JP3398447B2 - Power supply for sputtering equipment - Google Patents

Power supply for sputtering equipment

Info

Publication number
JP3398447B2
JP3398447B2 JP32138593A JP32138593A JP3398447B2 JP 3398447 B2 JP3398447 B2 JP 3398447B2 JP 32138593 A JP32138593 A JP 32138593A JP 32138593 A JP32138593 A JP 32138593A JP 3398447 B2 JP3398447 B2 JP 3398447B2
Authority
JP
Japan
Prior art keywords
power supply
voltage
pulse
target
power
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP32138593A
Other languages
Japanese (ja)
Other versions
JPH07150348A (en
Inventor
和弘 三村
哲夫 森田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shindengen Electric Manufacturing Co Ltd
Original Assignee
Shindengen Electric Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shindengen Electric Manufacturing Co Ltd filed Critical Shindengen Electric Manufacturing Co Ltd
Priority to JP32138593A priority Critical patent/JP3398447B2/en
Publication of JPH07150348A publication Critical patent/JPH07150348A/en
Application granted granted Critical
Publication of JP3398447B2 publication Critical patent/JP3398447B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Plasma Technology (AREA)
  • Physical Vapour Deposition (AREA)

Description

【発明の詳細な説明】 【0001】 【発明の属する分野の説明】本発明は電子部品等の製造
に使用するスパッタ装置に適用する電源特に逆パルス発
生回路に関するものである。 【0002】 【従来技術】スパッタ装置には高速化、製品の歩留り向
上が望まれ、この方向でスパッタ技術が進展してきてい
る。一般にスパッタ装置に適用する電源はタ−ゲ−トに
負の高電圧を印加するためのDCパワ−電源が使用され
るが、この高電圧印加状態で長時間の連続運転を行う
と、真空室内(チャンバ)に設けられたタ−ゲット近傍
で電弧を発生し、正常な運転が出来なくなることがあ
る。電弧の発生はタ−ゲットの材質あるいは形状により
相違する。この電弧はタ−ゲットから異常なスパッタリ
ングを起こし、薄膜を形成する基板上に不正規な膜を作
り、製品の歩留低下が問題になる。この電弧の発生をな
くすことは、 技術的に非常に困難であり、従来種々
の電源回路が検討されているが決めて に欠けるのが
現状である。 【0003】 【発明の目的】本発明はタ−ゲットの材質或いは形状に
無関係に電弧の発生、及び異常放電を防止せしめる電源
の提供を目的とする。 【0004】 【課題を解決するための手段】本発明はスパッタを行う
ための真空室内のタ−ゲットに直流電圧、電力(パワ
−)を供給する電源の出力部に前記電源と逆極性のパル
スを重畳せしめ、該逆パルスの電圧及び周波数を任意に
調整することにより電弧或は異常放電を消弧するように
構成したものである。 【0005】 【実施例】図1は本発明の一実施例回路図で図中DCは
直流電源でタ−ゲット等の負荷RLに負の直流高電圧を
印加する極性に接続されている。Lはインダクタ、D
1、R3はサ−ジ吸収用のダイオ−ド及び抵抗、次にRP
Cは逆パルス発生回路でPTはパルストランス、n1、
n2はその1次巻線及び2次(出力)巻線で1次巻線n1
側はスイッチング回路swと、該スイッチング回路sw
の発振周波数等を制御す発振回路OSCが接続されてい
る。又2次巻線n2は直流電源DCの出力部に該出力と
逆極性にパルスが重畳される如く接続されている。C1
は該直流電源DCよりダイオ−ドD2を介して充電され
るコンデンサでスイッチング回路swの電源を形成す
る。D3、R2はパルストランスPTのフライバック電圧
を抑制するダイオ−ド及び抵抗である。 【0006】この回路の基本動作は直流電源DCを負荷
RLに給電すると同時に必要に応じて連続的に或いは間
欠的に逆パルス電圧を該直流電源DCに重畳して負荷R
Lに給電する。因みに図2は図1において直流電源DC
の電圧をE1、コンデンサC1の電圧をE2(E1≒E2)
パルストランスPTの出力電圧をE3、負荷電圧をE0と
した時の各部動作波形を示す。なお図2において、t1
はスイッチング回路のオン(導通)時間(5〜30μs
ec程度)Tは繰返し周期(1Hz〜20KHz程度)
△eは逆電圧レベルである。この回路では、Lはパル
ストランスPTのパルス電圧発生時電流iの増加率を防
止する。パルストランスPTのフライバック電圧(図 2a、EFR)はダイオードD4により出力電圧に重畳さ
せない目的で装備し、 ダイオ−ドD3、抵抗R2、ダ
イオ−ドD4の電圧耐量等により必要に応じて設 け
てもよい。パルストランスPTの1次巻線n1側の電
圧はコンデンサC1 の電圧(DC電源電圧)により駆
動しているので駆動電源をあらたに設ける必 要はな
く、又パルストランスPTの1次n1、2次n2の巻数比
の設定により 容易に逆パルス電圧E3の調整が可能
である。電源電圧、負荷変動等によ り非パルス発
生時(スイッチング回路swのオフ時)コンデンサC1
の充電 々流が変動するがダイオ−ドD2によりパル
ストランスPTの直流励磁を防 止する。DC電源
の負荷電流は直列に挿入されたインダクタLによりパル
ス発生時も大きな変化はなく連結して流れるため、
DC電源のトランジエン トによる影響は少ない。 【0007】図3は本発明の実施例回路(図1)におい
て、抵抗負荷電圧−450V、4A、逆電圧レベル△e
≒85V(約19%)、パルスt10μs、周波数10
KHzの運転条件で実施した時の負荷電圧E0及び負荷電
流I0の関係を示す波形図で異常現象は何ら生じないこ
とを確認した。 【0008】図4は同実施例回路において、R負荷電圧
−820V、12A、逆電圧レベル△e≒100V、運
転条件で実施した時の動作波形図で、これによっても全
く異常現象は発生しなかった。 【0009】以上の説明から明らかなように本発明によ
ればスパッタ装置用電源としてタ−ゲットの材質(金
属、絶縁物)に係わりなく異常放電を防止し得る装置を
提供できるので実用上の効果は大きい。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a power supply applied to a sputtering apparatus used for manufacturing electronic parts and the like, particularly to an inverse pulse generating circuit. 2. Description of the Related Art Sputtering apparatuses are demanded to operate at higher speeds and to improve product yields. Sputtering techniques have been developed in this direction. Generally, a DC power supply for applying a negative high voltage to a target is used as a power supply applied to the sputtering apparatus. However, if continuous operation is performed for a long time in this high voltage application state, a vacuum chamber is used. An electric arc may be generated near a target provided in the (chamber) and normal operation may not be performed. The occurrence of an electric arc differs depending on the material or shape of the target. This electric arc causes abnormal sputtering from the target, forms an irregular film on the substrate on which the thin film is formed, and lowers the yield of products. Eliminating the occurrence of this arc is technically very difficult, and various power supply circuits have been studied in the past, but at present it is lacking to determine. [0003] It is an object of the present invention to provide a power supply capable of preventing arcing and abnormal discharge regardless of the material or shape of a target. According to the present invention, a pulse having a polarity opposite to that of the power supply is supplied to an output portion of a power supply for supplying a DC voltage and power (power) to a target in a vacuum chamber for performing sputtering. Are superimposed, and the voltage or frequency of the reverse pulse is arbitrarily adjusted to extinguish the arc or abnormal discharge. FIG. 1 is a circuit diagram of an embodiment of the present invention. In FIG. 1, DC is a DC power supply and is connected to a polarity for applying a high negative DC voltage to a load RL such as a target. L is the inductor, D
1, R3 is diode and resistor for surge absorption, then RP
C is a reverse pulse generating circuit, PT is a pulse transformer, n1,
n2 is a primary winding and a secondary (output) winding of the primary winding n1
Side is a switching circuit sw, and the switching circuit sw
An oscillation circuit OSC for controlling the oscillation frequency and the like is connected. The secondary winding n2 is connected to the output of the DC power supply DC such that a pulse is superimposed on the output with a polarity opposite to that of the output. C1
Is a capacitor charged from the DC power supply DC via the diode D2 to form a power supply for the switching circuit sw. D3 and R2 are a diode and a resistor for suppressing the flyback voltage of the pulse transformer PT. The basic operation of this circuit is to supply the DC power supply DC to the load RL, and at the same time, continuously or intermittently superimpose an inverse pulse voltage on the DC power supply DC as necessary.
Power is supplied to L. FIG. 2 shows a DC power source DC in FIG.
Is the voltage of E1, and the voltage of the capacitor C1 is E2 (E1 ≒ E2).
The operation waveforms of each part when the output voltage of the pulse transformer PT is E3 and the load voltage is E0 are shown. In FIG. 2, t1
Is the ON (conduction) time of the switching circuit (5 to 30 μs)
ec) T is the repetition period (about 1 Hz to 20 KHz)
Δe is the reverse voltage level. In this circuit, L prevents the rate of increase of the current i when a pulse voltage is generated by the pulse transformer PT. The flyback voltage (EFR) of the pulse transformer PT is provided for the purpose of not being superimposed on the output voltage by the diode D4, and is provided as necessary according to the voltage tolerance of the diode D3, the resistor R2, and the diode D4. You may. Since the voltage on the primary winding n1 side of the pulse transformer PT is driven by the voltage of the capacitor C1 (DC power supply voltage), it is not necessary to newly provide a driving power supply. The reverse pulse voltage E3 can be easily adjusted by setting the turns ratio of n2. When a non-pulse occurs due to power supply voltage, load fluctuation, etc. (when the switching circuit sw is off), the capacitor C1
However, the DC current of the pulse transformer PT is prevented by the diode D2. The load current of the DC power supply flows in a connected manner without significant change even when a pulse is generated by the inductor L inserted in series.
The effect of DC power supply transients is small. FIG. 3 shows a circuit according to the embodiment of the present invention (FIG. 1), which has a resistive load voltage of -450 V, 4 A, and a reverse voltage level Δe.
≒ 85V (about 19%), pulse t10μs, frequency 10
A waveform diagram showing the relationship between the load voltage E0 and the load current I0 when the operation was performed under the KHz operating condition confirmed that no abnormal phenomenon occurred. FIG. 4 is an operation waveform diagram of the circuit of the embodiment when the R load voltage is -820 V, 12 A, the reverse voltage level is △ e ≒ 100 V, and the operation conditions are such that no abnormal phenomenon occurs. Was. As is apparent from the above description, according to the present invention, it is possible to provide a device capable of preventing abnormal discharge as a power source for a sputtering device irrespective of the material (metal, insulator) of the target, so that a practical effect is obtained. Is big.

【図面の簡単な説明】 【図1】本発明の一実施例回路図 【図2】本発明の動作説明図 【図3】本発明実施例の出力特性図 【図4】本発明実施例の出力特性図 【符号の簡単な説明】 DC 直流電源 C インダクタ RL 負荷(タ−ゲ−ト) RPC 逆パルス発生回路 PT パルストランス sw スイッチング回路 osc 発振回路 C1 コンデンサ D1、D2、D3 ダイオ−ド[Brief description of the drawings] FIG. 1 is a circuit diagram of an embodiment of the present invention. FIG. 2 is a diagram illustrating the operation of the present invention. FIG. 3 is an output characteristic diagram of the embodiment of the present invention. FIG. 4 is an output characteristic diagram of the embodiment of the present invention. [Brief description of reference numerals] DC DC power supply C inductor RL load (target) RPC reverse pulse generation circuit PT pulse transformer sw switching circuit osc oscillation circuit C1 capacitor D1, D2, D3 diodes

Claims (1)

(57)【特許請求の範囲】 【請求項1】 スパッタを行うための真空室内のタ−ゲ
ットに直流電圧、電力(パワ−)を供給する電源の出力
部に、前記電源と逆極性のパルスを重畳せしめるよう
に、少なくとも発振回路、スイッチ素子、パルストラン
ス、ダイオード、コンデンサを含む逆パルス発生回路
接続し、該逆パルスの電圧及び周波数を任意に調整する
ことにより電弧或いは異常放電を消弧するように構成し
たことを特徴とするスパッタ装置用電源。
(57) [Claim 1] A pulse having a polarity opposite to that of the power supply is supplied to an output section of a power supply for supplying a DC voltage and power (power) to a target in a vacuum chamber for performing sputtering. At least an oscillation circuit, a switch element, and a pulse transformer so that
A power supply for a sputtering apparatus, characterized in that a reverse pulse generating circuit including a source , a diode, and a capacitor is connected, and an arc or abnormal discharge is extinguished by arbitrarily adjusting the voltage and frequency of the reverse pulse. .
JP32138593A 1993-11-26 1993-11-26 Power supply for sputtering equipment Expired - Lifetime JP3398447B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32138593A JP3398447B2 (en) 1993-11-26 1993-11-26 Power supply for sputtering equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32138593A JP3398447B2 (en) 1993-11-26 1993-11-26 Power supply for sputtering equipment

Publications (2)

Publication Number Publication Date
JPH07150348A JPH07150348A (en) 1995-06-13
JP3398447B2 true JP3398447B2 (en) 2003-04-21

Family

ID=18131970

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32138593A Expired - Lifetime JP3398447B2 (en) 1993-11-26 1993-11-26 Power supply for sputtering equipment

Country Status (1)

Country Link
JP (1) JP3398447B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3735462B2 (en) * 1998-03-30 2006-01-18 株式会社シンクロン Method and apparatus for forming metal oxide optical thin film
JP3735461B2 (en) * 1998-03-27 2006-01-18 株式会社シンクロン Compound metal compound thin film forming method and thin film forming apparatus therefor
JP3738154B2 (en) * 1999-06-30 2006-01-25 株式会社シンクロン Thin film forming method of composite metal compound and thin film forming apparatus
SE0302045D0 (en) 2003-07-10 2003-07-10 Chemfilt R & D Ab Work piece processing by pulsed electric discharges in solid-gas plasmas
JP5112921B2 (en) * 2008-03-21 2013-01-09 新電元工業株式会社 Power supply circuit for sputtering equipment
CN102148571A (en) * 2011-04-19 2011-08-10 济南卓信智能科技有限公司 High-frequency high-voltage DC switching power source based on current source mode

Also Published As

Publication number Publication date
JPH07150348A (en) 1995-06-13

Similar Documents

Publication Publication Date Title
JP3398447B2 (en) Power supply for sputtering equipment
JP3599570B2 (en) Discharge lamp brightness adjustment method and discharge lamp lighting device
GB2356499A (en) Reduced voltage striking of discharge lamp
JP3312713B2 (en) AC plasma arc welding machine
JP2003059684A (en) High pressure discharge lamp device
JP3078245B2 (en) Arc start assist device
JPH05251800A (en) He-ne laser power supply
JP3206521B2 (en) High frequency heating equipment
JP4949285B2 (en) Plasma discharge device
JP3803482B2 (en) Pulse power supply
JP3453934B2 (en) Discharge lamp lighting device
JP2001335928A (en) Sputtering apparatus
JPS638872B2 (en)
JPH0813416B2 (en) Arc welding equipment
JP2004178812A (en) Destaticizing apparatus
JP3408304B2 (en) Power supply for sputtering equipment
JP6529784B2 (en) Power supply for plasma welding
JPH0971863A (en) Power source for sputtering device
JP2001295042A (en) Sputtering apparatus
JPH02137672A (en) Consumable electrode arc welding equipment
JP2540116B2 (en) Arc welding equipment
RU2047436C1 (en) Device for welding by non-melting electrode in protective gas medium
SU1719167A1 (en) Device to excite and stabilize alternating current welding arc
JPH065027Y2 (en) Inverter resistance welding machine power supply
JPH11347741A (en) Plasma cutting machine

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080214

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090214

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100214

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100214

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110214

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110214

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120214

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120214

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130214

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130214

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140214

Year of fee payment: 11

EXPY Cancellation because of completion of term