JP3375052B2 - Cleaning water for electronic materials - Google Patents

Cleaning water for electronic materials

Info

Publication number
JP3375052B2
JP3375052B2 JP35340397A JP35340397A JP3375052B2 JP 3375052 B2 JP3375052 B2 JP 3375052B2 JP 35340397 A JP35340397 A JP 35340397A JP 35340397 A JP35340397 A JP 35340397A JP 3375052 B2 JP3375052 B2 JP 3375052B2
Authority
JP
Japan
Prior art keywords
water
dissolved
oxygen gas
gas
electronic materials
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP35340397A
Other languages
Japanese (ja)
Other versions
JPH11181493A (en
Inventor
博志 森田
純一 井田
哲夫 水庭
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kurita Water Industries Ltd
Original Assignee
Kurita Water Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kurita Water Industries Ltd filed Critical Kurita Water Industries Ltd
Priority to JP35340397A priority Critical patent/JP3375052B2/en
Priority to US09/215,872 priority patent/US6372699B1/en
Priority to EP98124184A priority patent/EP0924970B1/en
Priority to EP01110701A priority patent/EP1122301B1/en
Priority to DE69812298T priority patent/DE69812298T2/en
Priority to DE69820495T priority patent/DE69820495T2/en
Priority to TW087121405A priority patent/TW405176B/en
Priority to KR1019980057015A priority patent/KR100319119B1/en
Publication of JPH11181493A publication Critical patent/JPH11181493A/en
Priority to US09/542,305 priority patent/US6450181B1/en
Application granted granted Critical
Publication of JP3375052B2 publication Critical patent/JP3375052B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Cleaning By Liquid Or Steam (AREA)
  • Detergent Compositions (AREA)
  • Cleaning Or Drying Semiconductors (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、電子材料用洗浄水
に関する。さらに詳しくは、本発明は、電子材料の表面
から不純物、特に微粒子を取り除くウェット洗浄におい
て、低濃度の薬剤溶解量で、室温において、効果的に洗
浄を行うことができる電子材料用洗浄水に関する。
TECHNICAL FIELD The present invention relates to cleaning water for electronic materials. More specifically, the present invention relates to cleaning water for electronic materials, which can be effectively cleaned at room temperature with a low concentration of a dissolved amount of a chemical in wet cleaning for removing impurities, particularly fine particles from the surface of electronic materials.

【0002】[0002]

【従来の技術】半導体用シリコン基板、液晶用ガラス基
板、フォトマスク用石英基板などの電子材料の表面から
微粒子を除去することは、製品不良を防ぐために極めて
重要である。この目的のために、従来から、アンモニア
と過酸化水素を混合した水溶液を加温して用いる、いわ
ゆるAPM洗浄が行われている。APM洗浄に用いられ
る薬品の混合比は、アンモニア水(29重量%):過酸化
水素水(30重量%):水=1:1:5が標準であり、洗
浄の温度は80℃前後で行われるのが一般的な方法であ
る。APM洗浄方式は、非常に優れた微粒子除去効果を
示す一方で、大量の高純度薬剤を用いること、そのため
に洗浄後のリンスに大量の超純水が必要であること、排
水処理の負担が大きいこと、加温及び温度調整機構が必
要であること、大量の薬品蒸気を発生させるために蒸気
を排出し、排気量に相当する量の新鮮空気を取り込んで
清浄化する空調設備が必要であることなど、多くの問題
点を有している。微粒子除去効果を損なわずに、上述の
問題点を解消する方法として、薬品を従来より数倍希釈
して用いたり、温度を40℃程度あるいは常温にして、
超音波振動を併用する方法が検討されている。このよう
な改良は、従来法を基礎にしたものであり、量産工場で
も採用しやすいという長所を有するが、問題点の改善効
果は小さかった。このために、薬剤の使用量が少なく、
常温で洗浄することができ、しかも洗浄効果の大きい電
子材料用洗浄水が求められていた。
2. Description of the Related Art Removing fine particles from the surface of electronic materials such as silicon substrates for semiconductors, glass substrates for liquid crystals, and quartz substrates for photomasks is extremely important for preventing product defects. For this purpose, so-called APM cleaning has been conventionally performed in which an aqueous solution of a mixture of ammonia and hydrogen peroxide is heated and used. The standard mixing ratio of chemicals used for APM cleaning is ammonia water (29% by weight): hydrogen peroxide solution (30% by weight): water = 1: 1: 5, and the cleaning temperature is around 80 ° C. It is a common method. While the APM cleaning method exhibits a very excellent effect of removing fine particles, it uses a large amount of high-purity chemicals, and therefore requires a large amount of ultrapure water for the rinse after cleaning, and the burden of wastewater treatment is heavy. That a heating and temperature adjustment mechanism is required, and that air conditioning equipment that discharges vapor to generate a large amount of chemical vapor and takes in fresh air in an amount equivalent to the exhaust volume for cleaning It has many problems. As a method for solving the above-mentioned problems without impairing the effect of removing fine particles, a chemical is diluted several times more than before, or the temperature is set to about 40 ° C or room temperature.
A method of using ultrasonic vibration in combination is being studied. Such an improvement is based on the conventional method and has an advantage that it can be easily adopted in a mass production factory, but the effect of improving the problem is small. Because of this, the amount of drug used is small,
There has been a demand for cleaning water for electronic materials that can be cleaned at room temperature and has a large cleaning effect.

【0003】[0003]

【発明が解決しようとする課題】本発明は、電子材料の
表面から不純物、特に微粒子を取り除くウェット洗浄に
おいて、低濃度の薬剤溶解量で、室温において、効果的
に洗浄を行うことができ、省資源、環境保全の効果が大
きく、かつ量産工場でも採用しやすい電子材料用洗浄水
を提供することを目的としてなされたものである。
SUMMARY OF THE INVENTION According to the present invention, in wet cleaning for removing impurities, particularly fine particles from the surface of an electronic material, it is possible to effectively perform cleaning at room temperature with a low concentration of a dissolved drug. The purpose was to provide cleaning water for electronic materials, which has a great effect on resources and environmental protection and is easy to use in mass production plants.

【0004】[0004]

【課題を解決するための手段】本発明者らは、上記の課
題を解決すべく鋭意研究を重ねた結果、アンモニアと過
酸化水素を低濃度に含有する水に、大気飽和濃度より高
濃度に酸素ガスを溶解させてなる洗浄水が、電子材料表
面に付着した微粒子の除去に優れた効果を有することを
見いだし、この知見に基づいて本発明を完成するに至っ
た。すなわち、本発明は、(1)大気飽和濃度より高濃
度に酸素ガスを溶解し、かつアンモニア0.1〜10,0
00mg/リットルと過酸化水素0.1〜10,000mg/
リットルを含有することを特徴とする電子材料用洗浄
水、及び、(2)被洗浄物である電子材料が、半導体用
シリコン基板、液晶用ガラス基板又はフォトマスク用石
英基板である第(1)項記載の電子材料用洗浄水、を提供
するものである。さらに、本発明の好ましい態様とし
て、(3)溶存酸素ガス濃度が12mg/リットル以上で
ある第(1)項記載の電子材料用洗浄水、(4)溶存酸素
ガス濃度が20mg/リットル以上である第(3)項記載の
電子材料用洗浄水、(5)溶存酸素ガス濃度が30mg/
リットル以上である第(4)項記載の電子材料用洗浄水、
(6)水を脱気して溶存気体の飽和度を低下させたの
ち、酸素ガスを供給して水に酸素ガスを溶解することを
特徴とする第(1)項記載の電子材料用洗浄水の製造方
法、(7)酸素ガスの飽和度換算供給量が、脱気した気
体の飽和度の低下量にほぼ相当する量である第(6)項記
載の電子材料用洗浄水の製造方法、(8)水からの溶存
気体の除去及び酸素ガスの溶解に気体透過膜モジュール
を用いる第(7)項記載の電子材料用洗浄水の製造方法、
(9)気体透過膜モジュールを2段に設け、前段の気体
透過膜モジュールを用いて全溶存気体を対象とする減圧
膜脱気を行い、後段の気体透過膜モジュールを用いて酸
素ガスを溶解する第(8)項記載の電子材料用洗浄水の製
造方法、(10)第(1)項項記載の電子材料用洗浄水
に、周波数400kHz以上の超音波振動を伝達しつつ洗
浄することを特徴とする電子材料の洗浄方法、及び、
(11)電子材料用洗浄水を、室温のまま用いて洗浄す
る第(10)項記載の電子材料の洗浄方法、を挙げること
ができる。
As a result of intensive studies to solve the above problems, the present inventors have found that water containing ammonia and hydrogen peroxide in a low concentration has a concentration higher than the atmospheric saturation concentration. It was found that cleaning water obtained by dissolving oxygen gas has an excellent effect in removing fine particles adhering to the surface of the electronic material, and based on this finding, the present invention has been completed. That is, according to the present invention, (1) oxygen gas is dissolved at a concentration higher than the atmospheric saturation concentration, and the amount of ammonia is 0.1 to 10,0.
00 mg / liter and hydrogen peroxide 0.1-10,000 mg /
(1) The cleaning water for electronic materials, which contains liters, and (2) the electronic material that is the object to be cleaned is a silicon substrate for semiconductors, a glass substrate for liquid crystals, or a quartz substrate for photomasks (1) To provide cleaning water for electronic materials. Further, as a preferred embodiment of the present invention, (3) the washing water for electronic materials according to (1), wherein the dissolved oxygen gas concentration is 12 mg / liter or more, and (4) the dissolved oxygen gas concentration is 20 mg / liter or more. Cleaning water for electronic materials as described in (3), (5) Dissolved oxygen gas concentration is 30 mg /
The washing water for electronic materials according to the item (4), which is liter or more,
(6) Detergent of water to reduce the degree of saturation of the dissolved gas, and then oxygen gas is supplied to dissolve the oxygen gas in the water. (7) The method for producing washing water for electronic materials according to item (6), wherein the oxygen-saturated amount of supply of oxygen gas is substantially equivalent to the decrease in the degree of saturation of the degassed gas, (8) A method for producing cleaning water for electronic materials according to item (7), wherein a gas permeable membrane module is used to remove dissolved gas from water and dissolve oxygen gas,
(9) The gas permeable membrane module is provided in two stages, decompression membrane deaeration for all dissolved gas is performed using the gas permeable membrane module in the first stage, and oxygen gas is dissolved using the gas permeable membrane module in the second stage. A method for producing cleaning water for electronic materials according to item (8), and (10) cleaning water for electronic materials according to item (1) while ultrasonic waves having a frequency of 400 kHz or higher are transmitted. And a method for cleaning electronic materials, and
(11) The method for cleaning an electronic material according to the item (10), in which the cleaning water for electronic materials is used while being kept at room temperature.

【0005】[0005]

【発明の実施の形態】本発明の電子材料用洗浄水は、大
気飽和濃度より高濃度に酸素ガスを溶解し、かつアンモ
ニア0.1〜10,000mg/リットル及び過酸化水素
0.1〜10,000mg/リットルを含有するものであ
る。本発明の電子材料用洗浄水に用いる水は、超純水で
あることが好ましい。また、本発明の電子材料用洗浄水
に用いるアンモニア及び過酸化水素水は、電子材料用グ
レードの高純度品であることが好ましい。大気飽和濃度
とは、大気と平衡状態にある水中に溶解している気体の
濃度である。酸素ガスの大気飽和濃度は、温度により変
動し、低温においては高く、高温においては低くなる
が、20〜25℃においては、8〜9mg/リットル程度
である。本発明の電子材料用洗浄水は、溶存酸素ガス濃
度が12mg/リットル以上であることが好ましく、20
mg/リットル以上であることがより好ましく、30mg/
リットル以上であることがさらに好ましい。本発明の電
子材料用洗浄水は、使用目的に応じて溶存酸素ガス濃度
を選定することができる。大気飽和濃度より高濃度に酸
素ガスを溶解し、かつ低濃度のアンモニアと過酸化水素
を含有する本発明の電子材料用洗浄水は、電子材料表面
の金属汚染、有機物汚染及び微粒子汚染のすべてに対し
て除去効果を有するが、特に微粒子汚染の除去に対して
優れた効果を発揮する。本発明の電子材料用洗浄水は、
半導体用シリコン基板、液晶用ガラス基板、フォトマス
ク用石英基板などの洗浄に、好適に使用することができ
る。
BEST MODE FOR CARRYING OUT THE INVENTION The cleaning water for electronic materials of the present invention dissolves oxygen gas at a concentration higher than the atmospheric saturation concentration, and contains 0.1 to 10,000 mg / liter of ammonia and 0.1 to 10 hydrogen peroxide. It contains 1,000 mg / liter. The water used for the cleaning water for electronic materials of the present invention is preferably ultrapure water. Further, the ammonia and hydrogen peroxide solution used in the cleaning water for electronic materials of the present invention are preferably high-purity electronic material grade products. The atmospheric saturation concentration is the concentration of gas dissolved in water in equilibrium with the atmosphere. The atmospheric saturation concentration of oxygen gas varies depending on the temperature, is high at low temperatures and is low at high temperatures, but is about 8-9 mg / liter at 20-25 ° C. The washing water for electronic materials of the present invention preferably has a dissolved oxygen gas concentration of 12 mg / liter or more,
More preferably at least mg / liter, 30 mg /
More preferably, it is liter or more. The concentration of dissolved oxygen gas in the cleaning water for electronic materials of the present invention can be selected according to the purpose of use. The cleaning water for electronic materials of the present invention, which dissolves oxygen gas at a concentration higher than the atmospheric saturation concentration and contains low concentrations of ammonia and hydrogen peroxide, can be applied to all of metal contamination, organic contamination and particulate contamination on the surface of electronic materials. Although it has a removing effect, it exhibits an excellent effect especially for removing fine particle contamination. The cleaning water for electronic materials of the present invention,
It can be suitably used for cleaning silicon substrates for semiconductors, glass substrates for liquid crystals, quartz substrates for photomasks, and the like.

【0006】本発明の電子材料用洗浄水の製造方法には
特に制限はなく、あらかじめ大気飽和濃度より高濃度に
酸素ガスを溶解した水に、アンモニア及び過酸化水素を
添加して製造することができ、あるいは、アンモニア及
び過酸化水素を含有する水に大気飽和濃度より高濃度に
酸素ガスを溶解して製造することもできる。これらの方
法の中で、あらかじめ酸素ガスを溶解した水に、アンモ
ニア及び過酸化水素を添加する方法が好ましい。アンモ
ニア及び過酸化水素を添加する前に酸素ガスを溶解する
方法によれば、酸素ガスの溶解に先立って水を脱気し、
溶存気体の飽和度を低下さても、アンモニアが気相に移
行して失われたり、あるいは、水中の酸素ガス濃度が低
下して過酸化水素の分解が促進されたりするおそれがな
い。水への酸素ガスの溶解は、水を脱気して溶存気体の
飽和度を低下したのち、酸素ガスを供給して水に酸素ガ
スを溶解させる方法が好ましい。本発明において、気体
の飽和度とは、水中に溶解している気体の量を、圧力1
5Pa、温度20℃における気体の溶解量で除した値
である。例えば、水が圧力105Pa、温度20℃の窒
素ガスと接して平衡状態にあるとき、水への窒素ガスの
溶解量は19.2mg/リットルであるので、水中に溶解
している気体が窒素ガスのみであって、その溶解量が1
9.2mg/リットルである水の飽和度は1.0倍であり、
水中に溶解している気体が窒素ガスのみであって、その
溶解量が9.6mg/リットルである水の飽和度は0.5倍
である。また、圧力105Pa、温度20℃で空気と接
して平衡状態にある水は、窒素ガス15.4mg/リット
ル及び酸素ガス8.8mg/リットルを溶解して飽和度1.
0倍の状態となっているので、脱気により気体の溶解量
を窒素ガス1.5mg/リットル、酸素ガス0.9mg/リッ
トルとした水の飽和度は0.1倍である。さらに、水が
圧力105Pa、温度20℃の酸素ガスと接して平衡状
態にあるとき、水への酸素ガスの溶解量は44.0mg/
リットルであるので、水中に溶解している気体が酸素ガ
スのみであり、その溶解量が22.0mg/リットルであ
る水の飽和度は0.5倍である。
The method for producing the cleaning water for electronic materials of the present invention is not particularly limited, and ammonia and hydrogen peroxide can be added to water in which oxygen gas is dissolved in a concentration higher than the atmospheric saturation concentration in advance. Alternatively, it can be produced by dissolving oxygen gas in water containing ammonia and hydrogen peroxide at a concentration higher than the atmospheric saturation concentration. Among these methods, a method of adding ammonia and hydrogen peroxide to water in which oxygen gas is dissolved in advance is preferable. According to the method of dissolving oxygen gas before adding ammonia and hydrogen peroxide, degassing water prior to the dissolution of oxygen gas,
Even if the saturation level of the dissolved gas is reduced, there is no risk that ammonia will be transferred to the gas phase and lost, or that the concentration of oxygen gas in water will be reduced and hydrogen peroxide will be decomposed. Dissolving oxygen gas in water is preferably performed by degassing water to reduce the saturation of the dissolved gas, and then supplying oxygen gas to dissolve the oxygen gas in water. In the present invention, the degree of saturation of a gas is the amount of gas dissolved in water,
It is a value divided by the dissolved amount of gas at 0 5 Pa and a temperature of 20 ° C. For example, when water is in equilibrium with nitrogen gas having a pressure of 10 5 Pa and a temperature of 20 ° C., the amount of nitrogen gas dissolved in water is 19.2 mg / liter, so the gas dissolved in water is Nitrogen gas only, the dissolution amount is 1
The saturation of water, which is 9.2 mg / liter, is 1.0 times,
The gas dissolved in water is only nitrogen gas, and the amount of water dissolved therein is 9.6 mg / liter, and the degree of saturation of water is 0.5 times. Further, water in equilibrium in contact with air at a pressure of 10 5 Pa and a temperature of 20 ° C. dissolves 15.4 mg / liter of nitrogen gas and 8.8 mg / liter of oxygen gas and has a saturation degree of 1.
Since the state is 0 times, the degree of saturation of water when the amount of dissolved gas is 1.5 mg / liter of nitrogen gas and 0.9 mg / liter of oxygen gas by degassing is 0.1 times. Furthermore, when water is in equilibrium with oxygen gas having a pressure of 10 5 Pa and a temperature of 20 ° C., the amount of dissolved oxygen gas in water is 44.0 mg /
Since it is liter, the gas dissolved in water is only oxygen gas, and the degree of saturation of water whose dissolved amount is 22.0 mg / liter is 0.5 times.

【0007】本発明の電子材料用洗浄水において、洗浄
用機能水としての効果を高めるためには、溶存酸素ガス
濃度は高いほど望ましく、大気圧下、常温での飽和濃度
である約44mg/リットルに近づくほど、洗浄効果は高
まる。しかし、飽和付近まで溶存酸素ガス濃度を高めな
くとも、あるレベル以上の濃度があれば、実質的に有効
な電子材料用洗浄水となる。その濃度は、12mg/リッ
トル以上、好ましくは20mg/リットル程度、すなわ
ち、常温、大気圧下における溶存酸素ガスの飽和度の1
/2倍弱であることが、本発明者らによってすでに確認
されている。溶存酸素ガス濃度を30mg/リットル程
度、すなわち、飽和度の70%程度まで高めると、一層
高い洗浄効果を得ることができる。本発明の電子材料用
洗浄水の製造において、水の脱気の程度に特に制限はな
いが、溶存酸素ガス濃度が20mg/リットル以上の電子
材料用洗浄水を効率よく製造するためには、溶解すべき
酸素ガスの飽和度に相当する量の溶存気体を脱気して、
水中の気体溶解キャパシティーに空きを作ることが好ま
しい。例えば、飽和度の1/2倍以上の酸素ガスを溶解
する場合は、飽和度の1/2倍以上に相当する溶存気体
をあらかじめ脱気により除去することが好ましい。飽和
度に換算した原水の溶存気体の脱気量と、飽和度に換算
した溶解すべき酸素ガスの量をほぼ等しくすることによ
り、酸素ガスを無駄なく容易に溶解することができる。
In order to enhance the effect of the functional water for cleaning in the cleaning water for electronic materials of the present invention, it is desirable that the concentration of dissolved oxygen gas is higher, and the saturated concentration at room temperature under atmospheric pressure is about 44 mg / liter. The closer to, the greater the cleaning effect. However, even if the dissolved oxygen gas concentration is not increased to near saturation, if the concentration is at a certain level or higher, the cleaning water for electronic materials is substantially effective. Its concentration is 12 mg / liter or more, preferably about 20 mg / liter, that is, 1 of the saturation degree of the dissolved oxygen gas at room temperature and atmospheric pressure.
It has already been confirmed by the present inventors that it is less than / 2 times. When the dissolved oxygen gas concentration is increased to about 30 mg / liter, that is, about 70% of the saturation, a higher cleaning effect can be obtained. In the production of the cleaning water for electronic materials of the present invention, the degree of degassing of water is not particularly limited, but in order to efficiently produce the cleaning water for electronic materials having a dissolved oxygen gas concentration of 20 mg / liter or more, Degas the amount of dissolved gas that corresponds to the saturation of oxygen gas,
It is preferable to make room for the gas dissolution capacity in water. For example, in the case of dissolving oxygen gas having a saturation of ½ or more, it is preferable to remove the dissolved gas having a saturation of ½ or more in advance by degassing. By making the degassing amount of the dissolved gas of the raw water converted into the saturation degree and the amount of the oxygen gas to be dissolved converted into the saturation degree substantially equal to each other, the oxygen gas can be easily dissolved without waste.

【0008】溶存気体を制御していない、大気と平衡状
態にある水には、常温で約8mg/リットルの酸素ガス、
約16mg/リットルの窒素ガスと、微量の炭酸などが溶
解している。この水を原水とする場合には、溶存窒素ガ
ス濃度を8mg/リットル程度以下、すなわち飽和度の1
/2程度以下に低減させれば、酸素ガスを飽和度の1/
2程度まで容易に溶解することができ、溶存酸素ガス濃
度20mg/リットル以上の電子材料用洗浄水を得ること
ができる。本発明方法において、原水とする水は、必ず
しも大気と平衡状態である必要はなく、溶存気体の種
類、濃度比率などには全く制限はない。例えば、ほぼ窒
素ガスのみによって溶存気体が置換され、溶存窒素ガス
濃度が高められた原水であれば、そこから溶存窒素ガス
を必要な飽和度に相当する量だけ脱気すれば、目的を達
することができる。要するに、総溶存気体の低減量を飽
和度に換算し、それが溶解すべき酸素ガスの飽和度に見
合う以上の量であればよい。本発明の電子材料用洗浄水
の製造における脱気処理としては、気体の種類にかかわ
らず除去することができる真空脱気や減圧膜脱気などに
よることが好ましい。これらの中で、高純度脱気膜モジ
ュールによる膜脱気は、比較的ユースポイントに近いと
ころで、原水の純度を損なうことなく、微量に溶存する
気体を脱気することができるので、特に好適に使用する
ことができる。
In the water in equilibrium with the atmosphere in which the dissolved gas is not controlled, about 8 mg / liter of oxygen gas at room temperature,
About 16 mg / liter of nitrogen gas and a small amount of carbonic acid are dissolved. When this water is used as raw water, the concentration of dissolved nitrogen gas is about 8 mg / liter or less, that is, the saturation level of 1
If reduced to less than about 1/2, the oxygen gas will reach 1 /
It can be easily dissolved up to about 2 and it is possible to obtain washing water for electronic materials having a dissolved oxygen gas concentration of 20 mg / liter or more. In the method of the present invention, the raw water does not necessarily have to be in equilibrium with the atmosphere, and there are no restrictions on the type of dissolved gas, the concentration ratio, and the like. For example, if the dissolved gas is replaced by almost only nitrogen gas and the concentration of the dissolved nitrogen gas is increased, degassing the dissolved nitrogen gas from there will achieve the purpose. You can In short, the amount of reduction of the total dissolved gas is converted into the degree of saturation, and the amount may be more than the degree of saturation of the oxygen gas to be dissolved. The degassing treatment in the production of the cleaning water for electronic materials of the present invention is preferably vacuum degassing or depressurization membrane degassing, which can be removed regardless of the type of gas. Among these, the membrane degassing by the high-purity degassing membrane module is particularly preferable because it is possible to degas a minute amount of dissolved gas at a point relatively close to the point of use without impairing the purity of the raw water. Can be used.

【0009】本発明において、水に酸素ガスを溶解する
方法には特に制限はなく、例えば、水を脱気することな
く高濃度の酸素ガスをバブリングなどにより水に接触さ
せ、ヘンリーの法則に基づいて水中の溶存窒素ガスを減
らし、溶存酸素ガス濃度を30mg/リットル以上とする
ことができる。水に酸素ガスをバブリングする方法によ
れば、水中の溶存酸素ガスを一定の濃度まで高めるため
に必要な酸素ガスの量が多いが、特殊な装置を使用する
ことなく、簡便に高濃度に溶存酸素ガスを含有する水を
製造することができる。水に酸素ガスをバブリングする
ことにより酸素ガスを溶解した水を製造するに際して、
あらかじめ水から溶存気体を除去したのち、酸素ガスを
バブリングすることが好ましい。水から溶存気体を除去
する方法には特に制限はなく、例えば、脱気膜装置に通
水することができ、あるいは、減圧に保った充填塔に通
水することもできる。水から溶存気体を除去したのち酸
素ガスをバブリングすることにより、水中の溶存酸素ガ
スを一定の濃度まで高めるために必要な酸素ガスの量を
減少することができる。本発明において、気体透過膜モ
ジュールを使用して水中の溶存酸素ガス濃度を高めるこ
ともできる。例えば、酸素ガスをスウィープガスとし
て、気体透過膜モジュールの気相に通気することによ
り、溶存酸素ガス濃度を30mg/リットル以上とするこ
とができる。大気と平衡状態にある水中の酸素ガス以外
の溶存気体は、ほとんど窒素ガスであるので、気体透過
膜モジュールの気相の酸素ガス分圧を高め、水に溶解し
ている窒素ガスと置換することによって溶存窒素ガスを
減らし、溶存酸素ガス濃度を高めることができる。酸素
ガスをスウィープガスとする方法によれば、ある程度過
剰の酸素ガスを必要とするが、簡単な装置を用いて簡便
に溶存酸素ガス濃度を高めることができる。
In the present invention, the method of dissolving oxygen gas in water is not particularly limited. For example, a high concentration oxygen gas is brought into contact with water by bubbling without degassing the water, and based on Henry's law. It is possible to reduce the dissolved nitrogen gas in the water to a dissolved oxygen gas concentration of 30 mg / liter or more. According to the method of bubbling oxygen gas into water, the amount of oxygen gas required to increase the dissolved oxygen gas in water to a certain concentration is large, but it is possible to easily dissolve oxygen gas in high concentration without using a special device. Water containing oxygen gas can be produced. In producing water in which oxygen gas is dissolved by bubbling oxygen gas into water,
It is preferable to remove the dissolved gas from water in advance and then bubble oxygen gas. The method for removing the dissolved gas from water is not particularly limited, and for example, water can be passed through a degassing membrane device or can be passed through a packed column kept under reduced pressure. By bubbling oxygen gas after removing the dissolved gas from water, the amount of oxygen gas required to increase the dissolved oxygen gas in water to a certain concentration can be reduced. In the present invention, a gas permeable membrane module can also be used to increase the concentration of dissolved oxygen gas in water. For example, the dissolved oxygen gas concentration can be set to 30 mg / liter or more by ventilating the oxygen gas as a sweep gas into the gas phase of the gas permeable membrane module. Most dissolved gases other than oxygen gas in water that are in equilibrium with the atmosphere are nitrogen gas, so increase the partial pressure of oxygen gas in the gas phase of the gas permeable membrane module and replace it with nitrogen gas dissolved in water. By this, the dissolved nitrogen gas can be reduced and the dissolved oxygen gas concentration can be increased. According to the method of using the oxygen gas as the sweep gas, the oxygen gas in excess to some extent is required, but the dissolved oxygen gas concentration can be easily increased by using a simple device.

【0010】本発明においては、気体透過膜モジュール
を多段に用いて溶存気体の除去及び酸素ガスの溶解を行
うこともできる。例えば、気体透過膜モジュールを2段
に設け、前段の気体透過膜モジュールを用いて全溶存気
体を対象とする減圧膜脱気を行い、後段の気体透過膜モ
ジュールを用いて酸素ガスを溶解することができる。気
体透過膜モジュールを2段に設けて、全溶存気体を対象
とする減圧膜脱気と酸素ガスの溶解を行うことにより、
酸素ガスを無駄に放出することなく、ほぼ定量的に水に
溶解することができる。気体透過膜モジュールを2段に
設け、前段の気体透過膜モジュールを用いて全溶存気体
を対象とする減圧膜脱気を行う場合、前段の気体透過膜
モジュールの減圧気相に酸素ガスを存在させることがで
きる。前段の気体透過膜モジュールの減圧気相に酸素ガ
スを存在させることにより、酸素ガスの使用量はやや増
加するが、前段の気体透過膜モジュールにおける窒素ガ
ス除去効率が向上し、同時に水にある程度の酸素ガスを
溶解することができる。本発明においては、必要とする
溶存酸素ガス濃度や、電子材料用洗浄水の使用量などに
応じて、適宜酸素ガスの溶解方法を選択することができ
る。
In the present invention, the gas permeable membrane module may be used in multiple stages to remove dissolved gas and dissolve oxygen gas. For example, a gas permeable membrane module is provided in two stages, decompression membrane deaeration for all dissolved gases is performed using the gas permeable membrane module in the previous stage, and oxygen gas is dissolved using the gas permeable membrane module in the subsequent stage. You can By installing the gas permeable membrane module in two stages and performing depressurization membrane degassing for all dissolved gases and dissolution of oxygen gas,
Oxygen gas can be dissolved in water almost quantitatively without wasting. When the gas permeable membrane module is provided in two stages and the depressurized membrane deaeration for all dissolved gas is performed using the gas permeable membrane module of the preceding stage, oxygen gas is allowed to exist in the depressurized gas phase of the gas permeable membrane module of the preceding stage. be able to. The presence of oxygen gas in the decompressed gas phase of the gas permeable membrane module in the preceding stage slightly increases the amount of oxygen gas used, but the nitrogen gas removal efficiency in the gas permeable membrane module in the preceding stage is improved, and at the same time water It can dissolve oxygen gas. In the present invention, a method for dissolving oxygen gas can be appropriately selected depending on the concentration of dissolved oxygen gas required, the amount of washing water for electronic materials used, and the like.

【0011】本発明の電子材料用洗浄水において、アン
モニアの含有量は0.1〜10,000mg/リットルであ
り、より好ましくは1〜100mg/リットルである。電
子材料用洗浄水がアンモニアを含有することにより、電
子材料用洗浄水はアルカリ性となり、微粒子と被洗浄物
の表面電位がともに負となるので、微粒子の被洗浄物表
面への再付着を防止することができる。アンモニアの含
有量が0.1mg/リットル未満であると、洗浄効果が不
十分となるおそれがある。アンモニアの含有量は、1
0,000mg/リットル以下で十分な洗浄効果が発現
し、通常は10,000mg/リットルを超えるアンモニ
アの含有は必要ではなく、アンモニアの含有量が多すぎ
ると、洗浄後のリンスに必要な水の量が多くなるおそれ
がある。本発明の電子材料用洗浄水において、過酸化水
素の含有量は0.1〜10,000mg/リットルであり、
より好ましくは1〜100mg/リットルである。電子材
料用洗浄水が過酸化水素を含有することにより、酸素ガ
スのみを溶解した場合よりも、酸化性を安定して維持
し、被洗浄物表面の荒れを防止することができる。過酸
化水素の含有量が0.1mg/リットル未満であると、洗
浄効果が不十分となるおそれがある。過酸化水素の含有
量は、10,000mg/リットル以下で十分な洗浄効果
が発現し、通常は10,000mg/リットルを超える過
酸化水素の含有は必要ではなく、過酸化水素の含有量が
多すぎると、洗浄後のリンスに必要な水の量が多くなる
おそれがある。
In the cleaning water for electronic materials of the present invention, the content of ammonia is 0.1 to 10,000 mg / liter, more preferably 1 to 100 mg / liter. Since the cleaning water for electronic materials contains ammonia, the cleaning water for electronic materials becomes alkaline, and the surface potentials of the particles and the object to be cleaned both become negative, so that the particles are prevented from reattaching to the surface of the object to be cleaned. be able to. If the ammonia content is less than 0.1 mg / liter, the cleaning effect may be insufficient. Ammonia content is 1
A sufficient cleaning effect is exhibited at less than 000 mg / liter, and it is not usually necessary to contain ammonia in excess of 10,000 mg / liter. If the ammonia content is too large, the water required for rinsing after cleaning is required. There is a possibility that the amount will increase. In the cleaning water for electronic materials of the present invention, the content of hydrogen peroxide is 0.1 to 10,000 mg / liter,
More preferably, it is 1 to 100 mg / liter. Since the cleaning water for electronic materials contains hydrogen peroxide, it is possible to more stably maintain the oxidizing property and prevent the surface of the object to be cleaned from being roughened, as compared with the case where only oxygen gas is dissolved. If the hydrogen peroxide content is less than 0.1 mg / liter, the cleaning effect may be insufficient. When the hydrogen peroxide content is 10,000 mg / liter or less, a sufficient cleaning effect is exhibited, and it is not usually necessary to contain hydrogen peroxide in excess of 10,000 mg / liter, and the hydrogen peroxide content is high. If too much, the amount of water required for the rinse after washing may increase.

【0012】本発明の電子材料用洗浄水を、電子材料、
特に、微粒子で汚染された電子材料と接触させる方法に
は特に制限はなく、微粒子の種類、粒度、付着量などに
応じて適宜選択することができる。例えば、微粒子で汚
染された電子材料を電子材料用洗浄水に浸漬してバッチ
洗浄することができ、あるいは、1枚ずつ処理する枚葉
式洗浄を行うこともできる。枚葉式洗浄の方法として
は、微粒子で汚染された電子材料を回転させつつ電子材
料用洗浄水を流しかけるスピン洗浄などを挙げることが
できる。本発明の電子材料用洗浄水を用いて、微粒子で
汚染された電子材料を洗浄するに際して、電子材料用洗
浄水に超音波振動を伝達することができる。電子材料用
洗浄水に超音波振動を伝達する方法には特に制限はな
く、例えば、バッチ洗浄においては、電子材料用洗浄水
を貯留した槽に超音波振動を伝達することができ、スピ
ン洗浄においては、流しかける電子材料用洗浄水のノズ
ル部において、超音波振動を伝達することができる。伝
達する超音波振動の周波数は、20kHz以上であること
が好ましく、400kHz以上であることがより好まし
い。超音波振動の周波数が20kHz未満であると、微粒
子で汚染された電子材料からの微粒子の除去が不十分と
なるおそれがある。被洗浄物の表面に損傷を与えない精
密洗浄を行うには、400kHz以上の、特に高周波数の
超音波振動を伝達することが好ましい。本発明の電子材
料用洗浄水は、室温において優れた微粒子除去効果を示
し、高い微粒子除去率で電子材料の表面を洗浄すること
ができるので、従来のAPM洗浄のように高温に加熱す
ることを必要としない。そのために、本発明の電子材料
用洗浄水を用いることにより、エネルギーコストを低減
し、作業環境を改善することができる。
The washing water for electronic materials of the present invention is
In particular, the method of contacting the electronic material contaminated with the fine particles is not particularly limited, and can be appropriately selected depending on the type of the fine particles, the particle size, the adhesion amount, and the like. For example, an electronic material contaminated with fine particles may be immersed in cleaning water for electronic materials to perform batch cleaning, or single-wafer cleaning in which one sheet is processed at a time may be performed. Examples of the single-wafer cleaning method include spin cleaning in which cleaning water for electronic materials is poured while rotating the electronic materials contaminated with fine particles. When cleaning the electronic material contaminated with fine particles by using the cleaning water for electronic materials of the present invention, ultrasonic vibration can be transmitted to the cleaning water for electronic materials. There is no particular limitation on the method of transmitting ultrasonic vibrations to the cleaning water for electronic materials, and for example, in batch cleaning, ultrasonic vibrations can be transmitted to the tank that stores the cleaning water for electronic materials, and in spin cleaning. Can transmit ultrasonic vibrations in the nozzle portion of the washing water for electronic material to be poured. The frequency of ultrasonic vibrations transmitted is preferably 20 kHz or more, more preferably 400 kHz or more. If the frequency of ultrasonic vibration is less than 20 kHz, the removal of fine particles from the electronic material contaminated with fine particles may be insufficient. In order to perform precision cleaning that does not damage the surface of the object to be cleaned, it is preferable to transmit ultrasonic vibrations of 400 kHz or higher, especially at high frequencies. The cleaning water for electronic materials according to the present invention has an excellent effect of removing fine particles at room temperature and can clean the surface of the electronic material with a high removal rate of fine particles. Therefore, it can be heated to a high temperature as in conventional APM cleaning. do not need. Therefore, by using the cleaning water for electronic materials of the present invention, the energy cost can be reduced and the working environment can be improved.

【0013】本発明の電子材料用洗浄水は、密閉式の電
子材料用洗浄水貯槽から配管を通してユースポイントま
で送水し、余剰の電子材料用洗浄水を配管を通して密閉
式の電子材料用洗浄水貯槽に返送し、循環利用する電子
材料用洗浄水の供給装置を用いて、好適に使用すること
ができる。図1は、本発明の電子材料用洗浄水の製造、
供給装置の一態様の系統図である。原水は、真空ポンプ
1により気相側が減圧に保たれた前段の気体透過膜モジ
ュール2に送られ、溶存気体が除去される。溶存気体が
除去された水は、次いで後段の気体透過膜モジュール3
に送られ、酸素ガス供給器4から供給される酸素ガスが
所定濃度になるように溶解されて、大気飽和濃度より高
濃度に酸素ガスを溶解した水となる。大気飽和濃度より
高濃度に酸素ガスを溶解した水には、次いで、アンモニ
ア水貯槽5よりポンプ6によりアンモニア水が、また、
過酸化水素水貯槽7よりポンプ8により過酸化水素水が
注入されて本発明の電子材料用洗浄水が調製され、密閉
式の電子材料用洗浄水貯槽9に貯留される。大気飽和濃
度より高濃度に酸素ガスを溶解した水の流入量及び貯槽
内の電子材料用洗浄水のアンモニアと過酸化水素の濃度
を計測し、コントローラーに信号を送ってポンプ6及び
ポンプ8によるアンモニア水及び過酸化水素水の注入量
を制御し、貯槽内の電子材料用洗浄水のアンモニア及び
過酸化水素の濃度を所定の値に保つことができる。密閉
式の電子材料用洗浄水貯槽9に貯留された電子材料用洗
浄水は、ポンプ10により配管11を通してユースポイ
ント12まで送給される。ユースポイントで使用されな
かった余剰の電子材料用洗浄水は、配管を通して密閉式
の電子材料用洗浄水貯槽に返送し、循環して再利用する
ことができる。
The cleaning water for electronic materials according to the present invention is sent from the sealed cleaning water storage tank for electronic materials to a use point through a pipe, and the excess cleaning water for electronic materials is sealed through the piping for cleaning water storage tank for electronic materials. It can be suitably used by using a supply device for cleaning water for electronic materials that is returned to and recycled. FIG. 1 shows the production of cleaning water for electronic materials according to the present invention,
It is a systematic diagram of one mode of a supply device. The raw water is sent to the gas permeable membrane module 2 in the preceding stage, where the gas phase side is kept at a reduced pressure by the vacuum pump 1, and the dissolved gas is removed. The water from which the dissolved gas has been removed is then used in the gas permeable membrane module 3 in the subsequent stage.
And the oxygen gas supplied from the oxygen gas supply device 4 is dissolved to have a predetermined concentration to become water in which the oxygen gas is dissolved at a concentration higher than the atmospheric saturation concentration. In the water in which oxygen gas is dissolved at a concentration higher than the atmospheric saturation concentration, the ammonia water is then pumped from the ammonia water storage tank 5 by the pump 6,
Hydrogen peroxide water is injected from the hydrogen peroxide water storage tank 7 by the pump 8 to prepare the electronic material cleaning water of the present invention, which is stored in the sealed electronic material cleaning water storage tank 9. The inflow amount of water in which oxygen gas is dissolved at a concentration higher than the atmospheric saturation concentration and the concentrations of ammonia and hydrogen peroxide in the cleaning water for electronic materials in the storage tank are measured, and a signal is sent to the controller to pump the ammonia by the pump 6 and the pump 8. The injection amounts of water and hydrogen peroxide water can be controlled to maintain the concentrations of ammonia and hydrogen peroxide in the cleaning water for electronic materials in the storage tank at predetermined values. The electronic-material cleaning water stored in the sealed electronic-material cleaning water storage tank 9 is sent to the use point 12 through the pipe 11 by the pump 10. Excessive cleaning water for electronic materials that has not been used at the point of use can be returned to the closed cleaning water storage tank for electronic materials through a pipe and circulated for reuse.

【0014】酸素ガスを溶解し、低濃度のアンモニア及
び過酸化水素を含有する本発明の電子材料用洗浄水は、
酸素ガスは自己分解を起こさず極めて安定であり、含有
するアンモニアと過酸化水素も低濃度であるために、密
閉式の貯槽と供給配管を使用することにより、長時間に
わたって水質を保持することができる。このような装置
を用いることにより、多くのユースポイントに対して個
々に洗浄水製造装置を設けることなく、集中的に電子材
料用洗浄水を製造し、主配管と分岐配管とを通して、複
数のユースポイントまで水質の安定した電子材料用洗浄
水を供給することができる。しかも、ユースポイントで
使用されなかった余剰の電子材料用洗浄水は貯槽に返送
し、繰り返しユースポイントへ送って使用する循環シス
テムを形成することができる。本発明の電子材料用洗浄
水によれば、微粒子で汚染された電子材料の洗浄に使用
する薬品の量を大幅に減少し、室温での洗浄により高い
洗浄効果を得ることができ、さらに、電子材料の洗浄後
の廃液処理が容易になる。すなわち、従来の洗浄廃液
は、アンモニアや過酸化水素を大量に含んだ高濃度の状
態で排出されるため、中和処理や分解処理が必要であ
り、廃液処理においても洗浄液の調製に使用したのと同
程度の量の薬品が必要となる。本発明においては、排出
されるのは低濃度のアンモニアと過酸化水素を含んだ液
であり、例えば、少量の酸を加えて中和することにより
放流し得る水質となる。もちろん、原水として再利用す
ることも可能な水質である。廃液中に含まれる過酸化水
素は微量であり、通常は安全上の問題を生ずることはな
いが、使用環境によっては、必要に応じて廃液中に溶存
する過酸化水素を分解することができる。例えば、過酸
化水素を含有した水を、白金、パラジウム、二酸化マン
ガンなどの触媒と接触させることにより、過酸化水素を
分解して水と酸素ガスとし、除去することができる。
The cleaning water for electronic materials of the present invention which dissolves oxygen gas and contains low concentrations of ammonia and hydrogen peroxide is
Oxygen gas does not undergo self-decomposition and is extremely stable, and since the ammonia and hydrogen peroxide contained in it are also low in concentration, it is possible to maintain water quality for a long time by using a closed storage tank and supply pipe. it can. By using such a device, washing water for electronic materials can be intensively produced without installing washing water producing devices for many use points, and multiple washing water can be used through main and branch pipes. It is possible to supply cleaning water for electronic materials with stable water quality up to the point. Moreover, the excess cleaning water for electronic materials not used at the point of use can be returned to the storage tank and repeatedly sent to the point of use to form a circulation system. According to the cleaning water for electronic materials of the present invention, the amount of chemicals used for cleaning electronic materials contaminated with fine particles can be significantly reduced, and a high cleaning effect can be obtained by cleaning at room temperature. The waste liquid treatment after washing the material becomes easy. That is, since the conventional cleaning waste liquid is discharged in a high-concentration state containing a large amount of ammonia and hydrogen peroxide, it is necessary to perform a neutralization treatment or a decomposition treatment. The same amount of chemical is required. In the present invention, what is discharged is a liquid containing a low concentration of ammonia and hydrogen peroxide, and for example, it becomes a water quality that can be discharged by neutralizing by adding a small amount of acid. Of course, the water quality is also reusable as raw water. Although the amount of hydrogen peroxide contained in the waste liquid is small and does not usually cause a safety problem, hydrogen peroxide dissolved in the waste liquid can be decomposed as needed depending on the use environment. For example, by contacting water containing hydrogen peroxide with a catalyst such as platinum, palladium or manganese dioxide, hydrogen peroxide can be decomposed into water and oxygen gas, which can be removed.

【0015】[0015]

【実施例】以下に、実施例を挙げて本発明をさらに詳細
に説明するが、本発明はこれらの実施例によりなんら限
定されるものではない。なお、実施例及び比較例におい
て、洗浄水の調製には超純水を用いた。 実施例1 オゾンを含有する超純水で表面を酸化した直径6インチ
のシリコンウェーハを、アルミナ微粉末で汚染すること
により、表面にアルミナの微粒子が付着した汚染ウェー
ハを作製した。この汚染ウェーハについて、レーザー散
乱光検出方式に基づくウェーハ・ゴミ検出装置[東京光
学機械(株)]により付着微粒子数を測定したところ、ウ
ェーハ1枚当たり、直径0.2〜0.5μmの微粒子が1
2,600個、直径0.5〜1.0μmの微粒子が31,2
00個、直径1.0μm以上の微粒子が200個、合計
44,000個であった。この汚染ウェーハを500rpm
で回転させ、酸素30mg/リットルを溶解し、アンモニ
ア10mg/リットル、過酸化水素10mg/リットルを含
有する電子材料用洗浄水に、室温で、超音波照射ノズル
[プレテック社、Fine Jet]を用いて周波数1.
6MHz、出力13.5W/cm2の超音波振動を伝達しつ
つ、800ml/分で流しかけ、60秒間スピン洗浄を行
った。次いで、超純水を用いてすすぎを行ったのち乾燥
した。乾燥後のウェーハ表面の付着微粒子数を、同様に
して測定したところ、ウェーハ1枚当たり、直径0.2
〜0.5μmの微粒子が130個、直径0.5〜1.0μ
mの微粒子が310個、直径1.0μm以上の微粒子が
0個、合計440個であり、ウェーハ表面の微粒子の除
去率は99%であった。 比較例1 アンモニア10mg/リットル、過酸化水素10mg/リッ
トルを含有するが、酸素ガスを大気飽和濃度しか溶解し
ていない室温の洗浄水を用いた以外は、実施例1と同様
にして、実施例1で調製した汚染ウェーハの洗浄を行っ
た。乾燥後のウェーハ表面の付着微粒子数を、実施例1
と同様にして測定したところ、ウェーハ1枚当たり、直
径0.2〜0.5μmの微粒子が6,400個、直径0.5
〜1.0μmの微粒子が16,500個、直径1.0μm
以上の微粒子が95個、合計22,995個であり、ウ
ェーハ表面の微粒子の除去率は48%であった。 比較例2 アンモニア4.1重量%と過酸化水素4.3重量%を含有
するいわゆるAPM洗浄水を80℃に加熱して用い、超
音波振動の伝達を行わなかった以外は、実施例1と同様
にして、実施例1で調製した汚染ウェーハの洗浄を行っ
た。乾燥後のウェーハ表面の付着微粒子数を、実施例1
と同様にして測定したところ、ウェーハ1枚当たり、直
径0.2〜0.5μmの微粒子が145個、直径0.5〜
1.0μmの微粒子が340個、直径1.0μm以上の微
粒子が1個、合計486個であり、ウェーハ表面の微粒
子の除去率は99%であった。 比較例3 比較例2に用いたAPM洗浄水を10倍に希釈したアン
モニア0.41重量%と過酸化水素0.43重量%を含有
する洗浄水を用い、実施例1と同様にして、室温で超音
波振動を伝達しつつ、実施例1で調製した汚染ウェーハ
の洗浄を行った。乾燥後のウェーハ表面の付着微粒子数
を、実施例1と同様にして測定したところ、ウェーハ1
枚当たり、直径0.2〜0.5μmの微粒子が3,440
個、直径0.5〜1.0μmの微粒子が8,500個、直
径1.0μm以上の微粒子が55個、合計11,995個
であり、ウェーハ表面の微粒子の除去率は73%であっ
た。実施例1及び比較例1〜3の洗浄水組成、洗浄条件
及び微粒子除去率を第1表に示す。
The present invention will be described in more detail below with reference to examples, but the present invention is not limited to these examples. In the examples and comparative examples, ultrapure water was used to prepare the wash water. Example 1 A 6-inch diameter silicon wafer whose surface was oxidized with ultrapure water containing ozone was contaminated with fine alumina powder to prepare a contaminated wafer having fine alumina particles adhered to the surface. The number of adhering fine particles on this contaminated wafer was measured by a wafer / dust detecting device [Tokyo Optical Co., Ltd.] based on the laser scattered light detection method, and it was found that fine particles with a diameter of 0.2 to 0.5 μm per wafer. 1
2,600 particles, diameter of 0.5-1.0μm 31.2
The number was 00, and the number of fine particles having a diameter of 1.0 μm or more was 200, which was 44,000 in total. 500 rpm for this contaminated wafer
Rotate at 30 ° C., dissolve oxygen 30 mg / liter, wash water for electronic materials containing ammonia 10 mg / liter, hydrogen peroxide 10 mg / liter at room temperature with an ultrasonic irradiation nozzle [Pretec, Fine Jet]. Frequency 1.
While ultrasonically vibrating at 6 MHz and an output of 13.5 W / cm 2 , it was poured at 800 ml / min and spin-washed for 60 seconds. Then, it was rinsed with ultrapure water and then dried. The number of adhered fine particles on the wafer surface after drying was measured in the same manner, and the diameter per wafer was 0.2
130 fine particles of ~ 0.5μm, diameter 0.5-1.0μ
There were 310 fine particles of m and 0 fine particles having a diameter of 1.0 μm or more, for a total of 440, and the removal rate of fine particles on the wafer surface was 99%. Comparative Example 1 Example 1 was repeated in the same manner as in Example 1 except that washing water at room temperature containing 10 mg / liter of ammonia and 10 mg / liter of hydrogen peroxide, but dissolving oxygen gas only in the atmospheric saturation concentration was used. The contaminated wafer prepared in 1 was washed. The number of adhered fine particles on the wafer surface after drying was determined by
Measurement was carried out in the same manner as above, but 6,400 fine particles having a diameter of 0.2 to 0.5 μm and a diameter of 0.5 were obtained per wafer.
16,500 particles of ~ 1.0μm, diameter 1.0μm
The above-mentioned fine particles were 95, totaling 22,995, and the removal rate of fine particles on the wafer surface was 48%. Comparative Example 2 With Example 1 except that so-called APM cleaning water containing 4.1% by weight of ammonia and 4.3% by weight of hydrogen peroxide was heated to 80 ° C. and ultrasonic vibration was not transmitted. Similarly, the contaminated wafer prepared in Example 1 was washed. The number of adhered fine particles on the wafer surface after drying was determined by
The measurement was performed in the same manner as in 1., and 145 fine particles having a diameter of 0.2 to 0.5 μm and a diameter of 0.5 to 0.5 per wafer.
There were 340 fine particles of 1.0 μm and one fine particle having a diameter of 1.0 μm or more, a total of 486, and the removal rate of fine particles on the wafer surface was 99%. Comparative Example 3 Using the cleaning water containing 0.41% by weight of ammonia and 0.43% by weight of hydrogen peroxide, which was prepared by diluting the APM cleaning water used in Comparative Example 10 by 10 times, in the same manner as in Example 1, at room temperature. The contaminated wafer prepared in Example 1 was washed while transmitting the ultrasonic vibration with. The number of adhered fine particles on the surface of the dried wafer was measured in the same manner as in Example 1 to find that the wafer 1
3,440 fine particles with a diameter of 0.2-0.5 μm per sheet
The number of particles was 0.5500 to 1.0 μm, the number of particles was 8,500, and the number of particles having a diameter of 1.0 μm or more was 55, which was 11,995 in total, and the removal rate of particles on the wafer surface was 73%. . Table 1 shows the composition of cleaning water, the cleaning conditions and the fine particle removal rate of Example 1 and Comparative Examples 1 to 3.

【0016】[0016]

【表1】 [Table 1]

【0017】第1表の結果に見られるように、実施例1
の本発明の電子材料用洗浄水は、比較例3の従来のAP
M洗浄水に比べて、アンモニアと過酸化水素の含有量が
いずれも4,000分の1という低濃度であるにもかか
わらず、また、洗浄を室温で行っているにもかかわら
ず、微粒子により汚染されたウェーハの洗浄において、
APM洗浄と同等の微粒子除去率を示している。アンモ
ニアと過酸化水素の含有量が実施例1の電子材料用洗浄
水と同じであっても、酸素ガスを大気飽和濃度にしか溶
解していない比較例1の洗浄水では、微粒子除去率が半
減していることからも、大気飽和濃度より高濃度に酸素
ガスを溶解している本発明の電子材料用洗浄水の有効性
が確認される。また、従来のAPM洗浄水のアンモニア
と過酸化水素の濃度を10分の1とした比較例3の洗浄
水は、超音波振動を伝達しても微粒子除去率は70%程
度に低下し、APM洗浄を効果的に行うためには、薬剤
を高濃度に含有する高温の洗浄水が欠かせないことが分
かる。
As can be seen from the results in Table 1, Example 1
The washing water for electronic materials of the present invention is the conventional AP of Comparative Example 3.
Compared to M wash water, both the contents of ammonia and hydrogen peroxide are as low as 1 / 4,000, and even though washing is performed at room temperature In cleaning contaminated wafers,
The particle removal rate is the same as that of APM cleaning. Even if the content of ammonia and hydrogen peroxide is the same as that of the cleaning water for electronic materials of Example 1, the cleaning water of Comparative Example 1 in which oxygen gas is dissolved only in the atmospheric saturation concentration has a fine particle removal rate reduced by half. From this, the effectiveness of the cleaning water for electronic materials of the present invention in which oxygen gas is dissolved at a concentration higher than the atmospheric saturation concentration is confirmed. Further, in the cleaning water of Comparative Example 3 in which the concentrations of ammonia and hydrogen peroxide in the conventional APM cleaning water were set to 1/10, the particle removal rate was reduced to about 70% even if ultrasonic vibration was transmitted. It can be seen that high-temperature washing water containing a high concentration of chemicals is indispensable for effective washing.

【0018】[0018]

【発明の効果】本発明の電子材料用洗浄水は、大気飽和
濃度より高濃度に酸素ガスを溶解しているので、アンモ
ニアと過酸化水素の含有量が従来のAPM洗浄水より格
段に低いにもかかわらず、従来のAPM洗浄と同等の微
粒子除去効果を有している。本発明の電子材料用洗浄水
は、アンモニアと過酸化水素を含有するという点で、従
来方式であるAPM洗浄水の延長上にあるものであり、
量産工場の既設装置をそのまま使用することができ、適
用上の障害がない。
EFFECTS OF THE INVENTION Since the cleaning water for electronic materials of the present invention dissolves oxygen gas at a concentration higher than the atmospheric saturation concentration, the contents of ammonia and hydrogen peroxide are significantly lower than those of conventional APM cleaning water. Nevertheless, it has the same fine particle removing effect as the conventional APM cleaning. The cleaning water for electronic materials of the present invention is an extension of the conventional APM cleaning water in that it contains ammonia and hydrogen peroxide.
The existing equipment of the mass production factory can be used as it is, and there is no obstacle in application.

【図面の簡単な説明】[Brief description of drawings]

【図1】図1は、本発明の電子材料用洗浄水の製造、供
給装置の一態様の系統図である。
FIG. 1 is a system diagram of one embodiment of a device for producing and supplying cleaning water for electronic materials according to the present invention.

【符号の説明】[Explanation of symbols]

1 真空ポンプ 2 前段の気体透過膜モジュール 3 後段の気体透過膜モジュール 4 酸素ガス供給器 5 アンモニア水貯槽 6 ポンプ 7 過酸化水素水貯槽 8 ポンプ 9 電子材料用洗浄水貯槽 10 ポンプ 11 配管 12 ユースポイント 1 vacuum pump 2 Gas permeable membrane module in the first stage 3 Gas permeable membrane module in the latter stage 4 Oxygen gas supplier 5 Ammonia water storage tank 6 pumps 7 Hydrogen peroxide water storage tank 8 pumps 9 Electronic material wash water storage tank 10 pumps 11 piping 12 Use points

フロントページの続き (56)参考文献 特開 平11−158494(JP,A) (58)調査した分野(Int.Cl.7,DB名) C11D 7/02,7/18,7/60 B08B 3/08 H01L 21/304 647 Continuation of front page (56) Reference JP-A-11-158494 (JP, A) (58) Fields investigated (Int.Cl. 7 , DB name) C11D 7 / 02,7 / 18,7 / 60 B08B 3 / 08 H01L 21/304 647

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】大気飽和濃度より高濃度に酸素ガスを溶解
し、かつアンモニア0.1〜10,000mg/リットルと
過酸化水素0.1〜10,000mg/リットルを含有する
ことを特徴とする電子材料用洗浄水。
1. A method for dissolving oxygen gas at a concentration higher than the saturation concentration in the atmosphere and containing 0.1 to 10,000 mg / liter of ammonia and 0.1 to 10,000 mg / liter of hydrogen peroxide. Cleaning water for electronic materials.
【請求項2】被洗浄物である電子材料が、半導体用シリ
コン基板、液晶用ガラス基板又はフォトマスク用石英基
板である請求項1記載の電子材料用洗浄水。
2. The cleaning water for electronic materials according to claim 1, wherein the electronic material that is the object to be cleaned is a silicon substrate for semiconductors, a glass substrate for liquid crystals, or a quartz substrate for photomasks.
JP35340397A 1997-12-22 1997-12-22 Cleaning water for electronic materials Expired - Fee Related JP3375052B2 (en)

Priority Applications (9)

Application Number Priority Date Filing Date Title
JP35340397A JP3375052B2 (en) 1997-12-22 1997-12-22 Cleaning water for electronic materials
US09/215,872 US6372699B1 (en) 1997-12-22 1998-12-18 Cleaning solution for electronic materials and method for using same
EP01110701A EP1122301B1 (en) 1997-12-22 1998-12-21 Cleaning solution for electronic materials and method for using the same
DE69812298T DE69812298T2 (en) 1997-12-22 1998-12-21 Cleaning solution for electronic components and process for their use
EP98124184A EP0924970B1 (en) 1997-12-22 1998-12-21 Cleaning solution for electronic materials and method for using the same
DE69820495T DE69820495T2 (en) 1997-12-22 1998-12-21 Cleaning solution for electronic components and process for their use
TW087121405A TW405176B (en) 1997-12-22 1998-12-22 Cleaning fluid for electronic materials
KR1019980057015A KR100319119B1 (en) 1997-12-22 1998-12-22 Clean water for electronic materials
US09/542,305 US6450181B1 (en) 1997-12-22 2000-04-04 Cleaning solution for electronic materials and method for using same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP35340397A JP3375052B2 (en) 1997-12-22 1997-12-22 Cleaning water for electronic materials

Publications (2)

Publication Number Publication Date
JPH11181493A JPH11181493A (en) 1999-07-06
JP3375052B2 true JP3375052B2 (en) 2003-02-10

Family

ID=18430609

Family Applications (1)

Application Number Title Priority Date Filing Date
JP35340397A Expired - Fee Related JP3375052B2 (en) 1997-12-22 1997-12-22 Cleaning water for electronic materials

Country Status (1)

Country Link
JP (1) JP3375052B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001276619A (en) * 2000-03-29 2001-10-09 Kurabo Ind Ltd Method of decomposing hydrogen peroxide and pretreatment method for electrochemical analysis of liquid to be inspected containing hydrogen peroxide
JP6477771B2 (en) 2017-04-14 2019-03-06 栗田工業株式会社 Washing water supply device
CN111659665B (en) * 2020-05-29 2022-02-01 徐州鑫晶半导体科技有限公司 Silicon wafer cleaning method and silicon wafer cleaning equipment

Also Published As

Publication number Publication date
JPH11181493A (en) 1999-07-06

Similar Documents

Publication Publication Date Title
KR100319119B1 (en) Clean water for electronic materials
KR19980070977A (en) Efficiency Control Method of Megasonics Secondary Cleaning
JPH1027771A (en) Cleaning method and device
KR100437429B1 (en) Cleaning water for electronic material and cleaning method of electronic material
KR20110007092A (en) Cleaning water for electronic material, method of cleaning electronic material, and system for supplying water containing dissolved gases
JPH1022246A (en) Cleaning method
JP3375052B2 (en) Cleaning water for electronic materials
JP4273440B2 (en) Cleaning water for electronic material and cleaning method for electronic material
JP3940967B2 (en) Method for producing cleaning water for electronic material and method for cleaning electronic material
JP2001345301A (en) Method of cleaning electronic material
JP3405371B2 (en) Ozone cleaning method for semiconductor substrate
JP3436295B2 (en) Cleaning water for electronic materials
JP2001054768A (en) Cleaning method and cleaning device
JP2002001243A (en) Method for cleaning electronic material
JP2006272069A (en) Washing device
JP4051693B2 (en) Cleaning method for electronic materials
JP2000331977A (en) Method for cleaning electronic material
JP6020626B2 (en) Device Ge substrate cleaning method, cleaning water supply device and cleaning device
JPH02164035A (en) Cleaning of semiconductor substrate
JP3444473B2 (en) Electronic material cleaning method and electronic material cleaning water
JPH11138113A (en) Method of removing fine particles
JP3397117B2 (en) Cleaning water and cleaning method for electronic materials
JPH11293288A (en) Cleaning water for electronic material and cleaning liquid for electronic material
JP2002045806A (en) Cleaning device
JP2002261063A (en) Method and device for removing particle on semiconductor wafer

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071129

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081129

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081129

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091129

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101129

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101129

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111129

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111129

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121129

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121129

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131129

Year of fee payment: 11

LAPS Cancellation because of no payment of annual fees