JP3428120B2 - Sodium / sulfur battery - Google Patents

Sodium / sulfur battery

Info

Publication number
JP3428120B2
JP3428120B2 JP03808594A JP3808594A JP3428120B2 JP 3428120 B2 JP3428120 B2 JP 3428120B2 JP 03808594 A JP03808594 A JP 03808594A JP 3808594 A JP3808594 A JP 3808594A JP 3428120 B2 JP3428120 B2 JP 3428120B2
Authority
JP
Japan
Prior art keywords
sodium
active material
electrode active
tube
battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP03808594A
Other languages
Japanese (ja)
Other versions
JPH07249430A (en
Inventor
清光 根本
博見 床井
勝男 川崎
直久 綿引
昌一郎 上園
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP03808594A priority Critical patent/JP3428120B2/en
Publication of JPH07249430A publication Critical patent/JPH07249430A/en
Application granted granted Critical
Publication of JP3428120B2 publication Critical patent/JP3428120B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、ナトリウム/硫黄電池
(以下、Na/S電池)において安全管の内外表面,ス
テンレス鋼ウィック表面などに付着している酸化物等及
び負極活物質であるナトリウム(以下Na)中に混在し
ている酸素及び切り屑などが安全管底部に沈降して、N
a供給孔を閉塞することを防止する電池に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a sodium / sulfur battery (hereinafter referred to as Na / S battery), which is an oxide or the like adhering to the inner and outer surfaces of a safety tube, the surface of a stainless steel wick, and sodium as a negative electrode active material. Oxygen and chips mixed in (hereinafter Na) settle at the bottom of the safety pipe, and N
a Relating to a battery that prevents the supply hole from being blocked.

【0002】[0002]

【従来の技術】夜間の余剰電力を蓄え、昼間の電力需要
ピーク時に有効利用する電力貯蔵方法として揚水発電が
あるが、この方式は立地条件や送電コストなどの問題が
あり、建設が難しくなっている。近年、揚水発電に代る
都市近郊型の電力貯蔵システムとしてNa/S電池が注
目され、その開発が国内外で進められている。
2. Description of the Related Art Pumped storage power generation is a power storage method that stores surplus power at night and uses it effectively during peak power demand in the daytime. There is. In recent years, Na / S batteries have been attracting attention as a suburban power storage system that replaces pumped storage power generation, and their development is being promoted in Japan and overseas.

【0003】このNa/S電池が揚水発電とコスト的に
競合するには、約10年間の寿命が要求される。その間
における充放電は、約1500回実施することが目標と
されている。しかし、現時点では固体電解質の劣化,電
池容器材料の腐食及び充,放電効率の低下などがあり、
長寿命化が大きな課題となっている。
In order for this Na / S battery to compete costly with pumped-storage power generation, a life of about 10 years is required. The charge / discharge during that time is targeted to be performed about 1500 times. However, at the present time, there are deterioration of the solid electrolyte, corrosion and charging of the battery container material, deterioration of discharge efficiency, etc.
Longevity is a major issue.

【0004】図4は、従来型Na/S電池の縦断面図で
ある。1は材料表面に耐食処理を施してある金属性の正
極容器、2はナトリウムイオンが移動可能なβ″−Al
23製固体電解質、3はステンレス鋼製の円底袋管型安
全管、4は正極端子、5はNa注入管を兼ねる負極端
子、6は正極と負極を区分け絶縁するためのα−アルミ
ナ(以下、α−Al23)による接合部、7は負極活物
質ナトリウム、8はグラファイトフェルトに正極活物質
Sを含浸した硫黄モ−ルド、及び9はNa供給孔であ
る。
FIG. 4 is a longitudinal sectional view of a conventional Na / S battery. 1 is a metallic positive electrode container whose surface has been subjected to anticorrosion treatment, and 2 is β ″ -Al in which sodium ions can move.
2 O 3 solid electrolyte, 3 stainless steel round bottomed tube type safety tube, 4 positive electrode terminal, 5 negative electrode terminal also serving as Na injection tube, 6 α-alumina for separating positive electrode and negative electrode for insulation (Hereinafter referred to as α-Al 2 O 3 ), 7 is a negative electrode active material sodium, 8 is a sulfur mold in which graphite felt is impregnated with the positive electrode active material S, and 9 is a Na supply hole.

【0005】以上の構成において、Na供給孔は電池の
充放電時、すなわち、電池の運転に必要なNa量をβ″
−Al23管表面に供給するために安全管底部には0.
5〜1.0(mmφ)の孔が設けてある。また、Na/S電
池は温度300〜400℃で運転され、電池の放電時に
はNaはイオンとして固体電解質部を移動し、正極活物
質Sと化1のように反応してNa2Sx(X=3〜5)
を生成する。
In the above-mentioned structure, the Na supply hole has a Na amount necessary for charging and discharging the battery, that is, for operating the battery by β ″.
0 The safety Kansoko unit to feed the -al 2 O 3 tube surface.
Holes of 5 to 1.0 (mmφ) are provided. Further, the Na / S battery is operated at a temperature of 300 to 400 ° C., and when the battery is discharged, Na moves as ions in the solid electrolyte portion and reacts with the positive electrode active material S as shown in Chemical formula 1 to produce Na 2 Sx (X = 3-5)
To generate.

【0006】そして充電時はその逆の反応が行われ、充
放電が繰返し実施される。
During charging, the opposite reaction takes place, and charging / discharging is repeated.

【0007】[0007]

【化1】 2Na+χS→Na2Sx …(化1) 本Na/S電池の定常運転時、すなわち、充放電を繰返
し実施すると充放電効率の低下現象がしばしば起こる。
一回低下現象が起こると、電池はほとんど再生不可で定
常状態に戻らないのが実状である。また、この現象は充
放電操作の初期に起こることが多く問題となっている。
[Formula 1] 2Na + χS → Na 2 Sx (Formula 1) During steady operation of the present Na / S battery, that is, when charging / discharging is repeatedly performed, a phenomenon of lowering of charging / discharging efficiency often occurs.
When the phenomenon occurs once, the battery is almost unreproducible and does not return to a steady state. In addition, this phenomenon often occurs in the early stage of charge / discharge operation, which is a problem.

【0008】この原因は、電池の放電時に生成するN
2Sx及び正極活物質Sにより正極容器が腐食され、
その腐食生成物が固体電解質β″−Al23管表面に析
出し、β″−Al23管の抵抗を大きくすること及び
袋管型β″−Al23管の強度向上を図るため、底部形
状を半球形の底としたことにより、β″−Al23と安
全管とのギャップ幅をできるだけ小さくとる必要がある
ので安全管底部も半球形状としたため、負極活物質Na
中に溶存する酸素及び金属の切り屑などが沈降して低部
のNa供給孔付近に集積しやすくなって、Na供給孔を
閉塞することなどが考えられる。
The cause of this is the N generated when the battery is discharged.
The positive electrode container is corroded by a 2 Sx and the positive electrode active material S,
Its corrosion products "precipitated -Al 2 O 3 tube surface, beta" solid electrolyte beta possible to increase the resistance of the -Al 2 O 3 tube and improve the strength of the bag tube type β "-Al 2 O 3 tube For the purpose of making the bottom shape hemispherical, it is necessary to make the gap width between β ″ -Al 2 O 3 and the safety tube as small as possible.
It is conceivable that dissolved oxygen, metal chips, and the like settle down and tend to accumulate near the lower portion of the Na supply hole, blocking the Na supply hole.

【0009】電池の正極容器は主に、充電時(電気化学
腐食+純化学反応による腐食)と停止時(純化学反応に
よる腐食)に腐食される。これまでの経験から電池の正
極容器材であるクロマイジング鋼のNa2Sx による腐
食速度は小さいこと、また、腐食溶解されたCrやFe
はNa2Sx 中にも溶存するのでβ″−Al23管表面
に析出するのは極微量と考えられる。
The positive electrode container of the battery is mainly corroded at the time of charging (electrochemical corrosion + corrosion by pure chemical reaction) and at the time of stop (corrosion by pure chemical reaction). Based on our experience so far, the corrosion rate of chromizing steel, which is the positive electrode container material for batteries, due to Na 2 Sx is low, and the corrosion-dissolved Cr and Fe
Since it is also dissolved in Na 2 Sx, it is considered that a very small amount is precipitated on the surface of the β ″ -Al 2 O 3 tube.

【0010】したがって、短時間における前者のβ″
−Al23管の抵抗を増大することによる充放電効率の
低下は考慮しないでよいものと考えられる。
Therefore, the former β ″ in a short time
It is considered that the decrease in charge / discharge efficiency due to the increase in the resistance of the —Al 2 O 3 tube may not be considered.

【0011】安全管の底部形状を円底としたことによ
り、Na中の酸化物などの金属ナトリウムより密度の大
きな不純物が沈降して、一番凹部であるNa供給孔部に
集積しやすくなって、次第に堆積し、閉塞状態なってN
aの供給量が少なくなるため充,放電効率が低下する原
因の一つと考えられる。
By making the bottom shape of the safety pipe into a circular bottom, impurities having a density higher than that of metallic sodium such as oxides in Na settle and become easy to be accumulated in the Na supply hole which is the most recessed portion. , Gradually build up and become blocked, N
It is considered that this is one of the reasons why the charging / discharging efficiency decreases because the supply amount of a decreases.

【0012】なお、液体のNa中に存在するNa2
(密度:2.27)は、膠状でフワフワした状態で浮遊
していると考えられている。このNa2O は、液体Na
より粘度が高く、析出核のようなものがあり、そこに一
旦付着すると、次から次へと析出する性質を持ってお
り、簡単に管や孔を閉塞することが知られている。
Na 2 O existing in liquid Na
(Density: 2.27) is believed to be in the form of a glue and fluffy and floating. This Na 2 O is liquid Na
It is known that it has a higher viscosity and has deposit nuclei, etc., and once it adheres to it, it has the property of precipitating one after another, and easily clogs pipes and holes.

【0013】また、液体Naを降温し、Naの融点(9
8.3℃)以下にすると、Na2Oの含有量にもよるが、
一旦、閉塞するとその固化部は固化したセメント状(金
属ナトリウムはチーズとほぼ同じ硬さ)となって、40
0〜500℃に加熱しても簡単には融解できない。この
ため、負極活物質Na中にNa2O が多く含まれると推
定される電池の運転は十分な考慮が必要である。
Further, the temperature of the liquid Na is lowered, and the melting point of Na (9
If it is less than 8.3 ° C), it depends on the content of Na 2 O,
Once clogged, the solidified part becomes solidified cement-like (metal sodium has almost the same hardness as cheese),
It cannot be easily melted even when heated to 0 to 500 ° C. Therefore, it is necessary to give sufficient consideration to the operation of the battery, which is presumed to contain a large amount of Na 2 O in the negative electrode active material Na.

【0014】[0014]

【発明が解決しようとする課題】上記従来技術は、電池
効率を低下するこは電池容量を小さくすることにつな
がるため、電池効率を低下することなく、Na/S電池
の耐用年数の約10年間を安全に運転することが要求さ
れる。
THE INVENTION to be solved INVENTION The above prior art, because it leads to reduced battery capacity and child lowering cell efficiency, without reducing the cell efficiency, about the life of the Na / S cell 10 It is required to drive safely throughout the year.

【0015】本発明の目的は、充放電効率の低下がな
く、ナトリウムの供給をスムーズにし、一定の電池容量
を確保できるNa/S電池を提供することにある。
An object of the present invention is to provide a Na / S battery in which the charging / discharging efficiency does not decrease, the supply of sodium is smooth, and a constant battery capacity can be secured.

【0016】[0016]

【課題を解決するための手段】上記目的を達成するため
に、本発明はNa/S電池の安全管底部に(1)鋭角な
円錐形状に突起させ、ナトリウムの供給をスムーズにさ
せ、(2)安全管底部のNa供給孔部にカバーを取付
け、その上側部にNa流通孔を設けて、Na中の不純物
が沈降してもNa供給孔を閉塞しない構造とし、沈降不
純物を貯蔵できるスペースを設けた。
In order to achieve the above object, the present invention provides (1) an acute conical projection on the bottom of a safety tube of a Na / S battery to smoothly supply sodium.
Thereby, attaching the cover to the Na feed holes (2) Safety Kansoko portion, provided with a Na flow hole in its upper part, even if sedimentation impurities in Na a structure that does not occlude the Na supply hole, settling impurities A storage space was provided.

【0017】[0017]

【作用】本発明のNa/S電池の安全管構造は、袋管型
円底安全管の底部に鋭角の円錐状物を突起させ、その中
心にNa供給孔を設け、安全管底部のNa供給孔部にカ
バーを取付け、その上側部にNa流通孔を設けることに
より、負極活物質Na中の過飽和分の酸化物及び切り屑
などは、液体Naより密度が大きいため安全管の下方部
のNa供給孔部及びその付近に沈降するがNa供給孔部
先端が鋭角なこと及びNa供給孔部のカバー構造によ
り、直接Na供給孔部には沈着,堆積することなく、不
純物貯蔵部に沈降,保管される。
The Na / S battery safety tube structure of the present invention has a bag-type round-bottom safety tube with a conical object with an acute angle protruding from the bottom, and a Na supply hole is provided at the center of the safety tube to supply Na at the bottom of the safety tube. Since the cover is attached to the hole and the Na flow hole is provided on the upper side of the hole, the supersaturated oxide and chips in the negative electrode active material Na have a higher density than the liquid Na. Settles in the supply hole and its vicinity, but due to the sharp tip of the Na supply hole and the cover structure of the Na supply hole, it does not deposit or deposit directly in the Na supply hole, but settles and stores in the impurity storage unit. To be done.

【0018】このことにより、Naは、β″−Al23
管表面にスムーズに供給されるため、電池の充,放電効
率の低下がなく、長期間において一定の電池容量を確保
できるメリットがある。
As a result, Na becomes β ″ -Al 2 O 3
Since it is smoothly supplied to the surface of the tube, there is an advantage that the charging and discharging efficiency of the battery does not decrease and a certain battery capacity can be secured for a long period of time.

【0019】[0019]

【実施例】以下、本発明の実施例を説明する。EXAMPLES Examples of the present invention will be described below.

【0020】本発明の実施例を示す電池構造を図1,図
2及び図3に示す。1は表面に耐食性処理を施した金属
性の正極容器、2はβ″−Al23製の固体電解質、3
は半球円底型の安全管、4は正極端子、5はNa注入管
を兼ねる負極端子、6は正極と負極を区分けするためα
−Al23絶縁材を用いた接合部、7は負極活物質N
a、8は正極活物質Sをカーボンフェルトに含浸させて
あるSモールド、9はNa供給孔、10はNa中の不純
物が沈降してNa供給孔を閉塞することを防止するため
の鋭角円錐形の突起物、11は不純物貯蔵部、12は貯
蔵部に沈降した不純物、13は負極側フランジ、14は
Na供給孔カバー、15はカバー部のNa流通孔であ
る。
A battery structure showing an embodiment of the present invention is shown in FIGS. 1, 2 and 3. 1 is a metallic positive electrode container whose surface is subjected to corrosion resistance treatment, 2 is a solid electrolyte made of β ″ -Al 2 O 3 , and 3
Is a hemispherical bottom safety tube, 4 is a positive electrode terminal, 5 is a negative electrode terminal that also serves as a Na injection tube, and 6 is α for distinguishing the positive electrode from the negative electrode.
-Al 2 O 3 insulation joint, 7 is negative electrode active material N
a and 8 are S molds in which the positive electrode active material S is impregnated in carbon felt, 9 is a Na supply hole, and 10 is an acute cone shape for preventing impurities in Na from settling and blocking the Na supply hole. 11 is an impurity storage part, 12 is an impurity settling in the storage part, 13 is a negative electrode side flange, 14 is a Na supply hole cover, and 15 is a Na flow hole of the cover part.

【0021】以上の構成において、電池の放電時に安全
管内のNaはNa供給孔よりβ″−Al23管表面に供
給され、Naイオンとしてβ″−Al23内を移動し
て、カーボンフェルト表面及び電池容器表面から電子を
受取りSと反応してNa2Sxを生成する。電池の充電
時には、放電の逆の反応が行われてNaは安全管内に戻
ってくる。
In the above structure, when the battery is discharged, Na in the safety tube is supplied to the surface of the β ″ -Al 2 O 3 tube through the Na supply hole and moves as Na ions in the β ″ -Al 2 O 3 to It receives electrons from the carbon felt surface and the battery container surface and reacts with S to produce Na 2 Sx. When the battery is charged, the reaction opposite to the discharge is performed and Na returns to the safety pipe.

【0022】これらの電池反応時において、Naは非常
に強い還元性と洗浄能力を有するため、安全管の内外表
面,ステンレス製ウイック表面及びβ″−Al23管内
表面の酸化物や汚れを洗浄溶解して不純物をNa中に取
り込むことになる。
During the reaction of these batteries, Na has a very strong reducing property and cleaning ability, so that the oxides and stains on the inner and outer surfaces of the safety tube, the surface of the stainless steel wick, and the inner surface of the β ″ -Al 2 O 3 tube are removed. It will be washed and dissolved to incorporate impurities into Na.

【0023】この電池に用いられる負極活物質Naは、
一般に液体金属冷却型の高速増殖炉(LMFBR)の冷
却材に使用される金属ナトリウム(原子炉級ナトリウ
ム:純度約95wt%以上)をそのまま適用されてい
る。
The negative electrode active material Na used in this battery is
Generally, metallic sodium (reactor grade sodium: purity of about 95 wt% or more) used as a coolant for a liquid metal cooling type fast breeder reactor (LMFBR) is applied as it is.

【0024】このNaに含まれている主な不純物は、酸
素,水素,窒素,Fe及びCrなどであり、これらのう
ち、酸素が約5〜10ppm と最も多く含有されている。
The main impurities contained in this Na are oxygen, hydrogen, nitrogen, Fe, Cr and the like. Of these, oxygen is contained in the largest amount of about 5 to 10 ppm.

【0025】しかし、金属ナトリウムは非常に活性なた
めに、取扱い雰囲気や接液材料の表面などから簡単に混
入し、含有量は増加するので取扱には十分注意が必要で
ある。
However, since metallic sodium is very active, it easily mixes from the atmosphere in which it is handled and the surface of the liquid contacting material, and its content increases, so careful handling is necessary.

【0026】因みに、電池の作動温度350℃における
酸素及び水素のNa中溶解度は、ほぼ、220ppm 及び
30ppm であり、酸素や水素が前記濃度以上に混入した
ものとすると、過飽和状態となった分の酸素(酸化ナト
リウム:Na2O)と水素(水素化ナトリウム:Na
H)は析出することになる。
By the way, the solubility of oxygen and hydrogen in Na at the operating temperature of the battery of 350 ° C. is about 220 ppm and 30 ppm, and if oxygen and hydrogen are mixed in the above concentration or more, the amount of supersaturation is Oxygen (sodium oxide: Na 2 O) and hydrogen (sodium hydride: Na
H) will precipitate.

【0027】例えば、電池の温度が均一でなく、低温部
が存在するとそこに析出し、低温部の温度における酸素
溶解度まで集積することになる。実際にはNa/S電池
は、高温槽内で運転されるので、電池温度は、ほぼ、均
一と考えられるから、過飽和分のNa2Oは液体ナトリ
ウム(密度:0.97)に対して密度が2.27と大きい
から、電池の下方部、すなわち、安全管底部に沈降する
ことになる。
For example, if the temperature of the battery is not uniform and a low temperature part exists, it will be deposited there, and oxygen solubility at the temperature of the low temperature part will be accumulated. Since the Na / S battery is actually operated in a high temperature tank, the battery temperature is considered to be almost uniform. Therefore, Na 2 O in the supersaturated portion has a density higher than that of liquid sodium (density: 0.97). Since it is as large as 2.27, it will settle at the lower part of the battery, that is, at the bottom of the safety tube.

【0028】前述したように、液体ナトリウム中でのN
2O は膠状で粘度が高く、また、金属粒子などの不純
物もこれに取り込まれて金属ナトリウムと混在するた
め、見かけ上の容積は大きいので、開口部など閉塞には
十分に注意し、その対策が必要となる。
As mentioned above, N in liquid sodium
Since a 2 O is glue-like and has a high viscosity, and impurities such as metal particles are also taken into it and mixed with metal sodium, the apparent volume is large, so be careful of blocking the openings, etc. That measure is necessary.

【0029】例えば、Na/S電池の構成材料表面、す
なわち、金属性のウイックまたは、メッシュ表面,安全
管内外表面及びβ″−Al23管内表面などからNa中
に混入される酸素量をLMFBRのNa純化系の設計に
用いる機器,配管表面の汚染量、すなわち、酸素換算値
4.5×10-3g・cm-2 を用いて概算すると、その全酸
素量は、約6.8g である。
For example, the amount of oxygen mixed in Na from the surface of the constituent material of the Na / S battery, that is, the metallic wick or the mesh surface, the inner and outer surfaces of the safety tube, the inner surface of the β ″ -Al 2 O 3 tube, etc. Approximately 6.8 g of total oxygen amount is estimated by using the amount of pollution on the equipment and piping surface used for designing the Na purification system of LMFBR, that is, the oxygen equivalent value of 4.5 × 10 −3 g · cm −2. Is.

【0030】Na中酸素のほとんどは、Na2Oの形で
存在するから、Na2Oに換算すると約19gで、その
容積は約8.4mlとなる。
[0030] Most of the oxygen Na, because in the form of Na 2 O, at about 19g in terms of Na 2 O, its volume is about 8.4 ml.

【0031】以上のように、電池を十分に注意して組立
てたとしても、約7gの酸素が混入して19gのNa2
Oが生成することになり、万一、電池の組立て工程に不
備があると、これらの混入量がさらに増加することが考
えられる。
As described above, even if the battery is assembled with great care, about 7 g of oxygen is mixed and 19 g of Na 2 is added.
O will be generated, and if there is a defect in the battery assembling process, it is conceivable that the mixed amount of these will further increase.

【0032】したがって、電池の作動温度350℃にお
けるNa中酸素の溶解度は、約220ppm(2.2×10-4
g・ml-1)であるから、算出の酸素のほとんどは析
出,安全管底部に沈降し、Na供給孔を閉塞して電池の
充放電効率を低下、または、電池の作動を停止すること
になる。
Therefore, the solubility of oxygen in Na at a battery operating temperature of 350 ° C. is about 220 ppm (2.2 × 10 −4).
g · ml −1 ), most of the calculated oxygen precipitates and settles at the bottom of the safety tube, blocking the Na supply hole to lower the charge / discharge efficiency of the battery or stopping the operation of the battery. Become.

【0033】本発明のNa/S電池において、(1)図
1及び図2は、過飽和となった酸素、すなわち、Na2
O が沈降してNa供給孔を閉塞することを防止するた
めに、安全管底部に底面の直径約8mmφ,高さ約15mm
Hの鋭角な円錐形状とし、この中心部に約0.5〜1.0
mmφのNa供給孔を設け、沈降する不純物がNa供給孔
上には堆積しにくい形状とし、沈降する不純物を十分余
裕を持って貯蔵できるスペースとして、約15〜20m
lの容積を設けた構造とした。
In the Na / S battery of the present invention, (1) FIGS. 1 and 2 show supersaturated oxygen, that is, Na 2
In order to prevent O 2 from settling and blocking the Na supply hole, the bottom of the safety pipe has a bottom diameter of about 8 mmφ and a height of about 15 mm.
H-shaped cone with an acute angle of about 0.5-1.0 at the center
An Na supply hole of mmφ is provided to make it difficult for sedimenting impurities to accumulate on the Na supply hole, and a space for storing sedimenting impurities with a sufficient margin is about 15 to 20 m.
The structure has a volume of 1 l.

【0034】すなわち、図2に示すように、過飽和とな
った不純物は、矢印のように安全管の下方側に沈降し、
安全管底部円錐形の先端には付着することなく、さらに
沈降して不純物貯蔵部に沈着し固定される。(2)図3
は、上述した図1及び図2と同様に、安全管底部のNa
供給孔部に有蓋の約8mmφ,高さ約15〜20mmHのカ
バーを取付け、この上部側に約0.5〜1.0mmφのNa
流通孔を1〜2個設け、沈降する過飽和分の酸素及び金
属粒子などの不純物が安全管のNa供給孔部に進入する
ことなく、さらに沈降して不純物貯蔵部に沈着し、固定
される。
That is, as shown in FIG. 2, the supersaturated impurities settle down on the lower side of the safety pipe as shown by the arrow.
It does not adhere to the tip of the conical shape of the bottom of the safety pipe, but it further settles and is deposited and fixed in the impurity storage unit. (2) Figure 3
Is the Na at the bottom of the safety pipe, as in FIGS. 1 and 2 described above.
A cover with a lid of about 8 mmφ and a height of about 15 to 20 mmH is attached to the supply hole, and a Na of about 0.5 to 1.0 mmφ is attached on the upper side.
One or two flow holes are provided so that settling supersaturated oxygen and impurities such as metal particles do not enter the Na supply hole portion of the safety pipe and further settle and are deposited and fixed in the impurity storage unit.

【0035】本発明のNa/S電池は、負極活物質Na
中に含まれる酸素及び金属粒子などの不純物により、安
全管底部のNa供給孔を閉塞しない構造としたことによ
って、電池の充放電効率の低下を防止し、電池を長期間
安定に運転できる。
The Na / S battery of the present invention comprises a negative electrode active material Na
By adopting a structure in which the Na supply hole at the bottom of the safety tube is not blocked by impurities such as oxygen and metal particles contained therein, a decrease in charge / discharge efficiency of the battery can be prevented and the battery can be stably operated for a long period of time.

【0036】[0036]

【発明の効果】本発明によれば、Na/S電池の負極活
物質であるNa中の不純物及び構成材表面などから混入
する不純物で安全管のNa供給孔の閉塞を防止すること
により、電池の充放電効率が低下することなく、電池を
長時間安定に運転できる。
According to the present invention, it is possible to prevent the Na supply hole of the safety tube from being blocked by impurities in Na, which is the negative electrode active material of the Na / S battery, and impurities mixed from the surface of the constituent material. The battery can be stably operated for a long time without lowering the charging / discharging efficiency.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例を示すNa/S電池の縦断面
図。
FIG. 1 is a vertical sectional view of a Na / S battery showing an embodiment of the present invention.

【図2】本発明のNa中不純物によるNa供給孔の閉塞
を防止する構造とした安全管の詳細な縦断面図。
FIG. 2 is a detailed vertical sectional view of a safety pipe having a structure for preventing the Na supply hole from being blocked by impurities in Na according to the present invention.

【図3】本発明の一実施例を示すNa/S電池の縦断面
図。
FIG. 3 is a vertical cross-sectional view of a Na / S battery showing an embodiment of the present invention.

【図4】従来型Na/S電池の縦断面図。FIG. 4 is a vertical cross-sectional view of a conventional Na / S battery.

【符号の説明】[Explanation of symbols]

3…安全管、7…ナトリウム、9…ナトリウム供給孔、
10…円錐形突起物、11…不純物貯蔵部、12…不純
物、13…フランジ。
3 ... Safety pipe, 7 ... Sodium, 9 ... Sodium supply hole,
10 ... Conical projection, 11 ... Impurity storage, 12 ... Impurity, 13 ... Flange.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 川崎 勝男 茨城県日立市大みか町七丁目2番1号 株式会社 日立製作所 エネルギー研究 所内 (72)発明者 綿引 直久 茨城県日立市大みか町七丁目2番1号 株式会社 日立製作所 エネルギー研究 所内 (72)発明者 上園 昌一郎 茨城県日立市大みか町七丁目2番1号 株式会社 日立製作所 エネルギー研究 所内 (56)参考文献 特開 昭61−138474(JP,A) 特開 昭60−20475(JP,A) (58)調査した分野(Int.Cl.7,DB名) H01M 10/39 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Katsuo Kawasaki 7-2-1 Omika-cho, Hitachi City, Ibaraki Hitachi, Ltd. Energy Research Laboratory, Hitachi, Ltd. (72) Naohisa Watabiki 7-2 Omika-cho, Hitachi City, Ibaraki Prefecture No. 1 Hitachi Ltd. Energy Research Laboratory (72) Inventor Shoichiro Uesono 7-2-1 Omika-cho, Hitachi City, Ibaraki Prefecture Hitachi Energy Research Laboratory (56) References JP-A 61-138474 (JP, A) JP-A-60-20475 (JP, A) (58) Fields investigated (Int.Cl. 7 , DB name) H01M 10/39

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】ナトリウムを必須成分とする負極活物質,
硫黄または、多硫化ナトリウムの溶融塩を必須成分とす
る正極活物質,前記負極活物質と正極活物質間にナトリ
ウムイオンが移動可能な固体電解質及び万一前記固体電
解質管が破損した場合に多量のナトリウムと硫黄の直接
反応を防止するために前記固体電解質管の内側に安全管
を具備したナトリウム/硫黄電池において、半球円底の
袋管型安全管の内側底部を円錐形状物を突起させ、その
中心部にナトリウム供給孔を設けて不純物による閉塞を
防止した構成として、ナトリウムの供給をスムーズにし
たことを特徴とするナトリウム/硫黄電池。
1. A negative electrode active material containing sodium as an essential component,
A positive electrode active material containing sulfur or a molten salt of sodium polysulfide as an essential component, a solid electrolyte in which sodium ions can move between the negative electrode active material and the positive electrode active material, and a large amount if the solid electrolyte tube is damaged. In a sodium / sulfur battery having a safety tube inside the solid electrolyte tube to prevent direct reaction between sodium and sulfur ,
The inner bottom of the bag-type safety tube is made to project a conical shape,
A sodium supply hole is provided in the center to block impurities.
A sodium / sulfur battery characterized by smoothing the supply of sodium as a preventive structure .
【請求項2】ナトリウムを必須成分とする負極活物質,
硫黄または、多硫化ナトリウムの溶融塩を必須成分とす
る正極活物質,前記負極活物質と正極活物質間にナトリ
ウムイオンが移動可能な固体電解質及び万一前記固体電
解質管が破損した場合に多量のナトリウムと硫黄の直接
反応を防止するために前記固体電解質管の内側に安全管
を具備したナトリウム/硫黄電池において、半球円底管
型安全管底部のナトリウム供給孔上に円筒有蓋型のカバ
ーを取付け、この上部の側部にナトリウム流通孔を1〜
2個設けて過飽和となった不純物などが安全管のナトリ
ウム供給孔部に進入しない構造として、ナトリウムの供
給をスムーズにしたことを特徴とするナトリウム/硫黄
電池。
2. A negative electrode active material containing sodium as an essential component,
A positive electrode active material containing sulfur or a molten salt of sodium polysulfide as an essential component, a solid electrolyte in which sodium ions can move between the negative electrode active material and the positive electrode active material, and a large amount if the solid electrolyte tube is damaged. In a sodium / sulfur battery having a safety tube inside the solid electrolyte tube for preventing direct reaction between sodium and sulfur, a hemispherical bottom tube
A cylindrical lid type cover is placed on the sodium supply hole at the bottom of the mold safety tube.
-Install a sodium flow hole on the side of this upper part
Impurities that have been oversaturated by installing two of them are the safety pipe
As a structure that does not enter the hole for supplying
A sodium / sulfur battery characterized by smooth supply .
JP03808594A 1994-03-09 1994-03-09 Sodium / sulfur battery Expired - Fee Related JP3428120B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP03808594A JP3428120B2 (en) 1994-03-09 1994-03-09 Sodium / sulfur battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP03808594A JP3428120B2 (en) 1994-03-09 1994-03-09 Sodium / sulfur battery

Publications (2)

Publication Number Publication Date
JPH07249430A JPH07249430A (en) 1995-09-26
JP3428120B2 true JP3428120B2 (en) 2003-07-22

Family

ID=12515642

Family Applications (1)

Application Number Title Priority Date Filing Date
JP03808594A Expired - Fee Related JP3428120B2 (en) 1994-03-09 1994-03-09 Sodium / sulfur battery

Country Status (1)

Country Link
JP (1) JP3428120B2 (en)

Also Published As

Publication number Publication date
JPH07249430A (en) 1995-09-26

Similar Documents

Publication Publication Date Title
EP2514066B1 (en) Zinc-air battery
WO2006035961A1 (en) Non-aqueous electrolyte battery
US4942100A (en) Aluminium batteries
US4652505A (en) Sealed lead storage battery
US4144381A (en) Electrochemical pH control
JP3428120B2 (en) Sodium / sulfur battery
CN101188321A (en) A method for recycling lead of abandoned lead acid accumulator
US3218195A (en) Electricity generating cell
JP2832228B2 (en) Zinc alloy powder for alkaline battery and method for producing the same
JPH08329975A (en) Sealed lead-acid battery
JP2008166124A (en) Manufacturing method of control valve type lead-acid battery
JPH08339819A (en) Sealed lead-acid battery
CN220148125U (en) Pulse electrolyte residual liquid collecting and storing dish
KR102092600B1 (en) Reduction apparatus and method of rarioactive metal oxide integrated with regeneration apparatus
JPS5956368A (en) Performance recovery method for lead-acid battery
JPS6017868A (en) Sodium-sulfur battery
JPH02195650A (en) Electrode for redox flow battery
JPH063743B2 (en) Method for manufacturing sodium-sulfur battery
JPH0145945B2 (en)
JPH0992326A (en) Alkaline battery
CN1099525A (en) Sealed type nickel metal hydrogen alkaline storage cell
JPH042049A (en) Cathode absorption type lead acid battery
JPH08180858A (en) Lead-acid battery
JP2832229B2 (en) Zinc alloy powder for alkaline battery and method for producing the same
JPH0570269B2 (en)

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees