JP2002286613A - High-frequency characteristic measuring instrument - Google Patents

High-frequency characteristic measuring instrument

Info

Publication number
JP2002286613A
JP2002286613A JP2001085820A JP2001085820A JP2002286613A JP 2002286613 A JP2002286613 A JP 2002286613A JP 2001085820 A JP2001085820 A JP 2001085820A JP 2001085820 A JP2001085820 A JP 2001085820A JP 2002286613 A JP2002286613 A JP 2002286613A
Authority
JP
Japan
Prior art keywords
probe
frequency
sample
cantilever
characteristic measuring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001085820A
Other languages
Japanese (ja)
Inventor
Masayuki Abe
真之 阿部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2001085820A priority Critical patent/JP2002286613A/en
Publication of JP2002286613A publication Critical patent/JP2002286613A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a high-frequency characteristic measuring instrument which can make high-spatial-resolution measurement reflecting the distribution of an excitation field with accuracy. SOLUTION: While a probe 1 is vibrated in the direction of the normal line to the surface of a sample 5 with a fixed amplitude at or near the resonance frequency of the probe 1 by impressing a signal upon a piezoelectric element 3 from a signal source 4, the relative position between the surface of the sample 5 and probe 1 is scanned and controlled. In addition, an excitation source 6 is caused to generate the excitation field which is amplitude-modulated at a prescribed carrier frequency and a modulated frequency on the surface of the sample 5. The signal corresponding to the excitation field generated on the surface of the sample 5 is detected as a change in oscillation frequency of the probe 1 or the phase change between the vibration of the probe 1 and that of the signal source 4 by means of a frequency detector/phase detector 8 and a synchronization detector 9.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、物質表面の高周波
特性を測定する高周波特性測定装置に関し、特に、走査
型プローブ顕微鏡(SPM: Scanning Probe Microscope)
の技術を用いて物質表面の高周波特性を測定する高周波
特性測定装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an apparatus for measuring high-frequency characteristics of a material surface, and more particularly to a scanning probe microscope (SPM).
The present invention relates to a high-frequency characteristic measuring device for measuring high-frequency characteristics of a material surface using the technique described in (1).

【0002】[0002]

【従来の技術】従来、搬送波周波数ωc及び変調周波数
ωmで振幅変調された信号を被測定物である試料に印加
し、その試料から生じた高周波(ωc)の励起された場
(電場や磁場など)を、探針−試料間の相互作用によっ
て低周波(ωm)に変換する技術が知られている。こう
した技術は、例えばH. Yokoyama and T. Inoue, Thin S
olid Films 242 (1994) 33. (電子技術総合研究所)
(以下、先行技術1と称す)や、R. Proksch and P. Ne
ilson, S. Austvold and J. J. Schmidt, AppliedPhysi
cs Letters 74 (1999) 1308. (Digital Instruments e
t al.)(以下、先行技術2と称す)にも示されてい
る。
2. Description of the Related Art Conventionally, a signal which is amplitude-modulated at a carrier frequency ωc and a modulation frequency ωm is applied to a sample to be measured, and a high-frequency (ωc) excited field (electric field, magnetic field, etc.) generated from the sample is applied. ) Is converted into low frequency (ωm) by interaction between the probe and the sample. Such technologies are, for example, H. Yokoyama and T. Inoue, Thin S
olid Films 242 (1994) 33. (Electronic Technology Research Institute)
(Hereinafter referred to as Prior Art 1), R. Proksch and P. Ne
ilson, S. Austvold and JJ Schmidt, AppliedPhysi
cs Letters 74 (1999) 1308. (Digital Instruments e
t al.) (hereinafter referred to as prior art 2).

【0003】先行技術1は、搬送波周波数ωc及び変調
周波数ωmで振幅変調された信号を試料に印加し、探針
−試料間における高周波成分(ωc)の静電気力相互作
用を低周波成分(ωm)の相互作用に変換して測定する
ものである。実際の測定においては、測定に用いるカン
チレバーの機械的共振周波数(ωr)と振幅変調する周
波数の関係を、ωc>ωr及びωm<ωrに設定し、探
針−試料間の相互作用によって生じたカンチレバー変位
の振動振幅(ωmまたは2ωm成分)を同期検波する。
なお、探針としては導電性のものを用いている。
In prior art 1, an amplitude-modulated signal at a carrier frequency ωc and a modulation frequency ωm is applied to a sample, and an electrostatic force interaction of a high-frequency component (ωc) between the probe and the sample is reduced to a low-frequency component (ωm). Is converted into an interaction. In actual measurement, the relationship between the mechanical resonance frequency (ωr) of the cantilever used for the measurement and the frequency of amplitude modulation is set to ωc> ωr and ωm <ωr, and the cantilever generated by the interaction between the probe and the sample is set. The vibration amplitude (ωm or 2ωm component) of the displacement is synchronously detected.
Note that a conductive probe is used as the probe.

【0004】先行技術2も、搬送波周波数ωc及び変調
周波数ωmで振幅変調された信号を試料に印加し、探針
−試料間における高周波成分(ωc)の磁気力相互作用
を低周波成分(ωm)の相互作用に変換するものであ
る。実際の測定においては、測定に用いるカンチレバー
の機械的共振周波数(ωr)と振幅変調する周波数の関
係を、ωc>ωr及びωm=ωrに設定し、この条件で
相互作用によって生じたカンチレバー変位の振動振幅
(ωm成分)を測定する。この場合、変調周波数ωmを
ωm=ωrと設定することで、カンチレバーのQ値によ
り検出感度を向上させている。また、探針としては、磁
性体もしくは被磁性体探針に磁性体を付着させたものを
用いている。
Prior art 2 also applies a signal amplitude-modulated at a carrier frequency ωc and a modulation frequency ωm to a sample to reduce the magnetic force interaction of a high frequency component (ωc) between the probe and the sample to a low frequency component (ωm). Into the interaction of In the actual measurement, the relationship between the mechanical resonance frequency (ωr) of the cantilever used for the measurement and the frequency at which the amplitude is modulated is set to ωc> ωr and ωm = ωr, and the vibration of the cantilever displacement caused by the interaction under this condition. The amplitude (ωm component) is measured. In this case, by setting the modulation frequency ωm to ωm = ωr, the detection sensitivity is improved by the Q value of the cantilever. As the probe, a magnetic material or a magnetic material to which a magnetic material is attached to a magnetic material probe is used.

【0005】先行技術1及び2のいずれにおいても、走
査型プローブ顕微鏡の技術が用いられているが、探針と
試料表面との励起場の相互作用をカンチレバーの変位
(振動振幅)として測定している。このような測定法で
は、励起場が小さい場合には、相互作用が小さく、カン
チレバーの振動振幅が小さくなるという特徴がある。逆
に、励起場が大きい場合には、相互作用が大きく、カン
チレバーの振動振幅が大きくなるという特徴がある。
In both of the prior arts 1 and 2, the technique of the scanning probe microscope is used. However, the interaction of the excitation field between the probe and the sample surface is measured as the displacement (vibration amplitude) of the cantilever. I have. Such a measuring method is characterized in that when the excitation field is small, the interaction is small and the vibration amplitude of the cantilever is small. Conversely, when the excitation field is large, the interaction is large and the vibration amplitude of the cantilever is large.

【0006】なお、その他の技術として、位相もしくは
周波数検出を行う走査プローブ顕微鏡(市販装置に組み
込まれたものがある)を用いて直流(DC)の場を測定
する技術が知られている(USP 5,519,212, RE36,488参
照)。また、真空中において周波数検出を行うことによ
り原子もしくは原子欠陥を明瞭に観察する技術が知られ
ている(F. J. Giessibl, Science 260 (1995) 67.参
照)。しかし、これらの技術は高周波応答を測定するも
のではない。
As another technique, there is known a technique of measuring a direct current (DC) field using a scanning probe microscope for detecting the phase or the frequency (there is one incorporated in a commercially available device) (USP). 5,519,212, RE36,488). Also, a technique for clearly observing atoms or atomic defects by performing frequency detection in a vacuum is known (see FJ Giessibl, Science 260 (1995) 67.). However, these techniques do not measure high frequency response.

【0007】また、周波数検出方式を用い、低周波の励
起場(正弦波)を生じさせ、表面電位(特開平11-23588
もしくはUSP 6,073,485参照)や原子欠陥の帯電状況
(Y. Sugawara, T. Uchihashi, M. Abe and S. Morita,
Applied Surface Science 140,(1999) 371.参照)、近
接場光(M. Abe, Y. Sugawara, K. Sawada, Y. Andoh a
nd S. Morita, Applied Surface Science 140, (1999)
383.参照)を画像化する技術が提案されている。これら
の技術は励起している周波数と1倍もしくは2倍に同期
した相互作用の周波数成分を測定するものであるが、そ
の目的は同時に探針に働くファン・デル・ワールス相互
作用との分離をおこなうものであり、周波数応答を測定
するものではない。また、振幅変調の励起場を生じさせ
て測定しているわけでもない。
Further, using a frequency detection method, a low-frequency excitation field (sine wave) is generated, and a surface potential (Japanese Patent Laid-Open No. 11-23588) is used.
Or U.S. Pat. No. 6,073,485) and the charging status of atomic defects (Y. Sugawara, T. Uchihashi, M. Abe and S. Morita,
Applied Surface Science 140, (1999) 371), near-field light (M. Abe, Y. Sugawara, K. Sawada, Y. Andoh a)
nd S. Morita, Applied Surface Science 140, (1999)
383.) has been proposed. These techniques measure the frequency component of the interaction that is one or two times synchronized with the exciting frequency, but the purpose is to separate it from the van der Waals interaction that acts on the probe at the same time. It does not measure the frequency response. Further, the measurement is not performed by generating an excitation field of amplitude modulation.

【0008】[0008]

【発明が解決しようとする課題】ところで、上述の先行
技術1及び先行技術2で使用されるようなカンチレバー
が振動する走査型プローブ顕微鏡は、一般的にダイナミ
ックモードSPMと呼ばれる。ダイナミックモードSP
Mでは探針−試料間の距離が時間的に変化するため、両
者間の相互作用は時間平均として表され、振動振幅と探
針−試料間距離に依存する(F. J. Giessibl, Physical
Review B 56 (1997) 16010.を参照)。また、試料表面
に生じているあらゆる場は非線形的に減衰していく。
The scanning probe microscope in which the cantilever vibrates as used in the above-mentioned prior arts 1 and 2 is generally called a dynamic mode SPM. Dynamic mode SP
In M, since the distance between the probe and the sample changes with time, the interaction between the two is expressed as a time average and depends on the vibration amplitude and the distance between the probe and the sample (FJ Giessibl, Physical
Review B 56 (1997) 16010). In addition, any field generated on the sample surface attenuates nonlinearly.

【0009】これらを考慮すると、探針の走査中(画像
測定中)においては探針−試料間距離と振動振幅は一定
であることが望ましい。ここで「探針−試料間距離の一
定」とは、探針の振心の中心位置と試料表面との距離だ
けでなく、振動中の最近接距離も一定であることを意味
する。
In consideration of these, it is desirable that the distance between the probe and the sample and the vibration amplitude are constant during the scanning of the probe (during image measurement). Here, "constant distance between the probe and the sample" means that not only the distance between the center position of the pivot of the probe and the sample surface but also the closest distance during vibration is constant.

【0010】しかしながら、先行技術1及び先行技術2
は、探針−試料間相互作用の大きさによってカンチレバ
ーの変位が異なるため、上述の条件を満たさない。この
ため、探針−試料間距離および振動振幅を一定にした条
件で測定することができず、励起場の分布を精度よく反
映した相互作用の測定を行うことは困難である。
However, Prior Art 1 and Prior Art 2
Does not satisfy the above condition because the displacement of the cantilever varies depending on the magnitude of the interaction between the probe and the sample. For this reason, measurement cannot be performed under the condition that the probe-sample distance and the vibration amplitude are constant, and it is difficult to measure the interaction that accurately reflects the distribution of the excitation field.

【0011】また、探針は先鋭であるが、角錐の形をし
ており、距離が離れる向きに(カンチレバー側に近づく
向きに)広がっていく。このような探針を用いて高い空
間分解能で測定するためには、領域が微小な探針先端で
の相互作用を測定することが望ましい。逆に、探針の背
面側(広がりをもった部分)で相互作用を測定した場合
は、探針先端よりも相互作用領域が大きくなり分解能が
悪くなる。実際の測定では、探針先端と背面における相
互作用を分離することができないため、測定方式がどち
らの相互作用を支配的に検出するものであるかによって
空間分解能が決まる。言い換えれば、探針背面の効果を
低減する方法で測定しているかどうかによって、空間分
解能を向上させることができるかが決まる。
Although the probe is sharp, it has the shape of a pyramid, and spreads away (toward the cantilever). In order to perform measurement with high spatial resolution using such a probe, it is desirable to measure the interaction at the tip of the probe having a small area. Conversely, when the interaction is measured on the back side (spread portion) of the probe, the interaction area becomes larger than at the tip of the probe, and the resolution is deteriorated. In the actual measurement, the interaction between the tip and the back of the probe cannot be separated, so that the spatial resolution is determined by which of the interactions detects the dominant interaction. In other words, whether or not the spatial resolution can be improved depends on whether or not measurement is performed by a method that reduces the effect of the back surface of the probe.

【0012】しかしながら、上述の先行技術1及び先行
技術2では、相互作用の強さによってカンチレバーの変
位が異なるため、探針背面での相互作用の影響が非常に
大きい。このため、空間分解能を向上させることは困難
である。
However, in the above-described prior art 1 and prior art 2, since the displacement of the cantilever differs depending on the strength of the interaction, the influence of the interaction on the back surface of the probe is very large. For this reason, it is difficult to improve the spatial resolution.

【0013】このように、従来、SPMで物質表面に局
在する励起場の高周波応答を測定する場合に、(1)励
起場の分布に良く対応した測定信号もしくはその画像を
得ることができない、(2)SPM本来の空間分解能で
測定することができない、という問題があった。
As described above, conventionally, when measuring the high-frequency response of an excitation field localized on a material surface by SPM, (1) it is not possible to obtain a measurement signal or an image thereof well corresponding to the distribution of the excitation field. (2) There is a problem that the SPM cannot be measured at the original spatial resolution.

【0014】本発明は上記実状に鑑みてなされたもので
あり、励起場の分布が精度よく反映された高い空間分解
能の測定を行うことのできる高周波特性測定装置を提供
することを目的とする。
The present invention has been made in view of the above circumstances, and has as its object to provide a high-frequency characteristic measuring apparatus capable of measuring a high spatial resolution in which the distribution of an excitation field is accurately reflected.

【0015】[0015]

【課題を解決するための手段】本発明に係る高周波特性
測定装置は、試料表面の高周波特性の測定に用いられる
探針と、前記探針を前記試料表面の法線方向に前記探針
の共振周波数もしくはそれに近い周波数で一定の振幅で
振動させる振動手段と、前記試料表面と前記探針との相
対位置を走査及び制御する走査制御手段と、前記試料表
面に所定の搬送波周波数と変調周波数で振幅変調された
励起場を発生させる励起手段と、前記励起手段によって
前記試料表面に発生した前記励起場に対応する信号を前
記探針の振動周波数変化として検出する信号検出手段と
を具備することを特徴とする。
According to the present invention, there is provided an apparatus for measuring high-frequency characteristics, comprising: a probe used for measuring high-frequency characteristics of a sample surface; and a probe which resonates in a direction normal to the sample surface. A vibration means for vibrating at a constant amplitude at a frequency or a frequency close thereto, a scanning control means for scanning and controlling a relative position between the sample surface and the probe, and an amplitude at a predetermined carrier frequency and a modulation frequency on the sample surface. Excitation means for generating a modulated excitation field, and signal detection means for detecting a signal corresponding to the excitation field generated on the sample surface by the excitation means as a vibration frequency change of the probe. And

【0016】また、本発明に係る高周波特性測定装置
は、試料表面の高周波特性の測定に用いられる探針と、
前記探針を前記試料表面の法線方向に前記探針の共振周
波数もしくはそれに近い周波数で一定の振幅で振動させ
る振動手段と、前記試料表面と前記探針との相対位置を
走査及び制御する走査制御手段と、前記試料表面に所定
の搬送波周波数と変調周波数で振幅変調された励起場を
発生させる励起手段と、前記励起手段によって前記試料
表面に発生した前記励起場に対応する信号を前記探針の
振動と前記振動手段の振動との位相変化として検出する
信号検出手段とを具備することを特徴とする。
A high-frequency characteristic measuring apparatus according to the present invention comprises a probe used for measuring high-frequency characteristics of a sample surface;
Vibrating means for vibrating the probe at a constant amplitude at or near the resonance frequency of the probe in the normal direction of the sample surface, and scanning for controlling and controlling the relative position between the sample surface and the probe; Control means, excitation means for generating an excitation field amplitude-modulated at a predetermined carrier frequency and modulation frequency on the sample surface, and a probe corresponding to the excitation field generated on the sample surface by the excitation means, Signal detection means for detecting a phase change between the vibration of the vibration means and the vibration of the vibration means.

【0017】[0017]

【発明の実施の形態】以下、図面を参照して本発明の実
施形態を説明する。
Embodiments of the present invention will be described below with reference to the drawings.

【0018】本実施形態では、圧電素子と外部信号を用
いてカンチレバーを機械的共振周波数(ωr)で場の強
度に関係なく一定の振幅で試料表面の法線方向に振動さ
せ、この状態を保ちながらカンチレバー振動の位相変化
(位相シフト)もしくは周波数変化(周波数シフト:
T. R. Albrecht, P. Grutter, D. Horne, and D. Ruga
r, Journal of Applied Physics, 69 (1991) 668.参
照)に含まれる変調周波数(ωm)に同期した成分を測
定する。この場合、SPMの測定方法である周波数もし
くは位相検出方式を高周波励起場測定系に組み込んでお
く。
In the present embodiment, the cantilever is vibrated in the normal direction of the sample surface at a constant amplitude irrespective of the field strength at the mechanical resonance frequency (ωr) using the piezoelectric element and the external signal, and this state is maintained. While the phase change (phase shift) or frequency change (frequency shift:
TR Albrecht, P. Grutter, D. Horne, and D. Ruga
r, Journal of Applied Physics, 69 (1991) 668.), the component synchronized with the modulation frequency (ωm) is measured. In this case, the frequency or phase detection method, which is the SPM measurement method, is incorporated in the high-frequency excitation field measurement system.

【0019】探針(およびカンチレバー)を場の強度に
関係なく一定の振幅で振動させることにより、2点(一
定振幅の両端)における力の差を測定することになる。
この場合、探針背面に働く力は大きいが、振動している
ときの2点における力の差は小さい。一方、探針先端は
体積が小さいにもかかわらず、場の変化が大変大きいた
め、2点における力の差が大きくなる。これにより、探
針先端の効果を増大させ、分解能を向上させることがで
きる。
By vibrating the probe (and the cantilever) at a constant amplitude irrespective of the strength of the field, the difference in force at two points (both ends at a constant amplitude) will be measured.
In this case, the force acting on the back surface of the probe is large, but the difference between the forces at the two points when vibrating is small. On the other hand, despite the small volume of the tip of the probe, the change in the field is very large, so that the difference between the forces at the two points is large. Thereby, the effect of the tip of the probe can be increased and the resolution can be improved.

【0020】また、本実施形態では、探針の材質を選択
することで、電気的ならびに磁気的、光などあらゆる励
起場の測定系に適用できるものとしている。
Further, in this embodiment, by selecting the material of the probe, the probe can be applied to a measurement system for any excitation field such as electric, magnetic, and light.

【0021】図1は、本発明の一実施形態に係る高周波
特性測定装置の構成を模式的に示す概念図である。この
高周波特性測定装置は、高周波走査型プローブ顕微鏡を
用いて実現される。
FIG. 1 is a conceptual diagram schematically showing a configuration of a high-frequency characteristic measuring apparatus according to one embodiment of the present invention. This high-frequency characteristic measuring apparatus is realized using a high-frequency scanning probe microscope.

【0022】本測定装置は、相互作用を測定するための
探針1と、この探針1を支えるカンチレバー2と、この
カンチレバー2を支え、探針1とは反対側に取り付けて
あり、探針1及びカンチレバー2を振動させる圧電素子
3と、この圧電素子3に信号を印加する信号源4と、測
定の対象となる試料5と、この試料5表面に励起場を発
生させる励起源6と、カンチレバー2の変位を検出する
変位検出計7と、この変位検出計7の出力信号からカン
チレバー2の周波数変化もしくは位相変化を測定する周
波数検出器/位相検出器(周波数検出器もしくは位相検
出器)8と、この周波数検出器/位相検出器8の出力か
ら励起源6の変調周波数に同期した成分を検出し、高周
波の応答に対応した信号を出力する同期検波器9とで構
成される。
This measuring device comprises a probe 1 for measuring an interaction, a cantilever 2 for supporting the probe 1, and a probe for supporting the cantilever 2 and mounted on a side opposite to the probe 1. A piezoelectric element 3 for vibrating the piezoelectric element 1 and the cantilever 2, a signal source 4 for applying a signal to the piezoelectric element 3, a sample 5 to be measured, an excitation source 6 for generating an excitation field on the surface of the sample 5, A displacement detector 7 for detecting the displacement of the cantilever 2, and a frequency detector / phase detector (frequency detector or phase detector) 8 for measuring a frequency change or a phase change of the cantilever 2 from an output signal of the displacement detector 7. And a synchronous detector 9 that detects a component synchronized with the modulation frequency of the excitation source 6 from the output of the frequency detector / phase detector 8 and outputs a signal corresponding to a high-frequency response.

【0023】次に、測定方法について説明する。信号源
4から圧電素子3に信号を印加することにより、探針1
及びカンチレバー2を試料5表面の法線方向に探針1の
共振周波数(カンチレバー2の共振周波数)ωrもしく
はそれに近い周波数で一定の振幅で振動させる。
Next, a measuring method will be described. By applying a signal from the signal source 4 to the piezoelectric element 3, the probe 1
Then, the cantilever 2 is oscillated with a constant amplitude at a resonance frequency of the probe 1 (resonance frequency of the cantilever 2) ωr or a frequency close thereto in the normal direction of the surface of the sample 5.

【0024】なお、この場合、探針1を試料に近づけた
ときにファン・デル・ワールス相互作用等により探針先
端が試料に吸着しないよう、カンチレバー2は探針1に
はたらく力勾配より大きいばね定数のものを使用するこ
とが望ましい。
In this case, the cantilever 2 has a spring larger than the force gradient acting on the probe 1 so that the tip of the probe does not stick to the sample due to van der Waals interaction or the like when the probe 1 approaches the sample. It is desirable to use a constant one.

【0025】励起源6により、試料5表面に搬送波周波
数ωcと変調周波数ωmとで振幅変調された励起場を発
生させる。
The excitation source 6 generates an excitation field on the surface of the sample 5 whose amplitude is modulated at the carrier frequency ωc and the modulation frequency ωm.

【0026】なお、この場合、カンチレバー2の共振周
波数ωr、搬送波周波数ωc、ならびに変調周波数ωm
の関係がωc>>ωr及びωm<<ωrとなるように設
定しておく。また、相互作用の検出感度を向上させるた
めに、変調周波数ωmはカンチレバー2の共振周波数ω
rの1/10以下に設定しておくことが望ましい。
In this case, the resonance frequency ωr of the cantilever 2, the carrier frequency ωc, and the modulation frequency ωm
Are set so that ωc >> ωr and ωm << ωr. In order to improve the detection sensitivity of the interaction, the modulation frequency ωm is set to the resonance frequency ω of the cantilever 2.
It is desirable to set it to 1/10 or less of r.

【0027】探針1を試料5に近づけたとき、力学的相
互作用が働く。このとき、相互作用によって高周波であ
る搬送波周波数ωc成分が低周波の変調周波数ωm成分
に変換され、周波数検出器/位相検出器8及び同期検波
器9による測定が可能となる。
When the probe 1 is brought close to the sample 5, a mechanical interaction occurs. At this time, the high-frequency carrier frequency ωc component is converted into the low-frequency modulation frequency ωm component by the interaction, and the measurement by the frequency detector / phase detector 8 and the synchronous detector 9 becomes possible.

【0028】周波数検出器/位相検出器8及び同期検波
器9により、励起源6によって試料5表面が発生した励
起場に対応する信号を、探針1の振動周波数変化として
検出するか、もしくは探針1の振動とカンチレバー2の
振動との位相変化として検出する。
A signal corresponding to the excitation field generated on the surface of the sample 5 by the excitation source 6 is detected by the frequency detector / phase detector 8 and the synchronous detector 9 as a change in the vibration frequency of the probe 1, or the signal is detected. It is detected as a phase change between the vibration of the needle 1 and the vibration of the cantilever 2.

【0029】なお、上記の方法において、表面形状を測
定しながら高周波応答の測定を行うことが可能である。
また、振幅変調の搬送波周波数ωcを変更しながら周波
数応答測定を測定することが可能である。
In the above method, high-frequency response can be measured while measuring the surface shape.
Further, it is possible to measure the frequency response while changing the carrier frequency ωc of the amplitude modulation.

【0030】実際の測定では、図4に示されように、試
料5のどのような物性を測定するかによって励起源なら
びに励起方法、探針の材質を適当に選択する。例えば、
被測定物5の高周波電場応答を測定する場合には、被測
定物5に電圧(絶縁体の場合は背面に電極を設けるなど
して試料5に高周波の電場がかかるようにする)を印加
させ、探針1には導電性のもの(導体や導電性半導体な
ど)を用いる。磁気特性を測定するには、探針1には磁
性体もしくは被磁性体に磁性体を付着させたものを用
い、励起源6としては磁界発生のためにコイルを用い電
流を印加する場合などが考えられる。
In actual measurement, as shown in FIG. 4, an excitation source, an excitation method, and a material of a probe are appropriately selected depending on what physical properties of the sample 5 are to be measured. For example,
When measuring the high-frequency electric field response of the DUT 5, a voltage is applied to the DUT 5 (in the case of an insulator, a high-frequency electric field is applied to the sample 5 by providing an electrode on the back surface or the like). The probe 1 is made of a conductive material (such as a conductor or a conductive semiconductor). In order to measure the magnetic characteristics, a probe 1 having a magnetic substance or a magnetic substance to which a magnetic substance is attached is used, and the excitation source 6 uses a coil for generating a magnetic field and applies a current. Conceivable.

【0031】励起源6としては、主に信号発生器を用
い、その電気的信号を直接試料5に印加する、もしくは
励起する場を発生させる装置に信号を入力する。信号発
生器は単体で振幅変調信号を出力するもの、あるいは2
個以上の回路を組み合わせたもので構成される。
As the excitation source 6, a signal generator is mainly used, and its electric signal is directly applied to the sample 5, or a signal is input to a device for generating a field to be excited. A signal generator that outputs an amplitude modulated signal by itself, or 2
It is composed of a combination of two or more circuits.

【0032】圧電素子3に印加する信号源4の信号は、
前述したようにカンチレバー2の共振周波数もしくはそ
れに近い周波数ωrとする。
The signal of the signal source 4 applied to the piezoelectric element 3 is
As described above, the resonance frequency of the cantilever 2 or a frequency ωr close thereto is set.

【0033】変位検出計7としては、光干渉計で測定す
る場合や4分割フォトダイオードを用いる場合など、様
々な変位検出法を適用することが可能である。また、カ
ンチレバーの変位によって生じる電気信号を測定するよ
うな場合にも適用できる。
As the displacement detector 7, it is possible to apply various displacement detection methods such as a case where measurement is performed by an optical interferometer and a case where a four-division photodiode is used. Further, the present invention can be applied to a case where an electric signal generated by displacement of a cantilever is measured.

【0034】周波数検出器/位相検出器8としては、L
C共振回路とダイオードを用いた簡単な検波方法だけで
なく、ピークディファレンシャル(peak differentia
l)検波、レシオ(ratio)検波、フォスタシーレ(Fost
er Seeley)検波、PLL(phase lock loop)復調、S
SB(single sideband)復調、DSP(digital signa
l processor)を用いたデジタル復調など、様々な検波
方法が適用可能である。
As the frequency detector / phase detector 8, L
Not only a simple detection method using a C resonance circuit and a diode, but also a peak differential (peak differentia)
l) Detection, ratio (ratio) detection, fostacyle (Fost)
er Seeley) detection, PLL (phase lock loop) demodulation, S
SB (single sideband) demodulation, DSP (digital signa
Various detection methods such as digital demodulation using an L processor are applicable.

【0035】周波数検出を行う場合は、変位検出計7、
信号源4、圧電素子3、カンチレバー2、及び探針1で
正帰還発信系を構成し、周波数シフトの測定を行う場合
もある。また、位相調節器を正帰還発信系に組み込み、
カンチレバー2を適切に加振できるようにする場合もあ
る。
When frequency detection is performed, the displacement detector 7
In some cases, the signal source 4, the piezoelectric element 3, the cantilever 2, and the probe 1 constitute a positive feedback transmission system to measure a frequency shift. In addition, the phase adjuster is incorporated in the positive feedback transmission system,
In some cases, the cantilever 2 can be appropriately vibrated.

【0036】また、実際の測定では、走査用圧電素子を
カンチレバー2側と試料5側のいずれか、もしくは両方
に取り付け、探針1と試料5の3次元での相対位置を制
御し、測定の制御もしくはデータ保存のためにコンピュ
ータを用い表面形状(凹凸)と同時もしくは切り替えな
がら測定(USP 5,418,363)を行い、空気中だけでな
く、真空中・溶液中など、様々な環境下で行う場合もあ
る。
In the actual measurement, the scanning piezoelectric element is attached to one or both of the cantilever 2 and the sample 5 side, and the relative position of the probe 1 and the sample 5 in three dimensions is controlled to perform the measurement. Measurement (USP 5,418,363) is performed simultaneously with or switching to the surface shape (roughness) using a computer for control or data storage, and may be performed not only in air but also in various environments such as in a vacuum or in a solution. .

【0037】表面形状の測定は、静的モード(contact
mode, G. Binnig, C. F. Quate andCh. Gerber, Physic
al Review Letters 56 (1986) 930.)、タッピングモー
ド(tapping mode, USP 5,412,980)、スロープ検出(s
lop detection, Y. Martin, C. C. Williams and H. K.
Wickramasinghe, Journal of Applied Physics 61(198
7) 1307.)、周波数検出方式非接触ダイナミックモード
(noncontact dynamic mode with frequency modulatio
n detection method T. R. Albrecht, P. Grutter, D.
Horne, and D. Rugar, Journal of Applied Physics, 6
9 (1991) 668.)などの方式を測定試料および探針・測
定環境に応じて選択する。
The measurement of the surface shape is performed in the static mode (contact mode).
mode, G. Binnig, CF Quate and Ch. Gerber, Physic
al Review Letters 56 (1986) 930.), tapping mode (USP 5,412,980), slope detection (s
lop detection, Y. Martin, CC Williams and HK
Wickramasinghe, Journal of Applied Physics 61 (198
7) 1307.), noncontact dynamic mode with frequency modulatio
n detection method TR Albrecht, P. Grutter, D.
Horne, and D. Rugar, Journal of Applied Physics, 6
9 (1991) 668.) is selected according to the sample to be measured and the probe / measurement environment.

【0038】図2は、磁気記録ヘッドの高周波磁界測定
を行う場合の測定装置の一構成例を示す図である。
FIG. 2 is a diagram showing an example of the configuration of a measuring apparatus for measuring a high-frequency magnetic field of a magnetic recording head.

【0039】この構成例による測定装置は、磁性体もし
くは非磁性体に磁性体を付着させて磁化された探針10
1と、この探針101を支えるカンチレバー102と、
このカンチレバー102を支え、探針101とは反対側
に取り付けてあり、探針101ならびにカンチレバー1
02を振動させる圧電素子103と、この圧電素子10
3に信号を印加する信号源(共振周波数:ωr)104
と、試料である磁気記録ヘッド105と、この磁気記録
ヘッド105に電流を印加し、磁界を発生させるAM信
号発生器(搬送周波数:ωr,変調周波数:ωm)10
6と、磁気記録ヘッド105に流れる電流を測定する電
流値モニタ107と、探針101と磁気記録ヘッド10
5との3次元の相対位置を定める走査用圧電素子108
と、カンチレバー102の変位を検出する変位検出計1
09と、信号発生器104の出力と変位検出計109の
出力との位相差を出力する位相検出器110と、この位
相検出器110から出力された信号のうち、AM信号発
生器106の変調成分に同期した成分を検波する同期検
波器111と、変位検出計109の出力の実効値(root
mean square)を出力する振幅/直流電圧変換回路11
2と、振幅/直流電圧変換回路(RMS−DC回路)1
12の出力があらかじめ設定しておいた値になるように
(探針−試料間距離が一定となるように)、走査用圧電
素子108を制御するフィードバック回路113と、同
期検波器111の出力から得られる高周波磁界の情報と
フィードバック回路113の出力から得られる表面形状
の情報を記録・保存し、装置全体115の制御および各
種パラメータの監視を行う信号処理装置114とで構成
される。
The measuring apparatus according to this configuration example is a probe 10 magnetized by attaching a magnetic substance to a magnetic substance or a non-magnetic substance.
1, a cantilever 102 for supporting the probe 101,
The cantilever 102 is supported and attached to the opposite side of the probe 101, and the probe 101 and the cantilever 1
02 vibrating the piezoelectric element 103 and the piezoelectric element 10
A signal source (resonance frequency: ωr) 104 for applying a signal to 3
And a magnetic recording head 105 as a sample, and an AM signal generator (carrier frequency: ωr, modulation frequency: ωm) 10 for applying a current to the magnetic recording head 105 to generate a magnetic field
6, a current monitor 107 for measuring a current flowing through the magnetic recording head 105, a probe 101, and the magnetic recording head 10.
Scanning piezoelectric element 108 for determining a three-dimensional relative position with respect to 5
And a displacement detector 1 for detecting the displacement of the cantilever 102
09, a phase detector 110 that outputs a phase difference between an output of the signal generator 104 and an output of the displacement detector 109, and a modulation component of the AM signal generator 106 among signals output from the phase detector 110. And a synchronous detector 111 for detecting a component synchronized with the effective value (root) of the output of the displacement detector 109.
amplitude / DC voltage conversion circuit 11 that outputs mean square)
2 and amplitude / DC voltage conversion circuit (RMS-DC circuit) 1
The feedback circuit 113 for controlling the scanning piezoelectric element 108 and the output of the synchronous detector 111 are set so that the output of the counter 12 becomes a preset value (so that the distance between the probe and the sample becomes constant). A signal processing device 114 records and stores information on the obtained high-frequency magnetic field and information on the surface shape obtained from the output of the feedback circuit 113, and controls the entire device 115 and monitors various parameters.

【0040】次に、図3を参照して、本実施形態による
測定結果と前述の先行技術2による測定結果とを比較し
て説明する。
Next, with reference to FIG. 3, the measurement result according to the present embodiment and the measurement result according to the prior art 2 will be described in comparison.

【0041】図3(a)は高周波磁界測定に係る磁気記
録ヘッドの位置関係を表しており、図3(b)及び図3
(c)は同じヘッドへの電流印加条件で行った本実施形
態による測定結果と、前述の先行技術2による測定結果
とをそれぞれ表している。
FIG. 3A shows the positional relationship of the magnetic recording head in the measurement of the high-frequency magnetic field, and FIG. 3B and FIG.
(C) shows the measurement result according to the present embodiment performed under the same current application condition to the head, and the measurement result according to the above-mentioned prior art 2 respectively.

【0042】図3(a)の磁気記録ヘッド201におい
て、P1磁極202およびP2磁極203のギャップ位
置206は、図中の2つの黒矢印を延長した位置にあ
る。磁界は磁極エッジ204および205から主に出力
される。
In the magnetic recording head 201 shown in FIG. 3A, the gap position 206 between the P1 magnetic pole 202 and the P2 magnetic pole 203 is a position obtained by extending two black arrows in the figure. The magnetic field is mainly output from the pole edges 204 and 205.

【0043】図3(b)は本実施形態により測定した磁
気記録ヘッドの高周波磁界像及び対応する高周波磁界波
形を示す。搬送波周波数ならびに電流振幅はそれぞれ、
ωc=2π×10MHz、I=20mAである。変調周
波数はωc=2π×300Hzとした。探針は磁気記録
ヘッド表面に垂直になるように着磁してあるため、得ら
れた画像は高周波磁界の垂直成分の振幅に対応する。図
3(b)中の矢印の延長線上には、図3(a)でも示し
たように、磁極エッジ204および205がある。この
図3(b)においては磁極エッジ付近のコントラストが
暗くなっており、また対応する波形が鋭く立ち上がって
いることが確認できる。暗いコントラスト及び波形の立
ち上がりは磁界強度が強いことを示しており、高周波磁
界が磁極エッジ付近に発生していることが確認できる。
また、シミュレーション結果と良く一致しており、本方
式は高周波磁界の分布を良く反映していることが確認で
きる。
FIG. 3B shows a high-frequency magnetic field image of the magnetic recording head measured according to the present embodiment and a corresponding high-frequency magnetic field waveform. The carrier frequency and current amplitude are respectively
ωc = 2π × 10 MHz, I = 20 mA. The modulation frequency was ωc = 2π × 300 Hz. Since the probe is magnetized so as to be perpendicular to the surface of the magnetic recording head, the obtained image corresponds to the amplitude of the vertical component of the high-frequency magnetic field. On the extension of the arrow in FIG. 3B, there are the magnetic pole edges 204 and 205 as shown in FIG. 3A. In FIG. 3B, it can be confirmed that the contrast near the magnetic pole edge is dark and the corresponding waveform sharply rises. The dark contrast and the rise of the waveform indicate that the magnetic field strength is strong, and it can be confirmed that a high-frequency magnetic field is generated near the magnetic pole edge.
In addition, the results agree well with the simulation results, and it can be confirmed that this method reflects the distribution of the high-frequency magnetic field well.

【0044】一方、図3(c)は、同じヘッド電流印加
条件ωc=2π×10MHz、I=20mAで測定し
た、先行技術2による高周波磁界像及び対応する高周波
磁界波形を示しているが、暗いコントラストが広がって
おり、また、対応する波形の立ち上がりが鈍く、ギャッ
プ位置の磁界が十分に分解できていない。
On the other hand, FIG. 3C shows a high-frequency magnetic field image according to the prior art 2 and a corresponding high-frequency magnetic field waveform measured under the same head current application conditions ωc = 2π × 10 MHz and I = 20 mA, but is dark. The contrast is widened, the rise of the corresponding waveform is slow, and the magnetic field at the gap position is not sufficiently resolved.

【0045】したがって、本発明は先行技術に比べて非
常に高空間分解能で実際の磁界の分布を反映しているこ
とが確認できた。
Accordingly, it was confirmed that the present invention reflects the actual magnetic field distribution with a very high spatial resolution as compared with the prior art.

【0046】本実施形態によれば、探針−試料間距離な
らびに振動振幅を一定の条件で測定しているので、より
場の分布を反映させた相互作用の測定が可能となる。特
に探針(およびカンチレバー)を場の強度に関係なく一
定の振幅で振動させているので、探針背面の効果を低減
させた測定が可能となり、高い空間分解能を実現するこ
とができる。
According to the present embodiment, since the distance between the probe and the sample and the vibration amplitude are measured under constant conditions, it is possible to measure the interaction reflecting the field distribution more. In particular, since the probe (and the cantilever) is vibrated at a constant amplitude regardless of the strength of the field, it is possible to perform measurement with a reduced effect on the back surface of the probe, and to realize high spatial resolution.

【0047】また、本実施形態によれば、振幅変調され
た高周波の励起場を低周波に変換し、周波数もしくは位
相検出方式を用いて測定しているので、励起場の分布を
よく反映した測定を行うことができ、空間分解能を向上
させることができる。
Further, according to the present embodiment, since the amplitude-modulated high-frequency excitation field is converted into a low-frequency and measured using the frequency or phase detection method, the measurement field which well reflects the distribution of the excitation field is measured. Can be performed, and the spatial resolution can be improved.

【0048】また、本実施形態によれば、探針の種類な
らびに被測定物から場を励起する方法(励起源)を適当
に選択することで、高周波の電場および磁場・光などあ
らゆる場を測定することが可能となる。
Further, according to this embodiment, by appropriately selecting the type of the probe and the method (excitation source) for exciting the field from the object to be measured, all fields such as a high-frequency electric field, a magnetic field and light can be measured. It is possible to do.

【0049】[0049]

【発明の効果】以上詳記したように本発明によれば、励
起場の分布が精度よく反映された高い空間分解能の測定
を行うことができる。
As described above, according to the present invention, it is possible to perform a measurement with a high spatial resolution in which the distribution of the excitation field is accurately reflected.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施形態に係る高周波特性測定装置
の構成を模式的に示す概念図。
FIG. 1 is a conceptual diagram schematically showing a configuration of a high-frequency characteristic measuring device according to an embodiment of the present invention.

【図2】磁気記録ヘッドの高周波磁界測定を行う場合の
測定装置の一構成例を示す図。
FIG. 2 is a diagram showing an example of a configuration of a measuring device when performing a high-frequency magnetic field measurement of a magnetic recording head.

【図3】本実施形態による測定結果と先行技術2による
測定結果とを比較して示す図。
FIG. 3 is a diagram showing a comparison between a measurement result according to the present embodiment and a measurement result according to Prior Art 2.

【図4】測定対象とする物性に応じて励起源、励起方
法、探針の材質を適当に選択することを示す図。
FIG. 4 is a diagram showing that an excitation source, an excitation method, and a material of a probe are appropriately selected according to physical properties to be measured.

【符号の説明】[Explanation of symbols]

1…探針 2…カンチレバー 3…圧電素子 4…信号源 5…試料 6…励起源 7…変位検出計 8…周波数検出器もしくは位相検出器 9…同期検波器 101…探針 102…カンチレバー 103…圧電素子 104…信号源 105…磁気記録ヘッド 106…AM信号発生器 107…電流値モニタ 108…走査用圧電素子 109…変位検出計 110…位相検出器 111…同期検波器 112…振幅/直流電圧変換回路 113…フィードバック回路 114…信号処理装置 201…磁気記録ヘッド 202…P1磁極 203…P2磁極 204…磁極エッジ 205…磁極エッジ 206…ギャップ位置 DESCRIPTION OF SYMBOLS 1 ... Probe 2 ... Cantilever 3 ... Piezoelectric element 4 ... Signal source 5 ... Sample 6 ... Excitation source 7 ... Displacement detector 8 ... Frequency detector or phase detector 9 ... Synchronous detector 101 ... Probe 102 ... Cantilever 103 ... Piezoelectric element 104 Signal source 105 Magnetic recording head 106 AM signal generator 107 Current value monitor 108 Scanning piezoelectric element 109 Displacement detector 110 Phase detector 111 Synchronous detector 112 Amplitude / DC voltage conversion Circuit 113 Feedback circuit 114 Signal processor 201 Magnetic recording head 202 P1 magnetic pole 203 P2 magnetic pole 204 Magnetic pole edge 205 Magnetic pole edge 206 Gap position

Claims (16)

【特許請求の範囲】[Claims] 【請求項1】試料表面の高周波特性の測定に用いられる
探針と、 前記探針を前記試料表面の法線方向に前記探針の共振周
波数もしくはそれに近い周波数で一定の振幅で振動させ
る振動手段と、 前記試料表面と前記探針との相対位置を走査及び制御す
る走査制御手段と、 前記試料表面に所定の搬送波周波数と変調周波数で振幅
変調された励起場を発生させる励起手段と、 前記励起手段によって前記試料表面に発生した前記励起
場に対応する信号を前記探針の振動周波数変化として検
出する信号検出手段とを具備することを特徴とする高周
波特性測定装置。
1. A probe used for measuring a high-frequency characteristic of a sample surface, and vibrating means for vibrating the probe in a direction normal to the sample surface at a resonance frequency of the probe or a frequency close thereto at a constant amplitude. Scanning control means for scanning and controlling a relative position between the sample surface and the probe; excitation means for generating an excitation field amplitude-modulated at a predetermined carrier frequency and a modulation frequency on the sample surface; A signal detecting means for detecting a signal corresponding to the excitation field generated on the surface of the sample by means as a change in vibration frequency of the probe.
【請求項2】前記信号検出手段は、前記振動周波数変化
として検出される信号のうち、前記励起手段における前
記変調周波数の1倍もしくは2倍高調端に同期した成分
を測定する手段を具備することを特徴とする請求項1記
載の高周波特性測定装置。
2. The apparatus according to claim 1, wherein said signal detecting means includes means for measuring a component of the signal detected as a change in the vibration frequency, the component being synchronized with a first or second harmonic of the modulation frequency in the excitation means. The high-frequency characteristic measuring apparatus according to claim 1, wherein:
【請求項3】前記励起手段における前記変調周波数は、
前記探針を振動させている周波数の10分の1以下であ
ることを特徴とする請求項1記載の高周波特性測定装
置。
3. The modulation frequency in the excitation means,
2. The high-frequency characteristic measuring apparatus according to claim 1, wherein the frequency is one-tenth or less of a frequency at which the probe vibrates.
【請求項4】前記探針の材質もしくは付着させる材質が
前記試料表面から生じる励起場に応じて決定されること
を特徴とする請求項1記載の高周波特性測定装置。
4. The high-frequency characteristic measuring apparatus according to claim 1, wherein a material of the probe or a material to be attached is determined according to an excitation field generated from the sample surface.
【請求項5】前記探針の材質もしくは付着させる材質が
前記試料に応じて決定されることを特徴とする請求項1
記載の高周波特性測定装置。
5. The method according to claim 1, wherein a material of the probe or a material to be attached is determined according to the sample.
The high-frequency characteristics measuring device according to the above.
【請求項6】前記振動手段は、一端に前記探針を支持す
るカンチレバーを具備し、前記カンチレバーのばね定数
は、前記探針と前記試料表面との距離、前記試料測定面
の材質、もしくは測定する励起場に応じて決定されるこ
とを特徴とする請求項1記載の高周波特性測定装置。
6. The vibrating means includes a cantilever at one end for supporting the probe, and a spring constant of the cantilever is a distance between the probe and the sample surface, a material of the sample measurement surface, or a measurement value. 2. The high-frequency characteristic measuring apparatus according to claim 1, wherein the high-frequency characteristic measuring apparatus is determined according to an excitation field to be generated.
【請求項7】前記走査制御手段は、前記試料と前記探針
のいずれかにもしくは両方に対して設けられた圧電素子
を具備することを特徴とする請求項1記載の高周波特性
測定装置。
7. The high-frequency characteristic measuring apparatus according to claim 1, wherein said scanning control means includes a piezoelectric element provided to one or both of said sample and said probe.
【請求項8】前記振動手段は、一端に前記探針を支持す
るカンチレバーと、前記カンチレバーの他の一端を支持
し且つこのカンチレバーを加振する加振用圧電素子とを
具備することを特徴とする請求項1記載の高周波特性測
定装置。
8. The vibrating means includes a cantilever supporting the probe at one end, and a vibrating piezoelectric element supporting the other end of the cantilever and vibrating the cantilever. The high-frequency characteristic measuring device according to claim 1.
【請求項9】試料表面の高周波特性の測定に用いられる
探針と、 前記探針を前記試料表面の法線方向に前記探針の共振周
波数もしくはそれに近い周波数で一定の振幅で振動させ
る振動手段と、 前記試料表面と前記探針との相対位置を走査及び制御す
る走査制御手段と、 前記試料表面に所定の搬送波周波数と変調周波数で振幅
変調された励起場を発生させる励起手段と、 前記励起手段によって前記試料表面に発生した前記励起
場に対応する信号を前記探針の振動と前記振動手段の振
動との位相変化として検出する信号検出手段とを具備す
ることを特徴とする高周波特性測定装置。
9. A probe used for measuring high-frequency characteristics of a sample surface, and vibrating means for oscillating the probe in a direction normal to the sample surface at a resonance frequency at or near the resonance frequency of the probe with a constant amplitude. Scanning control means for scanning and controlling a relative position between the sample surface and the probe; excitation means for generating an excitation field amplitude-modulated at a predetermined carrier frequency and a modulation frequency on the sample surface; A high-frequency characteristic measuring apparatus, comprising: a signal detecting unit that detects a signal corresponding to the excitation field generated on the sample surface by a unit as a phase change between the vibration of the probe and the vibration of the vibrating unit. .
【請求項10】前記信号検出手段は、前記位相変化とし
て検出される信号のうち、前記励起手段における前記変
調周波数の1倍もしくは2倍高調端に同期した成分を測
定する手段を具備することを特徴とする請求項9記載の
高周波特性測定装置。
10. The signal detecting means includes means for measuring a component of the signal detected as the phase change, the component being synchronized with a one or two times higher harmonic end of the modulation frequency in the excitation means. The high-frequency characteristic measuring apparatus according to claim 9, wherein:
【請求項11】前記励起手段における前記変調周波数
は、前記探針を振動させている周波数の10分の1以下
であることを特徴とする請求項9記載の高周波特性測定
装置。
11. The high-frequency characteristic measuring apparatus according to claim 9, wherein said modulation frequency in said excitation means is one-tenth or less of a frequency at which said probe vibrates.
【請求項12】前記探針の材質もしくは付着させる材質
が前記試料表面から生じる励起場に応じて決定されるこ
とを特徴とする請求項9記載の高周波特性測定装置。
12. The high-frequency characteristic measuring apparatus according to claim 9, wherein a material of said probe or a material to be attached is determined according to an excitation field generated from said sample surface.
【請求項13】前記探針の材質もしくは付着させる材質
が前記試料に応じて決定されることを特徴とする請求項
9記載の高周波特性測定装置。
13. The high-frequency characteristic measuring apparatus according to claim 9, wherein a material of the probe or a material to be attached is determined according to the sample.
【請求項14】前記振動手段は、一端に前記探針を支持
するカンチレバーを具備し、前記カンチレバーのばね定
数は、前記探針と前記試料表面との距離、前記試料測定
面の材質、もしくは測定する励起場に応じて決定される
ことを特徴とする請求項9記載の高周波特性測定装置。
14. The vibrating means includes a cantilever at one end for supporting the probe, and a spring constant of the cantilever is determined by a distance between the probe and the sample surface, a material of the sample measurement surface, or a measurement value. 10. The high-frequency characteristic measuring apparatus according to claim 9, wherein the high-frequency characteristic measuring apparatus is determined according to an excitation field to be generated.
【請求項15】前記走査制御手段は、前記試料と前記探
針のいずれかにもしくは両方に対して設けられた圧電素
子を具備することを特徴とする請求項9記載の高周波特
性測定装置。
15. The high-frequency characteristic measuring apparatus according to claim 9, wherein said scanning control means includes a piezoelectric element provided to one or both of said sample and said probe.
【請求項16】前記振動手段は、一端に前記探針を支持
するカンチレバーと、前記カンチレバーの他の一端を支
持し且つこのカンチレバーを加振する加振用圧電素子と
を具備することを特徴とする請求項9記載の高周波特性
測定装置。
16. The vibrating means includes a cantilever at one end for supporting the probe, and a vibrating piezoelectric element for supporting the other end of the cantilever and vibrating the cantilever. The high-frequency characteristic measuring device according to claim 9.
JP2001085820A 2001-03-23 2001-03-23 High-frequency characteristic measuring instrument Pending JP2002286613A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001085820A JP2002286613A (en) 2001-03-23 2001-03-23 High-frequency characteristic measuring instrument

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001085820A JP2002286613A (en) 2001-03-23 2001-03-23 High-frequency characteristic measuring instrument

Publications (1)

Publication Number Publication Date
JP2002286613A true JP2002286613A (en) 2002-10-03

Family

ID=18941271

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001085820A Pending JP2002286613A (en) 2001-03-23 2001-03-23 High-frequency characteristic measuring instrument

Country Status (1)

Country Link
JP (1) JP2002286613A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009101991A1 (en) * 2008-02-12 2009-08-20 Akita University Surface state measuring device, and surface state measuring method using the device
WO2012029973A1 (en) * 2010-09-03 2012-03-08 国立大学法人秋田大学 Magnetic field observation device and magnetic field observation method
CN102507988A (en) * 2011-10-13 2012-06-20 中山大学 Intermittent-contact-mode measuring method of Kelvin probe force microscope
CN102507986A (en) * 2011-10-13 2012-06-20 中山大学 Intermittent contact type measuring method for electrostatic force microscopy

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009101991A1 (en) * 2008-02-12 2009-08-20 Akita University Surface state measuring device, and surface state measuring method using the device
US8490209B2 (en) 2008-02-12 2013-07-16 Akita University Surface state measuring device, and surface state measuring method using the device
JP5424404B2 (en) * 2008-02-12 2014-02-26 国立大学法人秋田大学 Surface state measuring apparatus and surface state measuring method using the apparatus
WO2012029973A1 (en) * 2010-09-03 2012-03-08 国立大学法人秋田大学 Magnetic field observation device and magnetic field observation method
US8621658B2 (en) 2010-09-03 2013-12-31 Akita University Magnetic field observation device and magnetic field observation method
CN102507988A (en) * 2011-10-13 2012-06-20 中山大学 Intermittent-contact-mode measuring method of Kelvin probe force microscope
CN102507986A (en) * 2011-10-13 2012-06-20 中山大学 Intermittent contact type measuring method for electrostatic force microscopy

Similar Documents

Publication Publication Date Title
Erlandsson et al. Atomic force microscopy using optical interferometry
US6605941B2 (en) Method and apparatus for measuring characteristic of specimen and its application to high frequency response measurement with scanning probe microscopes
EP0410131B1 (en) Near-field lorentz force microscopy
US5267471A (en) Double cantilever sensor for atomic force microscope
US6185991B1 (en) Method and apparatus for measuring mechanical and electrical characteristics of a surface using electrostatic force modulation microscopy which operates in contact mode
EP0726444B1 (en) Magnetic resonance method and apparatus for detecting an atomic structure of a sample along a surface thereof
Rugar et al. Force microscope using a fiber‐optic displacement sensor
Burnham et al. Materials’ properties measurements: Choosing the optimal scanning probe microscope configuration
US5319977A (en) Near field acoustic ultrasonic microscope system and method
JP3249132B2 (en) A method for magnetically modulating a force sensor for alternating current detection in an atomic force microscope
JP2915554B2 (en) Barrier height measurement device
US5266897A (en) Magnetic field observation with tunneling microscopy
US8869311B2 (en) Displacement detection mechanism and scanning probe microscope using the same
Proksch et al. Energy dissipation measurements in frequency-modulated scanning probe microscopy
Todorovic et al. Magnetic force microscopy using nonoptical piezoelectric quartz tuning fork detection design with applications to magnetic recording studies
EP0924529B1 (en) Method of producing magnetic force image and scanning probe microscope
JP4190936B2 (en) Scanning probe microscope and its operation method
US6617848B2 (en) Magnetic head measuring apparatus and measuring method applied to the same apparatus
RU2456622C1 (en) Dynamic mode atomic force microscopy device
JP2002286613A (en) High-frequency characteristic measuring instrument
JP2003248911A (en) Measuring apparatus of magnetic head and measuring method used in the apparatus
JP3637297B2 (en) Magnetic recording head measuring apparatus and measuring method applied to the same
Harley et al. A high-stiffness axial resonant probe for atomic force microscopy
Campbell et al. Internal current probing of integrated circuits using magnetic force microscopy
JP3453277B2 (en) Scanning probe microscope

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050318

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060815

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20061212