JP3412313B2 - Driving force distribution control device for four-wheel drive vehicle - Google Patents

Driving force distribution control device for four-wheel drive vehicle

Info

Publication number
JP3412313B2
JP3412313B2 JP01609695A JP1609695A JP3412313B2 JP 3412313 B2 JP3412313 B2 JP 3412313B2 JP 01609695 A JP01609695 A JP 01609695A JP 1609695 A JP1609695 A JP 1609695A JP 3412313 B2 JP3412313 B2 JP 3412313B2
Authority
JP
Japan
Prior art keywords
speed
force
fastening force
drive
vehicle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP01609695A
Other languages
Japanese (ja)
Other versions
JPH08207605A (en
Inventor
和之 河野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP01609695A priority Critical patent/JP3412313B2/en
Publication of JPH08207605A publication Critical patent/JPH08207605A/en
Application granted granted Critical
Publication of JP3412313B2 publication Critical patent/JP3412313B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Arrangement And Driving Of Transmission Devices (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は4輪駆動車の駆動力分配
制御装置に関し、詳しくは、主駆動輪と従駆動輪とに対
するエンジン駆動力の分配制御に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a drive force distribution control device for a four-wheel drive vehicle, and more particularly to distribution control of engine drive force to main drive wheels and sub drive wheels.

【0002】[0002]

【従来の技術】従来の4輪駆動車の駆動力分配制御装置
としては、特開平2−270641号公報に開示される
ような装置が知られている。このものは、エンジン直結
駆動系の後輪(主駆動輪)に対し、制御信号に応じて締
結力が変化するトルク分配用クラッチを介して前輪(従
駆動輪)にエンジン駆動力を伝達する構成の4輪駆動車
において、前後輪の回転速度差を演算し、該回転速度差
が大きい程、即ち、主駆動輪である後輪のスリップの発
生が大きい程前記クラッチの締結力を増大させて前輪
(従駆動輪)側に対する駆動力分配を高めて、速やかに
後輪(主駆動輪)のスリップを抑制させるようになって
いる。
2. Description of the Related Art As a conventional drive force distribution control device for a four-wheel drive vehicle, there is known a device disclosed in Japanese Patent Application Laid-Open No. 2-270641. This is a configuration in which the engine driving force is transmitted to the front wheels (slave driving wheels) via the torque distribution clutch whose fastening force changes according to the control signal, to the rear wheels (main driving wheels) of the drive system directly connected to the engine. In the four-wheel drive vehicle, the rotational speed difference between the front and rear wheels is calculated, and the engagement force of the clutch is increased as the rotational speed difference increases, that is, the rear wheel, which is the main drive wheel, generates more slip. The driving force distribution to the front wheels (sub-driving wheels) is increased to quickly suppress the slip of the rear wheels (main driving wheels).

【0003】更に、前記公報に開示される装置では、前
記回転速度差に基づく駆動力分配制御の遅れによって発
進時に後輪(主駆動輪)の空転が発生することを未然に
防止すべく、発進時(低車速時)には、アクセル開度
(エンジン駆動力)に比例して前記クラッチの締結力を
増大制御する構成となっている。
Further, in the device disclosed in the above publication, the vehicle is started in order to prevent the idling of the rear wheels (main driving wheels) at the time of starting due to the delay of the driving force distribution control based on the rotational speed difference. When the vehicle speed is low (when the vehicle speed is low), the clutch engaging force is controlled to increase in proportion to the accelerator opening (engine driving force).

【0004】[0004]

【発明が解決しようとする課題】ところで、前述のよう
な駆動力分配制御装置においては、駆動力分配状態の急
変を回避して駆動性能を安定化させるために、クラッチ
締結力の変化速度を制限することが好ましい。一方、例
えば前述のように発進時(低車速時)にアクセル開度に
応じてクラッチの締結力、即ち、従駆動輪に対する駆動
力分配を決定する構成の場合には、アクセルを大きく踏
込む急加速操作が行われると、かかる急加速に伴う主駆
動輪の空転を回避すべく、従駆動輪に対する駆動力分配
を大きく高める制御(クラッチ締結力を大きく高める制
御)が行われることになる。
In the driving force distribution control device as described above, in order to avoid a sudden change in the driving force distribution state and stabilize the driving performance, the changing speed of the clutch engaging force is limited. Preferably. On the other hand, for example, in the case of the configuration in which the clutch engagement force, that is, the driving force distribution to the driven wheels is determined according to the accelerator opening degree at the time of starting (at low vehicle speed) as described above, the accelerator is depressed sharply. When the acceleration operation is performed, control for greatly increasing the driving force distribution to the sub-driving wheels (control for greatly increasing the clutch engagement force) is performed in order to avoid idling of the main driving wheels due to such rapid acceleration.

【0005】ここで、かかる急加速操作が行われた後
で、すぐに減速旋回に移行した場合に、前記締結力変化
速度の制限制御によって、実際の締結力がなかなか低下
せずに、従駆動輪に対する分配が旋回前の急加速動作に
影響されて減速旋回動作に入った後も継続的に行われる
場合がある。このようにして、減速旋回動作中に従駆動
輪に対する駆動力分配が行われると、タイトコーナブレ
ーキ現象やアンダステアが発生して旋回時の操縦性を損
なう惧れがあった。
Here, when such a rapid acceleration operation is performed and then the vehicle immediately shifts to a deceleration turn, the actual fastening force is not easily reduced by the limiting control of the fastening force change speed, and the secondary driving is performed. The distribution to the wheels may be continuously performed even after the deceleration turning operation is started by being affected by the sudden acceleration operation before turning. In this way, when the driving force is distributed to the driven wheels during the decelerating turning operation, there is a fear that a tight corner braking phenomenon or understeer may occur to impair the maneuverability during turning.

【0006】尚、前記タイトコーナブレーキとは、4輪
駆動走行時において、旋回の際に前輪と後輪との間に生
じる回転差のためにブレーキがかかったように曲がりに
くくなる現象をいうものとする。一方、締結力の変化速
度として比較的大きな速度を常時許容する構成とする
と、従駆動輪に対する駆動力分配を維持したい加速時
に、従駆動輪に対する駆動力分配が急減して、所期の駆
動性能を維持できなくなる惧れが生じるなどの問題があ
る。
The tight corner brake means a phenomenon in which a vehicle is hard to bend as if it was braked due to a rotation difference generated between a front wheel and a rear wheel at the time of turning during four-wheel drive traveling. And On the other hand, if it is configured to always allow a relatively large speed for changing the fastening force, the driving force distribution to the driven wheels will suddenly decrease at the time of acceleration in which it is desired to maintain the driving force distribution to the driven wheels. There is a problem such as the fear of being unable to maintain.

【0007】本発明は上記問題点に鑑みなされたもので
あり、例えば急加速直後の減速旋回時において、不必要
な従駆動輪に対する駆動力分配によってタイトコーナブ
レーキ現象やアンダステアが発生することを回避しつ
つ、加速時に駆動性能を安定化し得る駆動力分配制御装
置を提供することを目的とする。
The present invention has been made in view of the above problems, and avoids occurrence of a tight corner braking phenomenon or understeer due to unnecessary driving force distribution to the driven wheels during deceleration turning immediately after rapid acceleration. At the same time, it is an object of the present invention to provide a driving force distribution control device capable of stabilizing driving performance during acceleration.

【0008】[0008]

【課題を解決するための手段】そのため請求項1の発明
にかかる4輪駆動車の駆動力分配制御装置は、エンジン
直結駆動系の主駆動輪に対し、制御信号に応じて締結力
が変化するトルク分配用クラッチを介してエンジン駆動
力が伝達される従駆動輪を備えてなる4輪駆動車の駆動
力分配制御装置であって、図1に示すように構成され
る。
Therefore, in the drive force distribution control device for a four-wheel drive vehicle according to the invention of claim 1, the fastening force for the main drive wheels of the engine direct drive system changes according to the control signal. A drive force distribution control device for a four-wheel drive vehicle having driven wheels to which engine drive force is transmitted via a torque distribution clutch, and is configured as shown in FIG.

【0009】図1において、締結力制御手段は、運転条
件に応じて前記トルク分配用クラッチの締結力を制御す
る。ここで、許容最大減少速度切換え手段は、締結力制
御手段で制御される締結力の許容最大減少速度を、車両
の加減速状態に応じて切換え設定する手段であって、前
記許容最大減少速度を、車両の加速時に比して減速時に
より大きな減少速度とする。そして、締結力減少速度制
限手段は、許容最大減少速度切換え手段で切換え設定さ
れる許容最大減少速度内に、前記締結力制御手段で制御
される締結力の減少速度を制限する。
In FIG. 1, the engagement force control means controls the engagement force of the torque distribution clutch according to operating conditions. Here, the allowable maximum reduction speed switching means, the maximum allowable rate of decrease in the fastening force that is controlled by the engagement force control means, and means for switching set in accordance with the acceleration or deceleration state of the vehicle, before
Note that the maximum permissible decrease speed is reduced when the vehicle is decelerated
Greater reduction rate. The fastening force reduction speed limiting means limits the fastening force reduction speed controlled by the fastening force control means within the allowable maximum reduction speed switched and set by the allowable maximum reduction speed switching means.

【0010】請求項2の発明にかかる4輪駆動車の駆動
力分配制御装置では、前記締結力制御手段が、前記主駆
動輪と従駆動輪との回転速度差に応じて要求締結力を算
出する回転速度差による締結力算出手段と、発進時にア
クセル開度に応じて要求締結力を算出するアクセル開度
による締結力算出手段と、前記各手段によりそれぞれ算
出された要求締結力に基づいて最終的な目標締結力を設
定する目標締結力設定手段と、を含んで構成されるもの
とした。
In the drive force distribution control device for a four-wheel drive vehicle according to the invention of claim 2, the engagement force control means calculates the required engagement force according to the difference in rotational speed between the main drive wheel and the sub drive wheel. The fastening force calculation means based on the rotational speed difference, the fastening force calculation means based on the accelerator opening degree that calculates the required fastening force according to the accelerator opening degree at the time of starting, and the final based on the required fastening force calculated by each of the means. Target fastening force setting means for setting a specific target fastening force.

【0011】請求項の発明にかかる4輪駆動車の駆動
力分配制御装置では、前記締結力制御手段で制御される
締結力の増大速度を、前記許容最大減少速度よりも速い
所定の許容最大増大速度内に制限する締結力増大速度制
限手段を設ける構成とした。
In the drive force distribution control device for a four-wheel drive vehicle according to a third aspect of the present invention, the increasing speed of the engaging force controlled by the engaging force control means is higher than the allowable maximum decreasing speed by a predetermined allowable maximum. The configuration is such that a fastening force increasing speed limiting means for limiting the speed within the increasing speed is provided.

【0012】[0012]

【作用】請求項1の発明にかかる4輪駆動車の駆動力分
配制御装置によると、車両の加速時に比して減速時に
は、より大きな速度での締結力の減少制御が許容され、
これにより、減速旋回前に大きく増大制御された締結力
が、減速旋回に移行してからも保持されてしまうことを
回避できる一方、加速時には、締結力の減少速度を低く
制限して、継続的に従駆動輪に対する駆動力分配が行わ
れるようにする。
According to the drive force distribution control device for a four-wheel drive vehicle according to the invention of claim 1, when the vehicle is decelerated as compared with when it is decelerated.
Is allowed to control the tightening force at a higher speed,
As a result, the fastening force greatly increased before the deceleration turn is controlled.
However, it is retained even after shifting to deceleration turning.
It can be avoided, but at the time of acceleration, the speed at which the fastening force decreases is reduced.
Drive power is distributed to the driven wheels continuously by limiting
So that

【0013】[0013]

【0014】[0014]

【0015】請求項の発明にかかる4輪駆動車の駆動
力分配制御装置によると、主駆動輪における空転の発生
に基づいて従駆動輪に対する駆動力分配が行われて、前
記空転状態を速やかに解消し得ると共に、発進時には、
前記空転の発生を待たずに、アクセル開度に応じて従駆
動輪に対する駆動力分配を行わせて、空転の発生を未然
に防止できる。ここで、減速旋回前にアクセルが大きく
開操作されて、締結力が大きく増大制御されても、前記
最大減少速度の制限によって比較的速やかに締結力を減
少させ得るから、アクセルを大きく開操作した直後の減
速旋回時に無用な駆動力分配が行われてしまうことを回
避し得る。
According to the driving force distribution control device for a four-wheel drive vehicle according to the invention of claim 2 , the driving force is distributed to the driven wheels on the basis of the occurrence of the idling of the main driving wheels, so that the idling state is promptly changed. It can be resolved to
It is possible to prevent the occurrence of idling by distributing the driving force to the driven wheels according to the accelerator opening degree without waiting for the occurrence of idling. Here, even if the accelerator is largely opened before the deceleration turn and the fastening force is controlled to be greatly increased, the fastening force can be relatively quickly reduced by the limitation of the maximum reduction speed, so the accelerator is largely opened. It is possible to avoid unnecessary driving force distribution during the deceleration turn immediately after.

【0016】請求項の発明にかかる4輪駆動車の駆動
力分配制御装置によると、締結力の減少速度を制限する
場合よりも高い変化速度を、締結力の増大制御で許容し
て、従駆動輪に対する駆動力分配が必要な運転条件にお
いて速やかに駆動力分配が行えるようにした。
According to the drive force distribution control device for a four-wheel drive vehicle according to the third aspect of the present invention, the increasing speed of the engaging force allows a changing speed higher than that in the case where the decreasing speed of the engaging force is limited. The driving force can be promptly distributed under the driving condition where the driving force needs to be distributed to the driving wheels.

【0017】[0017]

【実施例】以下に本発明の実施例を説明する。図2は、
本発明にかかる駆動力分配制御装置が適用される4輪駆
動車における駆動系の全体システム図である。図2に示
される車両は後輪ベースの4輪駆動車であり、その駆動
系には、エンジン1,トランスミッション2,トランス
ファ入力軸3,リヤプロペラシャフト4,リヤディファ
レンシャル5,後輪(主駆動輪)6,トランスファ出力
軸7,フロントプロペラシャフト8,フロントディファ
レンシャル9,前輪(従駆動輪)10を備えていて、後輪
6へはトランスミッション2を経由してきたエンジン駆
動力が直接伝達され、前輪10へは前輪駆動系である前記
トランスファ入出力軸3,7間に設けてあるトランスフ
ァ11を介してエンジン駆動力が伝達される。
EXAMPLES Examples of the present invention will be described below. Figure 2
1 is an overall system diagram of a drive system in a four-wheel drive vehicle to which a drive force distribution control device according to the present invention is applied. The vehicle shown in FIG. 2 is a rear-wheel-based four-wheel drive vehicle, and its drive system includes an engine 1, a transmission 2, a transfer input shaft 3, a rear propeller shaft 4, a rear differential 5, and rear wheels (main drive wheels). ) 6, a transfer output shaft 7, a front propeller shaft 8, a front differential 9, and front wheels (driven wheels) 10. The engine driving force transmitted via the transmission 2 is directly transmitted to the rear wheels 6 and the front wheels 10 The engine driving force is transmitted to the engine through a transfer 11 provided between the transfer input / output shafts 3 and 7 which is a front wheel drive system.

【0018】そして、前後輪の駆動力分配を最適に制御
する駆動力分配制御装置は、湿式多板摩擦クラッチ11a
(トルク分配用クラッチ)を内蔵した前記トランスファ
11と、クラッチ締結力となる制御油圧Pcを発生する制
御油圧発生装置20と、制御油圧発生装置20に設けられた
ソレノイドバルブ28へ各種入力センサ30からの情報に基
づいて所定のソレノイド駆動電流iを出力するトルクス
プリットコントローラ40(締結力制御手段)とを備えて
構成されている。
The drive force distribution control device for optimally controlling the drive force distribution between the front and rear wheels is a wet multi-plate friction clutch 11a.
The transfer with built-in (clutch for torque distribution)
11, a control oil pressure generator 20 that generates a control oil pressure Pc that serves as a clutch engagement force, and a solenoid valve 28 provided in the control oil pressure generator 20 to a predetermined solenoid drive current i based on information from various input sensors 30. And a torque split controller 40 (fastening force control means) that outputs

【0019】前記制御油圧発生装置20は、リリーフスイ
ッチ21により駆動又は停止するモータ22と、該モータ22
により作動してリザーバタンク23から作動油を吸い上げ
る油圧ポンプ24と、該油圧ポンプ24からのポンプ吐出圧
(一次圧)をチェックバルブ25を介して蓄えるアキュム
レータ26と、該アキュムレータ26からのライン圧(二次
圧)をトルクスプリットコントローラ40からのソレノイ
ド駆動電流iにより所定の制御油圧Pcに調整するソレ
ノイドバルブ28とを備え、制御油圧Pcの作動油は制御
油圧パイプ29を経由してクラッチポートに供給される。
そして、前記クラッチポートに供給される制御油圧Pc
に応じて湿式多板摩擦クラッチ11aのクラッチトルク
(締結力)が制御され、該クラッチトルク(締結力)に
応じて従駆動輪である前輪側への駆動力の分配が制御さ
れる。
The control oil pressure generator 20 includes a motor 22 driven or stopped by a relief switch 21, and the motor 22.
Hydraulic pump 24 that is operated by the suction pump to suck hydraulic oil from reservoir tank 23, accumulator 26 that stores pump discharge pressure (primary pressure) from hydraulic pump 24 via check valve 25, and line pressure from accumulator 26 ( (Secondary pressure) is adjusted to a predetermined control oil pressure Pc by a solenoid drive current i from the torque split controller 40, and hydraulic oil of the control oil pressure Pc is supplied to the clutch port via a control oil pressure pipe 29. To be done.
The control oil pressure Pc supplied to the clutch port
The clutch torque (engaging force) of the wet multi-plate friction clutch 11a is controlled in accordance with the above, and the distribution of the driving force to the front wheels, which are the driven wheels, is controlled in accordance with the clutch torque (engaging force).

【0020】図3は実施例における電子制御系を示すブ
ロック図である。ここで、前記トルクスプリットコント
ローラ40の入力側には、各種入力センサ30として、左前
輪回転センサ30a,右前輪回転センサ30b,左後輪回転
センサ30c,右後輪回転センサ30d,第1横加速度セン
サ30e,第2横加速度センサ30f,アクセル開度センサ
30gが接続され、トルクスプリットコントローラ40の出
力側には、ソレノイドバルブ28が接続されている。
FIG. 3 is a block diagram showing an electronic control system in the embodiment. Here, on the input side of the torque split controller 40, as the various input sensors 30, there are left front wheel rotation sensor 30a, right front wheel rotation sensor 30b, left rear wheel rotation sensor 30c, right rear wheel rotation sensor 30d, and first lateral acceleration. Sensor 30e, second lateral acceleration sensor 30f, accelerator opening sensor
The solenoid valve 28 is connected to the output side of the torque split controller 40.

【0021】次に前記トルクスプリットコントローラ40
によって行われる前後輪への駆動力分配制御(クラッチ
トルク制御)の様子を図4のフローチャートに従って説
明する。尚、本実施例において、締結力制御手段(回転
速度差による締結力算出手段,アクセル開度による締結
力算出手段,目標締結力設定手段を含む),許容最大減
少速度切換え手段,締結力減少速度制限手段,締結力増
大速度制限手段としての機能は、前記図4のフローチャ
ートに示すように、前記トルクスプリットコントローラ
40がソフトウェア的に備えている。
Next, the torque split controller 40
The state of the driving force distribution control (clutch torque control) to the front and rear wheels performed by the above will be described with reference to the flowchart of FIG. In the present embodiment, the fastening force control means (including the fastening force calculation means based on the rotational speed difference, the fastening force calculation means based on the accelerator opening, the target fastening force setting means), the allowable maximum reduction speed switching means, and the fastening force reduction speed. As shown in the flowchart of FIG. 4, the torque split controller functions as the limiting means and the fastening force increasing speed limiting means.
40 has software.

【0022】図4のフローチャートにおいて、まず、S
1では、前記各種入力センサ30で検出される左前輪速V
WFL ,右前輪速VWFR ,左後輪速VWRL ,右後輪速V
WRR ,第1横加速度YG1,第2横加速度YG2,アクセル
開度θなどの各種データを読み込む。S2では、前記第
1横加速度YG1と第2横加速度YG2との平均値(YG
(Y G1+YG2)/2)を求め、かかる平均値を駆動力分
配制御に用いる横加速度YGとする。
In the flowchart of FIG. 4, first, S
1, the left front wheel speed V detected by the various input sensors 30
WFL, Right front wheel speed VWFR, Left rear wheel speed VWRL, Rear right wheel speed V
WRR, First lateral acceleration YG1, Second lateral acceleration YG2,accelerator
Read various data such as opening θ. In S2, the
1 Lateral acceleration YG1And the second lateral acceleration YG2And the average value (YG=
(Y G1+ YG2) / 2) is calculated, and the average value is divided by the driving force.
Lateral acceleration Y used for distribution controlGAnd

【0023】S3では、左後輪速VWRL と右後輪速V
WRR との平均値を求め、これを主駆動輪である後輪の回
転速度VWRとする(VWR=(VWRL +VWRR )/2)。
S4では、左前輪速VWFL と右前輪速VWFR との平均値
を求め、これを従駆動輪である前輪の回転速度VWFとす
る(VWF=(VWFL +VWFR )/2)。尚、本実施例で
は、前記前輪回転速度VWFを車速相当値とするものとす
る。
At S3, the left rear wheel speed V WRL and the right rear wheel speed V
The average value with WRR is obtained, and this is set as the rotation speed V WR of the rear drive wheel (V WR = (V WRL + V WRR ) / 2).
In S4, an average value of the left front wheel speed V WFL and the right front wheel speed V WFR is obtained, and this is set as the rotation speed V WF of the front wheels that are the driven wheels (V WF = (V WFL + V WFR ) / 2). In the present embodiment, the front wheel rotation speed V WF is set to the vehicle speed equivalent value.

【0024】S5では、主駆動輪である後輪の回転速度
WRと、従駆動輪である前輪の回転速度VWFとの回転速
度差ΔVW を演算する(ΔVW =VWR−VWF)。そし
て、S6では、前記回転速度差ΔVW に応じて前記湿式
多板摩擦クラッチ11a(トルク分配用クラッチ)のクラ
ッチトルク(締結力)の基本値TΔV(基本要求締結
力)を設定する。ここで、前記回転速度差ΔVW が大き
くなるほど前記クラッチトルクを増大させて前輪側への
駆動力分配を高めるように前記基本値TΔVが設定され
るが、前記横加速度YG に応じてゲインを設定して、横
加速度YG が大きい高摩擦係数路では駆動力分配を比較
的小さくしてタイトコーナブレーキの発生を回避できる
ようにすることが好ましい。
In S5, a rotational speed difference ΔV W between the rotational speed V WR of the rear wheels which are the main driving wheels and the rotational speed V WF of the front wheels which are the secondary driving wheels is calculated (ΔV W = V WR −V WF). ). Then, in S6, the basic value TΔV (basic required engaging force) of the clutch torque (engaging force) of the wet multi-plate friction clutch 11a (torque distributing clutch) is set according to the rotational speed difference ΔV W. Here, the basic value TΔV is set so that the clutch torque is increased and the driving force distribution to the front wheels is increased as the rotational speed difference ΔV W increases, but the gain is changed according to the lateral acceleration Y G. It is preferable to set so that the driving force distribution can be made relatively small on a high friction coefficient road where the lateral acceleration Y G is large so that the occurrence of tight corner braking can be avoided.

【0025】S7では、車速VSP(前輪の回転速度V
WF)が、発進時の判断基準として設定された所定速度
(例えば20km/h) 以上であるか否かを判別する。ここ
で、車速VSP(前輪の回転速度VWF)が所定速度未満
であると判別された発進相当時には、S8へ進み、アク
セル開度θに応じて発進時制御用のクラッチトルク(締
結力)TS(発進制御用の要求締結力)を設定する。こ
こで、前記クラッチトルクTsは、アクセル開度θが大
きくなるに従って増大設定される構成となっており、こ
れにより、急発進時ほど前輪に対する駆動力分配を高め
て、発進時における後輪の空転を未然に防止できるよう
にする。
At S7, the vehicle speed VSP (the rotation speed V of the front wheels V
WF ) is above a predetermined speed (for example, 20 km / h) set as a criterion for starting the vehicle. Here, when the vehicle speed VSP (rotational speed V WF of the front wheels) is determined to be less than the predetermined speed, when the vehicle is equivalent to the start, the process proceeds to S8, and the clutch torque (engagement force) TS for the start control according to the accelerator opening θ. Set (Required fastening force for start control). Here, the clutch torque Ts is configured to be set to increase as the accelerator opening θ increases, whereby the driving force distribution to the front wheels is increased as the vehicle suddenly starts, and the idle wheels of the rear wheels when the vehicle starts. To prevent this.

【0026】一方、S7で、車速VSP(前輪の回転速
度VWF)が所定速度以上であると判別された場合には、
発進時でないものと判断し、S9で前記発進時制御用の
クラッチトルク(締結力)TSに零をセットしてS10へ
進む。S10では、前記クラッチトルク基本値TΔVと発
進時制御用のクラッチトルクTSとのうちの大きい方を
選択して目標クラッチトルクT1(目標締結力)にセッ
トする処理を行う。
On the other hand, if it is determined in S7 that the vehicle speed VSP (the rotational speed V WF of the front wheels) is equal to or higher than the predetermined speed,
When it is determined that the vehicle is not in the starting state, the clutch torque (engagement force) TS for controlling the starting state is set to zero in S9 and the process proceeds to S10. In S10, the larger one of the clutch torque basic value TΔV and the clutch torque TS for starting control is selected and set to the target clutch torque T1 (target engagement force).

【0027】S11では、車両が減速状態であるか否か
を、車速VSP(前輪の回転速度VWF)の時間変化率に
基づいて判別する。そして、車両が減速状態であると判
別されたときには、S12へ進み、クラッチトルク(締結
力)を増大制御するときの許容最大速度を例えば120kgm
/sとすると共に、クラッチトルクを減少制御するときの
許容最大速度を例えば60kgm/s とする。
In S11, it is determined whether or not the vehicle is in a decelerating state based on the rate of change of the vehicle speed VSP (rotational speed V WF of the front wheels) with time. When it is determined that the vehicle is in the decelerating state, the process proceeds to S12, where the maximum allowable speed for increasing the clutch torque (engagement force) is 120 kgm, for example.
In addition to / s, the maximum permissible speed when the clutch torque is controlled to decrease is set to, for example, 60 kgm / s.

【0028】一方、車両が減速状態でない(加速状態で
ある)と判別されたときには、S13へ進み、クラッチト
ルク(締結力)を増大制御するときの許容最大速度を例
えば120kgm/sとし、更に、クラッチトルクを減少制御す
るときの許容最大速度を例えば15kgm/s とする。即ち、
クラッチトルクの増大制御時は、加減速状態に関係なく
一定の許容最大速度(120kgm/s)が設定されるが、減少
制御時には、車両が減速状態にあるか否かによって減少
制御における許容最大速度が異なって設定され、減速時
ほど速やかにクラッチトルクが減少制御されるように構
成される(図5参照)。
On the other hand, when it is determined that the vehicle is not in the decelerating state (in the accelerating state), the routine proceeds to S13, where the maximum allowable speed for increasing the clutch torque (engagement force) is set to 120 kgm / s, and The maximum permissible speed when controlling the clutch torque to decrease is, for example, 15 kgm / s. That is,
A constant allowable maximum speed (120 kgm / s) is set regardless of the acceleration / deceleration state during clutch torque increase control, but during reduction control, the maximum allowable speed during reduction control depends on whether the vehicle is in the deceleration state. Are set differently, and the clutch torque is controlled to decrease more quickly as the vehicle decelerates (see FIG. 5).

【0029】かかる許容最大速度の切換え設定による
と、例えばアクセルを大きく踏込む急加速操作が行わ
れ、かかる急加速操作に伴ってクラッチトルク(駆動力
分配)を大きく高める制御が行われた後で、すぐに減速
旋回に移行した場合に、速やかにクラッチトルクを減少
させて、減速旋回中に無用に前輪に対して駆動力が分配
されてタイトコーナブレーキ現象やアンダステアが発生
することを抑制できる。
According to the switching setting of the allowable maximum speed, for example, a rapid acceleration operation is performed by stepping on the accelerator greatly, and after a control for greatly increasing the clutch torque (driving force distribution) is performed along with the rapid acceleration operation. When the vehicle immediately shifts to the decelerating turn, the clutch torque can be quickly reduced to prevent the drive force from being unnecessarily distributed to the front wheels during the decelerating turn to cause the tight corner braking phenomenon and the understeer.

【0030】一方、加速時には、比較的緩やかにクラッ
チトルクを減少させることで、クラッチトルクを比較的
高く保ち、不用意にクラッチトルクが減少して空転が発
生することを回避し、空転の防止制御の実効を図れる。
また、減少制御における許容最大速度よりも、増大制御
における許容最大速度を高く設定することで、発進時制
御や回転速度差に基づくクラッチトルク制御における応
答性を確保し、空転の未然防止を確実に図り、また、空
転発生時に応答性良く空転を抑制する。
On the other hand, at the time of acceleration, the clutch torque is kept relatively high by reducing the clutch torque relatively slowly, and it is possible to prevent the clutch torque from being carelessly reduced to cause idling, thereby preventing idling. Can be effective.
Also, by setting the maximum allowable speed in the increase control higher than the maximum allowable speed in the decrease control, the responsiveness in the starting torque control and the clutch torque control based on the rotational speed difference is secured, and the prevention of idling is ensured. Moreover, when idling occurs, idling is suppressed with good responsiveness.

【0031】尚、上記では、車両が減速状態にあるか否
かによってクラッチトルクを減少制御するときの許容最
大速度を切換え設定する構成としたが、更に、加速度
(マイナスの加速度を含む)を算出して、加速時に比し
て減速時に大きな減少速度を許容するという基本特性を
保持しつつ、加速度に応じて許容最大速度を段階的に変
化させる構成としても良い。また、車両の加減速状態
を、車速VSPの時間変化率に基づいて判別する代わり
に、車両の前後Gに基づいて加減速状態を判別する構成
としても良い。更に、加減速状態の情報に操舵角や横加
速度の情報を加味して前記許容最大速度を設定する構成
として、例えば減速旋回時に特定してクラッチトルクの
減少速度を増大させる構成しても良い。
In the above description, the maximum allowable speed when the clutch torque is controlled to be reduced is switched and set depending on whether the vehicle is in the decelerating state. However, the acceleration (including negative acceleration) is calculated. Then, the maximum allowable speed may be changed stepwise according to the acceleration while maintaining the basic characteristic that a large reduction speed is allowed when decelerating as compared with the acceleration. Further, instead of determining the acceleration / deceleration state of the vehicle based on the time change rate of the vehicle speed VSP, the acceleration / deceleration state may be determined based on the longitudinal G of the vehicle. Further, as the configuration in which the allowable maximum speed is set by adding the information on the steering angle and the lateral acceleration to the information on the acceleration / deceleration state, for example, the speed at which the clutch torque decreases may be increased by specifying the deceleration turn.

【0032】S14では、前回の最終的なクラッチトルク
Tと、今回S10で設定した目標クラッチトルクT1とを
比較して、前記許容最大速度を越える速度でクラッチト
ルクTが変化することがないように制限を加えて、今回
の最終的なクラッチトルクTを設定する。S15では、前
記S14で設定したクラッチトルクTを、クラッチトルク
の制御信号(例えばソレノイド駆動電流i)に変換して
出力する。
At S14, the final final clutch torque T is compared with the target clutch torque T1 set at S10 this time so that the clutch torque T does not change at a speed exceeding the allowable maximum speed. The final clutch torque T of this time is set by adding a limit. In S15, the clutch torque T set in S14 is converted into a clutch torque control signal (for example, solenoid drive current i) and output.

【0033】尚、上記実施例では、後輪ベースの4輪駆
動車の例を示したが、前輪を主駆動輪とする前輪ベース
の4輪駆動車であっても良いことは明らかである。ま
た、上記実施例では、アクセル開度θに応じて発進制御
用のクラッチトルクTSを設定させる構成としたが、ア
クセル開度θに相当するパラメータとしてエンジンのス
ロットル弁開度を検出させる構成であっても良く、更
に、アクセル開度θの変化率に応じてクラッチトルクを
設定させる構成であっても良い。
In the above embodiment, an example of a rear wheel-based four-wheel drive vehicle has been shown, but it is obvious that a front wheel-based four-wheel drive vehicle having front wheels as main drive wheels may be used. Further, in the above embodiment, the clutch torque TS for starting control is set according to the accelerator opening θ, but the throttle valve opening of the engine is detected as a parameter corresponding to the accelerator opening θ. Alternatively, the clutch torque may be set according to the rate of change of the accelerator opening θ.

【0034】更に、上記実施例では、回転速度差に基づ
くクラッチトルク制御と、発進時のアクセル開度に基づ
くクラッチ制御のみを示したが、油温に応じた初期トル
ク制御やアンチロックブレーキの作動状態によるトルク
制御などを組み合わせても良い。
Further, in the above embodiment, only the clutch torque control based on the rotational speed difference and the clutch control based on the accelerator opening at the time of starting are shown, but the initial torque control according to the oil temperature and the operation of the antilock brake are performed. Torque control depending on the state may be combined.

【0035】[0035]

【発明の効果】以上説明したように請求項1の発明にか
かる4輪駆動車の駆動力分配制御装置によると、車両の
加速時に比して減速時には、より大きな速度での締結力
の減少制御が許容される構成としたので、例えば減速旋
回前に大きく増大制御された締結力が、減速旋回に移行
してからも保持されてしまうことを回避でき、減速旋回
中におけるタイトコーナブレーキ現象やアンダーステア
が発生することを回避できる一方、加速時には、締結力
の減少速度を低く制限して、継続的に従駆動輪に対する
駆動力分配を行わせて、駆動性能の維持を図ることがで
きるという効果がある。
Four-wheel drive vehicle according to the invention of claim 1 as described above, according to the present invention, according to the driving force distribution control apparatus, the vehicle
Faster force at a higher speed when decelerating than when accelerating
Since it is configured to allow reduction control of
The fastening force, which has been greatly increased before turning, shifts to the deceleration turn.
It is possible to avoid being held even after doing so, deceleration turning
Tight corner braking phenomenon and understeer
While avoiding the occurrence of
The reduction speed of the
The driving force can be distributed to maintain the driving performance.
There is an effect that you can.

【0036】[0036]

【0037】請求項の発明にかかる4輪駆動車の駆動
力分配制御装置によると、主駆動輪における空転の発生
に基づいて従駆動輪に対する駆動力分配が行われて、前
記空転状態を速やかに解消し得ると共に、発進時には、
前記空転の発生を待たずに、アクセル開度に応じて従駆
動輪に対する駆動力分配を行わせて、空転の発生を未然
に防止でき、然も、発進時のアクセル開操作に伴ってク
ラッチ締結力が増大制御されても、その直後の減速旋回
時には速やかに締結力を低下させることが可能となると
いう効果がある。
According to the drive force distribution control device for a four-wheel drive vehicle according to the second aspect of the present invention, the drive force is distributed to the sub-driving wheels based on the occurrence of idling in the main driving wheels, and the idling state is promptly changed. It can be resolved to
Without waiting for the occurrence of the idling, the driving force is distributed to the driven wheels according to the accelerator opening to prevent the occurrence of the idling, and the clutch is engaged with the accelerator opening operation at the start. Even if the force is controlled to increase, there is an effect that the fastening force can be promptly reduced during the deceleration turn immediately after that.

【0038】請求項の発明にかかる4輪駆動車の駆動
力分配制御装置によると、締結力の減少速度を制限する
場合よりも高い変化速度を締結力の増大制御で許容する
ので、従駆動輪に対する駆動力分配が必要な運転条件に
おいて速やかに駆動力分配が行えるという効果がある。
According to the drive force distribution control device for a four-wheel drive vehicle of the third aspect of the present invention, since the increasing speed of the engaging force allows the changing speed higher than that in the case of limiting the decreasing speed of the engaging force, the secondary drive There is an effect that the driving force can be promptly distributed under the driving condition in which the driving force is distributed to the wheels.

【図面の簡単な説明】[Brief description of drawings]

【図1】請求項1の発明にかかる装置の基本構成ブロッ
ク図。
FIG. 1 is a basic configuration block diagram of an apparatus according to the invention of claim 1.

【図2】実施例における駆動系を示す全体構成図。FIG. 2 is an overall configuration diagram showing a drive system in an embodiment.

【図3】実施例における電気制御系を示すブロック図。FIG. 3 is a block diagram showing an electric control system in the embodiment.

【図4】実施例における駆動力分配制御を示すフローチ
ャート。
FIG. 4 is a flowchart showing driving force distribution control in the embodiment.

【図5】実施例におけるトルク分配用クラッチ締結力変
化を示す線図。
FIG. 5 is a diagram showing a change in a torque distribution clutch engaging force in the embodiment.

【符号の説明】[Explanation of symbols]

1 エンジン 2 トランスミッション 3 トランスファ入力軸 4 リヤプロペラシャフト 5 リヤディファレンシャル 6 後輪(主駆動輪) 7 トランスファ出力軸 8 フロントプロペラシャフト 9 フロントディファレンシャル 10 前輪(従駆動輪) 11 トランスファ 11a 湿式多板摩擦クラッチ(トルク分配用クラッチ) 20 制御油圧発生装置 30 各種入力センサ 30a 左前輪回転センサ 30b 右前輪回転センサ 30c 左後輪回転センサ 30d 右後輪回転センサ 30e 第1横加速度センサ 30f 第2横加速度センサ 30g アクセル開度センサ 40 トルクスプリットコントローラ 1 engine 2 transmission 3 Transfer input shaft 4 Rear propeller shaft 5 Rear differential 6 rear wheels (main drive wheels) 7 Transfer output shaft 8 Front propeller shaft 9 Front differential 10 front wheels (driven wheels) 11 Transfer 11a Wet multi-plate friction clutch (torque distribution clutch) 20 Control oil pressure generator 30 Various input sensors 30a Left front wheel rotation sensor 30b Right front wheel rotation sensor 30c Left rear wheel rotation sensor 30d Right rear wheel rotation sensor 30e First lateral acceleration sensor 30f Second lateral acceleration sensor 30g accelerator opening sensor 40 Torque split controller

フロントページの続き (58)調査した分野(Int.Cl.7,DB名) B60K 17/34 - 17/35 B60K 41/00 F16D 48/00 Front page continuation (58) Fields surveyed (Int.Cl. 7 , DB name) B60K 17/34-17/35 B60K 41/00 F16D 48/00

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】エンジン直結駆動系の主駆動輪に対し、制
御信号に応じて締結力が変化するトルク分配用クラッチ
を介してエンジン駆動力が伝達される従駆動輪を備えて
なる4輪駆動車の駆動力分配制御装置であって、 運転条件に応じて前記締結力を制御する締結力制御手段
と、 該締結力制御手段で制御される締結力の許容最大減少速
度を、車両の加減速状態に応じて切換え設定する許容最
大減少速度切換え手段と、 該許容最大減少速度切換え手段で切換え設定される許容
最大減少速度内に、前記締結力制御手段で制御される締
結力の減少速度を制限する締結力減少速度制限手段と、
を含んで構成され 前記許容最大減少速度切換え手段が、前記許容最大減少
速度を、車両の加速時に比して減速時により大きな減少
速度とすることを特徴とする 4輪駆動車の駆動力分配制
御装置。
1. A four-wheel drive system comprising sub-drive wheels for transmitting engine drive power to a main drive wheel of an engine direct drive system via a torque distribution clutch whose engaging force changes according to a control signal. A driving force distribution control device for a vehicle, comprising: a fastening force control means for controlling the fastening force according to a driving condition; and an allowable maximum reduction speed of the fastening force controlled by the fastening force control means, An allowable maximum decrease speed switching means for switching and setting according to the state, and a tightening force decrease speed controlled by the engaging force control means is limited within the allowable maximum decrease speed switched by the allowable maximum decrease speed switching means. Tightening force reduction speed limiting means,
It is configured to include a, the maximum allowable reduction speed switching means, the maximum allowable reduction
Greater speed reduction during deceleration compared to vehicle acceleration
A driving force distribution control device for a four-wheel drive vehicle, which is characterized by speed .
【請求項2】前記締結力制御手段が、 前記主駆動輪と従駆動輪との回転速度差に応じて要求締
結力を算出する回転速度差による締結力算出手段と、 発進時にアクセル開度に応じて要求締結力を算出するア
クセル開度による締結力算出手段と、 前記各手段によりそれぞれ算出された要求締結力に基づ
いて最終的な目標締結力を設定する目標締結力設定手段
と、 を含んで構成されることを特徴とする請求項1記載の4
輪駆動車の駆動力分配制御装置。
2. The fastening force control means calculates a required fastening force according to a rotational speed difference between the main driving wheel and the driven wheel, and a fastening force calculating means based on a rotational speed difference; and an accelerator opening degree when starting. And a target fastening force setting means for setting a final target fastening force based on the required fastening force calculated by each of the means. 4. The structure according to claim 1 , wherein
Drive force distribution control device for wheel drive vehicle.
【請求項3】前記締結力制御手段で制御される締結力の
増大速度を、前記許容最大減少速度よりも速い所定の許
容最大増大速度内に制限する締結力増大速度制限手段を
設けたことを特徴とする請求項1又は2記載の4輪駆動
車の駆動力分配制御装置。
3. A fastening force increase speed limiting means for limiting the increasing speed of the fastening force controlled by the fastening force control means to a predetermined allowable maximum increasing speed faster than the allowable maximum decreasing speed. The drive force distribution control device for a four-wheel drive vehicle according to claim 1 or 2 .
JP01609695A 1995-02-02 1995-02-02 Driving force distribution control device for four-wheel drive vehicle Expired - Fee Related JP3412313B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP01609695A JP3412313B2 (en) 1995-02-02 1995-02-02 Driving force distribution control device for four-wheel drive vehicle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP01609695A JP3412313B2 (en) 1995-02-02 1995-02-02 Driving force distribution control device for four-wheel drive vehicle

Publications (2)

Publication Number Publication Date
JPH08207605A JPH08207605A (en) 1996-08-13
JP3412313B2 true JP3412313B2 (en) 2003-06-03

Family

ID=11906992

Family Applications (1)

Application Number Title Priority Date Filing Date
JP01609695A Expired - Fee Related JP3412313B2 (en) 1995-02-02 1995-02-02 Driving force distribution control device for four-wheel drive vehicle

Country Status (1)

Country Link
JP (1) JP3412313B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE60035166T2 (en) 1999-09-08 2008-02-07 Jtekt Corp., Osaka Driving force distribution system for a motor vehicle with four-wheel drive
JP3539422B2 (en) * 2002-05-02 2004-07-07 日産自動車株式会社 Driving force control device for four-wheel drive vehicle
JP6384155B2 (en) * 2014-07-08 2018-09-05 日産自動車株式会社 Driving force control device
CN106438763B (en) * 2016-12-14 2019-02-19 安徽江淮汽车集团股份有限公司 A kind of self-learning method and system of wet clutch pressure-current characteristics

Also Published As

Publication number Publication date
JPH08207605A (en) 1996-08-13

Similar Documents

Publication Publication Date Title
JP2914040B2 (en) Driving force distribution control device for four-wheel drive vehicle
US4953654A (en) Vehicular differential limiting torque control system
US6564139B2 (en) Apparatus and method for controlling a four-wheel drive vehicle
EP0461540B1 (en) Traction control device for vehicles
JP3214169B2 (en) Differential limit torque control device
JPH0729558B2 (en) Drive force distribution controller for four-wheel drive vehicle
US7832518B2 (en) Torque distribution control in a motor vehicle
JP2903867B2 (en) Driving force distribution control device for four-wheel drive vehicle
JPH09109716A (en) Four-wheel drive controller of vehicle
JPH0680047A (en) Integrated controller for distribution of driving force to front and rear wheels and traction
EP1359044A2 (en) A four-wheel drive vehicle
JP3467973B2 (en) Driving force distribution control device
JP3412313B2 (en) Driving force distribution control device for four-wheel drive vehicle
JP2002347477A (en) Driving system controlling device for four-wheel drive vehicle
JP2936913B2 (en) Driving force distribution control device for four-wheel drive vehicle
JP2522777B2 (en) Drive system controller for four-wheel drive vehicle
JP3617098B2 (en) Driving force distribution control device for four-wheel drive vehicle
JP2502758B2 (en) Integrated control device for front and rear wheel drive force distribution and drive force
JP3410514B2 (en) Differential limit controller
JP2956360B2 (en) Total control system for traction and differential limiting torque
JP2768138B2 (en) Driving force distribution control device for four-wheel drive vehicle
JP3409418B2 (en) Differential limit torque control device
JP2936912B2 (en) Driving force distribution control device for four-wheel drive vehicle
JP2795037B2 (en) Total control system for internal combustion engine output and differential limiting torque
JP2679136B2 (en) Control method of differential control clutch for front and rear wheel drive vehicles

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090328

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090328

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100328

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees