JP3377109B2 - X-ray beam width measurement method - Google Patents

X-ray beam width measurement method

Info

Publication number
JP3377109B2
JP3377109B2 JP9168593A JP9168593A JP3377109B2 JP 3377109 B2 JP3377109 B2 JP 3377109B2 JP 9168593 A JP9168593 A JP 9168593A JP 9168593 A JP9168593 A JP 9168593A JP 3377109 B2 JP3377109 B2 JP 3377109B2
Authority
JP
Japan
Prior art keywords
ray
intensity
circle
fluorescent
ray beam
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP9168593A
Other languages
Japanese (ja)
Other versions
JPH06300853A (en
Inventor
清 長谷川
Original Assignee
セイコーインスツルメンツ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by セイコーインスツルメンツ株式会社 filed Critical セイコーインスツルメンツ株式会社
Priority to JP9168593A priority Critical patent/JP3377109B2/en
Publication of JPH06300853A publication Critical patent/JPH06300853A/en
Application granted granted Critical
Publication of JP3377109B2 publication Critical patent/JP3377109B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Length-Measuring Devices Using Wave Or Particle Radiation (AREA)
  • Analysing Materials By The Use Of Radiation (AREA)
  • Measurement Of Radiation (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、蛍光X線膜厚計およ
び蛍光X線分析装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a fluorescent X-ray film thickness meter and a fluorescent X-ray analyzer.

【0002】[0002]

【従来の技術】従来図2に示すように、試料ステージ1
6に感光フィルム17を置き、一定時間X線ビームを感
光フィルム17に照射し、その後現像することによって
X線ビームの寸法15を定規等を使用して計測してい
た。
2. Description of the Related Art Conventionally, as shown in FIG.
The photosensitive film 17 was placed on No. 6, the photosensitive film 17 was irradiated with the X-ray beam for a certain period of time, and then developed to measure the size 15 of the X-ray beam using a ruler or the like.

【0003】また、極微小のX線ビームの寸法計測をす
る場合は、試料ステージを下降させ、X線ビームを広げ
ることによって前記と同様の手順で照射範囲を計測し、
更に異なる高さで照射範囲を計測し、高さの違いと照射
範囲の違いから、未知試料測定を行うZ座標でのX線ビ
ームの寸法を計算によって求めていた。
When measuring the size of an extremely small X-ray beam, the irradiation range is measured in the same procedure as above by lowering the sample stage and expanding the X-ray beam.
Further, the irradiation range was measured at different heights, and the dimension of the X-ray beam at the Z coordinate at which the unknown sample was measured was calculated from the difference in height and the difference in irradiation range.

【0004】[0004]

【発明が解決しようとする課題】しかし、従来の感光フ
ィルムによるX線ビームの計測方法は、計測を行うたび
に新しい感光フィルムを使用しなければならないという
問題点があり、また必ず人間の操作が必要となるため、
複数のコリメータを持つ装置の場合、何度も感光フィル
ムの交換を行って現像する必要があるため、人間が装置
から離れられず、更に人間が感光フィルムに定規等を使
用してX線ビームを計測するため、人為的な測定誤差が
発生する余地があった。
However, the conventional method of measuring an X-ray beam using a photosensitive film has a problem that a new photosensitive film must be used each time measurement is performed, and human operation is inevitable. Because you will need
In the case of a device having multiple collimators, it is necessary to change the photosensitive film many times to develop the image, so that a person cannot keep away from the device, and a person uses a ruler or the like on the photosensitive film to emit an X-ray beam. Because of the measurement, there was room for artificial measurement error.

【0005】そこで、この発明の目的は、従来のこのよ
うな問題を解決するため、消耗品を不要とし、無人での
計測作業を実現し、更に人為的な誤差要因を解消するこ
とである。
SUMMARY OF THE INVENTION Therefore, an object of the present invention is to eliminate the above-mentioned conventional problems, to eliminate the need for consumable items, to realize unmanned measurement work, and to eliminate human error factors.

【0006】[0006]

【課題を解決するための手段】この発明は、X線発生部
と、X線発生部から照射されるX線を絞るコリメータ
と、制御可能で少なくとも前後左右に動作可能な試料ス
テージと、蛍光X線検出部と、数値演算を行う演算処理
部を備える蛍光X線膜厚計において、第1に円形を境界
とし、蛍光X線をエネルギー弁別可能な2つの材質で構
成される治具を試料ステージに置き、治具の円の外側の
材質が発生する蛍光X線エネルギーを着目エネルギーと
し、第2に治具の円中心にX線ビームが照射されるよう
に試料ステージを移動して前記着目エネルギーでの蛍光
X線強度をバックグラウンド強度として計測し、第3に
円の外側にX線ビームが照射されるように試料ステージ
を移動して前記着目エネルギーでの蛍光X線強度を飽和
強度として計測し、第4に円の中心から円の外側に向か
って試料ステージを動作し、前記着目エネルギーでの蛍
光X線強度をサンプル強度とし、サンプル強度とバック
グラウンド強度との差を、飽和強度とバックグラウンド
強度との差で除算し、この結果を検出強度比とし、第5
に検出強度比が0.01以上になっているかチェックし
て0.01以上になっていなかったら、計測点を円周方
向へ移動して第4の作業に戻り、0.01以上になって
いたら、前回計測を行った座標値を境界点と認識し、第
6に円中心を基準にして、第4と180度反転した方向
に対して、第4、第5の作業を行い、境界点を求め、第
治具の円の直径から2つの境界点の距離を差し引く
ことによって、一方向でのX線ビーム幅が算出でき、必
要に応じて角度を変えて、複数方向のX線ビーム幅の計
測ができることを特徴とする。
According to the present invention, an X-ray generating section, a collimator for narrowing down X-rays emitted from the X-ray generating section, a controllable sample stage operable at least in front, back, left and right directions, and a fluorescent X-ray. In a fluorescent X-ray film thickness meter including a line detection unit and an arithmetic processing unit for performing numerical calculation, a jig is composed of two materials that can discriminate the energy of fluorescent X-rays with a circular boundary as a sample stage. The energy of the fluorescent X-ray generated by the material outside the circle of the jig is used as the energy of interest, and secondly, the sample stage is moved so that the X-ray beam is irradiated to the center of the circle of the jig, and the energy of interest is The fluorescence X-ray intensity at the above is measured as the background intensity, and thirdly, the sample stage is moved so that the X-ray beam is irradiated to the outside of the circle, and the fluorescence X-ray intensity at the energy of interest is measured as the saturation intensity. Then 4, the sample stage is operated from the center of the circle toward the outside of the circle, the fluorescent X-ray intensity at the energy of interest is taken as the sample intensity, and the difference between the sample intensity and the background intensity is taken as the saturation intensity and the background intensity. Divide by the difference of
Check if the detection intensity ratio is 0.01 or more, and if it is not 0.01 or more, move the measurement point in the circumferential direction and return to the fourth work, and it is 0.01 or more. Then, the coordinate value measured last time is recognized as the boundary point, and sixth, the fourth and fifth operations are performed in the direction inverted by 180 degrees with respect to the circle center, and the boundary point is determined. 7thly, the X-ray beam width in one direction can be calculated by subtracting the distance between the two boundary points from the diameter of the jig circle, and the angle can be changed as necessary to change the X-ray beam width in multiple directions. The feature is that the beam width can be measured.

【0007】[0007]

【作用】上記のような動作を行う蛍光X線膜厚測定装置
においては、X線ビームと円形の境界との位置関係を調
べるために、検出強度比を使用する。検出強度比とは、
治具の円の外側に配置された材質が発生する蛍光X線エ
ネルギーに着目し、そのエネルギー領域で得られるX線
強度を蛍光X線強度とし、円の内側の材質と外側の材質
に対してX線ビームを100%あてたときの蛍光X線強
度を、それぞれバックグラウンド強度と飽和強度とし、
測定点での蛍光X線強度とバックグラウンド強度との差
を、飽和強度とバックグラウンド強度との差で除算する
ことで得られる値であり、円の外側の材質に対してX線
ビームがどの程度照射されているかを知ることができ
る。円の中心から円周に向かってビームが動くようにス
テージを移動して蛍光X線強度を調べ、検出強度比は順
増加し、0.01を上回る最初の点をとらえ、その直
前の点を材質の境界点と認識する。
In the fluorescent X-ray film thickness measuring apparatus that operates as described above, the detected intensity ratio is used to check the positional relationship between the X-ray beam and the circular boundary. What is the detection intensity ratio?
Focusing on the fluorescent X-ray energy generated by the material arranged outside the circle of the jig, the X-ray intensity obtained in that energy region is taken as the fluorescent X-ray intensity, and the material inside the circle and the material outside The fluorescent X-ray intensity when the X-ray beam is applied 100% is the background intensity and the saturation intensity,
It is a value obtained by dividing the difference between the fluorescent X-ray intensity and the background intensity at the measurement point by the difference between the saturation intensity and the background intensity. It is possible to know whether or not it is irradiated. From the center of the circle toward the circumference examined fluorescent X-ray intensity by moving the stage so that the beam moves, the detection intensity ratio increases sequentially capture the first point above the 0.01, the straight
Recognize the previous point as the boundary point of the material.

【0008】ここで得られる情報は、X線ビームと材質
の境界との位置関係である。180度反転した方向で境
界点を検出し、治具の境界である円の直径から2つの境
界点の距離を差し引くことによって、1方向でのX線ビ
ーム幅を算出することができる。同じ手順で90度、2
70度の方向で境界点を検出すれば前記計測方向の直角
方向でのX線ビーム幅を求めることができる。長方形の
コリメータの場合は、2方向のビーム幅が分かれば計測
は完了し、円形の場合も、おおまかなビーム寸法を予測
することができる。さらに検出方向を追加すれば、X線
ビームの変形等の形状認識が可能となる。
The information obtained here is the positional relationship between the X-ray beam and the material boundary. The X-ray beam width in one direction can be calculated by detecting the boundary point in the direction inverted by 180 degrees and subtracting the distance between the two boundary points from the diameter of the circle that is the boundary of the jig. 90 degrees in the same procedure, 2
If the boundary point is detected in the direction of 70 degrees, the X-ray beam width in the direction perpendicular to the measurement direction can be obtained. In the case of a rectangular collimator, the measurement is completed if the beam widths in the two directions are known, and in the case of a circular shape, the rough beam size can be predicted. If a detection direction is further added, shape recognition such as deformation of the X-ray beam becomes possible.

【0009】[0009]

【実施例】以下に、この発明の実施例を図に基づいて説
明する。 (実施例1)図1において、円形を境界とし、材質2と
材質3で構成される治具1を試料ステージに置く。ここ
で、材質2と材質3は、そこで発生する蛍光X線のエネ
ルギー強度の弁別可能な2つの材質である。材質2が発
生する蛍光X線エネルギーの強度を検出しながら、治具
1の円中心から完全に円の外側に達するまで円周方向に
向かってステージを移動する。測定終了位置は、X線ビ
ームの寸法を予測し材質3から確実に外へ達する位置を
計算することによって決定する。計測が終了したら、各
測定点での検出強度比を算出する。検出強度比は、測定
開始点での蛍光X線強度をバックグラウンド強度とし、
測定終了点での蛍光X線強度を飽和強度とし、各測定点
での蛍光X線強度からバックグラウンド強度を減算し、
飽和強度とバックグラウンド強度の差で除算する。
Embodiments of the present invention will be described below with reference to the drawings. (Embodiment 1) In FIG. 1, a jig 1 composed of a material 2 and a material 3 is placed on a sample stage with a circle as a boundary. Here, the material 2 and the material 3 are two materials capable of discriminating the energy intensity of the fluorescent X-rays generated therein. While detecting the intensity of the fluorescent X-ray energy generated by the material 2, the stage is moved in the circumferential direction from the center of the circle of the jig 1 to the outside of the circle. The measurement end position is determined by predicting the dimension of the X-ray beam and calculating the position at which the material 3 surely reaches the outside. When the measurement is completed, the detection intensity ratio at each measurement point is calculated. The detection intensity ratio is the fluorescent X-ray intensity at the measurement starting point as the background intensity,
The fluorescence X-ray intensity at the measurement end point is defined as the saturation intensity, and the background intensity is subtracted from the fluorescence X-ray intensity at each measurement point,
Divide by the difference between saturation intensity and background intensity.

【0010】検出強度比=(蛍光X線強度−バックグラ
ウンド強度)÷(飽和強度−バックグラウンド強度) 測定の逆の順番で検出強度比が0.01を下回る点を探
し、その点を境界点とする。
Detection intensity ratio = (fluorescent X-ray intensity-background intensity) / (saturation intensity-background intensity) A point where the detection intensity ratio falls below 0.01 is searched in the reverse order of measurement, and the point is defined as a boundary point. And

【0011】ここにおいて、あらかじめバックグラウン
ド強度と飽和強度を求めておいて、しかる後円中心から
円周に向かって計測し、検出強度比が0.01になる直
前の点を境界点とすることもできる。第1境界点を4と
し、探索方向を90度、180度、270度と回転さ
せ、境界点5、境界点6、境界点7を検出する。治具の
境界となる円の直径から境界点4と境界点6の距離を差
し引けば、X線ビームの縦方向の寸法が算出でき、横方
向に対しても同じ手順で、円の直径から境界点5と境界
点7の距離を差し引けば、X線ビームの横方向の寸法が
算出できる。長方形コリメータの場合、縦と横のX線ビ
ーム寸法が分かれば寸法計測は完了し、円形の場合も、
2方向の寸法を知ることで、おおまかなビーム寸法を予
測することができる。更に検出方向を追加すれば、X線
ビームの変形等の形状認識が可能となる。
[0011] In this case, straight to keep seeking advance background intensity and saturation intensity, measured from thereafter circle center toward the circumference, the detection intensity ratio is 0.01
The previous point can be used as the boundary point. The first boundary point is set to 4, the search direction is rotated by 90 degrees, 180 degrees, and 270 degrees, and the boundary points 5, 6, and 7 are detected. The length of the X-ray beam in the vertical direction can be calculated by subtracting the distance between the boundary points 4 and 6 from the diameter of the circle that is the boundary of the jig. The lateral dimension of the X-ray beam can be calculated by subtracting the distance between the boundary points 5 and 7. In the case of a rectangular collimator, the dimension measurement is completed if the vertical and horizontal X-ray beam dimensions are known.
By knowing the dimensions in the two directions, a rough beam size can be predicted. If a detection direction is further added, shape recognition such as deformation of the X-ray beam becomes possible.

【0012】(実施例2)図3において、コリメータ部
と試料との距離の増加にしたがってX線ビームの寸法が
拡大する蛍光X線膜厚計で、試料ステージ16に、治具
1を設置し、X線ビーム20の寸法を実施例1と同じ方
法で計測する。次にX線ビームを広げる目的で試料ステ
ージ16を下降させ、X線ビーム21の寸法を実施例1
と同じ方法で計測する。X線ビームはコリメータと試料
との間では直進するため、以上2点でのビーム寸法と試
料ステージ16のZ座標との関係が分かれば、任意の高
さでのX線ビームの寸法を知ることができる。
(Embodiment 2) In FIG. 3, a jig 1 is installed on a sample stage 16 in a fluorescent X-ray film thickness meter in which the dimension of the X-ray beam increases as the distance between the collimator section and the sample increases. , The size of the X-ray beam 20 is measured by the same method as in the first embodiment. Next, the sample stage 16 is lowered for the purpose of expanding the X-ray beam, and the dimensions of the X-ray beam 21 are set to those in the first embodiment.
Measure in the same way as. Since the X-ray beam goes straight between the collimator and the sample, if the relationship between the beam size at the two points and the Z coordinate of the sample stage 16 is known, the size of the X-ray beam at any height can be known. You can

【0013】なお、以上についてはX線ビーム形状が円
形の場合について述べた。X線ビーム形状が長方形の場
合、材質3の形状は長方形でよい。また、X線ビーム形
状が円形の場合であっても縦横の寸法計測で良ければ長
方形でよい。但し、斜め方向の計測も実施するなら、材
質3の形状は円形でなければならない。すなわち、材質
3の形状が円形であれば全てに対応できる。
In the above, the case where the X-ray beam shape is circular has been described. When the X-ray beam shape is rectangular, the shape of the material 3 may be rectangular. Further, even if the X-ray beam shape is circular, it may be rectangular as long as vertical and horizontal dimensions can be measured. However, if the measurement in the oblique direction is also performed, the shape of the material 3 must be circular. That is, if the shape of the material 3 is circular, it can be applied to all.

【0014】[0014]

【発明の効果】この発明は、感光フィルムを使用しない
X線ビームの寸法計測を実現するこによって、消耗品を
不要とする経済的効果を上げた。同時に、自動運転を可
能としたことで、従来人手がかかるために抜取り検査で
行っていたX線ビームの計測を、全数検査にすることが
でき、品質管理の観点で非常に大きな効果をあげること
ができた。蛍光X線膜厚計は、微小化傾向にある電子部
品の品質管理に用いられており、測定試料に対してX線
ビームが確実に照射されることが計測の大前提である。
X線ビームの寸法を保証することは、装置にとって非常
に重要なことであり、本発明の効果が多大であると言え
る。
According to the present invention, the size measurement of the X-ray beam without using the photosensitive film is realized, and the economical effect that the consumable item is unnecessary is improved. At the same time, by enabling automatic operation, it is possible to perform 100% inspection of the X-ray beam measurement that was conventionally performed in the sampling inspection because it requires manual labor, and it is very effective in terms of quality control. I was able to. The fluorescent X-ray film thickness meter is used for quality control of electronic parts that tend to be miniaturized, and it is a major premise of measurement that the X-ray beam is reliably applied to the measurement sample.
Ensuring the size of the X-ray beam is very important for the apparatus, and the effect of the present invention can be said to be great.

【0015】また、請求項2の構成を実現する装置にお
いては、2つの効果がある。第1に、微小コリメータを
使用する場合、治具の境界となる真円度がX線ビーム計
測の精度に影響を与えることが予想されるが、試料ステ
ージを下降させ、X線ビームを広げた状態でビーム寸法
計測を行うことによって、治具の真円度の影響を縮小し
て、X線ビーム計測ができるという効果がある。第2
に、高さ方向に対するX線ビーム寸法の変化を知ること
が可能となり、測定試料に応じてビーム寸法を可変にす
ることができるという効果がある。例えば、本装置の用
途の1つであるハンダめっきの計測で、錫と鉛の偏析の
影響を受けるために微小領域での測定が困難な場合があ
る。試料ステージを下降させてX線ビームを意図的に広
げることで、偏析の影響を受けにくい、信頼性の高い計
測を実現することができる。
Further, the device for realizing the structure of claim 2 has two effects. First, when a micro collimator is used, it is expected that the roundness that becomes the boundary of the jig will affect the accuracy of X-ray beam measurement, but the sample stage was lowered and the X-ray beam was expanded. By measuring the beam dimension in this state, the effect of the roundness of the jig can be reduced, and the X-ray beam measurement can be performed. Second
In addition, it is possible to know the change in the X-ray beam size with respect to the height direction, and it is possible to make the beam size variable according to the measurement sample. For example, in the measurement of solder plating, which is one of the uses of this apparatus, it may be difficult to measure in a minute area because it is affected by the segregation of tin and lead. By lowering the sample stage and intentionally expanding the X-ray beam, it is possible to realize highly reliable measurement that is not easily affected by segregation.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明によるX線ビーム寸法を測定する方法の
説明図である。
FIG. 1 is an explanatory view of a method for measuring an X-ray beam size according to the present invention.

【図2】従来技術による、X線ビーム寸法を測定する方
法の説明図である。
FIG. 2 is an explanatory diagram of a method for measuring an X-ray beam size according to a conventional technique.

【図3】任意の高さでのX線ビームの寸法を調べるため
の説明図である。
FIG. 3 is an explanatory diagram for examining a dimension of an X-ray beam at an arbitrary height.

【符号の説明】[Explanation of symbols]

1 X線ビームの寸法計測用治具 2 X線ビームの寸法計測用治具の材質1 3 X線ビームの寸法計測用治具の材質2 4 境界検出点 5 境界検出点 6 境界検出点 7 境界検出点 8 材質2の蛍光X線強度の飽和点 9 境界検出点 10 境界検出点 11 材質2の蛍光X線強度の飽和点 12 材質2に着目した蛍光X線強度 13 X線発生部 14 コリメータ 15 感光フィルム照射されるX線ビーム 16 試料ステージ 17 感光フィルム 18 感光フィルム照射されるX線ビーム 19 感光フィルム 20 治具に照射されるX線ビーム 21 治具に照射されるX線ビーム1 Jig for X-ray beam dimension measurement 2 Material of Jig for X-ray beam dimension measurement 3 3 Material of Jig for X-ray beam dimension measurement 2 4 Boundary detection point 5 Boundary detection point 6 Boundary detection point 7 Boundary Detection point 8 Saturation point of fluorescent X-ray intensity of material 2 Boundary detection point 10 Boundary detection point 11 Saturation point of fluorescent X-ray intensity of material 2 X-ray intensity 13 focusing on material 2 X-ray generator 14 Collimator 15 X-ray beam irradiated to the X-ray beam 21 jig is applied to the X-ray beam 19 the photosensitive film 20 jig is applied to the X-ray beam 16 sample stage 17 the photosensitive film 18 photosensitive film is irradiated to the photosensitive film

フロントページの続き (56)参考文献 特開 平5−94800(JP,A) 特開 昭59−200984(JP,A) 特開 昭60−135882(JP,A) 特開 平2−260355(JP,A) 特開 平1−140546(JP,A) 特開 昭55−69076(JP,A) 特開 平6−273146(JP,A) 特開 昭63−66407(JP,A) 特開 平4−151506(JP,A) 特開 平4−31757(JP,A) 実開 昭62−99846(JP,U) 特公 昭37−14549(JP,B1) (58)調査した分野(Int.Cl.7,DB名) G01T 1/29 G01B 15/00 G01N 23/223 Continuation of the front page (56) Reference JP-A-5-94800 (JP, A) JP-A-59-200984 (JP, A) JP-A-60-135882 (JP, A) JP-A-2-260355 (JP , A) JP 1-140546 (JP, A) JP 55-69076 (JP, A) JP 6-273146 (JP, A) JP 63-66407 (JP, A) JP 4-151506 (JP, A) JP-A-4-31757 (JP, A) Actually developed 62-99846 (JP, U) JP-B 37-14549 (JP, B1) (58) Fields investigated (Int. Cl. 7 , DB name) G01T 1/29 G01B 15/00 G01N 23/223

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 X線発生部と、X線発生部から照射され
るX線を絞るコリメータと、制御可能で少なくとも前後
左右に動作可能な試料ステージと、蛍光X線検出部と、
数値演算を行う演算処理部を備える蛍光X線膜厚計にお
いて、円形を境界とし、2つの材質で構成される治具を
試料ステージに置き、治具の円の外側の材質が発生する
蛍光X線エネルギーの強度を検出しながら、治具の円中
心から完全に円の外側に達するまで円周方向に向かって
ステージを移動し、測定開始点での蛍光X線強度をバッ
クグラウンド強度、最終測定点での蛍光X線強度を飽和
強度とし、各測定点での蛍光X線強度とバックグラウン
ド強度との差を、飽和強度とバックグラウンド強度との
差で除算し、この結果を検出強度比とし、測定と逆の順
序で検出強度比が1%未満になる点を探し、そこでの座
標値を境界点と認識し、以上の作業を円中心を基準に複
数方向に対して行うことによって、X線ビームの寸法測
定ができるX線ビーム幅測定方法。
1. An X-ray generation unit, a collimator that narrows down X-rays emitted from the X-ray generation unit, a controllable sample stage that can be operated at least in the front-rear direction, and a fluorescent X-ray detection unit.
In a fluorescent X-ray film thickness meter including an arithmetic processing unit for performing numerical calculations, a jig composed of two materials is placed on a sample stage with a circle as a boundary, and the fluorescence X generated by a material outside the circle of the jig. While detecting the intensity of the line energy, move the stage in the circumferential direction from the center of the jig circle until it reaches the outside of the circle, and measure the fluorescent X-ray intensity at the measurement start point as the background intensity and final measurement. The fluorescent X-ray intensity at each point is defined as the saturation intensity, the difference between the fluorescent X-ray intensity at each measurement point and the background intensity is divided by the difference between the saturation intensity and the background intensity, and the result is defined as the detection intensity ratio. , Find the point where the detected intensity ratio is less than 1% in the reverse order of the measurement, recognize the coordinate value there as a boundary point, and perform the above work in multiple directions with the center of the circle as the reference. X-ray beam that can measure the size of a line beam Beam width measurement method.
【請求項2】 試料ステージを上下方向に移動すること
により、任意の高さでのX線ビームの寸法がわかる請求
項1記載のX線ビーム幅測定方法。
2. The X-ray beam width measuring method according to claim 1, wherein the dimension of the X-ray beam at an arbitrary height can be determined by moving the sample stage in the vertical direction.
【請求項3】 X線発生部と、X線発生部から照射され
るX線を絞るコリメータと、制御可能で少なくとも前後
左右に動作可能な試料ステージと、蛍光X線検出部と、
数値演算を行う演算処理部を備える蛍光X線膜厚計にお
いて、 第1に円形を境界とし、蛍光X線をエネルギー弁別可能
な2つの材質で構成される治具を試料ステージに置き、
治具の円の外側の材質が発生する蛍光X線エネルギーを
着目エネルギーとし第2に治具の円中心にX線ビームが照射されるように試
料ステージを移動して前記着目エネルギーでの蛍光X線
強度をバックグラウンド強度として計測し第3に円の外側にX線ビームが照射されるように試料ス
テージを移動して前記着目エネルギーでの蛍光X線強度
を飽和強度として計測し、 第4に円の中心から円の外側に向かって試料ステージを
動作し、前記着目エネルギーでの蛍光X線強度をサンプ
ル強度とし、サンプル強度とバックグラウンド強度との
差を、飽和強度とバックグラウンド強度との差で除算
し、この結果を検出強度比とし、 第5に検出強度比が0.01以上になっているかチェッ
クして0.01以上になっていなかったら、計測点を円
周方向へ移動して第4の作業に戻り、0.01以上にな
っていたら、前回計測を行った座標値を境界点と認識
し、 第6に円中心を基準にして、第4と180度反転した方
向に対して、第4、第5の作業を行い、境界点を求め、 第7に治具の円の直径から2つの境界点の距離を差し引
くことによって、一方向でのX線ビーム幅が算出でき、
必要に応じて角度を変えて、複数方向のX線ビーム幅の
計測ができることを特徴とするX線ビーム幅測定方法。
3. An X-ray generation unit and irradiation from the X-ray generation unit
A collimator that narrows down the X-ray
A sample stage that can move left and right, a fluorescent X-ray detector,
For a fluorescent X-ray film thickness meter equipped with an arithmetic processing unit for performing numerical calculation
There are, a circular first and boundaries, energy differentiable X-ray fluorescence
Place a jig composed of two materials on the sample stage,
The fluorescent X-ray energy generated by the material outside the jig circle
Second , the energy of interest was used, and secondly, the X-ray beam was irradiated to the center of the jig circle.
X-ray with the energy of interest by moving the sample stage
Intensity is measured as the background intensity, and thirdly , the sample scan is performed so that the X-ray beam is irradiated to the outside of the circle.
The X-ray intensity at the energy of interest by moving the
Is measured as the saturation intensity, and fourth, the sample stage is moved from the center of the circle to the outside of the circle.
Operates and samples the fluorescent X-ray intensity at the energy of interest
Of the sample intensity and background intensity
Divide the difference by the difference between the saturation intensity and the background intensity
Then, the result is used as the detection intensity ratio . Fifth, it is checked whether the detection intensity ratio is 0.01 or more.
If the measured value is less than 0.01, circle the measurement point
Moved in the circumferential direction and returned to the 4th work, and became 0.01 or more.
If so, the coordinate value measured last time is recognized as the boundary point.
And 6th, the one that is 180 degrees inverted from the 4th with respect to the center of the circle
For each direction, perform the 4th and 5th work , find the boundary point, and 7thly subtract the distance between the two boundary points from the diameter of the jig circle.
By doing so, the X-ray beam width in one direction can be calculated,
If necessary, change the angle to adjust the X-ray beam width in multiple directions.
An X-ray beam width measuring method characterized by being capable of measurement.
JP9168593A 1993-04-19 1993-04-19 X-ray beam width measurement method Expired - Lifetime JP3377109B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9168593A JP3377109B2 (en) 1993-04-19 1993-04-19 X-ray beam width measurement method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9168593A JP3377109B2 (en) 1993-04-19 1993-04-19 X-ray beam width measurement method

Publications (2)

Publication Number Publication Date
JPH06300853A JPH06300853A (en) 1994-10-28
JP3377109B2 true JP3377109B2 (en) 2003-02-17

Family

ID=14033363

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9168593A Expired - Lifetime JP3377109B2 (en) 1993-04-19 1993-04-19 X-ray beam width measurement method

Country Status (1)

Country Link
JP (1) JP3377109B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19836884C1 (en) * 1998-08-14 2000-06-21 Helmut Fischer Gmbh & Co Determination of the measurement spot in the X-ray fluorescence analysis

Also Published As

Publication number Publication date
JPH06300853A (en) 1994-10-28

Similar Documents

Publication Publication Date Title
KR960006366B1 (en) Metals assay apparatus and method
US5864601A (en) Method and apparatus for inspecting pipes using a digitized radiograph
US10697908B2 (en) Metrology inspection apparatus
JPH0783884A (en) Flaw examination method, flow examination device and flaw examination sensor
JPH06273146A (en) Method for detecting center of band-shaped sample
JP3377109B2 (en) X-ray beam width measurement method
JP4594833B2 (en) Defect inspection equipment
US6115450A (en) X-ray fluorescence analyzer capable of determining the center of a sample
JP3094199B2 (en) Micropart analysis method
JP3146195B2 (en) X-ray mapping device
JP2829454B2 (en) X-ray fluorescence film thickness measurement method
JPS618610A (en) Apparatus for inspecting steel sheet surface
JPH03181848A (en) Apparatus for evaluating semiconductor material
JPH06252230A (en) Method and apparatus for inspection of defect
JP2920687B2 (en) X-ray mapping device
Inoue et al. Automatic control of horizontal narrow gap welding (Report II)
JPH04120456A (en) Nondestructive inspecting apparatus by skid
JPS6315546B2 (en)
TWI383147B (en) Determination of Internal Defects of Concrete Test Specimens
Avakyan Methods for focal spot characteristics applied measurement of microfocus x-ray sources
JPH0229983B2 (en)
Bachnak et al. Non-destructive evaluation and flaw visualization using an eddy current probe
JPH01219529A (en) Method and device for stress measurement
JPS63168545A (en) Measurement of detect using x-ray ct apparatus
JP2000121333A (en) Appearance inspection apparatus and method

Legal Events

Date Code Title Description
S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081206

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091206

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 8

Free format text: PAYMENT UNTIL: 20101206

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101206

Year of fee payment: 8

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: R3D03

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 8

Free format text: PAYMENT UNTIL: 20101206

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111206

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 9

Free format text: PAYMENT UNTIL: 20111206

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121206

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 11

Free format text: PAYMENT UNTIL: 20131206

EXPY Cancellation because of completion of term