, distilled water was added and the mixture was boiled for 1 hour, and then filtered under reduced pressure. The pink powder product was placed in a beaker, 100 g of 35% hydrochloric acid was added, and the mixture was boiled for 1 hour, filtered under reduced pressure, washed with water, and vacuum dried at 200 ° C. for 5 hours to obtain 34 g of a pale yellow powder. The product was identified by elemental analysis, IR spectrum measurement, mass spectrometry, X-ray diffraction measurement. As a result, it was found that the product was a macrocyclic polymelamine having a network structure as shown in FIG. 10 g of the above macrocyclic polymelamine was added to 100 g of 10% ammoniacal copper sulfate aqueous solution, and the mixture was stirred at room temperature for 1 hour, followed by vacuum filtration and vacuum drying at 120 ° C. for 2 hours to obtain 15 g of a greenish blue copper complex. Similarly, an iron complex, a nickel complex, and a cobalt complex were obtained from ferric chloride, nickel nitrate, and cobalt nitrate, respectively.

[実施例2]
大環状ポリ(2,5,8-triamino-tris-s-triazine)金属錯体の合成
チオシアン酸アンモニウム500gを磁製皿に入れ、ホットプレート上、約500℃で揮発性物質の発生がなくなるまで加熱した。生成した残渣を熱水洗浄、10%水酸カリウム水溶液洗浄、35%塩酸中で煮沸処理後、水洗、150℃−1昼夜真空乾燥し、2,5,8-triamino-tris-s-triazineの10量体を約50g得た。チオシアン酸カリウム35gを磁製皿に入れホットプレート上で融解し、これに、上記化合物25gを5回に分けて加え約500℃−5時間加熱した。室温まで放冷後、生成物を蒸留水に溶解、減圧濾過、ろ液を加熱濃縮、室温放置後、無色のフェルト状針状結晶を得た。再結晶によって高純度の2,5,8-tricarbodiimide-tris-s-triazine potassium salt(原料1)を約15g得た。また、上記2,5,8-triamino-tris-s-triazineの10量体25gを30%水酸化カリウム水溶液100gに加え、沸騰下2時間反応を行い、ろ液を加熱濃縮、室温放置後、無色の針状結晶を得た。再結晶によって高純度の2,5,8-trihydroxy-tris-s-triazine potassium saltを約15g得た。このカリウム塩15gと五塩化りん40gを混合し、容量200mlのオートクレーブに入れ、230℃−12時間加熱した。室温放置後に粗製物をとりだし、200gの氷水に加え、減圧濾過し、濃い黄色の粉末を得た。これを、五酸化燐上で一昼夜真空乾燥し、2,5,8-trichloro-tris-s-triazineを約10g得た。2,5,8-tricarbodiimide-tris-s-triazine potassium salt(原料1)15gと2,5,8-trichloro-tris-s-triazine10gを均一に混合し、オートクレーブに入れ、連続的に、300℃−24時間、500℃−4時間、600℃−1時間加熱処理した。得られた粗製物を、水洗、35%塩酸洗浄、水洗、150℃−1昼夜真空乾燥を行い、淡黄土色の粉末を約11g得た。元素分析、IRスペクトル測定、質量分析、X線回折測定によって生成物を同定した。その結果、生成物は図2に示すような網状構造をもつ大環状ポリ(2,5,8-triamino-tris-s-triazine)であることがわかった。10%硫酸銅水溶液100gに、上記大環状ポリ(2,5,8-triamino-tris-s-triazine)10gを加え、室温で1時間攪拌後、減圧濾過、120℃−2時間真空乾燥を行い、緑青色の銅錯体を15g得た。
[Example 2]
Synthesis of macrocyclic poly (2,5,8-triamino-tris-s-triazine) metal complex 500 g of ammonium thiocyanate is placed in a porcelain dish and heated on a hot plate at about 500 ° C. until no volatile substances are generated. did. The resulting residue was washed with hot water, washed with 10% potassium hydroxide aqueous solution, boiled in 35% hydrochloric acid, washed with water, dried at 150 ° C-1 day and night, and dried in 2,5,8-triamino-tris-s-triazine. About 50 g of 10-mer was obtained. 35 g of potassium thiocyanate was put in a porcelain dish and melted on a hot plate, and 25 g of the above compound was added in 5 portions, and the mixture was heated at about 500 ° C. for 5 hours. After allowing to cool to room temperature, the product was dissolved in distilled water, filtered under reduced pressure, the filtrate was heated and concentrated, and allowed to stand at room temperature to obtain colorless felt-like needle crystals. About 15 g of high-purity 2,5,8-tricarbodiimide-tris-s-triazine potassium salt (raw material 1) was obtained by recrystallization. In addition, 25 g of the above 2,5,8-triamino-tris-s-triazine 10-mer was added to 100 g of 30% aqueous potassium hydroxide solution, reacted for 2 hours under boiling, and the filtrate was concentrated by heating and standing at room temperature. Colorless needle crystals were obtained. About 15 g of high purity 2,5,8-trihydroxy-tris-s-triazine potassium salt was obtained by recrystallization. 15 g of this potassium salt and 40 g of phosphorus pentachloride were mixed, placed in an autoclave having a capacity of 200 ml, and heated at 230 ° C. for 12 hours. After standing at room temperature, the crude product was taken out, added to 200 g of ice water, and filtered under reduced pressure to obtain a dark yellow powder. This was vacuum-dried overnight on phosphorus pentoxide to obtain about 10 g of 2,5,8-trichloro-tris-s-triazine. 2,5,8-tricarbodiimide-tris-s-triazine potassium salt (raw material 1) 15g and 2,5,8-trichloro-tris-s-triazine 10g are mixed uniformly, put in an autoclave, and continuously at 300 ℃ The heat treatment was performed for -24 hours, 500 ° C.-4 hours, 600 ° C.-1 hour. The obtained crude product was washed with water, washed with 35% hydrochloric acid, washed with water, and vacuum dried at 150 ° C.-1 day and night to obtain about 11 g of a light ocher powder. The product was identified by elemental analysis, IR spectrum measurement, mass spectrometry, X-ray diffraction measurement. As a result, the product was found to be macrocyclic poly (2,5,8-triamino-tris-s-triazine) having a network structure as shown in FIG. Add 10g of the above macrocyclic poly (2,5,8-triamino-tris-s-triazine) to 100g of 10% aqueous copper sulfate solution, stir at room temperature for 1 hour, filter under reduced pressure, and vacuum dry at 120 ° C for 2 hours. 15 g of a green-blue copper complex was obtained.

[実施例3]
大環状ポリアミノボラジン金属錯体の合成
液体アンモニア100gにナトリウムアミド25gを溶解し、これにトリクロロボラジン40gを5回に分けて加え、1時間反応させた。反応後室温に置きアンモニアを蒸発させ、数グラムのメタノールを加え未反応のナトリウムアミドを分解し、トリアミノボラジンを定量的に得た。生成物を分離しないでそのまま石英フラスコに入れ、ホットプレート上、約500℃で揮発性物質の発生がなくなるまで加熱した。褐色の固体が約10g得られた。元素分析、IRスペクトル測定、質量分析、X線回折測定によって生成物を同定した。その結果、生成物は図3に示すような網状構造をもつ大環状ポリアミノボラジンであることがわかった。10%硫酸銅水溶液100gに、上記大環状ポリアミノボラジン10gを加え、室温で1時間攪拌後、減圧濾過、120℃−2時間真空乾燥を行い、緑黄色の銅錯体を15g得た。
[Example 3]
Synthesis of Macrocyclic Polyaminoborazine Metal Complex 25 g of sodium amide was dissolved in 100 g of liquid ammonia, and 40 g of trichloroborazine was added in 5 portions and allowed to react for 1 hour. After the reaction, ammonia was evaporated at room temperature, and several grams of methanol was added to decompose unreacted sodium amide to obtain triaminoborazine quantitatively. The product was put in a quartz flask without separation and heated on a hot plate at about 500 ° C. until generation of volatile substances disappeared. About 10 g of a brown solid was obtained. The product was identified by elemental analysis, IR spectrum measurement, mass spectrometry, X-ray diffraction measurement. As a result, it was found that the product was a macrocyclic polyaminoborazine having a network structure as shown in FIG. 10 g of the above macrocyclic polyaminoborazine was added to 100 g of a 10% aqueous copper sulfate solution, stirred at room temperature for 1 hour, filtered under reduced pressure, and vacuum dried at 120 ° C. for 2 hours to obtain 15 g of a greenish yellow copper complex.

[実施例4]
金属錯体の水素吸脱着
実施例1〜3の金属錯体の微粉末を室温で相対湿度100%の雰囲気中に1時間放置した後、これを赤外拡散反射スペクトル測定用セルの試料台に設置し、水素ガスを導入、排気後、赤外スペクトル測定装置(JASCO FT-IR 460)によって、サンプルに吸着した水素の吸着状態を調べた。代表的なサンプルについての実験結果を以下に説明すると、実施例1の銅錯体は、トリアジン環の窒素原子にプロトンが付加したスペクトルを示した。また、スペクトル強度から金属錯体1モルあたり約3モルのプロトンが付加していることがわかった。同様にして、実施例2の銅錯体は、金属錯体1モルあたり最大6モルのプロトンが付加していることがわかった。実施例3の銅錯体は、金属錯体1モルあたり約3モルのプロトンが付加していることがわかった。また、試料台を毎分10℃の昇温速度で加熱して脱着挙動を調べると、約60℃からプロトンの脱離が開始することがわかった。これらの結果から、水素分子は金属錯体に解離吸着し、生成したプロトンは錯体の配位分子に効率よく捕捉され、捕捉されたプロトンは温和な加熱によって脱離することがわかった。したがって、本発明の金属錯体は、燃料電池用水素極の電極触媒として利用可能であることがわかる。
[Example 4]
Hydrogen adsorption / desorption of metal complex The fine powder of the metal complex of Examples 1 to 3 was left in an atmosphere of 100% relative humidity at room temperature for 1 hour, and then placed on the sample stage of the cell for infrared diffuse reflectance spectrum measurement. After introducing and evacuating hydrogen gas, the adsorption state of hydrogen adsorbed on the sample was examined with an infrared spectrum measuring device (JASCO FT-IR 460). The experimental results of a typical sample will be described below. The copper complex of Example 1 showed a spectrum in which a proton was added to the nitrogen atom of the triazine ring. Further, it was found from the spectrum intensity that about 3 moles of protons were added per mole of the metal complex. Similarly, the copper complex of Example 2 was found to have a maximum of 6 moles of proton added per mole of metal complex. The copper complex of Example 3 was found to have about 3 moles of proton added per mole of metal complex. Further, when the desorption behavior was examined by heating the sample stage at a temperature rising rate of 10 ° C. per minute, it was found that proton desorption started from about 60 ° C. From these results, it was found that the hydrogen molecules were dissociated and adsorbed on the metal complex, the generated protons were efficiently captured by the coordination molecules of the complex, and the captured protons were desorbed by mild heating. Therefore, it turns out that the metal complex of this invention can be utilized as an electrode catalyst of the hydrogen electrode for fuel cells.

本発明の金属錯体は、燃料電池用電極触媒として有用である。   The metal complex of the present invention is useful as an electrode catalyst for fuel cells.

大環状ポリメラミンの化学構造。Chemical structure of macrocyclic polymelamine. 大環状poly(2,5,8-triamino-tris-s-triazine)の化学構造。Chemical structure of macrocyclic poly (2,5,8-triamino-tris-s-triazine). 大環状ポリアミノボラジンの化学構造。Chemical structure of macrocyclic polyaminoborazine.

Claims (4)

複素環が結合子で繋がった網目状複素環式大環状化合物に非白金族金属原子及び/又は金属クラスターを導入して形成された網目状複素環式大環状化合物の金属錯体から成ることを特徴とする燃料電池用電極触媒。 It consists of a metal complex of a network-like heterocyclic macrocycle formed by introducing a non-platinum group metal atom and / or a metal cluster into a network-like heterocyclic macrocycle in which heterocycles are connected by a bond. An electrode catalyst for a fuel cell. 複素環が複素芳香環であり、結合子がπ電子供与性の結合子であり、非白金族金属原子及び/又は金属クラスターの元素が遷移元素であることを特徴とする請求項1記載の燃料電池用電極触媒。 2. The fuel according to claim 1, wherein the heterocycle is a heteroaromatic ring, the bond is a π-electron donating bond, and the element of the non-platinum group metal atom and / or metal cluster is a transition element. Battery electrode catalyst. 複素芳香環がトリアジン環、ボラジン環、ホスファゼン環、チオフェン環、及び/又はこれらの縮合環であり、π電子供与性の結合子がアミノ基、カルボニル基、チオカルボニル基、チオ基、ジアゾ基、カルボジイミド基、エチニル基、及びエチレン基であり、遷移元素が鉄、コバルト、ニッケル、及び銅であることを特徴とする請求項1記載の燃料電池用電極触媒。 The heteroaromatic ring is a triazine ring, a borazine ring, a phosphazene ring, a thiophene ring, and / or a condensed ring thereof, and a π electron donating bond is an amino group, a carbonyl group, a thiocarbonyl group, a thio group, a diazo group, 2. The fuel cell electrode catalyst according to claim 1, wherein the catalyst is a carbodiimide group, an ethynyl group, and an ethylene group, and the transition elements are iron, cobalt, nickel, and copper. 請求項1〜3記載の燃料電池用電極触媒を水素極の電極触媒として用いることを特徴とする燃料電池用電極触媒。 An electrode catalyst for a fuel cell, wherein the electrode catalyst for a fuel cell according to any one of claims 1 to 3 is used as an electrode catalyst for a hydrogen electrode.
JP2005015610A 2005-01-24 2005-01-24 Electrode catalyst for fuel cell of metal complex Pending JP2006202688A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005015610A JP2006202688A (en) 2005-01-24 2005-01-24 Electrode catalyst for fuel cell of metal complex

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005015610A JP2006202688A (en) 2005-01-24 2005-01-24 Electrode catalyst for fuel cell of metal complex

Publications (1)

Publication Number Publication Date
JP2006202688A true JP2006202688A (en) 2006-08-03

Family

ID=36960489

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005015610A Pending JP2006202688A (en) 2005-01-24 2005-01-24 Electrode catalyst for fuel cell of metal complex

Country Status (1)

Country Link
JP (1) JP2006202688A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008111569A1 (en) * 2007-03-09 2008-09-18 National Institute Of Advanced Industrial Science And Technology Electrode catalyst for fuel cell
WO2011052805A1 (en) * 2009-10-30 2011-05-05 Sumitomo Chemical Company, Limited Nitrogen-containing aromatic compounds and metal complexes
KR101039907B1 (en) 2009-05-02 2011-06-09 숭실대학교산학협력단 Non-platinum transition metal-based macrocycle catalysts for iodide electroreduction
JP2012000602A (en) * 2010-06-21 2012-01-05 Sumitomo Chemical Co Ltd Redox catalyst, electrode catalyst for fuel cell, and fuel cell
JP2012166175A (en) * 2011-02-16 2012-09-06 Toyota Motor Corp Carbon monoxide oxidation catalyst
CN105482112A (en) * 2014-09-17 2016-04-13 中国科学院武汉物理与数学研究所 Conductive polymeric material polymelem, preparation method therefor and application of conductive polymeric material polymelem
CN106574124A (en) * 2014-09-01 2017-04-19 国立大学法人东京大学 Conductive hybrid material including covalent organic structure
CN108467492A (en) * 2018-05-07 2018-08-31 南京信息工程大学 A kind of fluorine-containing organic metal porous material and preparation method thereof

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5765332A (en) * 1980-10-07 1982-04-20 Asahi Chem Ind Co Ltd Oxygen reductive catalyst
JPS595566A (en) * 1982-06-30 1984-01-12 Pentel Kk Air pole
JPH02291602A (en) * 1988-12-28 1990-12-03 Idaho Res Found Inc Polymer film of metal polphyrin as conductor for electric catalyst
JPH0330838A (en) * 1989-06-29 1991-02-08 Central Res Inst Of Electric Power Ind Tetraphenylporphyrin derivative and reduction catalyst using it
JPH10249208A (en) * 1997-03-10 1998-09-22 Kagaku Gijutsu Shinko Jigyodan Binucleic iron complex catalyst
JP2003151567A (en) * 2001-08-29 2003-05-23 Matsushita Electric Ind Co Ltd Compound electrode for oxygen reduction

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5765332A (en) * 1980-10-07 1982-04-20 Asahi Chem Ind Co Ltd Oxygen reductive catalyst
JPS595566A (en) * 1982-06-30 1984-01-12 Pentel Kk Air pole
JPH02291602A (en) * 1988-12-28 1990-12-03 Idaho Res Found Inc Polymer film of metal polphyrin as conductor for electric catalyst
JPH0330838A (en) * 1989-06-29 1991-02-08 Central Res Inst Of Electric Power Ind Tetraphenylporphyrin derivative and reduction catalyst using it
JPH10249208A (en) * 1997-03-10 1998-09-22 Kagaku Gijutsu Shinko Jigyodan Binucleic iron complex catalyst
JP2003151567A (en) * 2001-08-29 2003-05-23 Matsushita Electric Ind Co Ltd Compound electrode for oxygen reduction

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008111569A1 (en) * 2007-03-09 2008-09-18 National Institute Of Advanced Industrial Science And Technology Electrode catalyst for fuel cell
KR101039907B1 (en) 2009-05-02 2011-06-09 숭실대학교산학협력단 Non-platinum transition metal-based macrocycle catalysts for iodide electroreduction
WO2011052805A1 (en) * 2009-10-30 2011-05-05 Sumitomo Chemical Company, Limited Nitrogen-containing aromatic compounds and metal complexes
CN102666547A (en) * 2009-10-30 2012-09-12 住友化学株式会社 Nitrogen-containing aromatic compounds and metal complexes
US10392395B2 (en) 2009-10-30 2019-08-27 Sumitomo Chemical Company, Limited Nitrogen-containing aromatic compounds and metal complexes
JP2012000602A (en) * 2010-06-21 2012-01-05 Sumitomo Chemical Co Ltd Redox catalyst, electrode catalyst for fuel cell, and fuel cell
JP2012166175A (en) * 2011-02-16 2012-09-06 Toyota Motor Corp Carbon monoxide oxidation catalyst
EP3190157A4 (en) * 2014-09-01 2017-07-12 The University of Tokyo Conductive hybrid material including covalent organic structure
JPWO2016035321A1 (en) * 2014-09-01 2017-06-29 国立大学法人 東京大学 Conductive hybrid materials containing covalent organic structures
CN106574124A (en) * 2014-09-01 2017-04-19 国立大学法人东京大学 Conductive hybrid material including covalent organic structure
US20170222231A1 (en) * 2014-09-01 2017-08-03 The University Of Tokyo Conductive hybrid material including covalent organic structure
CN105482112A (en) * 2014-09-17 2016-04-13 中国科学院武汉物理与数学研究所 Conductive polymeric material polymelem, preparation method therefor and application of conductive polymeric material polymelem
CN108467492A (en) * 2018-05-07 2018-08-31 南京信息工程大学 A kind of fluorine-containing organic metal porous material and preparation method thereof

Similar Documents

Publication Publication Date Title
Tripathy et al. Mixed-valence bimetallic Ce/Zr MOF-based nanoarchitecture: a visible-light-active photocatalyst for ciprofloxacin degradation and hydrogen evolution
Jin et al. Performance of Ni-Cu bimetallic co-catalyst g-C3N4 nanosheets for improving hydrogen evolution
US10305114B2 (en) Non-platinum group metal electrocatalysts using metal organic framework materials and method of preparation
US10305115B2 (en) Non-platinum group metal electrocatalysts using metal organic framework materials and method of preparation
JP2006202688A (en) Electrode catalyst for fuel cell of metal complex
Zhu et al. Efficient full spectrum responsive photocatalytic NO conversion at Bi2Ti2O7: Co-effect of plasmonic Bi and oxygen vacancies
Popov et al. A 2, 2′-bipyridine-containing covalent organic framework bearing rhenium (I) tricarbonyl moieties for CO 2 reduction
Jeong et al. Tris (2‐benzimidazolylmethyl) amine‐directed synthesis of single‐atom nickel catalysts for electrochemical CO production from CO2
Wang et al. Boosting NH 3 production from nitrate electroreduction via electronic structure engineering of Fe 3 C nanoflakes
Zhang et al. An efficient symmetric electrolyzer based on bifunctional perovskite catalyst for ammonia electrolysis
Ghosh et al. Palladium-nitrogen coordinated cobalt alloy towards hydrogen oxidation and oxygen reduction reactions with high catalytic activity in renewable energy generations of proton exchange membrane fuel cell
US20020177525A1 (en) Method of preparing of nanometer electrocatalyst for proton exchange membrane fuel cell
CN106232226B (en) C catalyst, electrode and battery
Kang et al. Electron-rich biochar enhanced Z-scheme heterojunctioned bismuth tungstate/bismuth oxyiodide removing tetracycline
Wang et al. Rational Design and Synthesis of Hierarchical Porous Mn–N–C Nanoparticles with Atomically Dispersed MnN x Moieties for Highly Efficient Oxygen Reduction Reaction
Du et al. NiS/Cd0. 6Zn0. 4S Schottky Junction Bifunctional Photocatalyst for Sunlight‐Driven Highly Selective Catalytic Oxidation of Vanillyl Alcohol Towards Vanillin Coupled with Hydrogen Evolution Reaction
Yin et al. Coupling g-C3N4 nanobelts and Cu (OH) 2 nanoparticles with TiO2 for visible-light photocatalytic H2 production
Liu et al. CoZn-ZIF and melamine co-derived double carbon layer matrix supported highly dispersed and exposed Co nanoparticles for efficient degradation of sulfamethoxazole
Zhao et al. Fabrication of Ag3PO4/Ag/MoO3-x Z-scheme system with excellent photocatalytic degradation performance under visible light irradiation
Zhang et al. Electrochemical generation of catalytically active edge sites in C2N‐type carbon materials for artificial nitrogen fixation
Yang et al. Light‐Induced Synthesis of Oxygen‐Vacancy‐Functionalized Ni (OH) 2 Nanosheets for Highly Selective CO2 Reduction
Saha et al. Oxidised charcoal: an efficient support for NiFe layered double hydroxide to improve electrochemical oxygen evolution
Gupta et al. Side-chain modification in conjugated polymer frameworks for the electrocatalytic oxygen evolution reaction
Yang et al. Ligand-controlled bimetallic Co/Fe MOF xerogels for CO2 photocatalytic reduction
US20150376218A1 (en) Method for manufacturing nitrogen-containing carbon alloy, nitrogen-containing carbon alloy, and fuel cell catalyst

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080118

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100805

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100810

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20101207