JP3384973B2 - Residual chlorine concentration measurement device - Google Patents

Residual chlorine concentration measurement device

Info

Publication number
JP3384973B2
JP3384973B2 JP22937698A JP22937698A JP3384973B2 JP 3384973 B2 JP3384973 B2 JP 3384973B2 JP 22937698 A JP22937698 A JP 22937698A JP 22937698 A JP22937698 A JP 22937698A JP 3384973 B2 JP3384973 B2 JP 3384973B2
Authority
JP
Japan
Prior art keywords
water
residual chlorine
test water
concentration
chlorine concentration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP22937698A
Other languages
Japanese (ja)
Other versions
JP2000046794A (en
Inventor
彰大 長谷
浩嗣 伊達
良浩 山元
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Noritz Corp
Tacmina Corp
Original Assignee
Noritz Corp
Tacmina Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Noritz Corp, Tacmina Corp filed Critical Noritz Corp
Priority to JP22937698A priority Critical patent/JP3384973B2/en
Publication of JP2000046794A publication Critical patent/JP2000046794A/en
Application granted granted Critical
Publication of JP3384973B2 publication Critical patent/JP3384973B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Investigating Or Analyzing Non-Biological Materials By The Use Of Chemical Means (AREA)
  • Water Treatment By Electricity Or Magnetism (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、浴槽、プールある
いは浄水場等における水に含まれる残留塩素の濃度を測
定するために用いられる残留塩素濃度測定装置に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a residual chlorine concentration measuring device used for measuring the concentration of residual chlorine contained in water in a bathtub, a pool, a water purification plant or the like.

【0002】[0002]

【従来の技術】周知のように、水道水は大腸菌等の細菌
を滅菌し、消毒するために、予め塩素処理(いわゆるカ
ルキ処理)されており、水の中に一定濃度の塩素が残留
するように施されている。このような水道水を使用した
浴槽やプール等では、最近、残留塩素による消毒・滅菌
効果が長らく持続するように上記残留塩素が一定濃度を
下回らないような配慮が施され、上記残留塩素の濃度を
常に監視できるような滅菌システムが採用される傾向が
高まっている。
2. Description of the Related Art As is well known, tap water has been previously subjected to chlorine treatment (so-called chlorine treatment) to sterilize and disinfect bacteria such as Escherichia coli, so that a certain concentration of chlorine remains in the water. Has been applied to. In bathtubs, pools, etc. that use such tap water, care has recently been taken to prevent the residual chlorine from falling below a certain level so that the disinfection / sterilization effect of the residual chlorine will last for a long time. There is an increasing tendency to adopt a sterilization system that can constantly monitor the sterilization.

【0003】上記したような滅菌システムにおいて、こ
の残留塩素の濃度を監視するために用いられている装置
としては、例えば次の図5〜6に示すようなポーラロ式
無試薬残留塩素濃度測定装置が知られている。図5は従
来例1による残留塩素濃度測定装置の原理図、図6は従
来例2による残留塩素濃度測定装置の原理図である。
As a device used to monitor the concentration of residual chlorine in the sterilization system as described above, for example, a polaro type reagentless residual chlorine concentration measuring device as shown in FIGS. Are known. FIG. 5 is a principle diagram of a residual chlorine concentration measuring device according to Conventional Example 1, and FIG. 6 is a principle diagram of a residual chlorine concentration measuring device according to Conventional Example 2.

【0004】まず、従来例1による残留塩素濃度測定装
置は、図5で示すように、装置本体50の内部に構成さ
れた検水収容室51に検水導入用ノズル52を配設する
と共に、検水を電気分解するための正負電極53(正電
極53a、負電極53b)を配設している。そして、上
記検水収容室51の底部54をすり鉢状に形成し、該底
部54に多数のガラスビーズ等のビーズ55を収容した
構造となっている。
First, in the residual chlorine concentration measuring apparatus according to the conventional example 1, as shown in FIG. 5, a test water introducing nozzle 52 is provided in a test water accommodating chamber 51 formed inside the apparatus main body 50, and Positive and negative electrodes 53 (positive electrode 53a, negative electrode 53b) for electrolyzing the test water are provided. The bottom 54 of the test water storage chamber 51 is formed in a mortar shape, and a large number of beads 55 such as glass beads are stored in the bottom 54.

【0005】しかして、上記従来例1による残留塩素測
定装置によれば、検水が検水導入用ノズル52から検水
収容室51内に吐出されて導き入れられると、正負電極
53で電気分解され、その際の電流値を残留塩素濃度と
して検出できるようになっている。そして前記正負電極
53の洗浄は、検水収容室51内に吐出した検水の水流
でガラスビーズ55を巻き上げて、正負電極53に接触
させることにより、該正負電極53表面に付着している
汚れを物理的に剥がすようになっている。このようにし
て、正負電極53表面に付着している汚れを物理的に剥
がすことで、正負電極53の表面を常に清浄にして感度
が低下しないようにし、残留塩素濃度が正確に測定でき
るように配慮されている。
However, according to the residual chlorine measuring apparatus of the above-mentioned conventional example 1, when the test water is discharged from the test water introducing nozzle 52 and introduced into the test water storage chamber 51, it is electrolyzed by the positive and negative electrodes 53. The current value at that time can be detected as the residual chlorine concentration. The cleaning of the positive and negative electrodes 53 is performed by rolling up the glass beads 55 with the water flow of the test water discharged into the test water storage chamber 51 and bringing the glass beads 55 into contact with the positive and negative electrodes 53, whereby the dirt attached to the surface of the positive and negative electrodes 53. Is designed to be physically removed. In this way, by physically removing the dirt attached to the surface of the positive and negative electrodes 53, the surface of the positive and negative electrodes 53 is always cleaned so that the sensitivity is not lowered, and the residual chlorine concentration can be accurately measured. It is considered.

【0006】一方、従来例2による残留塩素濃度測定装
置は、図6で示すように、装置本体60の内部に構成さ
れた検水収容室61内を上方部分が連通するように小壁
62で間仕切って左右2つの小室61aと小室61bを
形成し、小室61aに正電極63aを回転可能に配設す
ると共に、小室61bに負電極63bを回転可能に配設
している。そして、これらの各電極63a、63bをモ
ータ64で回転させるようになっており、各小室61
a、61b内には多数のガラスビーズ等のビーズ66を
収容した構造となっている。
On the other hand, in the residual chlorine concentration measuring apparatus according to Conventional Example 2, as shown in FIG. 6, a small wall 62 is provided so that the upper portion communicates with the inside of the test water storage chamber 61 formed inside the apparatus main body 60. The left and right small chambers 61a and 61b are partitioned to form a positive electrode 63a rotatably in the small chamber 61a and a negative electrode 63b rotatably in the small chamber 61b. The electrodes 63a and 63b are rotated by the motor 64, and the small chambers 61
In the structure a and 61b, a large number of beads 66 such as glass beads are housed.

【0007】しかして、上記従来例2による残留塩素装
置によれば、各電極63a、63bが回転すると、上記
電極63a、63bの表面がビーズ66と接触し、これ
によって電極63a、63bの表面に付着している汚れ
を物理的に剥がすようにして電極63の表面を常に清浄
にして感度が低下しないようにし、残留塩素濃度が正確
に測定できるように配慮されている。
However, in the residual chlorine device according to the conventional example 2, when the electrodes 63a and 63b rotate, the surfaces of the electrodes 63a and 63b come into contact with the beads 66, whereby the surfaces of the electrodes 63a and 63b are contacted. It is considered that the adhered dirt is physically removed so that the surface of the electrode 63 is always cleaned so that the sensitivity is not lowered and the residual chlorine concentration can be accurately measured.

【0008】[0008]

【発明が解決しようとする課題】ところが、従来例1に
よる残留塩素濃度測定装置によれば、正負電極53a、
53bの形状及び配置からして、ビーズ55が電極53
表面上に接触する確率が低く、しかもビーズ55は底か
ら舞い上がって接触しなければならないことから、結局
のところ電極53面の洗浄効果が薄く、電極53表面上
に汚れが付きやすく、また付着した汚れも剥離しにく
い。また検水の吐出力を大きくすると、ビーズ55が巻
き上がる速度も速くなるものの、ビーズ55が電極53
表面上に接触しにくくなる。このように、何れにしても
電極53表面上に汚れが付きやすく、また付着した汚れ
が剥離しにくいことから、装置のメンテナンス頻度を多
くし、手作業でのメンテナンスを行わなければ、電極5
3の感度低下を防止できず、従って検水中の残留塩素濃
度を正確に測定できないという問題があった。
However, according to the residual chlorine concentration measuring apparatus according to the conventional example 1, the positive and negative electrodes 53a,
From the shape and arrangement of 53b, the beads 55 are
The probability of contact with the surface is low, and since the beads 55 have to soar from the bottom to contact with each other, the cleaning effect on the surface of the electrode 53 is thin in the end, and the surface of the electrode 53 is easily soiled and adhered. Dirt is hard to peel off. Further, when the ejection force of the test water is increased, the speed at which the beads 55 roll up is increased, but the beads 55 are not
Difficult to contact on the surface. In this way, in any case, since the surface of the electrode 53 is easily soiled and the adhered soil is not easily peeled off, the frequency of maintenance of the device is increased and the maintenance of the electrode 5 is required unless manual maintenance is performed.
There was a problem that the sensitivity decrease of 3 could not be prevented and therefore the residual chlorine concentration in the test water could not be accurately measured.

【0009】一方、従来例2による残留塩素濃度測定装
置によれば、従来例1によるものに比べると比較的信頼
性は高いものの、各電極63a、63bを回転させるた
めのモータ64やプーリ機構等が必要となって装備自体
が構造的に複雑になり、且つ設備コストが割高になると
いう問題があった。
On the other hand, according to the residual chlorine concentration measuring device according to the conventional example 2, although the reliability is relatively higher than that according to the conventional example 1, the motor 64 for rotating the electrodes 63a and 63b, the pulley mechanism, etc. Therefore, the equipment itself becomes structurally complicated, and the equipment cost becomes expensive.

【0010】更に、従来例1及び従来例2によるもの
は、何れも大気開放式であって、検水に使用した水はす
べて廃棄されることになり(200〜600cc/分)、
浴槽用として設置した場合には、浴槽内の大事なお湯の
ロスが大きくなってしまうので不都合が生じる問題があ
った。
Further, the conventional example 1 and the conventional example 2 are both open to the atmosphere, and all the water used for the test water is discarded (200 to 600 cc / min),
When it is installed for a bathtub, there is a problem that an important loss of hot water in the bathtub becomes large, which causes inconvenience.

【0011】そこで本発明は上記従来の残留塩素濃度測
定装置の問題点を解消し、電極表面に汚れが付着しにく
くし、且つ付着した汚れも効率的に剥離することがで
き、これによって電極の感度低下を防止でき、よって検
水の残留塩素濃度の測定精度を高めることができ、しか
も設備コストも安くつく残留塩素濃度測定装置を提供す
ることを課題とする。
Therefore, the present invention solves the above-mentioned problems of the conventional residual chlorine concentration measuring apparatus, makes it difficult for dirt to adhere to the electrode surface, and can efficiently remove the adhered dirt. It is an object of the present invention to provide a residual chlorine concentration measuring device which can prevent the sensitivity from being lowered, and thus can improve the measurement accuracy of the residual chlorine concentration of the test water, and at a low equipment cost.

【0012】[0012]

【課題を解決するための手段】上記課題を達成するた
め、本発明の残留塩素濃度測定装置は、残留塩素濃度の
測定をしようとする検水を内部に導き入れて電気分解処
理し、その際に得られる電流値を前記検水中に含まれる
残留塩素濃度として換算検出できるようにした残留塩素
濃度測定装置であって、前記残留塩素濃度測定装置は、
少なくとも、検水を導き入れて検水中の残留塩素濃度を
検出するための濃度検出室と、該濃度検出室の壁面に配
装され、検水を電気分解処理するための正負電極と、前
記濃度検出室内に収容された多数のビーズと、検水を濃
度検出室に導入する検水導入手段とを備え、前記濃度検
出室は短筒体として形成されると共に検水導入手段は検
水が前記短筒体の筒部に対して略接線方向に導入される
ように構成されていることを第1の特徴としている。ま
た本発明の残留塩素濃度測定装置は、残留塩素濃度の測
定をしようとする検水を内部に導き入れて電気分解処理
し、その際に得られる電流値を前記検水中に含まれる残
留塩素濃度として換算検出できるようにした残留塩素濃
度測定装置であって、前記残留塩素濃度測定装置は、少
なくとも、検水を導き入れて検水中の残留塩素濃度を検
出するための濃度検出室と、該濃度検出室の壁面に配装
され、検水を電気分解処理するための正負電極と、前記
濃度検出室内に収容された多数のビーズと、検水を濃度
検出室に導入する検水導入手段とを備え、前記濃度検出
室は短筒体として形成されると共に正負電極が前記短筒
体の端面に配装されており、検水導入手段は検水が前記
短筒体の筒部に対して略接線方向に導入されると共に前
記正負電極に対して斜め方向から当るように構成されて
いることを第2の特徴としている。また本発明の残留塩
素濃度測定装置は、上記第1又は第2の特徴に加えて、
検水導入手段は、外部からの水を取り入れるための水受
入口と、該水受入口からの水の一部を検水用として分岐
させて取り入れるために前記水受入口と濃度検出室との
間に設けられる分岐通路と、該分岐通路から前記濃度検
出室に対して検水を導入する導入口とから構成されてお
り、上記濃度検出室からビーズが流出するのを防止する
ための手段が配設されていることを第3の特徴としてい
In order to achieve the above object, the residual chlorine concentration measuring device of the present invention introduces the sample water for measuring the residual chlorine concentration into the inside thereof and electrolyzes it. A residual chlorine concentration measuring device capable of converting and detecting the current value obtained in the method as a residual chlorine concentration contained in the test water, wherein the residual chlorine concentration measuring device is
At least, a concentration detection chamber for introducing the test water to detect the residual chlorine concentration in the test water, a positive and negative electrode for electrolyzing the test water, which is provided on the wall surface of the concentration detection chamber, and the concentration Concentrate a large number of beads contained in the detection chamber and the sample water .
And a test water introduction means for introducing the test solution into the detection chamber,
The outlet chamber is formed as a short cylinder, and the test water introduction means is
Water is introduced substantially tangentially to the tubular portion of the short tubular body.
The first feature is that it is configured as described above . In addition, the residual chlorine concentration measuring device of the present invention measures the residual chlorine concentration.
Introduce electrolyzed water into the interior for electrolysis
However, the current value obtained at that time is the residual amount contained in the test water.
Residual chlorine concentration that can be converted and detected as the concentration of distilled chlorine
And a residual chlorine concentration measuring device,
Even if it is not, the residual chlorine concentration in the test water can be detected by introducing the test water.
Concentration detection chamber for emission and distribution on the wall surface of the concentration detection chamber
The positive and negative electrodes for electrolyzing the test water, and
Concentration of a large number of beads and test water stored in the concentration detection chamber
A test water introducing means for introducing into the detection chamber is provided to detect the concentration.
The chamber is formed as a short cylinder, and the positive and negative electrodes are
It is installed on the end face of the body, and the test water introduction means is
It is introduced almost tangentially to the tubular part of the short tubular body and
It is configured to hit the positive and negative electrodes from an oblique direction.
That it has been the second feature. The residual chlorine concentration measuring device of the present invention is, in addition to the above-mentioned first or second characteristic,
The means for introducing test water is a water receiving device for taking in water from the outside.
Branched from the inlet and part of the water from the water inlet for water detection
Of the water inlet and the concentration detection chamber
A branch passage provided between the branch passage and the concentration test from the branch passage.
It consists of an inlet for introducing water test to the exit room.
Prevent the beads from flowing out of the concentration detection chamber.
The third feature is that the means for providing is provided .

【0013】[0013]

【発明の実施の形態】以下、本発明の実施の形態による
残留塩素濃度測定装置について、図1ないし図4を参照
して説明する。図1は本発明の実施の形態例にかかる残
留塩素濃度測定装置の原理図、図2の(A)は濃度検出
室の拡大図、図2の(B)は(A)の平面図である。図
3は本発明の実施の形態例にかかる残留塩素濃度測定装
置の実装置の一部断面図、図4は本発明の実施の形態に
よる残留塩素濃度測定装置を公衆浴場等に採用した場合
の構成図である。
BEST MODE FOR CARRYING OUT THE INVENTION A residual chlorine concentration measuring apparatus according to an embodiment of the present invention will be described below with reference to FIGS. 1 to 4. FIG. 1 is a principle diagram of a residual chlorine concentration measuring apparatus according to an embodiment of the present invention, FIG. 2A is an enlarged view of a concentration detection chamber, and FIG. 2B is a plan view of FIG. . FIG. 3 is a partial cross-sectional view of an actual device of a residual chlorine concentration measuring device according to an embodiment of the present invention, and FIG. 4 shows a case where the residual chlorine concentration measuring device according to the embodiment of the present invention is adopted in a public bath or the like. It is a block diagram.

【0014】まず、本発明の実施の形態例にかかる残留
塩素濃度測定装置の原理構成を図1ないし図2により簡
単に説明する。図1において、装置本体1は少なくとも
検水を導き入れて検水中の残留塩素濃度を検出するため
の濃度検出室2と、該濃度検出室2の壁面に配装され、
検水を電気分解処理するための正負電極3(白金正極3
aと白金負極3b)、上記濃度検出室2内に収容される
多数のガラスビーズ等のビーズ4(例えば0.7〜1.
2mmφ)とを備え、上記濃度検出室2に対して検水を導
き入れて、該検水が上記正負電極3に対して斜め方向か
ら当たるように吐出する検水導入手段5とを備えた構成
となっている。
First, the principle configuration of the residual chlorine concentration measuring apparatus according to the embodiment of the present invention will be briefly described with reference to FIGS. In FIG. 1, an apparatus main body 1 is provided at least on a concentration detection chamber 2 for introducing a sample water to detect a residual chlorine concentration in the sample water, and a wall surface of the concentration detection chamber 2.
Positive and negative electrodes 3 (platinum positive electrode 3 for electrolyzing test water
a, a platinum negative electrode 3b), and a large number of beads 4 (for example, 0.7 to 1.
2 mmφ) and introduces test water into the concentration detection chamber 2 and discharges the test water so that the test water hits the positive and negative electrodes 3 in an oblique direction. Has become.

【0015】そして、望ましくは上記濃度検出室2を短
筒体に形成し、上記正負電極3a、3bをその表面が短
筒体の端面2aに面一になるように埋め込んだ形で配装
する。そして検水導入手段5も、望ましくは図示しない
浴槽等からの水を取り入れることのできる水受入口5a
と、該水受入口5aからの水の一部を検水用として分岐
させて取り入れるために前記水受入口5aと濃度検出室
2との間に設けられる分岐通路5bと、該分岐通路5b
から前記濃度検出室2に対して検水を導入する導入口5
cとから構成する。
Preferably, the concentration detection chamber 2 is formed in a short cylindrical body, and the positive and negative electrodes 3a and 3b are embedded in the end cylinder 2a so that the surface thereof is flush with the end surface 2a of the short cylindrical body. . And the test water introducing means 5 is also preferably a water receiving port 5a capable of taking in water from a bath or the like (not shown).
And a branch passage 5b provided between the water inlet 5a and the concentration detection chamber 2 for branching and taking in a part of the water from the water inlet 5a for detection, and the branch passage 5b.
Inlet 5 for introducing test water from the above into the concentration detection chamber 2
and c.

【0016】前記分岐通路5bの導入口5cは、前記濃
度検出室2を構成する短筒体の筒部2bに接続開口させ
ており、しかも導入口5cから濃度検出室2内に導入さ
れる検水の流れが、前記正負電極3の電極面(端面2
a)に対しては、図2の(A)で示すように斜め方向
で、且つ筒部2bに対しては、図2の(B)で示すよう
に略接線方向になるようにして、前記導入口5cを設け
ている。前記斜め方向は、例えば端面2aに対して検水
の流れが30度の角度になるようにするが、これに限定
されるわけではなく、傾斜角度は適当な角度を予め実験
によって定めておくことができる。
The inlet port 5c of the branch passage 5b is connected to the tubular portion 2b of the short tubular body which constitutes the concentration detecting chamber 2 and is connected to the concentration detecting chamber 2 through the inlet port 5c. The flow of water changes the electrode surface (the end surface 2) of the positive / negative electrode 3.
2A, the oblique direction is shown as shown in FIG. 2A, and the cylindrical portion 2b is made substantially tangential as shown in FIG. 2B. An inlet port 5c is provided. In the oblique direction, for example, the flow of the test water is set at an angle of 30 degrees with respect to the end surface 2a, but it is not limited to this, and the inclination angle should be determined beforehand by an experiment. You can

【0017】また上記濃度検出室2の処理済みの検水の
排出側(前記短筒体の前記端面2aとは反対側)及び検
水が導入される導入口5cには、ビーズ4の流出を防止
するためのビーズ流出防止手段としてネット体10aと
ネット片6とがそれぞれ設けられている。
The outflow of the beads 4 is carried out to the discharge side of the processed test water in the concentration detection chamber 2 (the side opposite to the end face 2a of the short cylinder) and the inlet 5c into which the test water is introduced. A net body 10a and a net piece 6 are provided as bead outflow preventing means for preventing the beads.

【0018】7は電源で、前記正負電極3による電気分
解の電源となる。また8は電流計で、前記正負電極3に
よる電気分解作用によって生じた電流を検出する。
A power source 7 serves as a power source for electrolysis by the positive and negative electrodes 3. An ammeter 8 detects the current generated by the electrolysis action of the positive and negative electrodes 3.

【0019】しかして、上記構成にかかる残留塩素濃度
測定装置によれば、水受入口5aからの水の一部が検水
用として分岐通路5bから導入口5cを介して濃度検出
室2内に導入せられ、旋回流を構成しながら正負電極3
に対して斜め方向から当たる。例えば検水は、上記分岐
通路5bから濃度検出室2内に600cc/分の流量で吐
出される。濃度検出室2に流入した検水は端面2aに配
装した正負電極3(白金正極3aと白金負極3b)で電
気分解され、この際の電流値が電流計8で検出され、こ
れがコントローラ20(図4参照)に入力され、残留塩
素濃度として換算して検出される。
However, according to the residual chlorine concentration measuring apparatus having the above structure, a part of the water from the water receiving port 5a enters the concentration detecting chamber 2 from the branch passage 5b through the introducing port 5c for detecting water. Positive and negative electrodes 3 that are introduced to form a swirling flow
Hit from diagonally against. For example, the test water is discharged from the branch passage 5b into the concentration detection chamber 2 at a flow rate of 600 cc / min. The test water flowing into the concentration detection chamber 2 is electrolyzed by the positive and negative electrodes 3 (platinum positive electrode 3a and platinum negative electrode 3b) provided on the end face 2a, and the current value at this time is detected by the ammeter 8 and this is detected by the controller 20 ( (See FIG. 4) and converted into the residual chlorine concentration and detected.

【0020】上記のように、濃度検出室2内で検水が電
気分解される際に得られる電流値を換算して検出するこ
とで検水中の残留塩素濃度を測定できるが、このとき濃
度検出室2内に流入される検水は、上記のように旋回流
を構成しながら正負電極3の表面に対して斜め方向から
当たるように流れ、濃度検出室2内に多数存在するビー
ズ4に同方向の運動力を与えて共に移動し、正負電極3
表面に達する。この際に、ビース4が正負電極3a、3
bの表面に斜め方向から当たって擦動し、正負電極3
(白金正極3aと白金負極3b)の表面の汚れ、その他
の付着物を取り去る。これら多数のビース4による清掃
作用は絶えず繰り返されており、この結果、上記正負電
極3の表面は常に清浄な状態に保持される。従って正負
電極3の感度が低下することがなく、常に安定した正確
な残留塩素の濃度測定を行うことができる。勿論、前記
ビーズ4の存在によって、濃度検出室2内の全壁面やビ
ーズ4の流出を防止するために設けられる金網体等の網
の目も十分に洗浄され、綺麗な状態に保持することがで
きる。よって濃度検出室2内における検水の流れが常に
一定となり、安定した条件下において検出電流を得るこ
とができる。
As described above, the residual chlorine concentration in the test water can be measured by converting and detecting the current value obtained when the test water is electrolyzed in the concentration detection chamber 2. The test water flowing into the chamber 2 flows so as to strike the surface of the positive and negative electrodes 3 from an oblique direction while forming the swirling flow as described above, and is distributed to the beads 4 existing in large numbers in the concentration detection chamber 2. Positive and negative electrodes 3
Reach the surface. At this time, the bead 4 is connected to the positive and negative electrodes 3a, 3
The positive and negative electrodes 3
Dirt on the surfaces of (the platinum positive electrode 3a and the platinum negative electrode 3b) and other deposits are removed. The cleaning action by the large number of beads 4 is constantly repeated, and as a result, the surface of the positive and negative electrodes 3 is always kept clean. Therefore, the sensitivity of the positive and negative electrodes 3 does not decrease, and stable and accurate residual chlorine concentration measurement can always be performed. Of course, due to the presence of the beads 4, the entire wall surface in the concentration detection chamber 2 and the mesh of the wire mesh or the like provided for preventing the beads 4 from flowing out can be sufficiently cleaned and kept in a clean state. it can. Therefore, the flow of test water in the concentration detection chamber 2 is always constant, and the detection current can be obtained under stable conditions.

【0021】濃度検出室2内に導入される検水が正負電
極3に対して、正負電極3に対して真横から導入される
場合には、正負電極3に対する擦動効果は劣り、上記正
負電極3の表面を清浄な状態に保持することができず、
正負電極3の感度アップは期待できない。一方、濃度検
出室2内に導入される検水が正負電極3面に対して直角
方向から当たるようにされた場合には、正負電極3に対
する衝突前の流れと衝突後の流れが互いにぶつかり合
い、乱流を形成する結果、安定した条件下での電気分解
作用を期待できなくなる。
When the test water introduced into the concentration detection chamber 2 is introduced to the positive and negative electrodes 3 directly beside the positive and negative electrodes 3, the rubbing effect on the positive and negative electrodes 3 is poor, and the positive and negative electrodes are 3 surface could not be kept clean,
The sensitivity of the positive and negative electrodes 3 cannot be expected to increase. On the other hand, when the test water introduced into the concentration detection chamber 2 is made to strike the surface of the positive and negative electrodes 3 at right angles, the flow before and after the collision with the positive and negative electrodes 3 collide with each other. As a result of forming a turbulent flow, it is not possible to expect an electrolysis action under stable conditions.

【0022】また、上記分岐通路5bを望ましくは単筒
状に形成された濃度検出室2に対して略接線方向に設け
た場合には、図2の(B)で示すように、吐出された検
水は濃度検出室2内を内周に沿って旋回流を構成して、
その間に多数のビース4をその流れにうまく載せて運動
量を付与させることができ、多数のビーズ4を正負電極
3面に次々と安定して衝突させることができると共に、
衝突後も比較的スムーズな流れを保ったまま排出方向に
流すことができる。よって濃度検出室2内が常に安定し
た流れ状態に保持されると共に、安定した状態でのビー
ズ4の衝突が期待され、結果として電極3面を常に清浄
に保つことができると共に、正確な残留塩素の濃度測定
を安定して行うことができる。尚、上記正負電極3表面
に形成されるイオン層による感度低下は、正負電極3の
白金正極3aと白金負極3bを逆転させることによって
も該イオン層を簡単に取り除くことができるので、この
電極反転を定期的に行う作業を上記の構成と組み合わせ
てもよい。
Further, when the branch passage 5b is provided substantially tangential to the concentration detection chamber 2 which is preferably formed in a single cylinder shape, the discharge is carried out as shown in FIG. 2 (B). The test water forms a swirl flow along the inner circumference in the concentration detection chamber 2,
In the meantime, a large number of beads 4 can be placed on the flow well to give momentum, and a large number of beads 4 can be stably and successively collided with the positive and negative electrode 3 surfaces.
It can flow in the discharge direction while maintaining a relatively smooth flow after the collision. Therefore, the inside of the concentration detection chamber 2 is always maintained in a stable flow state, and it is expected that the beads 4 collide in a stable state, and as a result, the surface of the electrode 3 can be always kept clean and accurate residual chlorine can be kept. The concentration measurement can be stably performed. Incidentally, the sensitivity deterioration due to the ion layer formed on the surface of the positive and negative electrodes 3 can be easily removed by reversing the platinum positive electrode 3a and the platinum negative electrode 3b of the positive and negative electrodes 3, so that the electrode inversion is performed. You may combine the work which performs regularly with the said structure.

【0023】上記説明では、残留塩素濃度測定装置の原
理について説明したが、実装置としては図3で示すよう
に構成されており、その基本構成は図1の原理図と基本
的に同様である。即ち該装置本体1は、水受入口5a
と、濃度検出室2と、水受入口5aから分岐され、取り
入れた水の一部を検水用として上記濃度検出室2内に導
き入れるための分岐通路5bと、検水出口部9bとを備
えた構成となっている。一方、水受入口5aから分岐さ
れた他方の通路9aからは検水用に供されない不要な水
が通過し、検水に供した水と合流室10で合流されて検
水出口部9bから図示しない主循環路に戻され、例えば
浴槽水等にリサイクルされる。
In the above description, the principle of the residual chlorine concentration measuring device has been described, but the actual device is configured as shown in FIG. 3, and its basic configuration is basically the same as the principle diagram of FIG. . That is, the apparatus main body 1 has a water receiving port 5a.
A concentration detecting chamber 2, a branch passage 5b branched from the water receiving port 5a for introducing a part of the taken-in water into the concentration detecting chamber 2 for water detection, and a water detecting outlet 9b. It is equipped with it. On the other hand, unnecessary water that is not used for water detection passes from the other passage 9a that is branched from the water receiving port 5a, merges with the water used for water measurement in the merging chamber 10, and is shown from the water detection outlet 9b. Not returned to the main circulation path and recycled to, for example, bath water.

【0024】前記分岐通路5bを他方の通路9bと共に
設けることで、検出用循環路Bに比較的大容量の水を流
し、且つその流量を一定流量に規制(流量制御器によ
り)することが、汎用の定流量器等を用いても比較的容
易にできる。そして、一定流量とされた検出用循環路B
の水流を、一定の分配比で分岐通路5bと他方の通路9
aに分配することで、濃度検出室での検出に適した一定
の水量を確実に且つ安定して分岐通路5bに流すことが
できる。
By providing the branch passage 5b together with the other passage 9b, a relatively large volume of water can be made to flow in the detection circulation passage B and its flow rate can be regulated to a constant flow rate (by a flow rate controller). It can be relatively easily performed by using a general-purpose constant flow rate device. Then, the detection circuit B having a constant flow rate
Water flow of the branch passage 5b and the other passage 9 at a constant distribution ratio.
By distributing to a, a certain amount of water suitable for detection in the concentration detection chamber can be reliably and stably flown to the branch passage 5b.

【0025】上記濃度検出室2の底部には図示しない電
極(白金正極と白金負極)が配装され、上記濃度検出室
2内には図示しない多数のビーズ(例えば0.7〜1.
2mmφ)が収容されている。10aは合流室10に設け
たネット体で、前記ビーズ4等が不測的に下流方向へ流
出するのを予防している。また合流室10のネット体1
0aは、前記他方の通路9aから合流室10に流入する
水の流れを整流し、これにより合流室10での流入水の
乱れによって前記濃度検出室2で検出される残留塩素濃
度の精度に悪影響がでるのを防止し、正負電極の極性反
転による電極の洗浄作用に悪影響がでのるを防止してい
る。11はエルボ部、14は継手構成部分であって、そ
れぞれ検出用循環路Bに接続されている。12は電極キ
ャップ、13は電極ホルダである。
Electrodes not shown (platinum positive electrode and platinum negative electrode) are provided at the bottom of the concentration detection chamber 2, and a large number of beads (not shown) (for example, 0.7 to 1.
2 mmφ) is accommodated. Reference numeral 10a denotes a net body provided in the merging chamber 10 to prevent the beads 4 and the like from accidentally flowing out in the downstream direction. In addition, the net body 1 of the confluence chamber 10
0a rectifies the flow of water flowing into the merging chamber 10 from the other passage 9a, and the turbulence of the inflowing water in the merging chamber 10 adversely affects the accuracy of the residual chlorine concentration detected in the concentration detecting chamber 2. This prevents the positive electrode and the negative electrode from reversing their polarities and adversely affecting the cleaning action of the electrodes. Reference numeral 11 is an elbow portion, and 14 is a joint constituent portion, which are connected to the detection circulation path B, respectively. Reference numeral 12 is an electrode cap, and 13 is an electrode holder.

【0026】なお、検水出口部9bは側方に設けられた
場合を例示したが、必ずしも側方でなくともよく、上方
側に設けられてもよい。これは単なる設計変更にすぎ
ず、検水出口の向きはユーザが最終使用目的に応じて任
意に選択できる。
The case where the test water outlet 9b is provided on the side is shown as an example, but it does not have to be provided on the side and may be provided on the upper side. This is merely a design change, and the direction of the test water outlet can be arbitrarily selected by the user according to the end use purpose.

【0027】次に、上記図3で示す残留塩素濃度測定装
置の適用例(浴槽への適用)を図4を参照しながら説明
する。まず、浴槽20からの水(湯)は主循環路Aを通
って、一旦バランシングタンク21内に貯溜された後、
ヘアーキャッチャー22で毛髪等の異物が取り除かれ、
オゾナイザ23でオゾン処置され、循環ポンプ24で濾
過器25内に送り込まれる。不純物が濾過された水は熱
交換器26で加熱された後、再び浴槽20内へリサイク
ルされる。濾過器25から一部の水はサンプリング用、
即ち検水として検出用循環路B側に取り出され、残留塩
素濃度測定装置1によって電気分解され、電流値として
検出される。検出された電流値は、検出信号としてコン
トローラ30に入力され、残留塩素濃度として換算され
る。コントローラ30は、検出した残留塩素濃度が一定
の基準濃度を下回っていれば、次亜塩素酸ナトリウムタ
ンク27から所定量の薬剤を注入ポンプ28によって主
循環路Aに注入させ、一定の残留塩素濃度になるよう濃
度補正するよう制御する。このように上記残留塩素濃度
測定装置は、いわゆるインライン方式による検水の残留
塩素の濃度測定が行えるので、節水効果がある。なお、
上記浴槽の滅菌システムは一例であって様々な変形は可
能であることがいうまでもない。またコントローラ30
は上記制御の他、装置全体の制御も行う。
Next, an application example (application to a bath) of the residual chlorine concentration measuring device shown in FIG. 3 will be described with reference to FIG. First, the water (hot water) from the bathtub 20 passes through the main circulation path A and is temporarily stored in the balancing tank 21.
The hair catcher 22 removes foreign matters such as hair,
The ozone is treated by the ozonizer 23 and fed into the filter 25 by the circulation pump 24. The water from which impurities have been filtered is heated by the heat exchanger 26 and then recycled into the bath 20 again. Some water from the filter 25 is for sampling,
That is, it is taken out to the detection circulation path B side as test water, electrolyzed by the residual chlorine concentration measuring device 1, and detected as a current value. The detected current value is input to the controller 30 as a detection signal and converted as the residual chlorine concentration. If the detected residual chlorine concentration is below a certain reference concentration, the controller 30 causes the injection pump 28 to inject a predetermined amount of chemicals into the main circulation path A from the sodium hypochlorite tank 27 to obtain a certain residual chlorine concentration. The density is controlled so that As described above, the residual chlorine concentration measuring device can measure the residual chlorine concentration of the test water by a so-called in-line method, and thus has a water saving effect. In addition,
It goes without saying that the sterilization system for the bath is an example and various modifications are possible. Also the controller 30
In addition to the above control, controls the entire device.

【0028】[0028]

【発明の効果】本発明は以上のように構成され、請求項
1に記載の残留塩素濃度測定装置によれば、残留塩素濃
度の測定をしようとする検水を内部に導き入れて電気分
解処理し、その際に得られる電流値を前記検水中に含ま
れる残留塩素濃度として換算検出できるようにした残留
塩素濃度測定装置であって、前記残留塩素濃度測定装置
は、少なくとも、検水を導き入れて検水中の残留塩素濃
度を検出するための濃度検出室と、該濃度検出室の壁面
に配装され、検水を電気分解処理するための正負電極
と、前記濃度検出室内に収容された多数のビーズと、検
を濃度検出室に導入する検水導入手段とを備え、前記
濃度検出室は短筒体として形成されると共に検水導入手
段は検水が前記短筒体の筒部に対して略接線方向に導入
されるように構成されているので、検水導入手段により
短筒体の濃度検出室内に導入された検水を、濃度検出室
の内周に沿って旋回流を構成させて流すことができる。
従って、その間に多数のビーズをその流れにうまく乗せ
て運動量を付与させることができ、多数のビーズを正負
電極面に次々と安定して衝突させることができると共
に、衝突後も比較的スムーズな流れを保ったまま排出方
向に流すことができる。よって濃度検出室内を常に安定
した流れ状態に保持することができると共に、安定した
状態でのビーズの衝突を期待することができ、結果とし
て電極面を常に清浄に保ち、正確な残留塩素の濃度測定
を安定して行うことができる。また請求項2に記載の残
留塩素濃度測定装置によれば、残留塩素濃度の測定をし
ようとする検水を内部に導き入れて電気分解処理し、そ
の際に得られる電流値を前記検水中に含まれる残留塩素
濃度として換算検出できるようにした残留塩素濃度測定
装置であって、前記残留塩素濃度測定装置は、少なくと
も、検水を導き入れて検水中の残留塩素濃度を検出する
ための濃度検出室と、該濃度検出室の壁面に配装され、
検水を電気分解処理するための正負電極と、前記濃度検
出室内に収容された多数のビーズと、検水を濃度検出室
に導入する検水導入手段とを備え、前記濃度検出室は短
筒体として形成されると共に正負電極が前記短筒体の端
面に配装されており、検水導入手段は検水が前記短筒体
の筒部に対して略接線方向 に導入されると共に前記正負
電極に対して斜め方向から当るように構成されている
で、検水導入手段によって濃度検出室内に導入された検
水を多数のビーズを伴った状態で端筒体の端面に配装さ
れた正負電極の表面に斜め方向から当てることができ、
よって正負電極表面に付着する汚れを多数のビーズによ
る繰り返しの衝突により物理的に剥がすことができる。
これにより正負電極の表面を常に清浄な状態に保持する
ことができ、正負電極の感度の低下を防いで、常に安定
した正確な検水の残留塩素の濃度測定を行うことができ
る。 しかも濃度検出室に導入された検水は、正負電極の
表面に対して斜め方向から当たって下流側にスムーズに
退くことができるので、正負電極付近等での乱流の発生
を予防することができ、安定した状態での電気分解作用
とそれによる電流値を得ることができる更に濃度検出
室に導入された検水を旋回流として、その間に多数のビ
ーズをその流れにうまく載せて運動量を付与させること
ができ、多数のビーズを斜め方向から電極面に次々と安
定して衝突させることができる。しかも、衝突後も乱流
を構成することなく、比較的スムーズな流れを保ったま
ま排出方向に流れさせることができる。よって濃度検出
室内を常に安定した流れ状態に保持することができると
共に、安定した状態での多数のビーズの衝突を可能と
し、結果として電極面を常に安定して清浄に保ち、正確
な残留塩素の濃度測定を安定して行うことができる。ま
た請求項3に記載の残留塩素濃度測定装置によれば、
記請求項1又は2に記載の構成による効果に加えて、検
水導入手段は、外部からの水を取り入れるための水受入
口と、該水受入口からの水の一部を検水用として分岐さ
せて取り入れるために前記水受入口と濃度検出室との間
に設けられる分岐通路と、該分岐通路から前記濃度検出
室に対して検水を導入する導入口とから構成されてお
り、上記濃度検出室からビーズが流出するのを防止する
ための手段が配設されているので、濃度検出室に必要な
流量だけを過剰となることなく導入することができると
共に、分岐通路と導入口の存在により安定した流れの検
水を濃度検出室に対して良 好な角度をもって安定して導
入することができ、電極の表面に付着する汚れを好まし
く洗浄することができる。加えて、ビーズが外部へ流出
したりするのを確実に防止して、ビーズの作用を安定化
させることができる。
According to the residual chlorine concentration measuring apparatus of the first aspect of the present invention, the sample water for measuring the residual chlorine concentration is introduced into the interior of the apparatus for electrolysis. However, a residual chlorine concentration measuring device capable of detecting the current value obtained at that time as a residual chlorine concentration contained in the test water, wherein the residual chlorine concentration measuring device at least introduces the test water. Concentration chamber for detecting the residual chlorine concentration in the test water, positive and negative electrodes for electrolyzing the sample water, which are installed on the wall surface of the concentration detection chamber, and a large number housed in the concentration detection chamber. Of beads and a sample water introducing means for introducing sample water into the concentration detection chamber,
The concentration detection chamber is formed as a short cylinder, and the sample introduction
In the step, test water is introduced almost tangentially to the tubular part of the short tubular body.
Which is configured to be, by the test water introduction means
The sample water introduced into the concentration detection chamber of the short cylinder is stored in the concentration detection chamber.
A swirling flow can be configured and flowed along the inner circumference of the.
So, in the meantime, put a lot of beads on the stream
Momentum can be imparted by adding a large number of beads to the positive and negative
Since it is possible to make a stable collision with the electrode surface one after another,
In addition, after the collision, how to discharge while maintaining a relatively smooth flow
It can be washed away. Therefore, the concentration detection chamber is always stable.
Stable and stable
You can expect collisions of beads in the state, and as a result
The electrode surface is always kept clean and the residual chlorine concentration is accurately measured.
Can be done stably. According to the residual chlorine concentration measuring device of claim 2, the residual chlorine concentration is measured.
Introduce the sample water to be electrolyzed into the inside and
The current value obtained in the case of
Residual chlorine concentration measurement that can be converted and detected as concentration
A device, wherein the residual chlorine concentration measuring device is at least
Also introduces test water to detect residual chlorine concentration in test water
And a concentration detection chamber for, which is installed on the wall surface of the concentration detection chamber,
Positive and negative electrodes for electrolyzing the test water and the concentration test
A large number of beads stored in the outlet chamber and a sample water
And a test water introducing means for introducing the
It is formed as a cylindrical body and the positive and negative electrodes are the ends of the short cylindrical body.
Is installed on the surface, and the test water introduction means is
Is introduced substantially tangentially to the cylindrical part of
Since it is configured so as to hit the electrode from an oblique direction, the detection water introduced into the concentration detection chamber by the test water introduction means.
Water is attached to the end surface of the end cylinder with many beads.
Can be applied diagonally to the surface of the positive and negative electrodes,
Therefore, dirt that adheres to the positive and negative electrode surfaces can be removed by a large number of beads.
It can be physically peeled off by repeated collisions.
This keeps the positive and negative electrode surfaces clean at all times.
It is possible to prevent the decrease of the sensitivity of the positive and negative electrodes, and it is always stable.
The accurate concentration of residual chlorine in the sample water can be measured.
It Moreover, the sample water introduced into the concentration detection chamber is
Hits the surface diagonally and smoothly to the downstream side
Since it can be retracted, turbulence is generated near the positive and negative electrodes.
Can prevent the electrolysis action in a stable state
And the electric current value by it can be obtained . Furthermore, the test water introduced into the concentration detection chamber is made into a swirling flow, and a large number of beads can be placed on the flow in the meantime to give momentum, and a large number of beads can be stably stabilized one after another on the electrode surface from an oblique direction. Can be collided. Moreover, even after the collision, a relatively smooth flow can be maintained in the discharge direction without forming a turbulent flow. Therefore, it is possible to maintain a stable flow state in the concentration detection chamber at all times, and it is possible for a large number of beads to collide in a stable state. As a result, the electrode surface is always kept stable and clean, and accurate residual chlorine The concentration can be measured stably. According to the residual chlorine concentration measuring apparatus according to claim 3, above
In addition to the effects of the configuration according to claim 1 or 2,
The water introduction means is a water receiving means for taking in water from the outside.
A part of the water from the mouth and the water inlet is branched for water detection.
Between the water inlet and the concentration detection chamber
A branch passage provided in the
It consists of an inlet for introducing test water to the chamber.
Prevent the beads from flowing out of the concentration detection chamber.
Is installed in the concentration detection chamber.
If only the flow rate can be introduced without becoming excessive
Both have stable flow detection due to the presence of branch passages and inlets.
Water with good good angle against the concentration detection chamber stably guide
Can be put in and prefers dirt to adhere to the surface of the electrode
Can be washed well. In addition, beads flow out
Stabilize the action of beads by reliably preventing
Can be made.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施の形態例にかかる残留塩素濃度測
定装置の原理図である。
FIG. 1 is a principle diagram of a residual chlorine concentration measuring device according to an embodiment of the present invention.

【図2】(A)は濃度検出室の拡大図、(B)は(A)
の平面図である。
FIG. 2 (A) is an enlarged view of the concentration detection chamber, and (B) is (A).
FIG.

【図3】本発明の実施の形態例にかかる残留塩素濃度測
定装置の実装置例の一部断面図である。
FIG. 3 is a partial cross-sectional view of an actual device example of a residual chlorine concentration measuring device according to an embodiment of the present invention.

【図4】本発明の実施の形態による残留塩素濃度測定装
置を公衆浴場等に採用した場合の構成図である。
FIG. 4 is a configuration diagram when the residual chlorine concentration measuring device according to the embodiment of the present invention is adopted in a public bath or the like.

【図5】従来例1による残留塩素濃度測定装置の原理図
である。
FIG. 5 is a principle diagram of a residual chlorine concentration measuring device according to Conventional Example 1.

【図6】従来例2による残留塩素濃度測定装置の原理図
である。
FIG. 6 is a principle diagram of a residual chlorine concentration measuring device according to Conventional Example 2.

【符号の説明】[Explanation of symbols]

1 装置本体 2 濃度検出室 2a 端面 2b 筒部 3 正負電極 3a 白金正極 3b 白金負極 4 ビーズ 5 検水導入手段 5a 水受入口 5b 分岐通路 5c 導入口 6 ネット片 7 電源 8 電流計 10a ネット体 30 コントローラ 1 device body 2 Concentration detection room 2a end face 2b tube 3 Positive and negative electrodes 3a Platinum positive electrode 3b Platinum negative electrode 4 beads 5 Water sampling introduction means 5a Water inlet 5b Branch passage 5c inlet 6 net pieces 7 power supply 8 ammeter 10a Net body 30 controller

───────────────────────────────────────────────────── フロントページの続き (72)発明者 山元 良浩 大阪府大阪市中央区南船場2−4−8 株式会社タクミナ内 (56)参考文献 特開2000−9687(JP,A) 特開 平9−178699(JP,A) 特開 平8−29374(JP,A) 実開 平3−48758(JP,U) 実開 平5−19953(JP,U) (58)調査した分野(Int.Cl.7,DB名) G01N 27/416 G01N 27/28 321 G01N 27/38 355 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Yoshihiro Yamamoto 2-4-8 Minamisenba, Chuo-ku, Osaka City, Osaka Prefecture (56) References JP 2000-9687 (JP, A) JP 9- 178699 (JP, A) JP 8-29374 (JP, A) Actual development 3-48758 (JP, U) Actual development 5-19953 (JP, U) (58) Fields investigated (Int.Cl. 7 , DB name) G01N 27/416 G01N 27/28 321 G01N 27/38 355

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 残留塩素濃度の測定をしようとする検水
を内部に導き入れて電気分解処理し、その際に得られる
電流値を前記検水中に含まれる残留塩素濃度として換算
検出できるようにした残留塩素濃度測定装置であって、 前記残留塩素濃度測定装置は、少なくとも、検水を導き
入れて検水中の残留塩素濃度を検出するための濃度検出
室と、該濃度検出室の壁面に配装され、検水を電気分解
処理するための正負電極と、前記濃度検出室内に収容さ
れた多数のビーズと、検水を濃度検出室に導入する検水
導入手段とを備え、前記濃度検出室は短筒体として形成
されると共に検水導入手段は検水が前記短筒体の筒部に
対して略接線方向に導入されるように構成されているこ
とを特徴とする残留塩素濃度測定装置。
1. A test water for measuring the residual chlorine concentration is introduced into the inside to be electrolyzed, and the current value obtained at that time is converted and detected as the residual chlorine concentration contained in the test water. The residual chlorine concentration measuring device according to claim 1, wherein the residual chlorine concentration measuring device is installed on at least a concentration detection chamber for introducing the test water to detect the residual chlorine concentration in the test water, and a wall surface of the concentration detection chamber. Positive and negative electrodes for electrolyzing the sample water, a large number of beads contained in the concentration detection chamber, and a sample water for introducing the sample water into the concentration chamber.
Introducing means, and the concentration detection chamber is formed as a short cylinder
At the same time, the test water introducing means measures the test water in the tubular portion of the short tubular body.
Is designed to be introduced in a substantially tangential direction to
A residual chlorine concentration measuring device characterized by:
【請求項2】 残留塩素濃度の測定をしようとする検水
を内部に導き入れて電気分解処理し、その際に得られる
電流値を前記検水中に含まれる残留塩素濃度として換算
検出できるようにした残留塩素濃度測定装置であって、 前記残留塩素濃度測定装置は、少なくとも、検水を導き
入れて検水中の残留塩素濃度を検出するための濃度検出
室と、該濃度検出室の壁面に配装され、検水を電気分解
処理するための正負電極と、前記濃度検出室内に収容さ
れた多数のビーズと、検水を濃度検出室に導入する検水
導入手段とを備え、前記濃度検出室は短筒体として形成
されると共に正負電極が前記短筒体の端面に配装されて
おり、検水導入手段は検水が前記短筒体の筒部に対して
略接線方向に導入されると共に前記正負電極に対して斜
め方向から当るように構成されていることを特徴とする
残留塩素濃度測定装置。
2.Test water to measure residual chlorine concentration
Is introduced inside and electrolyzed, and then obtained
Convert the current value as the residual chlorine concentration contained in the test water
A residual chlorine concentration measuring device capable of detecting, At least the residual chlorine concentration measuring device guides the test water.
Concentration detection for detecting residual chlorine concentration in test water
Chamber and the wall surface of the concentration detection chamber, and electrolyzes the test water
Positive and negative electrodes for processing, and housed in the concentration detection chamber.
Of a large number of beads and the sample water to be introduced into the concentration detection chamber
Introducing means, and the concentration detection chamber is formed as a short cylinder
And the positive and negative electrodes are mounted on the end face of the short cylinder.
The test water introducing means measures the test water with respect to the tubular portion of the short tubular body.
It is introduced in a substantially tangential direction and is oblique to the positive and negative electrodes.
It is characterized in that it is configured to hit from the direction
Residual chlorine concentration measuring device.
【請求項3】 検水導入手段は、外部からの水を取り入
れるための水受入口と、該水受入口からの水の一部を検
水用として分岐させて取り入れるために前記水受入口と
濃度検出室との間に設けられる分岐通路と、該分岐通路
から前記濃度検出室に対して検水を導入する導入口とか
ら構成されており、上記濃度検出室からビーズが流出す
るのを防止するための手段が配設されていることを特徴
とする請求項1又は2に記載の残留塩素濃度測定装置。
3. The test water introducing means takes in water from the outside.
To receive the water and the part of the water from the water inlet.
With the water inlet for branching for water
A branch passage provided between the concentration detection chamber and the branch passage
From the inlet for introducing test water into the concentration detection chamber
The beads flow out from the above concentration detection chamber.
Is equipped with means for preventing
The residual chlorine concentration measuring device according to claim 1 or 2 .
JP22937698A 1998-07-29 1998-07-29 Residual chlorine concentration measurement device Expired - Fee Related JP3384973B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22937698A JP3384973B2 (en) 1998-07-29 1998-07-29 Residual chlorine concentration measurement device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22937698A JP3384973B2 (en) 1998-07-29 1998-07-29 Residual chlorine concentration measurement device

Publications (2)

Publication Number Publication Date
JP2000046794A JP2000046794A (en) 2000-02-18
JP3384973B2 true JP3384973B2 (en) 2003-03-10

Family

ID=16891214

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22937698A Expired - Fee Related JP3384973B2 (en) 1998-07-29 1998-07-29 Residual chlorine concentration measurement device

Country Status (1)

Country Link
JP (1) JP3384973B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4863013B2 (en) * 2007-10-05 2012-01-25 テクノエコー株式会社 Water quality inspection apparatus and cleaning method thereof
WO2023149448A1 (en) * 2022-02-01 2023-08-10 株式会社堀場アドバンスドテクノ Measurement instrument, measurement device, measurement system, and measurement method

Also Published As

Publication number Publication date
JP2000046794A (en) 2000-02-18

Similar Documents

Publication Publication Date Title
JP5362934B2 (en) Plasma generating apparatus and plasma generating method
JP3384973B2 (en) Residual chlorine concentration measurement device
KR101486502B1 (en) Ballast water treatment system
JP3584594B2 (en) pH sensor and ion water generator
TW200402493A (en) Washing machine and method of controlling the same (Ⅱ)
JP2594022B2 (en) Electrolytic ionic water generator
KR101486499B1 (en) Ballast water treatment system
JP2000046795A (en) Residual chlorine concentration measuring apparatus
JP3577824B2 (en) pH sensor and ion water generator
JP4053954B2 (en) Residual chlorine concentration detector
JPH0975427A (en) Floor surface disinfection device
JPH0663570A (en) Method for determining and controlling ozone injection quantity and purified water treatment device
JPH07209180A (en) Water quality monitor apparatus
EP4183363A1 (en) Medical device cleaning method and corresponding cleaning device and cleaning apparatus
JPH04327658A (en) Pool water purifying apparatus for swimming pool
JPH0531198A (en) Manufacture of anion, method for cleaning air using the same and apparatus therefor
JP3566632B2 (en) Endoscope cleaning device
JPH079084Y2 (en) Residual chlorine measuring device
JPH1156661A (en) Bathing water circulation device
JP3440674B2 (en) Ion water generator
JP2004271211A (en) Apparatus for measuring fluid characteristics
JP2005308534A (en) Residual chlorine measuring instrument
JP2008058000A (en) Aggregation state detection system
JP2007090333A (en) Method for treating salt water
JP2002005863A (en) Method for measuring water pollution, its sensor and apparatus for reusing rainwater or the like

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091227

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees