JP3402463B2 - Manufacturing method of ultra high voltage discharge medium flash tube - Google Patents

Manufacturing method of ultra high voltage discharge medium flash tube

Info

Publication number
JP3402463B2
JP3402463B2 JP2000124316A JP2000124316A JP3402463B2 JP 3402463 B2 JP3402463 B2 JP 3402463B2 JP 2000124316 A JP2000124316 A JP 2000124316A JP 2000124316 A JP2000124316 A JP 2000124316A JP 3402463 B2 JP3402463 B2 JP 3402463B2
Authority
JP
Japan
Prior art keywords
glass tube
tube
electrode
discharge medium
sealing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000124316A
Other languages
Japanese (ja)
Other versions
JP2001307636A (en
Inventor
明彦 古舘
久男 吉岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanken Electric Co Ltd
Original Assignee
Sanken Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanken Electric Co Ltd filed Critical Sanken Electric Co Ltd
Priority to JP2000124316A priority Critical patent/JP3402463B2/en
Publication of JP2001307636A publication Critical patent/JP2001307636A/en
Application granted granted Critical
Publication of JP3402463B2 publication Critical patent/JP3402463B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Manufacture Of Electron Tubes, Discharge Lamp Vessels, Lead-In Wires, And The Like (AREA)

Description

【発明の詳細な説明】 【0001】 【発明の属する技術分野】本発明は、超高圧放電媒体閃
光放電管、特に2気圧以上の圧力で放電媒体ガスを封体
管内に封入できる超高圧放電媒体閃光放電管の製法に関
連する。 【0002】 【従来の技術】近年、ストロボ用キセノン閃光放電管の
小型化が進み、カメラ一体型のキセノン閃光放電管にも
顕著に小型化が進行しているが、同時にキセノン閃光放
電管の光量増加も求められている。カメラ一体型の容積
中でコンデンサの占める割合はキセノン閃光放電管の占
める割合より大きいので、キセノン閃光放電管の光量を
増加すれば、従来品より小容量で且つ小型のコンデンサ
を使用できると共に、キセノン閃光放電管の発光回路の
製造価格を低減して、従来品と同一の光量を得ることが
できる。 【0003】図10に示すように、キセノン閃光放電管
は、ほぼ円筒状の封体管(1)と、封体管(1)の一端に封着
された1次封止側の陽極電極(2)と、封体管(1)の他端に
封着された2次封止側の陰極電極(3)と、封体管(1)の外
面に付着されたネサガラス(Nesa glass)等の透明導電
膜(4)とを備えている。封体管(1)内に密閉されて形成さ
れる内部空洞(5)内にはキセノンガスが封入される。陽
極電極(2)は、封体管(1)に埋設され且つ内部空洞(5)内
に突出するタングステン製の電極部(6)と、電極部(6)に
接続され且つ封体管(1)の外側に突出する導出部(7)とを
備えている。電極部(6)と導出部(7)との接続部(8)は径
方向外側に膨出する。陰極電極(3)は、封体管(1)に埋設
され且つ内部空洞(5)内に突出するタングステン製の電
極部(6)と、電極部(6)に接続され且つ封体管(1)の外側
に突出するニッケル製の導出部(7)と、内部空洞(5)内に
配置され且つ電極部(6)の先端部に固着されたカップ状
の放電部(9)とを備え、陰極電極(3)の電極部(6)と導出
部(7)との接続部(8)は径方向外側に膨出する。陽極電極
(2)と陰極電極(3)との間に接続される発光回路には10
0〜300μF程度の容量を有するコンデンサが設けら
れ、作動の際にコンデンサは200〜300V程度の電
位に充電される。 【0004】封体管(1)の外側表面に形成された透明導
電膜(4)に数kVのトリガ電圧を印加すると共に、陽極電
極(2)と陰極電極(3)との間に高電圧を印加すると、コン
デンサから陽極電極(2)と陰極電極(3)及び透明導電膜
(4)を通じて高電流が流れ、放電現象によって陽極電極
(2)と陰極電極(3)との間に100〜150A程度の高電
流が瞬間的に流れ、内部空洞(5)内のキセノンガスが励
起されて発光が生ずる。発光した光はリフレクタ(反射
板)により同一方向に放射され被写体を照らし出す。高
電流が流れる陰極電極(3)の放電部(9)は高電流に耐える
希少金属の焼結体により形成される。 【0005】キセノン閃光放電管の内部空洞(5)内に高
封入圧力レベルでキセノンガスを充填すると、陽極電極
(2)と陰極電極(3)間のインピーダンスが増加するので、
図9に示すように、陽極電極(2)と陰極電極(3)間に流れ
る少ない電流量で発光量を増加することができる。キセ
ノン閃光放電管の発光によりキセノン閃光放電管の封体
管(1)の内面に微少クラックが発生するシンタリングの
発生を抑制することにより、キセノン閃光放電管の発光
量を増大できる。 【0006】キセノン閃光放電管を製造する際に、図1
1に示すように、タングステン製の電極部(6)とニッケ
ル製の導出部(7)とを接合して電極を形成する。電極部
(6)と導出部(7)との接合部は溶着される際の押圧力によ
り径方向に膨出する接続部(8)が形成される。また、図
12に示すように、中心に貫通孔(11)が形成されたガラ
ス製のビーズ(10)を準備すると共に、図13に示すよう
に、中心に貫通孔(13)を有し且つタングステンの焼結体
により形成された放電部(9)を準備する。図14に示す
ように、電極部(6)にビーズ(10)の貫通孔(11)を嵌合し
て、ビーズ(10)を接続部(8)に当接して陽極電極(2)を準
備する。図15に示す陰極電極(3)は陽極電極(2)の電極
部(6)に更に放電部(9)の貫通孔(13)を装着して固定す
る。放電部(9)の貫通孔(13)は電極部(6)に対して締まり
嵌め又は貫通孔(13)をテーパ状に形成して放電部(9)を
電極部(6)に固定することができる。更に、図16に示
すように、内部空洞(5)を有する円筒状のガラス管(15)
を準備する。 【0007】次に、図17に示すように、圧力容器(20)
内にヒータ(21)を配置し、ヒータ(21)の上に治具(22)を
配置する。治具(22)は上面に形成された凹部(23)と、凹
部(23)に連絡する貫通孔(24)とを備えている。図14に
示す陽極電極(2)の導出部(7)を貫通孔(24)に配置すると
共に、ビーズ(10)の周囲にガラス管(15)の下端を配置し
て、ガラス管(15)を垂直に配置する。ガラス管(15)の上
端にはガイド治具(25)の貫通孔(26)を嵌合してガラス管
(15)を垂直状態に保持する。この状態でヒータ(21)を作
動させてガラス管(15)の下端を加熱し溶融することによ
りガラス管(15)の下端とビーズ(10)とを融着して、図1
8に示すように、陽極電極(2)を一端に固着したガラス
管(15)を圧力容器(20)から取り出す。 【0008】その後、図19に示すように、陰極電極
(3)を治具(22)に取り付けると共に、陽極電極(2)を一端
に取り付けたガラス管(15)を逆さに配置して、陰極電極
(3)を包囲してガラス管(15)の他端を治具(22)の凹部(2
3)に配置する。続いて、圧力容器(20)の排気管(27)を真
空源に接続して圧力容器(20)内を排気すると共に、圧力
容器(20)の供給管(28)からキセノンガスを圧力容器(20)
内に供給する。ガラス管(15)の内部空洞(5)内にキセノ
ンガスが充填された状態でヒータ(21)を作動させてガラ
ス管(15)の他端を加熱し溶融することによりガラス管(1
5)の他端と陰極電極(3)のビーズ(10)とを融着して、図
20に示すガラス管(15)を圧力容器(20)から取り出す。
最後に、図21に示すように、ガラス管(15)の表面に透
明導電膜(4)を形成し、図22に示すように、導出部(7)
を所定の長さに切断して完成する。 【0009】 【発明が解決しようとする課題】しかしながら、治具を
加熱しガラスが溶解して封止温度まで加熱するとき、圧
力容器内のガスは膨張しガス圧は加熱前の数倍になる。
このため内部空洞(5)を真空に保持し且つ常温で高内部
ガス圧力に耐える容器で封入できるレベルは2気圧程度
が限界であった。このため、2気圧以上の高い圧力で圧
力容器(20)中にキセノンガスを封入してキセノン閃光放
電管を製造することは一般に困難であった。そこで、本
発明は2気圧以上の高い圧力でキセノンガスを封体管内
に封入できる超高圧キセノン閃光放電管の製法を提供す
ることを目的とする。 【0010】 【課題を解決するための手段】本発明による超高圧放電
媒体閃光放電管の製法は、円筒状のガラス管(15)の一端
に陽極電極(2)及び陰極電極(3)の一方を封着する工程
と、低圧若しくは真空又は放電媒体ガス雰囲気中でガラ
ス管(15)の内部に固体放電媒体を投入する工程と、ガラ
ス管(15)の他端に陽極電極(2)及び陰極電極(3)の他方を
封着して、固体放電媒体を気化する工程とを含む。ガラ
ス管(15)の内部に投入する固体放電媒体の量又はガラス
管(15)の長さを調整することにより2気圧以上の所望の
圧力で放電媒体ガスを大気圧中でガラス管(15)内に封入
することができる。 【0011】固体放電媒体を投入する工程は、陽極電極
(2)及び陰極電極(3)の一方を封着したガラス管(15)内に
陽極電極(2)及び陰極電極(3)の他方を配置した後、ガラ
ス管(15)内に放電媒体ガスを充填する工程と、放電媒体
ガスを充填したガラス管(15)の他端を融着して密封する
工程と、陽極電極(2)及び陰極電極(3)の一方を下方にし
て冷媒中に浸漬しながらガラス管(15)を垂直に配置し、
ガラス管(15)内の放電媒体ガスを固体に凝固させる工程
とを含む。陽極電極(2)及び陰極電極(3)の他方を封着す
る工程は、固体放電媒体をガラス管(15)内で一方側に移
動して陽極電極(2)及び陰極電極(3)の他方をガラス管(1
5)の一端と他端との中間位置に移動する工程と、陽極電
極(2)及び陰極電極(3)の他方を中間位置にてガラス管(1
5)に封着する工程と、陽極電極(2)及び陰極電極(3)の他
方の封着部より他端側のガラス管(15)を除去する工程と
を含む。固体放電媒体がガスに戻る時に、ガラス管(15)
の内体積が固化前より小さいため、ガラス管(15)の内体
積の差により圧力が高くなる。 【0012】 【発明の実施の形態】以下、本発明による超高圧キセノ
ン閃光放電管の製法の実施の形態を図1〜図8について
説明する。図1〜図8では図10〜図22に示す箇所と
同一の部分に同一の符号を付し説明を省略する。 【0013】本発明による超高圧キセノン閃光放電管の
製法では、図1に示すように、円筒状のガラス管(15)の
一端にバーナ(16)で1次封止側の陽極電極(2)のビーズ
(10)を加熱・封着する。次に、図2に示すように、圧力
容器(20)内に配置した内部容器(30)内に液体窒素(31)を
収容し、液体窒素(31)内に陽極電極(2)を固定したガラ
ス管(15)の一端を浸漬する。液体窒素によりガラス管(1
5)の一端を冷却しながらガラス管(15)内に固体キセノン
のチップを所定の数又は容量で投入し、ガラス管(15)の
他端に陰極電極(3)を配置してヒータ(32)によりガラス
管(15)の他端を陰極電極(3)のビーズ(10)に融着する。
固体キセノンの融点は−111.8℃、沸点は−107.
1℃であり、液体窒素の沸点は−195.8℃である。 【0014】図3〜図8は、本発明による他の実施の形
態を示す。図3に示すように、バーナ(16)で加熱しなが
ら、長いガラス管(15)の一端に陽極電極(2)を融着す
る。次に、図4に示すように、ガラス管(15)の他端から
ガラス管(15)内に陰極電極(3)を挿入し、バーナ(16)で
加熱しながらガラス管(15)の他端を窄め直径を減少す
る。続いて、図5に示すように、ガラス管(15)を真空源
に接続された管(17)からガラス管(15)内を真空にした
後、キセノンガス供給源に接続された管(18)からガラス
管(15)内にキセノンガスを供給し、ガラス管(15)内にキ
セノンガスが所定の圧力で充填されたとき、図6に示す
ように、バーナ(16)でガラス管(15)の他端を融着して密
封する。その後、図7に示すように、液体窒素(17)内に
ガラス管(15)の一端を浸漬して、ガラス管(15)内のキセ
ノンガスの全量を固体に凝固させる。この状態で、図8
に示すように、陰極電極(3)のビーズ(10)をガラス管(1
5)の中間位置で融着し、陰極電極(3)の外側のガラス管
(15a)を除去する。固体のキセノンがガスに戻る時に、
ガラス管の内体積が固化前より小さいため、ガラス管の
内体積の差により圧力が高くなる。 【0015】本発明の実施の形態では、大気圧中で製造
でき且つ2気圧以上の圧力でキセノンガスを封入でき
る。封止時のキセノンガスの圧力と封体管の長さにより
封入ガス圧を調整できる。下表は、外径2.3mm、内径
1.3mm、管長21mmで2〜10気圧でキセノンガスを
ガラス管内に封入した結果を示す。 【0016】 【表1】【0017】本発明の前記実施の形態は変更が可能であ
る。励起ガスである固体放電媒体としてキセノンの他
に、融点−156.6℃、沸点−152.9℃のクリプト
ン、融点−189.2℃、沸点−185.87℃のアルゴ
ン、キセノンとクリプトンの混合ガス、キセノンとアル
ゴンの混合ガス、クリプトンとアルゴンの混合ガス、キ
セノン、クリプトン及びアルゴンの混合ガスを使用する
ことができる。冷媒は液体窒素に限られず、液体酸素、
液体ヘリウム等他の液体又は固体を使用してもよい。 【0018】 【発明の効果】前記の通り、本発明では、大気圧中で製
造でき且つ2気圧以上の圧力で放電媒体ガスを封体管内
に封入でき、小型で発光量の多い超高圧放電媒体閃光放
電管を得ることができる。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an ultrahigh-pressure discharge medium flash discharge tube, and more particularly to an ultrahigh-pressure discharge medium capable of enclosing a discharge medium gas in a sealed tube at a pressure of 2 atm or more. It relates to the method of manufacturing a flash discharge tube. 2. Description of the Related Art In recent years, the size of xenon flash tubes for flashlight has been reduced, and the size of xenon flash tubes integrated with cameras has also been remarkably reduced. An increase is also required. Since the proportion of the condenser in the camera-integrated volume is greater than the proportion of the xenon flash tube, increasing the amount of light in the xenon flash tube allows the use of a capacitor with a smaller capacity and a smaller size than conventional products, as well as xenon. It is possible to reduce the manufacturing cost of the light emitting circuit of the flash discharge tube and obtain the same light quantity as the conventional product. [0003] As shown in FIG. 10, a xenon flash discharge tube has a substantially cylindrical envelope tube (1) and an anode electrode (primary sealing side) sealed at one end of the envelope tube (1). 2), a secondary sealing side cathode electrode (3) sealed to the other end of the sealing tube (1), and Nesa glass or the like attached to the outer surface of the sealing tube (1). A transparent conductive film (4). Xenon gas is sealed in an internal cavity (5) formed by being sealed in the envelope tube (1). The anode electrode (2) is buried in the envelope tube (1) and protrudes into the internal cavity (5) .The tungsten electrode portion (6) is connected to the electrode portion (6), and the anode tube (1) is connected to the anode tube (1). ), And a lead-out portion (7) protruding outside of the above. A connection part (8) between the electrode part (6) and the lead-out part (7) swells radially outward. The cathode electrode (3) is buried in the envelope tube (1) and protrudes into the internal cavity (5) .The tungsten electrode portion (6) is connected to the electrode portion (6), and the cathode tube (1) is connected. ), And a cup-shaped discharge portion (9) disposed in the internal cavity (5) and fixed to the tip of the electrode portion (6). A connection portion (8) between the electrode portion (6) of the cathode electrode (3) and the lead-out portion (7) swells radially outward. Anode electrode
The light emitting circuit connected between (2) and the cathode electrode (3) has 10
A capacitor having a capacity of about 0 to 300 μF is provided, and the capacitor is charged to a potential of about 200 to 300 V during operation. [0004] A trigger voltage of several kV is applied to the transparent conductive film (4) formed on the outer surface of the envelope tube (1), and a high voltage is applied between the anode electrode (2) and the cathode electrode (3). Is applied, the anode electrode (2), the cathode electrode (3) and the transparent conductive film
High current flows through (4) and the anode electrode
A high current of about 100 to 150 A flows instantaneously between (2) and the cathode electrode (3), and the xenon gas in the internal cavity (5) is excited to emit light. The emitted light is radiated in the same direction by a reflector (reflector) to illuminate the subject. The discharge portion (9) of the cathode electrode (3) through which a high current flows is formed of a rare metal sintered body that can withstand a high current. When the xenon gas is filled into the internal cavity (5) of the xenon flash discharge tube at a high sealing pressure level, the anode electrode
Since the impedance between (2) and the cathode electrode (3) increases,
As shown in FIG. 9, the amount of light emission can be increased with a small amount of current flowing between the anode electrode (2) and the cathode electrode (3). The amount of light emitted from the xenon flash tube can be increased by suppressing the occurrence of sintering in which micro cracks are generated on the inner surface of the sealing tube (1) of the xenon flash tube due to the light emitted from the xenon flash tube. In manufacturing a xenon flash discharge tube, FIG.
As shown in FIG. 1, an electrode is formed by joining a tungsten electrode part (6) and a nickel lead part (7). Electrode section
A connection portion (8) that swells in the radial direction due to the pressing force at the time of welding is formed at the joint portion between (6) and the lead-out portion (7). Further, as shown in FIG. 12, a glass bead (10) having a through-hole (11) formed in the center is prepared, and as shown in FIG. A discharge unit (9) formed of a sintered body of tungsten is prepared. As shown in FIG. 14, the through-hole (11) of the bead (10) is fitted into the electrode part (6), and the bead (10) is brought into contact with the connection part (8) to prepare the anode electrode (2). I do. The cathode electrode (3) shown in FIG. 15 is fixed by attaching a through hole (13) of a discharge part (9) to the electrode part (6) of the anode electrode (2). The through hole (13) of the discharge part (9) is tightly fitted to the electrode part (6) or the through hole (13) is formed in a tapered shape to fix the discharge part (9) to the electrode part (6). Can be. Further, as shown in FIG. 16, a cylindrical glass tube (15) having an internal cavity (5)
Prepare [0007] Next, as shown in FIG.
A heater (21) is disposed inside the heater, and a jig (22) is disposed on the heater (21). The jig (22) has a concave portion (23) formed on the upper surface, and a through hole (24) communicating with the concave portion (23). The lead-out part (7) of the anode electrode (2) shown in FIG. 14 is arranged in the through-hole (24), and the lower end of the glass tube (15) is arranged around the beads (10). Are arranged vertically. Fit the through hole (26) of the guide jig (25) at the upper end of the glass tube (15)
(15) is held vertically. In this state, the lower end of the glass tube (15) is heated and melted by operating the heater (21) to fuse the lower end of the glass tube (15) and the beads (10).
As shown in FIG. 8, the glass tube (15) having the anode electrode (2) fixed to one end is taken out of the pressure vessel (20). [0008] Thereafter, as shown in FIG.
(3) was attached to the jig (22), and the glass tube (15) with the anode electrode (2) attached to one end was placed upside down.
Surround the (3) and connect the other end of the glass tube (15) to the recess (2) of the jig (22).
Place in 3). Subsequently, the exhaust pipe (27) of the pressure vessel (20) is connected to a vacuum source to exhaust the inside of the pressure vessel (20), and xenon gas is supplied from the supply pipe (28) of the pressure vessel (20) to the pressure vessel (28). 20)
Supply within. When the xenon gas is filled in the internal cavity (5) of the glass tube (15), the heater (21) is operated to heat and melt the other end of the glass tube (15).
The other end of 5) and the beads 10 of the cathode electrode 3 are fused, and the glass tube 15 shown in FIG. 20 is taken out of the pressure vessel 20.
Finally, as shown in FIG. 21, a transparent conductive film (4) is formed on the surface of the glass tube (15), and as shown in FIG.
Is cut to a predetermined length to complete. [0009] However, when the jig is heated to melt the glass and heat it to the sealing temperature, the gas in the pressure vessel expands and the gas pressure becomes several times that before heating. .
For this reason, the level at which the internal cavity (5) can be sealed in a container that holds a vacuum and withstands a high internal gas pressure at room temperature is limited to about 2 atm. For this reason, it has been generally difficult to manufacture a xenon flash discharge tube by enclosing xenon gas in a pressure vessel (20) at a high pressure of 2 atm or more. Accordingly, an object of the present invention is to provide a method for manufacturing an ultrahigh-pressure xenon flash discharge tube capable of sealing xenon gas in a sealed tube at a high pressure of 2 atm or more. According to the present invention, there is provided a method for manufacturing an ultra-high pressure discharge medium flash tube according to the present invention, wherein one end of a cylindrical glass tube (15) is provided with one of an anode electrode (2) and a cathode electrode (3). Sealing the glass, a step of charging a solid discharge medium into the glass tube (15) in a low pressure or vacuum or discharge medium gas atmosphere, an anode electrode (2) and a cathode at the other end of the glass tube (15) Sealing the other of the electrodes (3) and vaporizing the solid discharge medium. By adjusting the amount of the solid discharge medium to be charged into the inside of the glass tube (15) or the length of the glass tube (15), the discharge medium gas is discharged at atmospheric pressure at a desired pressure of 2 atm or more. Can be enclosed within. The step of charging the solid discharge medium includes the steps of:
After disposing the other of the anode electrode (2) and the cathode electrode (3) in a glass tube (15) in which one of (2) and the cathode electrode (3) is sealed, the discharge medium gas is placed in the glass tube (15). And a step of fusing and sealing the other end of the glass tube (15) filled with the discharge medium gas, and placing one of the anode electrode (2) and the cathode electrode (3) downward in the refrigerant. Place the glass tube (15) vertically while immersing,
Solidifying the discharge medium gas in the glass tube (15) into a solid. In the step of sealing the other of the anode electrode (2) and the cathode electrode (3), the solid discharge medium is moved to one side in the glass tube (15) and the other of the anode electrode (2) and the cathode electrode (3) is sealed. The glass tube (1
5) moving the other end of the anode electrode (2) and the cathode electrode (3) to an intermediate position between one end and the other end of the glass tube (1);
5) and a step of removing the glass tube (15) on the other end side from the other sealing portion of the anode electrode (2) and the cathode electrode (3). When the solid discharge medium returns to gas, a glass tube (15)
Since the internal volume of the glass tube (15) is smaller than that before solidification, the pressure increases due to the difference in the internal volume of the glass tube (15). DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of a method for manufacturing an ultrahigh-pressure xenon flash discharge tube according to the present invention will be described below with reference to FIGS. 1 to 8, the same parts as those shown in FIGS. 10 to 22 are denoted by the same reference numerals, and description thereof will be omitted. In the method of manufacturing an ultra-high pressure xenon flash discharge tube according to the present invention, as shown in FIG. 1, an anode electrode (2) on a primary sealing side is attached to one end of a cylindrical glass tube (15) by a burner (16). Beads
Heat and seal (10). Next, as shown in FIG. 2, liquid nitrogen (31) was accommodated in an internal container (30) arranged in a pressure container (20), and an anode electrode (2) was fixed in the liquid nitrogen (31). One end of the glass tube (15) is immersed. Glass tube (1
While cooling one end of 5), a predetermined number or volume of solid xenon chips is put into the glass tube (15), and the cathode electrode (3) is arranged at the other end of the glass tube (15) to heat the heater (32). ), The other end of the glass tube (15) is fused to the beads (10) of the cathode electrode (3).
Solid xenon has a melting point of −111.8 ° C. and a boiling point of −107.
1 ° C., and the boiling point of liquid nitrogen is −195.8 ° C. 3 to 8 show another embodiment according to the present invention. As shown in FIG. 3, an anode electrode (2) is fused to one end of a long glass tube (15) while heating with a burner (16). Next, as shown in FIG. 4, a cathode electrode (3) is inserted into the glass tube (15) from the other end of the glass tube (15), and the other end of the glass tube (15) is heated with a burner (16). Narrow the end and reduce the diameter. Subsequently, as shown in FIG. 5, after the inside of the glass tube (15) is evacuated from the tube (17) connected to the vacuum source, the tube (18) connected to the xenon gas supply source is turned on. ), The xenon gas is supplied into the glass tube (15). When the xenon gas is filled at a predetermined pressure in the glass tube (15), as shown in FIG. ) Is sealed by fusing the other end. Thereafter, as shown in FIG. 7, one end of the glass tube (15) is immersed in liquid nitrogen (17) to solidify the entire amount of xenon gas in the glass tube (15) to solid. In this state, FIG.
As shown in the figure, the beads (10) of the cathode electrode (3) were placed in a glass tube (1).
Fused in the middle position of 5), the glass tube outside the cathode electrode (3)
(15a) is removed. When solid xenon returns to gas,
Since the inner volume of the glass tube is smaller than before solidification, the pressure increases due to the difference in the inner volume of the glass tube. [0015] In the embodiment of the present invention, xenon gas can be sealed at a pressure of 2 atm or more because it can be manufactured at atmospheric pressure. The sealing gas pressure can be adjusted by adjusting the pressure of the xenon gas during sealing and the length of the sealing tube. The table below shows the result of sealing xenon gas in a glass tube at an outer diameter of 2.3 mm, an inner diameter of 1.3 mm, a tube length of 21 mm and a pressure of 2 to 10 atm. [Table 1] The above embodiment of the present invention can be modified. In addition to xenon as a solid discharge medium, which is an excitation gas, krypton having a melting point of 156.6 ° C. and a boiling point of 152.9 ° C., argon having a melting point of 189.2 ° C. and a boiling point of 185.87 ° C., and a mixture of xenon and krypton A gas, a mixed gas of xenon and argon, a mixed gas of krypton and argon, and a mixed gas of xenon, krypton, and argon can be used. The refrigerant is not limited to liquid nitrogen, liquid oxygen,
Other liquids or solids, such as liquid helium, may be used. As described above, according to the present invention, the discharge medium gas can be manufactured at atmospheric pressure and the discharge medium gas can be sealed in the envelope tube at a pressure of 2 atmospheres or more. A flash discharge tube can be obtained.

【図面の簡単な説明】 【図1】 本発明による超高圧キセノン閃光放電管の製
法により陽極電極をガラス管の一端に溶着する状態を示
す断面図 【図2】 図1のガラス管内に固体キセノンを封入する
状態を示す圧力容器の断面図 【図3】 本発明の他の実施の形態により陽極電極をガ
ラス管の一端に溶着する状態を示す断面図 【図4】 図3のガラス管の他端を縮径する状態を示す
断面図 【図5】 図4のガラス管内を真空にしてキセノンガス
を充填する状態を示す断面図 【図6】 キセノンガスを充填した後、密封したガラス
管の断面図 【図7】 液体窒素によりキセノンガスを凝固する状態
を示す断面図 【図8】 陰極電極をガラス管の中間位置に溶着した状
態を示す断面図 【図9】 キセノンガスの圧力と比光量との関係を示す
グラフ 【図10】 キセノン閃光放電管の側面図 【図11】 キセノン閃光放電管に使用する電極の側面
図 【図12】 電極に装着するビーズの斜視図 【図13】 電極の端部に固着する放電部の側面図 【図14】 陽極電極の側面図 【図15】 陰極電極の側面図 【図16】 ガラス管の斜視図 【図17】 ガラス管の一端に陽極電極を溶着する圧力
容器の断面図 【図18】 一端に陽極電極を溶着したガラス管の断面
図 【図19】 ガラス管の他端に陰極電極を溶着する圧力
容器の断面図 【図20】 圧力容器から取り出したキセノン閃光放電
管の断面図 【図21】 透明導電膜を形成したキセノン閃光放電管
の断面図 【図22】 所定の長さに切断された電極を有する製造
直後のキセノン閃光放電管の断面図 【符号の説明】 (1)・・封体管、 (2)・・陽極電極、 (3)・・陰極電
極、 (4)・・透明導電膜、 (5)・・内部空洞、 (6)
・・電極部、 (7)・・導出部、 (8)・・接続部、
(9)・・放電部、 (10)・・ビーズ、 (11)・・貫通
孔、 (13)・・貫通孔、 (15)・・ガラス管、 (20)・
・圧力容器、 (21)・・ヒータ、 (22)・・治具、 (2
3)・・凹部、 (24)・・貫通孔、 (25)・・ガイド治
具、 (26)・・貫通孔、 (27)・・排気管、 (28)・・
供給管、
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a cross-sectional view showing a state in which an anode electrode is welded to one end of a glass tube by a method for manufacturing an ultra-high pressure xenon flash discharge tube according to the present invention. FIG. FIG. 3 is a cross-sectional view of a pressure vessel showing a state in which an anode is sealed. FIG. 3 is a cross-sectional view showing a state in which an anode electrode is welded to one end of a glass tube according to another embodiment of the present invention. FIG. 5 is a sectional view showing a state in which the end is reduced in diameter. FIG. 5 is a sectional view showing a state in which the inside of the glass tube of FIG. 4 is evacuated and filled with xenon gas. FIG. 7 is a cross-sectional view showing a state in which xenon gas is solidified by liquid nitrogen. FIG. 8 is a cross-sectional view showing a state in which a cathode electrode is welded to an intermediate position of a glass tube. FIG. 10 is a graph showing the relationship of Side view of a Xenon flash tube [Fig. 11] Side view of an electrode used for a Xenon flash tube [Fig. 12] Perspective view of beads attached to an electrode [Fig. 13] Side view of a discharge unit fixed to an end of an electrode 14 is a side view of an anode electrode. FIG. 15 is a side view of a cathode electrode. FIG. 16 is a perspective view of a glass tube. FIG. 17 is a cross-sectional view of a pressure vessel in which an anode electrode is welded to one end of a glass tube. Sectional view of a glass tube with an anode electrode welded to one end [Figure 19] Sectional view of a pressure vessel with a cathode electrode welded to the other end of the glass tube [Figure 20] Sectional view of a xenon flash discharge tube taken out of the pressure vessel [Figure] 21 is a cross-sectional view of a xenon flash tube having a transparent conductive film formed thereon. [FIG. 22] is a cross-sectional view of a xenon flash tube immediately after manufacturing having electrodes cut to a predetermined length. Enclosure tube, (2) ... Anode, (3) ... Cathode , (4) ・ ・ Transparent conductive film, (5) ・ ・ Internal cavity, (6)
..Electrode part, (7) ... Derivation part, (8)
(9) ・ ・ Discharge part, (10) ・ Bead, (11) ・ ・ Through hole, (13) ・ ・ Through hole, (15) ・ ・ Glass tube, (20) ・
・ Pressure vessel, (21) ・ ・ Heater, (22) ・ ・ Jig, (2
3) ・ ・ Recess, (24) ・ ・ Through hole, (25) ・ ・ Guide, (26) ・ ・ Through hole, (27) ・ ・ Exhaust pipe, (28)
Supply pipe,

───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.7,DB名) H01J 9/395 H01J 9/40 H01J 9/24 H01J 9/32 ──────────────────────────────────────────────────続 き Continued on the front page (58) Field surveyed (Int.Cl. 7 , DB name) H01J 9/395 H01J 9/40 H01J 9/24 H01J 9/32

Claims (1)

(57)【特許請求の範囲】 【請求項1】 円筒状のガラス管の一端に陽極電極及び
陰極電極の一方を封着する工程と、低圧若しくは真空又
は放電媒体ガス雰囲気中で前記ガラス管の内部に固体放
電媒体を投入する工程と、前記ガラス管の他端に陽極電
極及び陰極電極の他方を封着して、前記固体放電媒体を
気化する工程とを含む超高圧放電媒体閃光放電管の製法
において、 前記固体放電媒体を投入する工程は、前記陽極電極及び
陰極電極の一方を封着した前記ガラス管内に前記陽極電
極及び陰極電極の他方を配置した後、前記ガラス管内に
放電媒体ガスを充填する工程と、 放電媒体ガスを充填したガラス管の他端を融着して密封
する工程と、 前記陽極電極及び陰極電極の一方を下方にして冷媒中に
浸漬しながら前記ガラス管を垂直に配置し、前記ガラス
管内の放電媒体ガスを固体に凝固させる工程とを含み、 前記陽極電極及び陰極電極の他方を封着する工程は、前
記固体放電媒体を前記ガラス管内で一方側に移動して前
記陽極電極及び陰極電極の他方を前記ガラス管の一端と
他端との中間位置に移動する工程と、 前記陽極電極及び陰極電極の他方を中間位置にて前記ガ
ラス管に封着する工程と、 前記陽極電極及び陰極電極の他方の封着部より他端側の
ガラス管を除去する工程とを含むことを特徴とする超高
圧放電媒体閃光放電管の製法。
(57) [Claim 1] A step of sealing one of an anode electrode and a cathode electrode to one end of a cylindrical glass tube, and the step of sealing the glass tube in a low-pressure or vacuum or discharge medium gas atmosphere. A step of charging a solid discharge medium therein, and a step of sealing the other of the anode electrode and the cathode electrode to the other end of the glass tube to vaporize the solid discharge medium. In the manufacturing method, the step of charging the solid discharge medium includes disposing a discharge medium gas in the glass tube after disposing the other of the anode electrode and the cathode electrode in the glass tube sealing one of the anode electrode and the cathode electrode. Filling, sealing the other end of the glass tube filled with the discharge medium gas by sealing, and vertically immersing the glass tube in a refrigerant with one of the anode electrode and the cathode electrode facing down. Place and front Solidifying the discharge medium gas in the glass tube into a solid, and sealing the other of the anode electrode and the cathode electrode, moving the solid discharge medium to one side in the glass tube to form the anode electrode and Moving the other of the cathode electrodes to an intermediate position between one end and the other end of the glass tube; and sealing the other of the anode electrode and the cathode electrode to the glass tube at the intermediate position; and Removing the glass tube on the other end side from the other sealing portion of the cathode electrode.
JP2000124316A 2000-04-25 2000-04-25 Manufacturing method of ultra high voltage discharge medium flash tube Expired - Fee Related JP3402463B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000124316A JP3402463B2 (en) 2000-04-25 2000-04-25 Manufacturing method of ultra high voltage discharge medium flash tube

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000124316A JP3402463B2 (en) 2000-04-25 2000-04-25 Manufacturing method of ultra high voltage discharge medium flash tube

Publications (2)

Publication Number Publication Date
JP2001307636A JP2001307636A (en) 2001-11-02
JP3402463B2 true JP3402463B2 (en) 2003-05-06

Family

ID=18634461

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000124316A Expired - Fee Related JP3402463B2 (en) 2000-04-25 2000-04-25 Manufacturing method of ultra high voltage discharge medium flash tube

Country Status (1)

Country Link
JP (1) JP3402463B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101794698B (en) * 2010-03-04 2012-04-25 无锡市超缘电子有限公司 Charging method and device for low pressure ceramic gas discharge tube
JP5903646B2 (en) * 2011-03-28 2016-04-13 パナソニックIpマネジメント株式会社 Flash discharge tube

Also Published As

Publication number Publication date
JP2001307636A (en) 2001-11-02

Similar Documents

Publication Publication Date Title
EP1755148A2 (en) High-pressure discharge lamp, high-pressure discharge lamp operating apparatus and illuminating apparatus
JPH06318435A (en) Method of hermetical connection between ceramic part and metal part
JPH1167155A (en) High pressuer discharge lamp
JP2003297289A (en) High pressure discharge lamp and multi-tube high pressure discharge lamp, and illuminating apparatus
US7615929B2 (en) Ceramic lamps and methods of making same
JP5214445B2 (en) Ceramic lamp with molybdenum-rhenium end cap, and system and method comprising the lamp
JP3402463B2 (en) Manufacturing method of ultra high voltage discharge medium flash tube
JP3213281B2 (en) Manufacturing method of high pressure discharge lamp
JPH07240184A (en) Ceramic discharge lamp, projector device using this lamp, and manufacture of ceramic discharge lamp
US4853596A (en) Flash discharge lamp with sintered cathode member
US7301282B2 (en) High pressure mercury lamps and sealing members therefor
JP3389971B2 (en) Discharge tube
JP4379552B2 (en) High pressure discharge lamp and lighting device
JP2002279935A (en) Excimer radiator
JPH0718123Y2 (en) Flash discharge tube
JPH1040867A (en) Discharge lamp
JPS6336606Y2 (en)
WO2015049995A1 (en) Short-arc discharge lamp and short-arc discharge lamp cathode production method
JP2596889Y2 (en) Discharge lamp
JPH10154484A (en) Manufacture of discharge lamp and discharge lamp
JPS6321888Y2 (en)
JPH06111775A (en) Low pressure discharge lamp
JPH07240183A (en) Ceramic discharge lamp and manufacture thereof
JP2003249169A (en) Manufacturing method for electrode, electrode, and discharge tube
JP2001135273A (en) Flash discharge lamp

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees