JP3398411B2 - Magnetic force microscope - Google Patents

Magnetic force microscope

Info

Publication number
JP3398411B2
JP3398411B2 JP04701693A JP4701693A JP3398411B2 JP 3398411 B2 JP3398411 B2 JP 3398411B2 JP 04701693 A JP04701693 A JP 04701693A JP 4701693 A JP4701693 A JP 4701693A JP 3398411 B2 JP3398411 B2 JP 3398411B2
Authority
JP
Japan
Prior art keywords
voltage
sample
leaf spring
magnetic force
probe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP04701693A
Other languages
Japanese (ja)
Other versions
JPH06258289A (en
Inventor
良晃 鹿倉
正敏 安武
英介 冨田
Original Assignee
セイコーインスツルメンツ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by セイコーインスツルメンツ株式会社 filed Critical セイコーインスツルメンツ株式会社
Priority to JP04701693A priority Critical patent/JP3398411B2/en
Publication of JPH06258289A publication Critical patent/JPH06258289A/en
Application granted granted Critical
Publication of JP3398411B2 publication Critical patent/JP3398411B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、試料表面の磁気力分布
を検出、画像化する磁気力顕微鏡に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a magnetic force microscope for detecting and imaging a magnetic force distribution on a sample surface.

【0002】[0002]

【従来の技術】磁気力顕微鏡は、例えばH.W.van Kester
enらによって発表されている(J.Appl.Phys. 70 (4), 15
Augast 1991 P.2413-2422) 。これは、板バネをバイモ
ルフ型圧電素子で振動させ、光干渉法によって変位を検
出するものである。試料と板バネ間に働く微小な力によ
り、板バネの振動周波数及び振動振幅が変動する。この
変動による振幅の変位量は電気信号として検出され、検
出された信号は試料/板バネ間の距離制御系に入力さ
れ、試料/板バネ間に作用する力が一定になるように微
動素子を伸縮制御する。この状態で面内走査を行い、三
次元画像を得ている。
2. Description of the Related Art Magnetic force microscopes are, for example, HWvan Kester.
Published by en et al. (J. Appl. Phys. 70 (4), 15
Augast 1991 P.2413-2422). In this method, a leaf spring is vibrated by a bimorph type piezoelectric element, and displacement is detected by an optical interference method. The minute force acting between the sample and the leaf spring causes the vibration frequency and the vibration amplitude of the leaf spring to fluctuate. The displacement amount of the amplitude due to this fluctuation is detected as an electric signal, and the detected signal is input to the distance control system between the sample and the leaf spring, and the fine movement element is set so that the force acting between the sample and the leaf spring becomes constant. Control expansion and contraction. In this state, in-plane scanning is performed to obtain a three-dimensional image.

【0003】[0003]

【発明が解決しようとする課題】従来のこのような磁気
力顕微鏡では、磁気力の極性を判別するため、及び制御
系の安定性を確保するために試料と板バネ間に直流電圧
を印加している。板バネに形成された強磁性探針は、試
料表面の磁気分布により引力と斥力を受ける。板バネの
振動振幅は力の勾配の絶対値に反応するため、前述の方
法では磁気力の極性を判別できず、磁区分布を測定する
ことが困難である。そこで試料と板バネ間に直流電圧を
印加し、斥力より大きい静電引力を付加することで全検
出力を引力のみにし、磁気極性の判別は、この引力の強
弱で置き換えることにしている。さらに、力の方向が一
定となるため試料/板バネ間の距離制御系の安定性にも
寄与している。
In such a conventional magnetic force microscope, a DC voltage is applied between the sample and the leaf spring in order to determine the polarity of the magnetic force and to ensure the stability of the control system. ing. The ferromagnetic probe formed on the leaf spring receives an attractive force and a repulsive force due to the magnetic distribution on the sample surface. Since the vibration amplitude of the leaf spring responds to the absolute value of the force gradient, the polarity of the magnetic force cannot be determined by the method described above, and it is difficult to measure the magnetic domain distribution. Therefore, a direct current voltage is applied between the sample and the leaf spring, and an electrostatic attractive force larger than the repulsive force is applied to make the total detection force only an attractive force, and the magnetic polarity is determined by the strength of this attractive force. Furthermore, since the force direction is constant, it contributes to the stability of the distance control system between the sample and the leaf spring.

【0004】従来のこのような磁気力顕微鏡では、磁気
力に静電引力を加算した力を検出することになるため磁
気力分布と静電力分布の合成像となる。静電力分布は試
料表面の凹凸像と一致するため、磁気力像に表面凹凸像
が合成されてしまう。特に、テクスチャー処理がなされ
た磁気媒体では、表面凹凸が大きいため磁区構造の判別
が困難となっている。
In such a conventional magnetic force microscope, since a force obtained by adding an electrostatic attractive force to a magnetic force is detected, a composite image of the magnetic force distribution and the electrostatic force distribution is obtained. Since the electrostatic force distribution matches the unevenness image of the sample surface, the unevenness image of the surface is combined with the magnetic force image. In particular, in a magnetic medium that has been subjected to texture processing, it is difficult to determine the magnetic domain structure because the surface unevenness is large.

【0005】[0005]

【課題を解決するための手段】上記の課題を解決するた
めに、本発明では試料と強磁性探針間に印加する直流電
圧の大きさにより、試料と強磁性探針間の距離が変わり
強磁性探針に働く力の要因が変わることから、同一の測
定点を大きさの異なる直流電圧を印加して測定するよう
にした。
In order to solve the above problems, according to the present invention, the distance between the sample and the ferromagnetic probe changes depending on the magnitude of the DC voltage applied between the sample and the ferromagnetic probe. Since the factor of the force acting on the magnetic probe changes, the same measurement point was measured by applying DC voltages of different magnitudes.

【0006】[0006]

【作用】上記のように、試料と強磁性探針間に異なる2
種の大きさの直流電圧を走査線毎に交互に印加すると、
大きな直流電圧を印加したときは、試料と強磁性探針間
の距離が離れ、強磁性探針は磁気力と静電引力双方の力
を検出し、磁気力と表面凹凸が合成されたデータを得る
ことになる。また一方、小さな直流電圧を印加すると、
試料と強磁性探針が接近し、強磁性探針に働く力は磁気
力よりも静電引力または2原子間に働くVan der Waals
力が支配的になる。このVan der Waals 力または静電引
力を検出して測定したデータは表面凹凸データとなる。
As described above, the difference between the sample and the ferromagnetic probe is 2
When a direct current voltage of a seed size is alternately applied to each scanning line,
When a large DC voltage is applied, the distance between the sample and the ferromagnetic probe increases, and the ferromagnetic probe detects both the magnetic force and the electrostatic attractive force, and the data obtained by combining the magnetic force and the surface unevenness is obtained. You will get it. On the other hand, if a small DC voltage is applied,
When the sample and the ferromagnetic probe approach each other, the force acting on the ferromagnetic probe is electrostatic attraction rather than magnetic force or Van der Waals
Power becomes dominant. The data measured by detecting the Van der Waals force or electrostatic attraction force becomes the surface unevenness data.

【0007】前述の磁気力と表面凹凸が合成されたデー
タから、後述の表面凹凸データをディジタル演算で差し
引くことで、表面凹凸分布の影響を受けない磁気力分布
像を得ることができる。また走査線毎に、電圧を変える
ことで熱ドリフト等の影響を受けずに安定した測定が可
能となる
By subtracting the surface unevenness data described later by digital calculation from the above-mentioned data in which the magnetic force and the surface unevenness are combined, a magnetic force distribution image which is not affected by the surface unevenness distribution can be obtained. Also, by changing the voltage for each scanning line, stable measurement can be performed without being affected by thermal drift and the like.

【0008】[0008]

【実施例】図1は本発明の磁気力顕微鏡の構成図であ
り、以下図面に基づいて説明する。試料17は、測定す
る面を上に水平にして微動機構8に載置される。微動機
構8に円筒型圧電素子よりなる。微動機構8は、試料1
7をXY方向に走査しながら、試料17をZ方向にも駆
動するものである。そして微動機構8は、粗動機構7の
上に載置されている。粗動機構8は、試料17を所定位
置に移動されるものであり、そして粗動機構7はステッ
ピクモータよりなり、その移動量は大きくなっている。
1 is a block diagram of a magnetic force microscope of the present invention, which will be described below with reference to the drawings. The sample 17 is placed on the fine movement mechanism 8 with the surface to be measured facing up. The fine movement mechanism 8 is composed of a cylindrical piezoelectric element. The fine movement mechanism 8 is the sample 1
The sample 17 is also driven in the Z direction while scanning 7 in the XY directions. The fine movement mechanism 8 is placed on the coarse movement mechanism 7. The coarse movement mechanism 8 moves the sample 17 to a predetermined position, and the coarse movement mechanism 7 is a stepper motor, and the movement amount thereof is large.

【0009】粗動機構7は、筐体19の上に載置されて
いる。筐体19には、板バネ1が取り付けられている。
板バネ1はの端部で筐体19に取り外し自在に取り付け
られており、その他端には先端が鋭利な探針1aが取り
付けられている。そして、探針1aの先端が試料17の
表面の所定位置の極近傍に来るように、粗動機構7によ
り試料17を移動させる。探針1aは、強磁性を有して
いる。その強磁性は、探針1a全体を強磁性体で製作し
てもよく、更には、強磁性体で探針1aをコーテングし
てもよい。また更には、その強磁性を硬磁性にするも可
能である。この場合、試料17の磁性をN極、S極を違
いをも検出することができる。
The coarse movement mechanism 7 is mounted on a housing 19. The leaf spring 1 is attached to the housing 19.
The leaf spring 1 is detachably attached to the housing 19 at one end, and the probe 1a having a sharp tip is attached to the other end. Then, the coarse moving mechanism 7 moves the sample 17 so that the tip of the probe 1a comes close to a predetermined position on the surface of the sample 17. The probe 1a has ferromagnetism. As for the ferromagnetism, the entire probe 1a may be made of a ferromagnetic material, and further, the probe 1a may be coated with a ferromagnetic material. Furthermore, the ferromagnetism can be made hard. In this case, it is possible to detect the difference in the magnetism of the sample 17 between the north pole and the south pole.

【0010】また、筐体19には、板バネ1の裏面にレ
ーザ光を照射するための、半導体レーザ4が取り付けら
れている。板バネ1の裏面にて反射したレーザ光が筐体
19に到達する位置に、さらにレーザ光を反射する反射
鏡5が配置されている。反射鏡5にて反射したレーザ光
が筐体19に到達する位置に光検出器6が備えられてい
る。
A semiconductor laser 4 for irradiating the back surface of the leaf spring 1 with laser light is attached to the housing 19. At the position where the laser light reflected on the back surface of the leaf spring 1 reaches the housing 19, a reflecting mirror 5 that further reflects the laser light is arranged. The photodetector 6 is provided at a position where the laser light reflected by the reflecting mirror 5 reaches the housing 19.

【0011】板バネ1には、板バネ1を変形させるため
のバイモルフ型圧電素子2が備えられている。バイモル
フ型圧電素子2は、交流電圧印加手段として交流電圧印
加回路3に接続されている。交流電圧印加回路3は、バ
イモルフ型圧電素子2に交流電圧を印加する。そしてそ
のバイモルフ型圧電素子2に印加された交流電圧により
板バネ1は振動する。
The leaf spring 1 is provided with a bimorph type piezoelectric element 2 for deforming the leaf spring 1. The bimorph type piezoelectric element 2 is connected to an AC voltage applying circuit 3 as AC voltage applying means. The AC voltage application circuit 3 applies an AC voltage to the bimorph type piezoelectric element 2. Then, the leaf spring 1 vibrates by the AC voltage applied to the bimorph type piezoelectric element 2.

【0012】微動機構8は、微動機構8に載置された試
料17をXY方向(試料17の平面上の方向)に微動的
に走査するための走査電圧印加回路12と、試料17を
Z方向に微動的に駆動させる高圧増幅器14を介して距
離制御手段である距離制御回路13と接続されている。
走査電圧印加回路12は微動機構8のXおよびY電極に
図4のような電圧を印加して探針1aの先端は図6のよ
うに試料17の表面を面内走査することになる。
The fine movement mechanism 8 includes a scanning voltage applying circuit 12 for finely scanning the sample 17 placed on the fine movement mechanism 8 in the XY directions (directions on the plane of the sample 17), and the sample 17 in the Z direction. It is connected to a distance control circuit 13, which is distance control means, via a high-voltage amplifier 14 which is driven minutely.
The scanning voltage applying circuit 12 applies a voltage as shown in FIG. 4 to the X and Y electrodes of the fine movement mechanism 8 so that the tip of the probe 1a scans the surface of the sample 17 in-plane as shown in FIG.

【0013】半導体レーザ4からのレーザ光を板バネ1
の裏面に照射し、その反射光を反射鏡5で反射し光検出
器6で検出する。検出された信号は、レーザ光検出回路
9を経て前述の交流電圧印加回路3の出力と同じ周波数
の交流変調波検出手段である交流変調波検出回路10に
入力される。交流変調波検出回路10は、交流波成分を
取り除くものである。交流変調波検出回路10の出力は
試料17と板バネ1間の距離制御回路13に入力され
る。距離制御回路13からの制御信号は高圧増幅回路1
4を経て、微動機構8へ印加され、Z軸の制御すなわち
試料17と板バネ1間の距離を一定にするように制御す
る。
The leaf spring 1 receives laser light from the semiconductor laser 4.
It is irradiated on the back surface of the, and the reflected light is reflected by the reflecting mirror 5 and detected by the photodetector 6. The detected signal is input to the AC modulated wave detecting circuit 10 which is an AC modulated wave detecting means having the same frequency as the output of the AC voltage applying circuit 3 described above through the laser light detecting circuit 9. The AC modulated wave detection circuit 10 removes an AC wave component. The output of the AC modulated wave detection circuit 10 is input to the distance control circuit 13 between the sample 17 and the leaf spring 1. The control signal from the distance control circuit 13 is the high voltage amplifier circuit 1.
4, the voltage is applied to the fine movement mechanism 8 to control the Z axis, that is, to control the distance between the sample 17 and the leaf spring 1 to be constant.

【0014】走査電圧発生器14からの出力は微動機構
8に印加され、板バネ1に対し試料17を図4の如く面
内走査する。さらに距離制御回路13の制御信号はA/
D変換器15でディジタルデータに変換されたのち、コ
ンピュータ16に入力され三次元画像としてコンピュー
タ16に含まれる表示手段に表示される。また、筐体1
9は除振機構18上に構成され、外部振動の影響を除去
している。
The output from the scanning voltage generator 14 is applied to the fine movement mechanism 8 to scan the leaf spring 1 with the sample 17 in-plane as shown in FIG. Further, the control signal of the distance control circuit 13 is A /
After being converted into digital data by the D converter 15, it is input to the computer 16 and displayed as a three-dimensional image on the display means included in the computer 16. Also, the housing 1
9 is configured on the vibration isolation mechanism 18 to eliminate the influence of external vibration.

【0015】板バネ1と試料17には、試料17の表面
と探針1a先端に直流電圧を印加するための直流印加手
段である直流印加回路11が接続されている。次に測定
原理について説明する。図2は板バネ1の共振特性を示
したものである。実線1は試料17からの力を検出して
いない状態を表し、波線2は板バネ1に固着されている
強磁性探針が試料17に接近し、力を検出した状態を表
している。板バネ1の共振特性は図2で示されるよう
に、引力が加わる(力を検出する)と共振周波数ωが低
周波側ω0へシフトすると同時に最大振幅も減少する。
ここで共振周波数ωよりも高い周波数ω1に着目し振幅
の変化を調べると、力を検出していない状態ではAで示
される振幅となり、力を検出するとBで示される振幅に
減少する。このように、外力に応じて振幅の減少が生じ
る。これを強磁性探針と試料17間の距離との関係で表
したものが図3である。図3のA点、B点はそれぞれ図
2の各点に対応している。すなわち、強磁性探針が試料
17に接近すると外力が増大し、振幅の減少が生じる。
そこで、周波数を共振周波数よりも高い一定値ω1に固
定し、振幅(または振幅の減少量)が一定になるように
強磁性探針と試料17間の距離を制御すると、強磁性探
針が受ける力を検出することができる。
The leaf spring 1 and the sample 17 are connected to a DC applying circuit 11 which is a DC applying means for applying a DC voltage to the surface of the sample 17 and the tip of the probe 1a. Next, the measurement principle will be described. FIG. 2 shows the resonance characteristics of the leaf spring 1. The solid line 1 represents the state in which the force from the sample 17 is not detected, and the wavy line 2 represents the state in which the ferromagnetic probe fixed to the leaf spring 1 approaches the sample 17 and detects the force. As shown in FIG. 2, the resonance characteristic of the leaf spring 1 is such that when an attractive force is applied (the force is detected), the resonance frequency ω shifts to the low frequency side ω0 and at the same time the maximum amplitude decreases.
Focusing on the frequency ω1 higher than the resonance frequency ω, the change in the amplitude is examined. When the force is not detected, the amplitude is A, and when the force is detected, the amplitude is reduced to B. In this way, the amplitude is reduced according to the external force. FIG. 3 shows this in relation to the distance between the ferromagnetic probe and the sample 17. Points A and B in FIG. 3 correspond to the points in FIG. 2, respectively. That is, when the ferromagnetic probe approaches the sample 17, the external force increases and the amplitude decreases.
Therefore, if the frequency is fixed to a constant value ω1 higher than the resonance frequency and the distance between the ferromagnetic probe and the sample 17 is controlled so that the amplitude (or the amount of decrease in the amplitude) becomes constant, the ferromagnetic probe receives it. The force can be detected.

【0016】次に本発明の測定方法について説明する。
図4は本発明の走査信号と試料17/板バネ1間の直流
電圧印加のタイミングチャートで、走査線1本毎に試料
17と探針1間に異なる電圧を交互に印加しながら測定
することを示している。また、図5は強磁性探針の受け
る力の勾配と試料/探針間距離の関係を示した図であ
る。実線1は探針先端と試料表面の原子間に働くVan de
r Waals 力と静電引力を合成した力で、実線2は試料表
面から受ける磁気力となる。試料17と板バネ1間に8
[v]程度の直流電圧印加回路11から直流電圧V1を
印加すると、試料17と強磁性探針間の距離は図5のA
点になるため強磁性探針は磁気力と静電引力双方の力を
検出することになる。この状態で図6の(1)の走査を
行いながら、距離制御信号13からの出力信号をA/D
変換器16でディジタル信号に変換しコンピュータに入
力する。次に、試料17と板バネ1間に1[v]程度の
直流電圧V2を印加すると、試料17と強磁性探針間の
距離は図5のB点に移動するため、強磁性探針の受ける
力は磁気力より静電引力またはVan der Waa
ls力が支配的となる。この状態で走査位置は図6の
(1)のまま走査を行い、上記同様にデータが測定され
コンピュータに入力される。測定されたデータはコンピ
ュータでサンプリングデータ毎に直流電圧V1で測定さ
れたデータ値から直流電圧V2で測定されたデータ値を
差し引き、磁気力データに変換する。次に、走査位置を
図6の(2)に変更して、上記同様直流電圧V1,V2
でそれぞれ測定し、磁気力データに変換する。この動作
を面内走査が終了するまで繰り返し画像化することで、
試料表面の凹凸の影響を除去した磁気力像が得られる。
Next, the measuring method of the present invention will be described.
FIG. 4 is a timing chart of the application of a DC voltage between the scanning signal and the sample 17 / leaf spring 1 of the present invention. Measurement is performed while alternately applying different voltages between the sample 17 and the probe 1 for each scanning line. Is shown. FIG. 5 is a diagram showing the relationship between the gradient of the force applied to the ferromagnetic probe and the sample / probe distance. Solid line 1 is Van de acting between the tip of the probe and the atoms on the sample surface
The solid line 2 is the magnetic force received from the sample surface due to the combined force of r Waals and electrostatic attraction. 8 between sample 17 and leaf spring 1
When a DC voltage V1 of about [v] is applied from the DC voltage applying circuit 11, the distance between the sample 17 and the ferromagnetic probe becomes A in FIG.
Since it is a point, the ferromagnetic probe detects both magnetic force and electrostatic attraction. In this state, while performing the scanning of (1) in FIG. 6, the output signal from the distance control signal 13 is A / D.
It is converted into a digital signal by the converter 16 and input to the computer. Next, when a DC voltage V2 of about 1 [v] is applied between the sample 17 and the leaf spring 1, the distance between the sample 17 and the ferromagnetic probe moves to point B in FIG. The force received is electrostatic attraction rather than magnetic force or Van der Waa.
Is power becomes dominant. In this state, the scanning is continued with the scanning position (1) in FIG. 6, and the data is measured and input to the computer in the same manner as above. The measured data is converted into magnetic force data by a computer by subtracting the data value measured at the DC voltage V2 from the data value measured at the DC voltage V1 for each sampling data. Next, the scanning position is changed to (2) in FIG. 6 and the DC voltages V1 and V2 are changed in the same manner as above.
Are measured and converted into magnetic force data. By repeatedly imaging this operation until the in-plane scanning is completed,
A magnetic force image in which the influence of the unevenness on the sample surface is removed can be obtained.

【0017】[0017]

【発明の効果】以上述べてきたように、本発明によれば
試料と板バネ間に大小2種類の直流電圧を印加したとき
に得られる両者のデータ差から試料表面の凹凸の影響を
除去した磁気力像が得られた。特に問題となっていたテ
クステャー処理された磁気媒体でも、容易に磁区構造の
判別が可能となった。
As described above, according to the present invention, the influence of unevenness on the surface of the sample is removed from the data difference between the sample and the leaf spring, which are obtained when two kinds of large and small DC voltages are applied. A magnetic force image was obtained. The magnetic domain structure can be easily discriminated even in the magnetic medium subjected to the texturer treatment which has been a particular problem.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の磁気力顕微鏡の模式的断面図である。FIG. 1 is a schematic cross-sectional view of a magnetic force microscope of the present invention.

【図2】板バネの共振特性図である。FIG. 2 is a resonance characteristic diagram of a leaf spring.

【図3】板バネの振動振幅と探針/試料間距離の関係図
である。
FIG. 3 is a diagram showing a relationship between a vibration amplitude of a leaf spring and a probe / sample distance.

【図4】本発明の走査信号と試料/板バネ間の直流印加
電圧のタイミングチャートである
FIG. 4 is a timing chart of a scanning signal and a DC voltage applied between a sample and a leaf spring according to the present invention.

【図5】強磁性探針の受ける力の勾配と試料/探針間距
離の関係図である。
FIG. 5 is a diagram showing the relationship between the gradient of the force received by the ferromagnetic probe and the sample / probe distance.

【図6】面内走査の平面図である。FIG. 6 is a plan view of in-plane scanning.

【符号の説明】[Explanation of symbols]

1 板バネ 2 バイモルフ型圧電素子 3 交流電圧印加回路 4 半導体レーザ 5 反射鏡 6 光検出器 7 粗動機構 8 微動機構 9 レーザ光検出回路 10 交流変調波検出回路 11 直流電圧印加回路 12 走査電圧印加回路 13 距離制御回路 14 高圧増幅回路 15 A/D変換器 16 コンピュータ 17 試料 18 除振台 1 leaf spring 2 Bimorph type piezoelectric element 3 AC voltage application circuit 4 Semiconductor laser 5 reflector 6 Photodetector 7 Coarse movement mechanism 8 Fine movement mechanism 9 Laser light detection circuit 10 AC modulated wave detection circuit 11 DC voltage application circuit 12 Scan voltage application circuit 13 Distance control circuit 14 High-voltage amplifier circuit 15 A / D converter 16 computers 17 samples 18 Vibration isolation table

フロントページの続き (56)参考文献 特開 平4−296681(JP,A) 特開 平5−302965(JP,A) 特開 平4−181642(JP,A) 特開 平4−295781(JP,A) 特開 平3−274481(JP,A) 特開 平1−153987(JP,A) 特開 平5−332711(JP,A) 特許3117304(JP,B2) 特許2837083(JP,B2) 特許3070216(JP,B2) 特許2604968(JP,B2) 特許3142652(JP,B2) H.W.van Kesteren, A.J.den Boef,W.B.Z eper,J.H.M.Spruit, B.A.J.Jacobs,and P.F.Carcia,”Scanni ng magnetic force microscopy on Co/P t magneto−optical disks”,Journal of Applied Physics,米 国,American Institu te of Physics,1991年8 月15日,第70巻、第4号,p.2413− 2422 Yukio Honda et a l.,”A MFM Using an Optical Lever Sen sor and Its Applic ation to Longitudi nal Recording Medi a”,Japanese Journa l of Applied Physi cs,日本,1992年8月1日,第31巻、 Part2、第8A号,p.L1061−L 1064 (58)調査した分野(Int.Cl.7,DB名) G01N 13/10 - 13/24 G01N 27/87 JICSTファイル(JOIS)Continuation of front page (56) Reference JP-A-4-296681 (JP, A) JP-A-5-302965 (JP, A) JP-A-4-181642 (JP, A) JP-A-4-295781 (JP , A) JP 3-274481 (JP, A) JP 1-153987 (JP, A) JP 5-332711 (JP, A) JP 3117304 (JP, B2) JP 2837083 (JP, B2) Patent 3070216 (JP, B2) Patent 2604968 (JP, B2) Patent 3142652 (JP, B2) W. van Kesteren, A .; J. den Boef, W.D. B. Z eper, J .; H. M. Spruit, B.M. A. J. Jacobs, and P.C. F. Carcia, "Scanning magnetic force microscopic on Co / Pt magneto-optical discs", Journal of Applied physics, Vol. 2413-2422 Yukio Honda et al. , "A MFM Using an Optical Lever Sensor and Its Application to Longitudinal Recording Media", Japan, pp. 8th, pp. 8th, pp. 8th April, pp. 1p. . L1061-L 1064 (58) Fields investigated (Int.Cl. 7 , DB name) G01N 13/10-13/24 G01N 27/87 JISST file (JOIS)

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 強磁性材料よりなる先端が鋭利な探針
と、前記探針を端部に固定し、前記探針先端が試料表面
より受ける力を変位に変換する板バネと、前記板バネに
固定された前記板バネを振動させるためのバイモルフ型
圧電素子と、前記バイモルフ型圧電素子に交流電圧を印
加する交流電圧印加手段と、前記板バネの探針取り付け
面に対して裏面にレーザ光を照射する半導体レーザと、
前記板バネの裏面にて反射したレーザ光を検出する光検
出器と、前記板バネに対し前記試料を三次元に相対運動
させる微動機構と、前記バイモルフ型圧電素子に印加し
た印加電圧と印加電圧の周波数の交流変調波を検出す
る交流変調波検出手段と、前記試料と前記板バネとの間
に直流電圧を印加する直流電圧印加手段と、前記試料と
前記板バネ間の距離を制御する距離制御手段と、前記距
離制御手段からの距離制御信号をディジタル変換するデ
ジタル変換手段と、前記ディジタル信号を画像化する表
示手段からなる磁気力顕微鏡において、前記試料と前記
強磁性探針間に2通り以上の直流電圧を印加して測定を
行い、該各直流電圧印加時に得られたデータから試料表
面の凹凸の影響を受けない磁気力像を得ることを特徴と
する磁気力顕微鏡。
1. A probe which is made of a ferromagnetic material and has a sharp tip, a leaf spring which fixes the probe to an end thereof and converts a force received by the tip of the probe from a sample surface into a displacement, and the leaf spring. A bimorph-type piezoelectric element for vibrating the leaf spring fixed to the AC spring, an AC voltage applying means for applying an AC voltage to the bimorph-type piezoelectric element, and a laser beam on the back surface with respect to the probe mounting surface of the leaf spring. A semiconductor laser for irradiating
A photodetector for detecting the laser light reflected by the back surface of the leaf spring, a fine movement mechanism for relative movement in three dimensions of the sample with respect to the leaf spring, the applied voltage applied and the applied to the bimorph type piezoelectric element AC modulated wave detecting means for detecting an AC modulated wave having a frequency of voltage, DC voltage applying means for applying a DC voltage between the sample and the leaf spring, and controlling a distance between the sample and the leaf spring. In a magnetic force microscope comprising a distance control means, a digital conversion means for converting the distance control signal from the distance control means into a digital signal, and a display means for imaging the digital signal, 2 between the sample and the ferromagnetic probe is provided. A magnetic force image is obtained by applying a DC voltage equal to or higher than the above, and a magnetic force image that is not affected by the unevenness of the sample surface is obtained from the data obtained when each DC voltage is applied.
【請求項2】 前記各直流電圧印加時に得られたデータ
のうち、大きな直流電圧でのデータから小さな直流電圧
の時のデータを差し引くことことにより、試料表面の凹
凸の影響を受けない磁気力像を得ることを特徴とする請
求項1記載の磁気力顕微鏡。
2. Data obtained when each DC voltage is applied
Of the large DC voltage, the data from the small DC voltage
By subtracting the data at the time of
A contract characterized by obtaining a magnetic force image that is not affected by convexity.
The magnetic force microscope according to claim 1.
【請求項3】 前記試料と前記強磁性探針間に2通り以3. Two or more types are provided between the sample and the ferromagnetic probe.
上の直流電圧を走査線毎に変えて測定することを特徴とThe feature is that the above DC voltage is measured for each scanning line.
する請求項1または2記載の磁気力顕微鏡。The magnetic force microscope according to claim 1 or 2.
JP04701693A 1993-03-08 1993-03-08 Magnetic force microscope Expired - Fee Related JP3398411B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP04701693A JP3398411B2 (en) 1993-03-08 1993-03-08 Magnetic force microscope

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP04701693A JP3398411B2 (en) 1993-03-08 1993-03-08 Magnetic force microscope

Publications (2)

Publication Number Publication Date
JPH06258289A JPH06258289A (en) 1994-09-16
JP3398411B2 true JP3398411B2 (en) 2003-04-21

Family

ID=12763382

Family Applications (1)

Application Number Title Priority Date Filing Date
JP04701693A Expired - Fee Related JP3398411B2 (en) 1993-03-08 1993-03-08 Magnetic force microscope

Country Status (1)

Country Link
JP (1) JP3398411B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3989704B2 (en) * 2001-10-03 2007-10-10 エスアイアイ・ナノテクノロジー株式会社 Scanning probe microscope
JP5045902B2 (en) * 2007-05-25 2012-10-10 独立行政法人物質・材料研究機構 Scanning method and high magnetic field scanning probe microscope apparatus in scanning probe microscope

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2604968B2 (en) 1992-10-30 1997-04-30 インターナショナル・ビジネス・マシーンズ・コーポレイション Method for imaging magnetic structure or magnetic domain of sample and storage device using the same
JP2837083B2 (en) 1992-11-30 1998-12-14 ディジタル インストルメンツ,インコーポレイテッド Method and interaction apparatus for accurately measuring surface parameters excluding shape or performing shape related work
JP3070216B2 (en) 1992-01-13 2000-07-31 株式会社日立製作所 Surface microscope and microscopic method
JP3117304B2 (en) 1992-12-09 2000-12-11 オリンパス光学工業株式会社 Apparatus and method for separating and measuring surface information
JP3142652B2 (en) 1992-08-19 2001-03-07 セイコーインスツルメンツ株式会社 Magnetic force microscope

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3070216B2 (en) 1992-01-13 2000-07-31 株式会社日立製作所 Surface microscope and microscopic method
JP3142652B2 (en) 1992-08-19 2001-03-07 セイコーインスツルメンツ株式会社 Magnetic force microscope
JP2604968B2 (en) 1992-10-30 1997-04-30 インターナショナル・ビジネス・マシーンズ・コーポレイション Method for imaging magnetic structure or magnetic domain of sample and storage device using the same
JP2837083B2 (en) 1992-11-30 1998-12-14 ディジタル インストルメンツ,インコーポレイテッド Method and interaction apparatus for accurately measuring surface parameters excluding shape or performing shape related work
JP3117304B2 (en) 1992-12-09 2000-12-11 オリンパス光学工業株式会社 Apparatus and method for separating and measuring surface information

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
H.W.van Kesteren,A.J.den Boef,W.B.Zeper,J.H.M.Spruit,B.A.J.Jacobs,and P.F.Carcia,"Scanning magnetic force microscopy on Co/Pt magneto−optical disks",Journal of Applied Physics,米国,American Institute of Physics,1991年8月15日,第70巻、第4号,p.2413−2422
Yukio Honda et al.,"A MFM Using an Optical Lever Sensor and Its Application to Longitudinal Recording Media",Japanese Journal of Applied Physics,日本,1992年8月1日,第31巻、Part2、第8A号,p.L1061−L1064

Also Published As

Publication number Publication date
JPH06258289A (en) 1994-09-16

Similar Documents

Publication Publication Date Title
JP3249132B2 (en) A method for magnetically modulating a force sensor for alternating current detection in an atomic force microscope
US6134955A (en) Magnetic modulation of force sensor for AC detection in an atomic force microscope
US5319977A (en) Near field acoustic ultrasonic microscope system and method
Rugar et al. Force microscope using a fiber‐optic displacement sensor
US6185991B1 (en) Method and apparatus for measuring mechanical and electrical characteristics of a surface using electrostatic force modulation microscopy which operates in contact mode
US5406832A (en) Synchronous sampling scanning force microscope
Bruland et al. Optimal control of force microscope cantilevers. II. Magnetic coupling implementation
US5990477A (en) Apparatus for machining, recording, and reproducing, using scanning probe microscope
US5266897A (en) Magnetic field observation with tunneling microscopy
US20020130658A1 (en) Magnetic head measuring apparatus and measuring method applied to the same apparatus
EP0872707B1 (en) Apparatus for measuring exchange force
US5681987A (en) Resonance contact scanning force microscope
JP3398411B2 (en) Magnetic force microscope
JPH09218213A (en) Method and apparatus for observing considerably minute magnetic domain
JP2003065935A (en) Non-contact atomic force microscope, magnetic force microscope, and static electricity microscope
JPH06323845A (en) Thin film force detection probe for scanning force microscope
JP3142652B2 (en) Magnetic force microscope
JPH08211078A (en) Force gradient detection method, information reproduction method, information reproduction device, and information recording/reproduction device
JP3428403B2 (en) Friction force probe microscope and method for identifying atomic species and materials using friction force probe microscope
JP3376374B2 (en) Method of creating image of sample surface in probe microscope
JP2002286613A (en) High-frequency characteristic measuring instrument
JP3026138B2 (en) Magnetic force microscope
JPH0996644A (en) Magnetic force microscope
Crozier The Development of a High Resolution Scanning Force Imaging System
Khalid The Development of Scanning Probe Microscopy Instrumentation and Techniques

Legal Events

Date Code Title Description
S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090214

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090214

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100214

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100214

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110214

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110214

Year of fee payment: 8

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: R3D03

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110214

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120214

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130214

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees