JP3406804B2 - Manufacturing method of crystal unit - Google Patents

Manufacturing method of crystal unit

Info

Publication number
JP3406804B2
JP3406804B2 JP17485097A JP17485097A JP3406804B2 JP 3406804 B2 JP3406804 B2 JP 3406804B2 JP 17485097 A JP17485097 A JP 17485097A JP 17485097 A JP17485097 A JP 17485097A JP 3406804 B2 JP3406804 B2 JP 3406804B2
Authority
JP
Japan
Prior art keywords
wiring board
crystal
vibrating element
quartz
fulcrum
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP17485097A
Other languages
Japanese (ja)
Other versions
JPH1127084A (en
Inventor
英樹 江原
敏伸 楚田
英文 畠中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP17485097A priority Critical patent/JP3406804B2/en
Publication of JPH1127084A publication Critical patent/JPH1127084A/en
Application granted granted Critical
Publication of JP3406804B2 publication Critical patent/JP3406804B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/30Assembling printed circuits with electric components, e.g. with resistor
    • H05K3/32Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits
    • H05K3/321Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits by conductive adhesives

Landscapes

  • Piezo-Electric Or Mechanical Vibrators, Or Delay Or Filter Circuits (AREA)

Description

【発明の詳細な説明】 【0001】 【発明の属する技術分野】本発明は、短冊状水晶振動素
子を実質的に平板状配線基板の表面に載置した水晶振動
子の製造方法に関するものである。 【0002】 【従来の技術】一般に、水晶振動素子は、図4に示すよ
うに、短冊状の水晶板10と、該水晶板10の両主面に
形成した振動電極11、12とから構成されている。ま
た、両振動電極11、12には、外部回路と接続するた
めに電極パッド11a、11b、12a 、12bが形成
されている。電極パッド11aは、水晶基板10の一方
端部の一方角部(図では上側の角部付近)に、電極パッ
ド11bは、水晶基板10の他方端部の他方角部(図で
は下側の角部付近)に形成され、水晶基板10の裏面側
主面にまで延出されている。電極パッド12aは、水晶
基板10の一方端部の他方角部(図では下側の角部付
近)に、電極パッド12bは、水晶基板10の他方端部
の他方角部(図では下側の角部付近)に形成され、水晶
基板10の表面側主面にまで延出されている。このよう
な水晶振動素子1を容器や配線基板に接合して、気密的
に封止していた。 【0003】通常、水晶振動素子1を接合する容器や配
線基板20は、図5に示すように、水晶振動素子1の両
端部を載置する段差部21、24が形成されており、さ
らに、段差部21には、例えば水晶振動素子1の電極パ
ッド11aに接続する接続パッド22が形成されてい
た。そして、水晶振動素子1は、段差部21の表面に導
電性接着剤23を介して電気的に接続され、同時に機械
的に接合されていた。 【0004】しかし、このような水晶振動素子1の接合
構造では、配線基板20に段差部21、24が必要とな
り、水晶振動子全体の低背化が困難な構造であった。こ
の段差部21、24を排除した構造としては、図6に示
すように、実質的に平板状配線基板25に水晶振動素子
1に水平に配置する構造が既に提案されていた(実開平
6−81137号など)。 【0005】図6に示す接合構造では、配線基板25の
一部に絶縁性接着剤26を塗布し、この絶縁性接着剤2
6上に水晶振動素子1の固定端部を載置する。次に、絶
縁性接着剤26を硬化して、配線基板25に水晶振動素
子1を固定する。その後、導電性接着剤28やワイヤボ
ンディング細線を用いて、水晶振動素子1の電極パッド
11a、12aを配線基板25上に形成した接続パッド
27に電気的に接続していた。 【0006】 【発明が解決しようとする課題】図6の構造では、絶縁
性接着剤26を硬化して水晶振動素子1の固定端部を固
定するにあたり、水晶振動素子1の自由端部を持ち上げ
る空間形成用治具を用いる必要があった。このため、製
造方法が煩雑化してしまう。 【0007】また、水晶振動素子1と配線基板25とを
接合する絶縁性接着剤26は、水晶振動素子1の固定端
部の下面に平面的に広ろがって形成されている。これ
は、絶縁性接着剤を塗布し、そのまま、水晶振動素子を
搭載したために発生する構造であり、このような構造で
は、絶縁性接着剤26が水晶振動素子1の内部側にまで
広がり、水晶振動素子1の共振抵抗を大きく劣化してし
まう。 【0008】また、水晶振動素子の下面に広がる接着剤
が絶縁性材料であるため、配線配線基板25のこの部分
には接続パッド27が形成できない構造である。 【0009】従って、水晶振動素子1の搭載領域以外に
接続パッド27を形成する必要があり、配線基板25を
大型化してしまう。 【0010】本発明は、上述の課題に鑑みて案出された
ものであり、平板状配線基板に水晶振動素子を、簡単に
振動空間を確保して形成できるとともに、水晶振動子の
特性が安定して得られ、かつ配線基板を小型化すること
ができる水晶振動子の製造方法を提供するものである。 【0011】 【課題を解決するための手段】本発明の水晶振動子の製
造方法は、短冊状の水晶板の両主面に振動電極を形成す
るとともに、前記水晶板の少なくとも下面の一端部に前
記振動電極から延びる電極パッドを形成した水晶振動素
子を、前記電極パッドに導電性接着剤を介して接合され
る矩形状の接続パッドを有する配線基板上に実装し、前
記水晶振動素子を一端部側でのみ接合することにより、
接合された端部を固定端部とし、固定されていない端部
を自由端部とした水晶振動子であって、前記水晶振動素
子が、(a)前記配線基板上で、前記電極パッドの配線
基板中央寄りの辺に沿って樹脂製の支点部材を形成し、
(b)前記電極パッド上で、前記支点部材の形成部より
も外方に、導電性接着剤を、支点部材を越えて配線基板
の内側に広がることのないように塗布し、(c)前記配
線基板上に、前記水晶振動素子を、その固定端部が前記
支点部材及び前記導電性接着剤に接触し、自由端部が配
線基板の表面に接触するようにして載置させ、(d)前
記導電性接着剤を硬化・収縮させることにより前記水晶
振動子の自由端部を持ち上げるとともに、水晶振動素子
と配線基板との間に振動空間を形成することによって配
線基板上に実装されることを特徴とするものである。 【0012】 【0013】 【作用】本発明では、水晶振動素子は平板状配線基板に
平面的に配置されているため、低背化の水晶振動子が達
成できる。また、水晶振動素子の一方端部(固定端部)
の下面に導電性樹脂接着剤が配置され、配線基板の接続
パッドと電気的に接続している。即ち、水晶振動素子の
載置領域にも接続パッドを形成することができる。これ
によって、配線基板の小型化が可能となる。 【0014】また、水晶振動素子の固定端部と配線基板
との接合構造は、配線基板の接続パッドの内内部側の辺
(水晶振動素子の自由端部寄りの辺)上、またはその近
傍付近に、水晶振動素子の下面と接触する支点部材と、
支点部材よりも水晶振動素子の固定端部側の外方に配置
された導電性樹脂接着剤とから構成されている。 【0015】このため、支持部材の存在により、導電性
樹脂接着剤を塗布し、水晶振動素子をその上面に載置し
ても、導電性樹脂接着剤が水晶振動素子の下面の内部側
に広がることがない。従って、水晶振動素子の共振抵抗
などの悪化、ダンピングの発生を有効に抑えることがで
きる。 【0016】また、水晶振動素子の固定端部の下面で、
導電性樹脂接着剤を介して水晶振動素子の電極パッドと
配線基板の接続パッドを接続できるため、配線基板上の
水晶振動素子の搭載領域内に接続パッドを形成すること
ができるため、配線基板の小型化が可能となる。 【0017】また、導電性接着剤の硬化によって水晶振
動素子と配線基板とが接合するが、導電性接着剤の硬化
時に発生する導電性接着剤の体積収縮が発生し、これに
よって、水晶振動素子の固定端部部分を配線基板側に引
っ張る収縮応力が発生する。 【0018】その結果、水晶振動素子の下面と接触する
支点部材を境界に、水晶振動素子の自由端部側が浮き上
がる。これにより、水晶振動素子の自重による自由端部
と配線基板との接触した状態から水晶振動素子の自由端
部が持ち上がり、水晶振動素子と配線基板との間の振動
空間を特別な治具を必要しなくとも、簡単に形成するこ
とができる。 【0019】尚、支点部材が水晶振動素子の固定端部の
下面に接触する位置を、水晶振動素子の固定端部から、
水晶振動素子の長手方向の距離の10〜18%以内とす
ると、安定的に水晶振動素子の他端部を持ち上げて振動
空間を形成し、且つ水晶振動素子の共振抵抗を悪化させ
ることが一切ない。 【0020】 【発明の実施の形態】以下、本発明を図面に基づいて詳
説する。 【0021】図1は本発明の製造方法によって製造した
水晶振動子の外観斜視図であり、図2はその縦断面図で
ある。 【0022】図において、1は水晶振動素子、2は配線
基板、3は支点部材、4は導電性樹脂接着剤である。
尚、図では水晶振動素子1を気密封止するための蓋体、
または封止部材を省略している。 【0023】水晶振動素子1は、図1に示すように、水
晶基板10の両主面に振動電極11、12が形成されて
おり、その両端部の両主面には、各振動電極11、12
から延出した電極パッド11a、12a、11b、12
bが形成されている。 【0024】尚、水晶振動素子1は、配線基板2の表面
に振動可能な所定空間をもって、配線基板2上に平面的
に接合されている。この接合は水晶振動素子1の一端部
側のみで達成されている。この接合された端部を「固定
端部」といい、固定されていない端部を「自由端部」と
いう。 【0025】配線基板2は、セラミック配線基板やガラ
スエポキシ配線基板などが例示でき、表面に水晶振動素
子1と電気的に接続する例えば矩形状の接続パッド5
a、5bを含む所定配線パターン5が形成されている。
配線パターン5は、AgやCuを主成分とする導体で形
成されている。配線基板2は、少なくとも水晶振動素子
1が配置される領域が平板状を成しればよく、水晶振動
素子1の配置される領域以外に枠体などを設けてもよ
い。 【0026】支点部材3は、例えばポリイミド系樹脂、
エポキシ系樹脂、シリコーン系樹脂などからなる樹脂接
着剤ペーストを加熱硬化して得られる樹脂製支点部材
や、上述樹脂ペーストにガラスフィーバーなどのギャッ
プ材を含有するギャップ材含有樹脂製支点部材や、上述
樹脂ペーストにAg粒子やCu粒子を含有する導電性樹
脂製支点部材や、熱圧着される樹脂フィルムなどが例示
できる。これらの支点部材3は、配線基板2の表面に約
20〜50μmの高さを有するように形成されており、
電極パッド5a、5bの内側の辺(水晶振動素子1の自
由端部側よりの辺)付近に形成される。また、支点部材
3が導電性を有する場合には、各電極パッド5a、5b
毎に独立して形成する。また、支点部材3が絶縁性の場
合には、各電極パッド5a、5b毎に独立して形成した
り、また、両電極パッド5a、5b間に跨がるように配
線基板2の幅方向に連続して形成したりする。 【0027】導電性樹脂接着剤4は、例えばポリイミド
系樹脂、エポキシ系樹脂、シリコーン系樹脂を主成分と
して、Agなどの導電性材料が均一に分散しているもの
である。導電性樹脂接着剤4は、配線基板2の接続パッ
ド5a、5b上で、且つ前記支点部材3の形成部分より
も外方、即ち、水晶振動素子1の固定端部側に塗布され
て加熱硬化されて形成される。導電性樹脂接着剤4は、
配線基板2と水晶振動子1の固定端部とを機械的に接合
するともに、同時に配線基板2の接続パッド5a、5b
と水晶振動素子1の固定端部の下面の電極パッド11
a、12aとを夫々電気的に接続するものである。 【0028】次に、本発明の水晶振動子の製造方法を説
明する。 【0029】まず、最初に水晶振動素子1及び接続パッ
ド5a、5bを含む配線パターン5が形成された配線基
板2を用意する。 【0030】次に、図3(a)に示すように支点部材3
を形成する。例では、支点部材3としては、ポリイミド
系樹脂にAg粒子を含む導電性樹脂ペーストを用いて形
成するため、配線基板2の接続パッド5a、5bに独立
して形成される。尚、図では、接続パッド5a側のみを
示す。 【0031】支点部材3は、配線基板2の接続パッド5
aの配線基板2中央寄りの辺上にに沿って、上述の導電
性樹脂ペーストを塗布・硬化して形成される。 【0032】尚、図では、支持部材3として、この導電
性樹脂ペーストを完全に硬化させず、仮硬化状態とした
(支持部材30)。仮硬化とは、50℃〜100℃で1
0〜30分間加熱処理、又は常温で2〜3時間放置しペ
ーストに含む溶剤の一部を揮発させた状態である。尚、
支持部材30の高さは20〜50μmで表面が曲面を成
す。 【0033】次に、図3(b)に示すように、導電性樹
脂接着剤4となる導電性樹脂ペースト40を塗布する。 【0034】導電性樹脂接着剤4は、例えばポリイミド
系樹脂を主成分とし、Ag粒子を均質に分散されている
導電性樹脂ペーストを用い、仮硬化した支点部材30を
境界が配線基板2の外側、即ち、接続パッド5a、5b
上に塗布される。このとき、塗布した導電性樹脂ペース
ト40は仮硬化した支点部材30を越えて配線基板2内
側に広がることがない。 【0035】次に、図3(c)に示すように、仮硬化し
た支点部材30及び導電性樹脂接着剤4となる樹脂ペー
スト40上に、水晶振動素子1の電極パッド11a、1
2aが位置するように、配線基板2上に水晶振動素子1
の固定端部を載置する。 【0036】この時、水晶振動素子1の固定端部のみ
が、支点部材3及び導電性樹脂接着剤4となる樹脂ペー
スト40に載置されるため、水晶振動素子1の自由端部
は配線基板2の表面に接触し、水晶振動素子1全体とし
て傾斜した状態で載置される。 【0037】次に、図3(d)に示すように、水晶振動
素子1が傾斜して載置された状態で、導電性ペースト4
0及び仮硬化した支点部材30を完全に加熱硬化する。
即ち、約200℃の加熱処理により行う。これにより、
仮硬化状態の支点部材30は支部部材3となり、導電性
ペースト40は導電性樹脂接着剤4となる。 【0038】この時、支点部材30は、既に仮硬化して
いるため、この加熱硬化時には収縮挙動の発生が非常に
小さい。これに対して、導電性樹脂接着剤4の収縮挙動
の発生が非常に大きい。即ち、導電性樹脂接着剤4とな
る導電ペースト40は、水晶振動素子1及び配線基板2
に接合しながら同時に、体積収縮を発生する。この体積
収縮による収縮応力は、配線基板2と水晶振動素子1の
固定端部との間で発生し、、且つ配線基板2側が実質的
に固定されているため、水晶振動素子1の固定端部を配
線基板2側に引っ張るような応力となる。 【0039】これにより、水晶振動素子1の固定端部の
内側に位置する支点部材3を支点として、水晶振動素子
1の固定端部には、図中矢印Aのように配線基板2側に
引き寄せられる力が、逆に水晶振動素子1の自由端部側
は図中矢印Bのように動作する。 以上のように、水晶
振動素子1の固定端部で導電性樹脂接着剤4を硬化する
ことにより、水晶振動素子1の自由端部が持ち上げら
れ、水晶振動素子1と配線基板2との間に、水晶振動素
子1の所定振動空間が形成できる。 【0040】また、水晶振動素子1と配線基板2との機
械的な接合及び水晶振動素子1の電極パッド11a、1
2aと配線基板2の接続パッド5a、5bとの電気的な
接続が達成されることになる。 【0041】次に、省略しているが、配線基板2に水晶
振動素子1の周囲に振動空間を確保するように、封止用
蓋体、封止用外装樹脂が形成される。 【0042】上述の本発明によれば、水晶振動素子1は
平板状配線基板2に平面的に配置され、その間には、実
質的に支点部材の高さに相当する間隙が形成されるだけ
であるため、低背化の水晶振動子が達成できる。 【0043】また、水晶振動素子1の固定端部の下面に
導電性樹脂接着剤4が配置され、配線基板2の接続パッ
ド5a、5bと電気的に接続している。従って、水晶振
動素子1の載置領域にも接続パッド5a、5bを配置す
ることができるため、配線基板2の小型化が可能とな
る。 【0044】また、塗布した導電性樹脂接着剤4となる
ペースト40を塗布し、しかも、水晶振動素子1をその
上面に載置しても、支点部材3の存在により、導電性樹
脂接着剤4となるペースト40が、水晶振動素子1の下
面の内部側に広がることがないため、水晶振動素子1の
共振抵抗がの悪化がなく、また、ダンピングの発生を有
効に抑制することができる。 【0045】また、水晶振動素子1の固定端部を導電性
樹脂接着剤4となるペースト40を加熱硬化により、水
晶振動素子1と配線基板2との接合が達成され、導電性
樹脂接着剤4となるペースト40に体積収縮が発生し、
収縮応力が水晶振動素子1の固定端部に発生する。これ
により、支点部材3を境界に水晶振動素子1の固定端部
を配線基板2側に引っ張るため、水晶振動素子1の自由
端部側が浮き上がる。 【0046】即ち、単に導電性樹脂接着剤4となるペー
スト40との加熱硬化によって、簡単に水晶振動素子1
と配線基板2との間に水晶振動素子1の所定振動空間が
形成できる。 【0047】尚、上述の実施例では、支点部材3も導電
性樹脂接着剤を用いており、導電性樹脂接着剤4が支点
部材3に接触しているため、支点部材3が接続パッド5
a、5b上に形成されても電気的な接続信頼性を低下さ
せることが一切ない。 【0048】しかも、支点部材3を仮硬化状態で形成し
ておき、導電性樹脂接着剤4の加熱硬化と同時に完全硬
化させることにより、両者のなじみは非常によくなり、
機械的な接合強度、特に、長期的な使用における接合強
度、電気的信頼性が向上する。 【0049】本発明者らは、6.0mm×1.6mmの
短冊状水晶振動素子(基本波20Mz)を用いて、支点
部材3が水晶振動素子1の下面に支持する位置と、導電
性樹脂接着剤4となるペースト40の硬化時の水晶振動
素子の自由端部のうきあがり状態を調べた。 【0050】尚、支点部材3は、配線基板2の電極パッ
ド5a、5bの内側の辺に沿って、その高さ30μmと
なるように、また、先端面が曲面となるようにポリイミ
ド系樹脂の導電性樹脂接着剤を塗布及び仮硬化して形成
した。 【0051】また、ポリイミド系樹脂の導電性樹脂接着
剤4となるペースト40と、支点部材3の外方、即ち、
接続パッド5a、5b付近を中心に塗布し、塗布量を約
7.7×10-6cm3 、塗布高さを30μmとなるよう
にした。 【0052】そして、支点部材3の曲面の頂点が接触す
る位置(支点位置)を、種々変えて、水晶振動素子1の
自由端部側の浮き上がり量を測定した。尚、支点位置
は、水晶振動素子1の固定端部の端面から水晶振動素子
1の長さに対する比率(%)で示した。浮き上がり量の
良否の基準としては、浮き上がりのばらつきがあるもの
の最低浮上量が0を含むものを不良とした。 【0053】支点位置の比率が10%未満(水晶振動素
子1の固定端部から0.6mm未満)の場合は、水晶振
動素子1の自由端部の持ち上がり量が0〜30μmの範
囲で分布し、完全に水晶振動素子1の自由端部が配線基
板に接触しているものも存在してしまう。 【0054】また、支点位置の比率が10%を越える
と、水晶振動素子1の自由端部が完全に水晶振動素子1
の自由端部が配線基板に接触しているものも存在しなく
なる。 【0055】例えば、支点位置の比率が15%(水晶振
動素子1の固定端部から0.6mm未満)の場合は、水
晶振動素子1の自由端部の持ち上がり量が20〜40μ
mの範囲で分布する。また、支点位置の比率が25%
(水晶振動素子1の固定端部から1.5mm未満)の場
合は、水晶振動素子1の自由端部の持ち上がり量が20
〜50μmの範囲で分布する。 【0056】従って、水晶振動素子の自由端部側の浮き
上がり量からすれば、支点位置は、10%を越えるよう
に設定する必要がある。 【0057】また、同時に、水晶振動素子1の共振抵抗
を調べた。尚、実用的な共振抵抗の値は約15Ωであ
る。 【0058】支点位置の比率が10%の場合には、水晶
振動素子1の自由端部が配線基板から浮きあがり、しか
も、共振抵抗が約10Ωと非常に良好なものが得られ
る。また、支点位置の比率が18%の場合には、共振抵
抗が約15Ω前後となる。 【0059】さらに、支点位置の比率が25%の場合に
は、共振抵抗が約20Ωを越えてしまい、その結果、発
振回路に接続しても発振停止が発生してしまう。これ
は、支点位置が水晶振動素子の中央よりに位置するた
め、水晶振動素子の安定した振動を阻害してしまうこと
に起因する。 【0060】以上のことから、支点位置は、水晶振動素
子1の自由端部が配線基板2から完全にうき上がる、水
晶振動素子の長手方向の寸法に対して、固定端部から1
0%以上に、且つ共振抵抗が実用的な値を越えないよう
にするには固定端部から18%以内に設定することが重
要となる。 【0061】上述の実施例では、支点部材3は、配線基
板2側に配置されているが、逆に、水晶振動子1側に配
置しても構わない。例えば、水晶振動素子1の下面側の
電極パッド11a、12aの内方側に、リン青銅などの
金属材料からな平板部材をを接合しておき、この平板部
材を支持部材3とする。そして、この支持部材3を接合
した水晶振動素子1を配線基板2上に導電性接着剤4を
介して接合してもよい。 【0062】上述の実施例では、平板状配線基板2を用
いて説明したが、少なくとも水晶振動素子1が搭載され
る領域が平板状態であり、水晶振動素子の搭載領域を取
り囲むよに、配線基板2の周囲に枠体を設けても構わな
い。この枠体は、水晶振動素子を気密封止する蓋体を取
着するものである。 【0063】また、水晶振動素子1は、水晶振動素子1
の方向性を無くすために、固定端部及び自由端部に夫々
電極パッドを形成しているが、少なくとも固定端部にの
み形成しておけばよい。 【0064】また、支点部材3として、ある一定の幅を
有する帯状のフィルム、平板部材を用いた時には、共振
抵抗に鑑みて支点位置は水晶振動素子1の内方側(水晶
振動素子1の自由端部側)の位置となる。 【0065】また、導電性樹脂接着剤4としては、水晶
振動素子1の固定端部側の下面に配置しているが、水晶
振動素子1の固定端部側の上面側にまで配置してもよ
い。この場合、電気的な接続信頼性は勿論、水晶振動素
子1と配線基板2との接合強度が向上するとともに、水
晶振動素子1の固定端部側の荷重が増加し、自由端部側
の浮き上がりが比較的容易となる。 【0066】また、平板状配線基板2の配線パターン5
を、発振用ICや抵抗、コンデンサなどの電子部品を実
装しておいても構わない。 【0067】 【発明の効果】以上のように、水晶振動素子が平板状配
線基板に平面的に接合しているため、水晶振動子全体の
低背化が達成できる。 【0068】また、水晶振動素子と配線基板との接合
が、導電性接着剤を介して水晶振動素子の固定端部のみ
で達成されている。しかも、水晶振動素子の固定端部側
の下面では、導電性接着剤の内方(水晶振動素子の自由
端部側)に支点部材が配置されている。 【0069】これにより、配線基板の水晶振動素子の搭
載領域内に接続パッドを配置することができるため、配
線基板上の配線パターンの引き回しの自由度が向上し、
配線基板の小型化が可能である。 【0070】また、導電性樹脂接着剤となるペーストは
支点部材によって水晶振動素子の下面の内部側に広がり
にくいため、水晶振動素子の共振抵抗の悪化がなく、水
晶振動子の特性が安定する。 【0071】また、導電性樹脂接着剤の硬化時の収縮応
力と水晶振動素子の下面を支える支点部材とで、配線基
板に傾斜して載置された水晶振動素子の自由端部を浮き
上がらせて接合するため、配線基板と水晶振動素子との
間に振動空間が簡単に形成できる水晶振動子となる。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a crystal resonator in which a strip-shaped crystal resonator is mounted substantially on the surface of a flat wiring board. . 2. Description of the Related Art Generally, as shown in FIG. 4, a quartz vibrating element comprises a rectangular quartz plate 10 and vibrating electrodes 11 and 12 formed on both main surfaces of the quartz plate 10. ing. In addition, electrode pads 11a, 11b, 12a, and 12b are formed on both vibrating electrodes 11 and 12 for connection to an external circuit. The electrode pad 11a is located at one corner of the one end of the quartz substrate 10 (near the upper corner in the drawing), and the electrode pad 11b is located at the other corner of the other end of the quartz substrate 10 (the lower corner in the drawing). (In the vicinity of the portion) and extends to the main surface on the back side of the quartz substrate 10. The electrode pad 12a is located at the other corner of the one end of the quartz substrate 10 (near the lower corner in the drawing), and the electrode pad 12b is located at the other corner of the other end of the quartz substrate 10 (the lower corner in the drawing). (In the vicinity of the corner) and extends to the front-side main surface of the quartz substrate 10. Such a crystal vibrating element 1 is bonded to a container or a wiring board and hermetically sealed. Normally, as shown in FIG. 5, a container and a wiring board 20 to which the quartz-crystal vibrating element 1 is joined are provided with step portions 21 and 24 on which both ends of the quartz-crystal vibrating element 1 are placed. In the step portion 21, for example, a connection pad 22 connected to the electrode pad 11a of the crystal resonator element 1 was formed. The quartz vibrating element 1 is electrically connected to the surface of the step portion 21 via the conductive adhesive 23 and is mechanically joined at the same time. However, such a bonding structure of the crystal resonator element 1 requires the steps 21 and 24 on the wiring board 20, and it is difficult to reduce the height of the whole crystal resonator. As a structure in which the step portions 21 and 24 are eliminated, a structure in which the crystal resonator element 1 is substantially horizontally arranged on the flat wiring substrate 25 as shown in FIG. No. 81137). In the bonding structure shown in FIG. 6, an insulating adhesive 26 is applied to a part of a wiring board 25, and the insulating adhesive 2
The fixed end of the crystal vibrating element 1 is placed on 6. Next, the insulating adhesive 26 is cured, and the crystal resonator element 1 is fixed to the wiring board 25. Thereafter, the electrode pads 11a and 12a of the crystal resonator element 1 were electrically connected to the connection pads 27 formed on the wiring board 25 by using a conductive adhesive 28 and a wire bonding thin wire. In the structure shown in FIG. 6, when the insulating adhesive 26 is hardened to fix the fixed end of the crystal resonator 1, the free end of the crystal resonator 1 is lifted. It was necessary to use a space forming jig. Therefore, the manufacturing method becomes complicated. The insulating adhesive 26 for joining the quartz-crystal vibrating element 1 and the wiring board 25 is formed on the lower surface of the fixed end of the quartz-crystal vibrating element 1 so as to spread out in a plane. This is a structure that occurs because the insulating adhesive is applied and the crystal vibrating element is mounted as it is. In such a structure, the insulating adhesive 26 spreads to the inside of the crystal vibrating element 1 and The resonance resistance of the vibrating element 1 is greatly deteriorated. Further, since the adhesive spread on the lower surface of the crystal vibrating element is an insulating material, the connection pad 27 cannot be formed on this portion of the wiring board 25. Therefore, it is necessary to form the connection pad 27 in a region other than the mounting region of the crystal vibrating element 1, and the wiring board 25 becomes large. The present invention has been devised in view of the above-mentioned problems, and a quartz-crystal vibrating element can be easily formed on a flat wiring board while securing a vibrating space, and the characteristics of the quartz-crystal vibrator are stable. It is intended to provide a method for manufacturing a crystal resonator which can be obtained by the above method and can reduce the size of a wiring board. According to the present invention, there is provided a method of manufacturing a quartz resonator, comprising forming a vibrating electrode on both main surfaces of a strip-shaped quartz plate, and forming at least one end of a lower surface of the quartz plate. A quartz vibrating element formed with an electrode pad extending from the vibrating electrode is mounted on a wiring board having a rectangular connection pad joined to the electrode pad via a conductive adhesive, and the quartz vibrating element is connected to one end thereof. By joining only at the side,
A crystal resonator having a bonded end as a fixed end and an unfixed end as a free end, wherein the crystal vibrating element comprises: (a) wiring of the electrode pad on the wiring board; Form a fulcrum member made of resin along the side near the center of the board,
(B) applying a conductive adhesive on the electrode pad outside the formation of the fulcrum member so as not to spread over the fulcrum member and inside the wiring board; (D) placing the crystal vibrating element on the wiring board such that a fixed end thereof contacts the fulcrum member and the conductive adhesive, and a free end thereof contacts a surface of the wiring board; By raising and lowering the free end of the crystal unit by curing and shrinking the conductive adhesive, it is possible to mount the crystal unit on the wiring substrate by forming a vibration space between the crystal unit and the wiring substrate. It is a feature. According to the present invention, since the quartz-crystal vibrating element is arranged in a plane on the flat wiring board, a quartz-crystal vibrator with a reduced height can be achieved. One end (fixed end) of the crystal unit
A conductive resin adhesive is disposed on the lower surface of the wiring board, and is electrically connected to connection pads of the wiring board. That is, the connection pad can be formed also in the mounting region of the crystal resonator. As a result, the size of the wiring board can be reduced. The joint structure between the fixed end portion of the crystal resonator and the wiring board is formed on or near the inner side of the connection pad of the wiring board (side near the free end of the crystal resonator). A fulcrum member that contacts the lower surface of the quartz vibrating element;
A conductive resin adhesive disposed outside of the fulcrum member on the fixed end side of the crystal resonator element. Therefore, the conductive resin adhesive spreads inside the lower surface of the crystal vibrating element even when the conductive resin adhesive is applied and the crystal vibrating element is placed on the upper surface thereof due to the presence of the support member. Nothing. Therefore, it is possible to effectively suppress the deterioration of the resonance resistance of the crystal resonator and the occurrence of damping. Also, on the lower surface of the fixed end of the quartz vibrating element,
Since the electrode pad of the crystal resonator and the connection pad of the wiring board can be connected via the conductive resin adhesive, the connection pad can be formed in the mounting area of the crystal resonator on the wiring board, so that the connection pad of the wiring board can be formed. The size can be reduced. Further, the quartz vibrating element and the wiring board are joined by the hardening of the conductive adhesive, but the volume shrinkage of the conductive adhesive occurs when the conductive adhesive is hardened. , A contraction stress is generated that pulls the fixed end portion toward the wiring board. As a result, the free end side of the crystal vibrating element rises with the fulcrum member in contact with the lower surface of the crystal vibrating element as a boundary. As a result, the free end of the crystal vibrating element is lifted from the state in which the free end of the crystal vibrating element is in contact with the wiring board due to its own weight, and a special jig is required for the vibration space between the crystal vibrating element and the wiring board. It can be easily formed without doing so. The position at which the fulcrum member contacts the lower surface of the fixed end of the quartz vibrating element is defined by
When the distance in the longitudinal direction of the quartz-crystal vibrating element is within 10 to 18%, the other end of the quartz-crystal vibrating element is stably lifted to form a vibrating space, and the resonance resistance of the quartz-crystal vibrating element is not deteriorated at all. . Hereinafter, the present invention will be described in detail with reference to the drawings. FIG. 1 is an external perspective view of a crystal resonator manufactured by the manufacturing method of the present invention, and FIG. 2 is a longitudinal sectional view thereof. In the figure, reference numeral 1 denotes a quartz vibrating element, 2 denotes a wiring board, 3 denotes a fulcrum member, and 4 denotes a conductive resin adhesive.
In the drawing, a lid for hermetically sealing the quartz vibrating element 1 is shown.
Alternatively, the sealing member is omitted. As shown in FIG. 1, the crystal vibrating element 1 has vibrating electrodes 11 and 12 formed on both main surfaces of a quartz substrate 10, and vibrating electrodes 11 and 12 are formed on both main surfaces at both ends. 12
Pad 11a, 12a, 11b, 12 extending from
b is formed. The quartz vibrating element 1 is planarly joined to the wiring board 2 with a predetermined vibrating space on the surface of the wiring board 2. This bonding is achieved only on one end side of the crystal resonator element 1. The joined end is referred to as a “fixed end”, and the unfixed end is referred to as a “free end”. The wiring board 2 can be exemplified by a ceramic wiring board, a glass epoxy wiring board, or the like. The surface of the wiring board 2 is, for example, a rectangular connection pad 5 electrically connected to the crystal resonator element 1.
A predetermined wiring pattern 5 including a and 5b is formed.
The wiring pattern 5 is formed of a conductor containing Ag or Cu as a main component. The wiring board 2 only needs to have a flat plate shape at least in the region where the crystal vibrating element 1 is disposed, and a frame or the like may be provided in addition to the region where the crystal vibrating element 1 is disposed. The fulcrum member 3 is made of, for example, a polyimide resin,
A resin fulcrum member obtained by heating and curing a resin adhesive paste made of an epoxy resin, a silicone resin, or the like, a gap material-containing resin fulcrum member containing a gap material such as a glass fever in the resin paste, A conductive resin fulcrum member containing Ag particles or Cu particles in a resin paste, a thermocompression-bonded resin film, and the like can be exemplified. These fulcrum members 3 are formed on the surface of the wiring board 2 so as to have a height of about 20 to 50 μm.
It is formed near the inner side of the electrode pads 5a and 5b (side from the free end side of the crystal resonator element 1). When the fulcrum member 3 has conductivity, each electrode pad 5a, 5b
Each is formed independently. When the fulcrum member 3 is insulative, it is formed independently for each of the electrode pads 5a and 5b, or in the width direction of the wiring board 2 so as to straddle between the electrode pads 5a and 5b. It is formed continuously. The conductive resin adhesive 4 contains, for example, a polyimide-based resin, an epoxy-based resin, or a silicone-based resin as a main component and a conductive material such as Ag uniformly dispersed therein. The conductive resin adhesive 4 is applied on the connection pads 5 a and 5 b of the wiring board 2 and outside of the portion where the fulcrum member 3 is formed, that is, on the fixed end side of the crystal vibrating element 1 and heat-cured. Formed. The conductive resin adhesive 4 is
The wiring board 2 and the fixed end of the crystal unit 1 are mechanically joined, and at the same time, the connection pads 5a, 5b of the wiring board 2 are connected.
And the electrode pad 11 on the lower surface of the fixed end of the crystal resonator element 1
a and 12a are electrically connected to each other. Next, a method of manufacturing the crystal resonator of the present invention will be described. First, a wiring board 2 on which a wiring pattern 5 including a crystal resonator element 1 and connection pads 5a and 5b is formed is prepared. Next, as shown in FIG.
To form In the example, the fulcrum member 3 is formed independently of the connection pads 5a and 5b of the wiring board 2 because the fulcrum member 3 is formed using a conductive resin paste containing Ag particles in a polyimide resin. In the figure, only the connection pad 5a side is shown. The fulcrum member 3 is connected to the connection pad 5 of the wiring board 2.
A is formed by applying and curing the above-mentioned conductive resin paste along the side near the center of the wiring board 2 in FIG. In the figure, the conductive resin paste was not completely cured, but was temporarily cured as the support member 3 (support member 30). Temporary curing means that the temperature is
This is a state in which a part of the solvent contained in the paste is volatilized by heat treatment for 0 to 30 minutes or standing at room temperature for 2 to 3 hours. still,
The support member 30 has a height of 20 to 50 μm and has a curved surface. Next, as shown in FIG. 3B, a conductive resin paste 40 to be the conductive resin adhesive 4 is applied. The conductive resin adhesive 4 is made of a conductive resin paste containing, for example, a polyimide resin as a main component and Ag particles uniformly dispersed therein. That is, the connection pads 5a, 5b
Applied on top. At this time, the applied conductive resin paste 40 does not spread to the inside of the wiring board 2 beyond the temporarily cured fulcrum member 30. Next, as shown in FIG. 3 (c), the electrode pads 11a, 1a, 1b, 1c, 1d of the crystal vibrating element 1 are
2a so that the crystal vibrating element 1
Place the fixed end of. At this time, only the fixed end portion of the crystal resonator element 1 is placed on the fulcrum member 3 and the resin paste 40 serving as the conductive resin adhesive 4. 2 and is placed in an inclined state as a whole of the crystal resonator element 1. Next, as shown in FIG. 3 (d), the conductive paste 4
The fulcrum member 30 and the temporarily hardened fulcrum member 30 are completely heated and hardened.
That is, the heat treatment is performed at about 200 ° C. This allows
The fulcrum member 30 in the temporarily cured state becomes the branch member 3, and the conductive paste 40 becomes the conductive resin adhesive 4. At this time, since the fulcrum member 30 has been pre-cured, the shrinkage behavior during the heat curing is very small. On the other hand, the shrinkage behavior of the conductive resin adhesive 4 is extremely large. That is, the conductive paste 40 serving as the conductive resin adhesive 4 is made of the quartz vibrating element 1 and the wiring board 2.
At the same time, a volume shrinkage occurs while being bonded. The shrinkage stress due to the volume shrinkage is generated between the wiring board 2 and the fixed end of the crystal resonator element 1, and the wiring board 2 side is substantially fixed. Is pulled to the wiring board 2 side. Thus, with the fulcrum member 3 located inside the fixed end of the crystal resonator element 1 as a fulcrum, the fixed end of the crystal resonator element 1 is drawn toward the wiring board 2 as shown by an arrow A in the figure. On the contrary, the applied force operates on the free end side of the crystal resonator element 1 as shown by the arrow B in the figure. As described above, by curing the conductive resin adhesive 4 at the fixed end of the crystal resonator element 1, the free end of the crystal resonator element 1 is lifted, and between the crystal resonator element 1 and the wiring board 2. Thus, a predetermined vibration space of the crystal vibrating element 1 can be formed. Further, mechanical bonding between the crystal vibrating element 1 and the wiring board 2 and the electrode pads 11a, 1
Electrical connection between the connection pads 2a and the connection pads 5a and 5b of the wiring board 2 is achieved. Next, although omitted, a sealing lid and a sealing resin are formed on the wiring board 2 so as to secure a vibration space around the crystal resonator element 1. According to the present invention described above, the quartz vibrating element 1 is disposed on the flat wiring board 2 in a plane, and only a gap substantially corresponding to the height of the fulcrum member is formed therebetween. Therefore, a low-profile quartz oscillator can be achieved. A conductive resin adhesive 4 is disposed on the lower surface of the fixed end of the crystal resonator element 1 and is electrically connected to the connection pads 5a and 5b of the wiring board 2. Therefore, since the connection pads 5a and 5b can be arranged also in the mounting area of the crystal resonator element 1, the size of the wiring board 2 can be reduced. Even if the paste 40 which becomes the applied conductive resin adhesive 4 is applied, and the quartz vibrating element 1 is mounted on the upper surface thereof, the conductive resin adhesive 4 Since the paste 40 does not spread inside the lower surface of the crystal vibrating element 1, the resonance resistance of the crystal vibrating element 1 does not deteriorate, and the occurrence of damping can be effectively suppressed. Further, the fixed end of the quartz-crystal vibrating element 1 is heated and cured with a paste 40 serving as the conductive resin adhesive 4, whereby the joining between the quartz-crystal vibrating element 1 and the wiring board 2 is achieved. Volume shrinkage occurs in the paste 40 which becomes
Shrinkage stress is generated at the fixed end of the crystal resonator element 1. As a result, the fixed end of the crystal vibrating element 1 is pulled toward the wiring board 2 with the fulcrum member 3 as a boundary, so that the free end of the crystal vibrating element 1 rises. In other words, the crystal vibrating element 1 can be simply obtained by simply heating and curing the paste 40 that becomes the conductive resin adhesive 4.
A predetermined vibration space of the crystal vibrating element 1 can be formed between the substrate and the wiring board 2. In the above embodiment, the fulcrum member 3 also uses a conductive resin adhesive, and the conductive resin adhesive 4 is in contact with the fulcrum member 3.
Even if formed on a and 5b, there is no reduction in electrical connection reliability. Furthermore, by forming the fulcrum member 3 in a temporarily cured state and completely curing the conductive resin adhesive 4 at the same time as the heating and curing of the conductive resin adhesive 4, the compatibility between the two becomes very good.
The mechanical bonding strength, especially the bonding strength and electrical reliability in long-term use are improved. The present inventors use a 6.0 mm × 1.6 mm strip-shaped quartz-crystal vibrating element (fundamental wave: 20 Mz) to determine the position where the fulcrum member 3 is supported on the lower surface of the quartz-crystal vibrating element 1 and the conductive resin. The state of the free end of the crystal vibrating element when the paste 40 serving as the adhesive 4 was cured was examined. The fulcrum member 3 is formed of a polyimide resin along the inner side of the electrode pads 5a and 5b of the wiring board 2 so as to have a height of 30 μm and a curved end surface. A conductive resin adhesive was applied and temporarily cured to form a film. Further, a paste 40 serving as the conductive resin adhesive 4 of the polyimide resin and the outside of the fulcrum member 3, ie,
The coating was performed mainly around the connection pads 5a and 5b, the coating amount was about 7.7 × 10 −6 cm 3 , and the coating height was 30 μm. The position of the vertices of the curved surface of the fulcrum member 3 (the fulcrum position) was variously changed, and the floating amount of the free end side of the crystal resonator element 1 was measured. Note that the fulcrum position is shown as a ratio (%) from the end face of the fixed end of the crystal resonator element 1 to the length of the crystal resonator element 1. As a criterion for the quality of the floating amount, a product having a variation in the floating amount but having a minimum floating amount of 0 was determined to be defective. When the ratio of the fulcrum positions is less than 10% (less than 0.6 mm from the fixed end of the crystal vibrating element 1), the lifting amount of the free end of the crystal vibrating element 1 is distributed in the range of 0 to 30 μm. In some cases, the free end of the crystal resonator element 1 is completely in contact with the wiring board. If the fulcrum position ratio exceeds 10%, the free end of the quartz vibrating element 1
There is no one whose free end is in contact with the wiring board. For example, when the ratio of the fulcrum positions is 15% (less than 0.6 mm from the fixed end of the quartz vibrating element 1), the lifting amount of the free end of the quartz vibrating element 1 is 20 to 40 μm.
m. The fulcrum position ratio is 25%
(Less than 1.5 mm from the fixed end of the quartz-crystal vibrating element 1), the lifting amount of the free end of the quartz-crystal vibrating element 1 is 20
It is distributed in the range of 5050 μm. Therefore, it is necessary to set the fulcrum position to exceed 10% in view of the floating amount on the free end side of the crystal resonator element. At the same time, the resonance resistance of the quartz vibrating element 1 was examined. The practical value of the resonance resistance is about 15Ω. When the ratio of the fulcrum positions is 10%, the free end of the crystal vibrating element 1 rises up from the wiring board, and the resonance resistance is as good as about 10Ω. When the fulcrum position ratio is 18%, the resonance resistance is about 15Ω. Further, when the ratio of the fulcrum positions is 25%, the resonance resistance exceeds about 20Ω, and as a result, oscillation stops even when connected to an oscillation circuit. This is due to the fact that the fulcrum position is located closer to the center of the quartz-crystal vibrating element, which hinders stable oscillation of the quartz-crystal vibrating element. As described above, the fulcrum position is one point from the fixed end with respect to the longitudinal dimension of the crystal vibrating element, in which the free end of the crystal vibrating element 1 completely rises from the wiring board 2.
In order to keep the resonance resistance above 0% and the resonance resistance does not exceed a practical value, it is important to set it within 18% from the fixed end. In the above embodiment, the fulcrum member 3 is arranged on the wiring board 2 side, but may be arranged on the quartz oscillator 1 side. For example, a plate member made of a metal material such as phosphor bronze is bonded to the inner side of the electrode pads 11 a and 12 a on the lower surface side of the crystal resonator element 1, and this plate member is used as the support member 3. Then, the crystal vibrating element 1 to which the support member 3 is joined may be joined onto the wiring board 2 via the conductive adhesive 4. In the above-described embodiment, the description has been made using the flat wiring board 2. However, at least the area where the crystal resonator element 1 is mounted is in a flat plate state, and the wiring board is surrounded so as to surround the mounting area of the crystal resonator element. A frame may be provided around 2. This frame attaches a lid that hermetically seals the quartz vibrating element. The quartz vibrating element 1 is
Although the electrode pads are formed on the fixed end portion and the free end portion in order to eliminate the directionality, it is sufficient to form the electrode pads only on at least the fixed end portion. When a band-shaped film or a flat plate member having a certain width is used as the fulcrum member 3, the fulcrum position is located on the inner side of the crystal vibrating element 1 (free of the crystal vibrating element 1) in view of the resonance resistance. (End side). Although the conductive resin adhesive 4 is disposed on the lower surface of the fixed end of the quartz-crystal vibrating element 1, it may be arranged on the upper surface of the fixed end of the quartz-crystal vibrating element 1. Good. In this case, not only the electrical connection reliability, but also the bonding strength between the crystal vibrating element 1 and the wiring board 2 is improved, and the load on the fixed end side of the crystal vibrating element 1 is increased, and the floating on the free end side is lifted. Is relatively easy. The wiring pattern 5 of the flat wiring board 2
Alternatively, electronic components such as an oscillation IC, a resistor, and a capacitor may be mounted. As described above, since the quartz-crystal vibrating element is planarly joined to the flat wiring board, the overall height of the quartz-crystal vibrator can be reduced. Further, the bonding between the crystal resonator and the wiring board is achieved only at the fixed end of the crystal resonator via a conductive adhesive. In addition, the fulcrum member is disposed inside the conductive adhesive (on the free end side of the crystal vibrating element) on the lower surface on the fixed end side of the crystal vibrating element. As a result, the connection pads can be arranged in the mounting area of the crystal vibrating element on the wiring board, so that the degree of freedom of the wiring pattern on the wiring board can be improved.
The size of the wiring board can be reduced. Further, since the paste serving as the conductive resin adhesive is not easily spread on the inner side of the lower surface of the quartz vibrating element by the fulcrum member, the resonance resistance of the quartz vibrating element does not deteriorate and the characteristics of the quartz vibrator are stabilized. The free end of the crystal vibrating element, which is inclined and mounted on the wiring board, is raised by the shrinkage stress of the conductive resin adhesive during curing and the fulcrum member supporting the lower surface of the crystal vibrating element. Since the bonding is performed, a crystal resonator in which a vibration space can be easily formed between the wiring substrate and the crystal resonator element is obtained.

【図面の簡単な説明】 【図1】本発明の製造方法によって製造した水晶振動子
の外観斜視図である。 【図2】図1の縦断面図である。 【図3】(a)〜(d)は、本発明の水晶振動子の製造
方法の製造工程を説明する概略図である。 【図4】水晶振動素子の平面図である。 【図5】従来の水晶振動子を、蓋体を省略して示した断
面図である。 【図6】従来の別の水晶振動子を、蓋体を省略して示し
た断面図である。 【符号の説明】 1・・・・水晶振動素子 2・・・・配線基板 3・・・・支点部材 4・・・・導電性接着剤 5・・・・配線パターン 5a、5b・・・接続パッド 11a、12a、11b、12b・・・電極パッド
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is an external perspective view of a crystal resonator manufactured by a manufacturing method of the present invention. FIG. 2 is a longitudinal sectional view of FIG. FIGS. 3A to 3D are schematic views illustrating manufacturing steps of a method for manufacturing a crystal resonator according to the present invention. FIG. 4 is a plan view of the crystal resonator element. FIG. 5 is a cross-sectional view showing a conventional crystal unit without a lid. FIG. 6 is a cross-sectional view of another conventional crystal unit without a lid. [Description of Signs] 1 ... Crystal vibrating element 2 ... Wiring board 3 ... Support member 4 ... Conductive adhesive 5 ... Wiring pattern 5a, 5b ... Connection Pads 11a, 12a, 11b, 12b ... electrode pads

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平8−186457(JP,A) 特開 平8−330887(JP,A) 特開 平10−22776(JP,A) 実開 平5−65199(JP,U) (58)調査した分野(Int.Cl.7,DB名) H03H 3/00 - 3/04 ──────────────────────────────────────────────────続 き Continuation of the front page (56) References JP-A-8-186457 (JP, A) JP-A-8-330887 (JP, A) JP-A-10-22776 (JP, A) 65199 (JP, U) (58) Fields investigated (Int. Cl. 7 , DB name) H03H 3/00-3/04

Claims (1)

(57)【特許請求の範囲】 【請求項1】短冊状の水晶板の両主面に振動電極を形成
するとともに、前記水晶板の少なくとも下面の一端部
前記振動電極から延びる電極パッドを形成した水晶振動
素子を、前記電極パッドに導電性接着剤を介して接合さ
れる矩形状の接続パッドを有する配線基板上に実装し
前記水晶振動素子を一端部側でのみ接合することによ
り、接合された端部を固定端部とし、固定されていない
端部を自由端部とした水晶振動子であって、前記水晶振動素子が、(a)前記配線基板上で、前記電
極パッドの配線基板中央寄りの辺に沿って樹脂製の支点
部材を形成し、(b)前記電極パッド上で、前記支点部
材の形成部よりも外方に、導電性接着剤を、支点部材を
越えて配線基板の内側に広がることのないように塗布
し、(c)前記配線基板上に、前記水晶振動素子を、そ
の固定端部が前記支点部材及び前記導電性接着剤に接触
し、自由端部が配線基板の表面に接触するようにして載
置させ、(d)前記導電性接着剤を硬化・収縮させるこ
とにより前記水晶振動子の自由端部を持ち上げるととも
に、水晶振動素子と配線基板との間に振動空間を形成す
ることによって配線基板上に実装されることを特徴とす
る水晶振動子の製造方法。
(57) [Claims 1] A vibrating electrode is formed on both main surfaces of a strip-shaped quartz plate, and at least one end of a lower surface of the quartz plate is provided.
Bonding of the crystal oscillation element formed with electrode pads extending from the vibrating electrode via a conductive adhesive to the electrode pad
Mounted on a wiring board having a rectangular connection pad ,
By bonding the quartz vibrating element only at one end side
And the joined end is the fixed end, not fixed
A quartz oscillator having an end portion as a free end , wherein the quartz oscillation element comprises:
A fulcrum made of resin along the side of the pole pad near the center of the wiring board
Forming a member, and (b) the fulcrum on the electrode pad
Apply a conductive adhesive and a fulcrum member to the outside of the material
Apply so that it does not spread over the inside of the wiring board
And (c) mounting the crystal vibrating element on the wiring board.
Fixed end of the contact point of the fulcrum member and the conductive adhesive
With the free end touching the surface of the wiring board.
(D) curing and shrinking the conductive adhesive.
Raises the free end of the crystal unit by
To form a vibration space between the crystal vibrating element and the wiring board.
By being mounted on a wiring board.
Method of manufacturing a crystal unit.
JP17485097A 1997-06-30 1997-06-30 Manufacturing method of crystal unit Expired - Fee Related JP3406804B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17485097A JP3406804B2 (en) 1997-06-30 1997-06-30 Manufacturing method of crystal unit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17485097A JP3406804B2 (en) 1997-06-30 1997-06-30 Manufacturing method of crystal unit

Publications (2)

Publication Number Publication Date
JPH1127084A JPH1127084A (en) 1999-01-29
JP3406804B2 true JP3406804B2 (en) 2003-05-19

Family

ID=15985751

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17485097A Expired - Fee Related JP3406804B2 (en) 1997-06-30 1997-06-30 Manufacturing method of crystal unit

Country Status (1)

Country Link
JP (1) JP3406804B2 (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001326551A (en) * 2000-05-16 2001-11-22 River Eletec Kk Supporting structure of quartz oscillating reed
JP2002280716A (en) * 2001-03-19 2002-09-27 Pioneer Electronic Corp Electronic part mounting method and bonded body
JP2009207066A (en) * 2008-02-29 2009-09-10 Kyocera Kinseki Corp Piezoelectric device
JP5225124B2 (en) * 2009-01-30 2013-07-03 京セラクリスタルデバイス株式会社 Piezoelectric device
JP5368135B2 (en) * 2009-02-26 2013-12-18 京セラクリスタルデバイス株式会社 Piezoelectric device
JP2010239342A (en) * 2009-03-31 2010-10-21 Kyocera Kinseki Corp Piezoelectric device
JP5508169B2 (en) * 2010-06-30 2014-05-28 京セラクリスタルデバイス株式会社 Method for manufacturing piezoelectric device
JP2014064137A (en) * 2012-09-20 2014-04-10 Daishinku Corp Package for piezoelectric vibration device and piezoelectric vibration device
JP2014150452A (en) * 2013-02-01 2014-08-21 Asahi Kasei Electronics Co Ltd Piezoelectric device
JP2015142209A (en) * 2014-01-28 2015-08-03 京セラクリスタルデバイス株式会社 crystal device

Also Published As

Publication number Publication date
JPH1127084A (en) 1999-01-29

Similar Documents

Publication Publication Date Title
JP3406845B2 (en) Surface mount type crystal oscillator
KR100870612B1 (en) Piezoelectric resonator and assembly comprising the same enclosed in a case
JP3406804B2 (en) Manufacturing method of crystal unit
JP2008131549A (en) Quartz oscillation device
JP2000049560A (en) Crystal oscillator
US6192562B1 (en) Method of producing piezoelectric component
JP2002009576A (en) Piezoelectric device and its package structure
JP3948945B2 (en) Piezoelectric vibrator and manufacturing method thereof
JP2002084160A (en) Piezoelectric device
JP2000101348A (en) Package for electronic component
JP4042471B2 (en) Piezoelectric oscillator
JP2006310751A (en) Electronic device
JP5071035B2 (en) Piezoelectric device
JP2002217523A (en) Method of manufacturing electronic device
JP2002184884A (en) Electronic device and manufacturing method thereof
JP2002217221A (en) Manufacturing method for electronic device
JP2002217219A (en) Method for manufacturing electronic device
JP3502449B2 (en) Semiconductor device and manufacturing method thereof
JPH08130432A (en) Holding structure for piezoelectric vibrator
JPH0122260Y2 (en)
JP2010213015A (en) Piezoelectric device and manufacturing method thereof
JP3961267B2 (en) Crystal device
JP2007288551A (en) Holding structure of piezoelectric vibrating element, piezoelectric vibrator, and piezoelectric oscillator
JP2004297209A (en) Surface mount piezoelectric vibrator
JP3961255B2 (en) Crystal device

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090307

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090307

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100307

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110307

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110307

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120307

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120307

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130307

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130307

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140307

Year of fee payment: 11

LAPS Cancellation because of no payment of annual fees