JP3373767B2 - Method for producing inorganic oxide fine powder - Google Patents

Method for producing inorganic oxide fine powder

Info

Publication number
JP3373767B2
JP3373767B2 JP25426997A JP25426997A JP3373767B2 JP 3373767 B2 JP3373767 B2 JP 3373767B2 JP 25426997 A JP25426997 A JP 25426997A JP 25426997 A JP25426997 A JP 25426997A JP 3373767 B2 JP3373767 B2 JP 3373767B2
Authority
JP
Japan
Prior art keywords
sol
inorganic oxide
oxide
hydroxide
fine powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP25426997A
Other languages
Japanese (ja)
Other versions
JPH1179712A (en
Inventor
高義 佐々木
遵 渡辺
正紀 飯田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ishihara Sangyo Kaisha Ltd
National Institute for Materials Science
Original Assignee
Ishihara Sangyo Kaisha Ltd
National Institute for Materials Science
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ishihara Sangyo Kaisha Ltd, National Institute for Materials Science filed Critical Ishihara Sangyo Kaisha Ltd
Priority to JP25426997A priority Critical patent/JP3373767B2/en
Publication of JPH1179712A publication Critical patent/JPH1179712A/en
Application granted granted Critical
Publication of JP3373767B2 publication Critical patent/JP3373767B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Oxygen, Ozone, And Oxides In General (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、無機酸化物ゾルに
有機増粘剤を添加し、ついで500℃以上の温度で焼成
することにより、無機酸化物微粉末を製造する方法に関
する。
TECHNICAL FIELD The present invention relates to a method for producing an inorganic oxide fine powder by adding an organic thickener to an inorganic oxide sol and then calcining at a temperature of 500 ° C. or higher.

【0002】[0002]

【従来の技術】これまで無機酸化物ゾルから無機酸化物
微粉末を製造する方法として、無機酸化物のゾルを凍結
乾燥する方法などが知られている。しかしながら、凍結
乾燥法では、ゾル濃度を希薄にすればそれだけ分散性に
優れた微粉末が得られるものの、生成物に比較して非常
に大量の水を凍結し真空乾燥することから、これに費や
すエネルギーはばく大であり、分散性と経済性の両立が
とれなかった。
2. Description of the Related Art Up to now, as a method for producing an inorganic oxide fine powder from an inorganic oxide sol, a method of freeze-drying an inorganic oxide sol has been known. However, in the freeze-drying method, although a fine powder having excellent dispersibility can be obtained by diluting the sol concentration, a very large amount of water is frozen and vacuum-dried in comparison with the product, so this is spent. The energy was enormous and it was not possible to achieve both dispersibility and economy.

【0003】[0003]

【発明が解決しようとする課題】本発明は、分散性に優
れた無機酸化物微粉末を工業的かつ経済的に製造する方
法を提供することを目的としている。
SUMMARY OF THE INVENTION It is an object of the present invention to provide a method for industrially and economically producing an inorganic oxide fine powder having excellent dispersibility.

【0004】[0004]

【課題を解決するための手段】本発明者は、かかる課題
について鋭意研究を重ねた結果、無機酸化物ゾルに有機
増粘剤を添加して系内で有機ゲルを形成し、ついでこの
ゲルを焼成することにより、ゲル中の水を蒸発させ、引
き続き有機物を焼き尽くして、無機酸化物の二次凝集を
抑えながらゾル中の無機粒子を微粉末として回収し得る
ことを見い出し、この知見に基づいて本発明をなすに至
った。すなわち本発明は、無機酸化物ゾルに有機増粘剤
を添加して、無機酸化物ゾルをゲル化し、次いで、得ら
れたゲルを500℃以上の温度で焼成して、ゲルに含ま
れる有機増粘剤を燃焼させる、無機酸化物微粉末の製造
方法である。
Means for Solving the Problems As a result of intensive studies on such problems, the present inventor has added an organic thickener to an inorganic oxide sol to form an organic gel in the system, and then formed this gel. By firing, it was found that the water in the gel is evaporated, the organic matter is subsequently burned out, and the inorganic particles in the sol can be recovered as fine powder while suppressing the secondary aggregation of the inorganic oxide, and based on this finding The present invention has been completed. That is, the present invention is to add an organic thickener to the inorganic oxide sol to gel the inorganic oxide sol, and then obtain
The gel was calcined at 500 ° C. or higher temperatures and in the gel
Of fine powder of inorganic oxide by burning organic thickener
Is the way .

【0005】[0005]

【発明の実施の形態】本発明においては、先ず、無機酸
化物ゾルに有機増粘剤を添加してゾル中の無機粒子を均
一に分散させた状態でゲル化する。本発明において用い
られる無機酸化物ゾルは、乾燥または焼成により目的と
する酸化物になるようなものであり、例えば、酸化チタ
ン微粉末を得ようとする場合には、酸化チタンゾルまた
は水酸化チタンゾルを用いる。その他、目的とする酸化
物微粉末により、酸化亜鉛ゾル、酸化鉄ゾル、シリカゾ
ル、アルミナゾル或いはそれぞれの水酸化物ゾルなどが
用いられる。なお本発明でいう酸化物とは、酸化物の
他、水和酸化物、含水酸化物、水酸化物などを総称した
ものをいう。また、無機酸化物ゾルの一次粒子の形状
は、粒状(球状)、針状(棒状)、薄片状(板状)、紡
錘状など、あらゆる形状のものを用いることができる。
ゾルの固形分濃度は普通1〜30重量%のものが適当で
ある。これより固形分濃度が小さくなり過ぎると後記す
る焼成工程での熱源、装置等で経済的でなくなり、また
大きくなり過ぎると無機粒子の分散が不安定となるので
好ましくない。
BEST MODE FOR CARRYING OUT THE INVENTION In the present invention, first, an organic thickener is added to an inorganic oxide sol to gel the inorganic particles in the sol in a uniformly dispersed state. The inorganic oxide sol used in the present invention is such that it becomes the target oxide by drying or firing, and, for example, in the case of obtaining titanium oxide fine powder, titanium oxide sol or titanium hydroxide sol is used. To use. In addition, zinc oxide sol, iron oxide sol, silica sol, alumina sol, or respective hydroxide sol may be used depending on the intended oxide fine powder. The oxide as used in the present invention is a generic term for a hydrated oxide, a hydrous oxide, a hydroxide and the like in addition to the oxide. In addition, the shape of the primary particles of the inorganic oxide sol may be any shape such as granular (spherical), needle-like (rod-like), flaky (plate-like), and spindle-like.
The solid concentration of the sol is usually 1 to 30% by weight. If the solid content concentration is too low, the heat source and apparatus in the firing step, which will be described later, becomes uneconomical, and if it is too high, the dispersion of the inorganic particles becomes unstable, which is not preferable.

【0006】本発明において用いられるゾル中の無機酸
化物は、その粒子が粒状の場合は、粒子径が0.005
〜0.2μmのものであり、薄片状の場合は、縦の長さ
が0.1〜100μm、横の長さが0.1〜100μ
m、厚みが0.0005〜0.2μmのものであり、針
状の場合は、長軸の長さが0.1〜10μmであり、軸
比が5〜50のものであり、紡錘状の場合は、長軸の長
さが0.01〜1μmであり、軸比が2〜10のもので
ある。一般に、無機酸化物ゾルには、ゾルの安定化剤、
pH調節剤等の成分が添加されているが、本発明におい
ては、このような成分を含んでいてもそのまま使用する
ことができる。
The inorganic oxide in the sol used in the present invention has a particle size of 0.005 when the particles are granular.
In the case of a flaky shape, the vertical length is 0.1 to 100 μm, and the horizontal length is 0.1 to 100 μm.
m, the thickness is 0.0005 to 0.2 μm, and in the case of needles, the major axis length is 0.1 to 10 μm, the axial ratio is 5 to 50, and the spindle-shaped. In this case, the major axis length is 0.01 to 1 μm and the axial ratio is 2 to 10. Generally, for inorganic oxide sols, sol stabilizers,
Ingredients such as a pH adjusting agent are added, but in the present invention, even if such ingredients are included, they can be used as they are.

【0007】本発明において用いられる有機増粘剤は、
例えば、ステアリン酸、ステアリルアミン、ゼラチン、
ヒドロキシエチルセルロース、ポリビニルアルコールな
どがあげられるが、これらはゾルに添加することによ
り、ゾルを構成する無機物粒子の分散性を損なわずに、
ゾルをゲル化するようなものであり、ゾルの種類、形態
などによって選択する必要がある。例えば、酸性水酸化
チタンゾルに対しては、ステアリルアミンなどが、水酸
化鉄ゾルに対しては、水酸化鉄粒子が電荷反発により分
散していることから、アルキルセルロース化合物や高分
子多糖類などの非イオン性の有機増粘剤が用いられる。
The organic thickener used in the present invention is
For example, stearic acid, stearylamine, gelatin,
Hydroxyethyl cellulose, polyvinyl alcohol and the like can be mentioned, but by adding these to the sol, without impairing the dispersibility of the inorganic particles constituting the sol,
It is like gelating a sol, and it must be selected according to the type and form of the sol. For example, stearylamine or the like is used for acidic titanium hydroxide sol, and iron hydroxide particles are dispersed for iron hydroxide sol due to charge repulsion. A nonionic organic thickener is used.

【0008】本発明方法において、有機増粘剤は無機酸
化物粒子の各粒子間に存在して各粒子の二次凝集を防ぐ
作用をする。すなわち、ゾルに有機増粘剤を添加してゾ
ルをゲル化し、得られたゲルを焼成すると先ず水が蒸発
する。次に、ゲルを構成する無機物粒子間に存在する該
有機増粘剤は、無機物粒子の二次凝集を防ぎつつ徐々に
燃焼して(燃え尽きて)二次凝集の少ない無機物微粉末
を得ることができる。従って、粒子と粒子を接触させな
いために十分な量の有機増粘剤を配合することが望まし
いが、逆に多く配合しすぎると、生産効率、コストの点
で好ましくない。有機増粘剤は、無機酸化物ゾルの固形
分の体積基準で50〜1000%、好ましくは100〜
300%の範囲で配合するのが望ましい。また、有機増
粘剤は、焼成により水より後に燃え尽きる必要があるこ
とから沸点が100℃を越えるもの、望ましくは200
℃以上の引火点をもつものが適している。更には、灰分
が少ないものがよい。灰分としては、1%以下、望まし
くは0.01〜0.1%である。有機増粘剤をゾルに添
加する際に、ゾルを例えば40〜90℃に加熱しながら
添加して該増粘剤のゾルとの混合を促進することができ
る。
In the method of the present invention, the organic thickener is present between the particles of the inorganic oxide particles and acts to prevent the secondary aggregation of the particles. That is, when an organic thickener is added to the sol to gelate the sol and the gel obtained is fired, water is first evaporated. Next, the organic thickening agent present between the inorganic particles forming the gel may gradually burn (burn out) while preventing secondary aggregation of the inorganic particles to obtain an inorganic fine powder with less secondary aggregation. it can. Therefore, it is desirable to add a sufficient amount of the organic thickener to prevent the particles from coming into contact with each other, but if too much is added, it is not preferable in terms of production efficiency and cost. The organic thickener is 50 to 1000%, preferably 100 to 1000% by volume based on the solid content of the inorganic oxide sol.
It is desirable to mix in the range of 300%. Further, the organic thickener has a boiling point of more than 100 ° C., preferably 200, because it needs to be burned out after water by firing.
Those with a flash point above ℃ are suitable. Furthermore, those with a low ash content are preferable. The ash content is 1% or less, preferably 0.01 to 0.1%. When the organic thickener is added to the sol, the sol can be added while heating to, for example, 40 to 90 ° C. to promote the mixing of the thickener with the sol.

【0009】本発明においては無機粒子が均一に分散し
ているゲルを焼成して無機粒子を微粉末として回収す
る。焼成は、500℃以上の温度で、普通500〜12
00℃、望ましくは600〜800℃で行う。本発明に
おいては、ゾル粒子が均一に分散された状態でゲル化さ
れ、ゲル中の粒子は個々の粒子間に有機増粘剤が介在し
ており、焼成によって、先ず水が蒸発し、次に該有機増
粘剤が燃え尽きるので、二次凝集の少ない微粉末を容易
に得ることができる。
In the present invention, the gel in which the inorganic particles are uniformly dispersed is fired to recover the inorganic particles as fine powder. Firing is usually 500 to 12 at a temperature of 500 ° C or higher.
The temperature is 00 ° C., preferably 600 to 800 ° C. In the present invention, the sol particles are gelled in a uniformly dispersed state, the particles in the gel intercalate the organic thickener between the individual particles, by firing, first water is evaporated, then Since the organic thickener burns out, a fine powder with less secondary aggregation can be easily obtained.

【0010】次に、実施例によって本発明をさらに詳し
く説明するが、これらは本発明を限定するものではな
い。
Next, the present invention will be described in more detail by way of examples, which should not be construed as limiting the present invention.

【実施例】【Example】

実施例1 ビーカーにTiO2として重量基準で5%の濃度の薄片状の
チタニアゾル(一次粒子の寸法:長軸の長さ5μm、短
軸の長さ4μm、厚み0.001μm、分散安定剤とし
て3.6重量%のアミノメチルプロパノールを含有)を
入れ、この中にステアリン酸をチタニアに対して体積基
準で100%添加し、攪拌してゲル化させた後ルツボに
移し、電気炉に入れ、650℃で1時間焼成して本発明
の薄片状二酸化チタン微粉末を得た。このものの電子顕
微鏡写真を図1として示す。図1より、二次凝集の少な
い厚み30nm前後の薄片状酸化チタン粒子が得られた
ことがわかる。この微粉末を、手の甲に少量とってのば
してみたところ、肌でののびは良好であった。
Example 1 Flake-shaped titania sol having a concentration of 5% by weight as TiO 2 in a beaker (dimensions of primary particles: major axis length 5 μm, minor axis length 4 μm, thickness 0.001 μm, 3 as a dispersion stabilizer) (Containing 6% by weight of aminomethyl propanol), stearic acid was added thereto in an amount of 100% by volume based on titania, stirred and gelled, then transferred to a crucible and placed in an electric furnace for 650 The flaky titanium dioxide fine powder of the present invention was obtained by calcining at 1 ° C for 1 hour. An electron micrograph of this product is shown in FIG. It can be seen from FIG. 1 that flaky titanium oxide particles having a thickness of around 30 nm with less secondary aggregation were obtained. When a small amount of this fine powder was spread on the back of the hand, it spread well on the skin.

【0011】実施例2 上記実施例1において、増粘剤としてステアリン酸に代
えてステアリルアミンをチタニアに対して体積基準で1
00%添加すること以外は同様にして本発明の薄片状二
酸化チタン微粉末を得た。この微粉末は、実施例1と同
様に肌でののびは良好であった。
Example 2 In the above Example 1, stearylamine was used in place of stearic acid as a thickening agent in an amount of 1 by volume based on titania.
The flaky titanium dioxide fine powder of the present invention was obtained in the same manner except that the addition of 00% was performed. As with Example 1, this fine powder had good spreadability on the skin.

【0012】実施例3 上記実施例1において、500℃で1時間焼成すること
以外は同様にして本発明の薄片状二酸化チタン微粉末を
得た。この微粉末は、実施例1と同様に肌でののびは良
好であった。
Example 3 A flaky titanium dioxide fine powder of the present invention was obtained in the same manner as in Example 1 except that the firing was carried out at 500 ° C. for 1 hour. As with Example 1, this fine powder had good spreadability on the skin.

【0013】実施例4 上記実施例2において薄片状チタニアゾルに代えて粒状
チタニアゾル(一次粒子の寸法:平均粒形30nm、分
散安定剤として塩酸を含有)を用いたこと以外は同様に
して本発明の粒状二酸化チタン微粉末を得た。このもの
の電子顕微鏡写真を図2として示す。図2より、二次凝
集の少ない30nm前後の二酸化チタン粒子が得られた
ことがわかる。また、実施例1と同様に、肌でののびは
良好であった。
Example 4 In the same manner as in the above Example 2, except that granular titania sol (size of primary particles: average particle size: 30 nm, containing hydrochloric acid as a dispersion stabilizer) was used in place of the flaky titania sol. Granular titanium dioxide fine powder was obtained. An electron micrograph of this product is shown in FIG. From FIG. 2, it can be seen that titanium dioxide particles with a secondary aggregation of around 30 nm were obtained. Further, as in Example 1, the spreadability on the skin was good.

【0014】比較例1 上記実施例1で使用した薄片状のチタニアゾルを650
℃で1時間乾燥、焼成した後、コロプレックスミルを用
いて粉砕して、比較試料とした。このものの電子顕微鏡
写真を図3として示す。図3より、厚み300nm前後
の板状粒子が観られることから、薄片状チタニアゾル粒
子が重なる様に二次凝集して焼結したことがわかる。こ
の粉末について、実施例1と同様にして、肌でのびを調
べたところ、ザラツキがあって、のびは悪かった。
Comparative Example 1 The flaky titania sol used in Example 1 above was 650.
After drying and firing at 1 ° C. for 1 hour, it was crushed using a coroplex mill to obtain a comparative sample. An electron micrograph of this product is shown in FIG. From FIG. 3, it can be seen that since plate-like particles having a thickness of about 300 nm are seen, the flaky titania sol particles are secondarily aggregated and sintered so as to overlap with each other. When this powder was examined for spreadability on the skin in the same manner as in Example 1, there was graininess and spreadability was poor.

【0015】[0015]

【発明の効果】本発明においては、無機酸化物ゾル中に
有機増粘剤を添加してゲル化することにより、無機物粒
子間に該増粘剤を介在させてゲル中で無機物粒子を均一
に安定して存在させ、次に焼成することにより、先ず水
を蒸発させ、次に該増粘剤を燃焼させるので、無機物粒
子は二次凝集の少ない微粉末として回収することができ
る。
INDUSTRIAL APPLICABILITY In the present invention, an organic thickener is added to an inorganic oxide sol to form a gel, and the thickener is interposed between the inorganic particles so that the inorganic particles are uniformly dispersed in the gel. Since the water is first evaporated and then the thickener is burned by being stably present and then calcined, the inorganic particles can be recovered as a fine powder with less secondary aggregation.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の方法により得た薄片状酸化チタン粉末
の走査型電子顕微鏡写真を示す。
FIG. 1 shows a scanning electron micrograph of flaky titanium oxide powder obtained by the method of the present invention.

【図2】本発明の方法により得た酸化チタン粉末の走査
型電子顕微鏡写真を示す。
FIG. 2 shows a scanning electron micrograph of titanium oxide powder obtained by the method of the present invention.

【図3】薄片状チタニアゾルをそのまま焼成して得た板
状酸化チタン粉末の走査型電子顕微鏡写真を示す。
FIG. 3 shows a scanning electron micrograph of a plate-shaped titanium oxide powder obtained by directly firing a flaky titania sol.

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平8−12961(JP,A) 特開 平1−145328(JP,A) 特開 平5−139703(JP,A) 特公 平2−33644(JP,B2) (58)調査した分野(Int.Cl.7,DB名) C01B 13/14 C01G 23/04 CA(STN)─────────────────────────────────────────────────── ─── Continuation of the front page (56) References JP-A-8-12961 (JP, A) JP-A-1-145328 (JP, A) JP-A-5-139703 (JP, A) JP-B-2- 33644 (JP, B2) (58) Fields investigated (Int.Cl. 7 , DB name) C01B 13/14 C01G 23/04 CA (STN)

Claims (8)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 無機酸化物ゾルに有機増粘剤を添加し
て、無機酸化物ゾルをゲル化し、次いで、得られたゲル
500℃以上の温度で焼成して、ゲルに含まれる有機
増粘剤を燃焼させることを特徴とする無機酸化物微粉末
の製造方法。
1. An organic thickener is added to an inorganic oxide sol.
To gel the inorganic oxide sol, and then the resulting gel
The fired at 500 ° C. or higher temperatures, the organic contained in the gel
A method for producing an inorganic oxide fine powder, which comprises burning a thickener .
【請求項2】 無機酸化物ゾルが酸化チタン、酸化亜
鉛、酸化鉄、酸化珪素或いは酸化アルミニウムのゾルで
ある請求項1に記載の無機酸化物微粉末の製造方法。
2. The method for producing fine inorganic oxide powder according to claim 1, wherein the inorganic oxide sol is a sol of titanium oxide, zinc oxide, iron oxide, silicon oxide or aluminum oxide.
【請求項3】 無機酸化物ゾルが水酸化チタン、水酸化
亜鉛、水酸化鉄、水酸化珪素或いは水酸化アルミニウム
のゾルである請求項1に記載の無機酸化物微粉末の製造
方法。
3. The method for producing fine inorganic oxide powder according to claim 1, wherein the inorganic oxide sol is a sol of titanium hydroxide, zinc hydroxide, iron hydroxide, silicon hydroxide or aluminum hydroxide.
【請求項4】 無機酸化物ゾルが薄片状酸化チタン、粒
状酸化チタン、針状酸化チタン或いは紡錘状酸化チタン
のゾルである請求項1に記載の無機酸化物微粉末の製造
方法。
4. The method for producing fine inorganic oxide powder according to claim 1, wherein the inorganic oxide sol is a sol of flaky titanium oxide, granular titanium oxide, acicular titanium oxide or spindle-shaped titanium oxide.
【請求項5】 無機酸化物ゾルが薄片状水酸化チタン、
粒状水酸化チタン、針状水酸化チタン或いは紡錘状水酸
化チタンのゾルである請求項1に記載の無機酸化物微粉
末の製造方法。
5. A flaky titanium hydroxide as the inorganic oxide sol,
The method for producing fine inorganic oxide powder according to claim 1, which is a sol of granular titanium hydroxide, acicular titanium hydroxide or spindle-shaped titanium hydroxide.
【請求項6】 有機増粘剤がステアリン酸、ステアリル
アミン、ゼラチン、ポリビニルアルコール、アルキルセ
ルロース化合物または高分子多糖類である請求項1に記
載の無機酸化物微粉末の製造方法。
6. The organic thickener is stearic acid or stearyl.
Amine, gelatin, polyvinyl alcohol, alkyl
The method for producing an inorganic oxide fine powder according to claim 1, which is a lulose compound or a high molecular polysaccharide .
【請求項7】 500〜1200℃の温度で焼成する請
求項1に記載の無機酸化物微粉末の製造方法。
7. The method for producing an inorganic oxide fine powder according to claim 1, which is fired at a temperature of 500 to 1200 ° C.
【請求項8】 有機増粘剤を無機酸化物に対し体積基準
で50〜1000%添加する請求項1に記載の無機酸化
物微粉末の製造方法。
8. The method for producing an inorganic oxide fine powder according to claim 1, wherein the organic thickener is added in an amount of 50 to 1000% by volume with respect to the inorganic oxide.
JP25426997A 1997-09-02 1997-09-02 Method for producing inorganic oxide fine powder Expired - Lifetime JP3373767B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25426997A JP3373767B2 (en) 1997-09-02 1997-09-02 Method for producing inorganic oxide fine powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25426997A JP3373767B2 (en) 1997-09-02 1997-09-02 Method for producing inorganic oxide fine powder

Publications (2)

Publication Number Publication Date
JPH1179712A JPH1179712A (en) 1999-03-23
JP3373767B2 true JP3373767B2 (en) 2003-02-04

Family

ID=17262633

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25426997A Expired - Lifetime JP3373767B2 (en) 1997-09-02 1997-09-02 Method for producing inorganic oxide fine powder

Country Status (1)

Country Link
JP (1) JP3373767B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2643730C (en) 2006-03-14 2013-09-24 Ishihara Sangyo Kaisha, Ltd. Visible light-responsive photocatalyst, method for producing same, photocatalyst coating agent using same, and photocatalyst dispersion

Also Published As

Publication number Publication date
JPH1179712A (en) 1999-03-23

Similar Documents

Publication Publication Date Title
JP2533067B2 (en) Silicon-aluminum mixed oxide powder obtained by flame hydrolysis, process for producing the same, and process for producing ceramic and ceramic precursor
US7993445B2 (en) Nanoparticles of alumina and oxides of elements of main groups I and II of the periodic table, and their preparation
JP3005319B2 (en) Needle-like or plate-like lower titanium oxide and method for producing the same
JP5412109B2 (en) Nanoparticles comprising aluminum oxide and oxides of elements of first and second main groups of periodic table of elements and method for producing the same
JP2005519020A (en) Method for producing nano-sized stabilized zirconia
JPH0329009B2 (en)
JP4807569B2 (en) Zinc oxide powder and method for producing the same
JP3373767B2 (en) Method for producing inorganic oxide fine powder
CN110061192B (en) Modified positive electrode material and preparation and application thereof
CN103910368A (en) Preparation method of axiolitic, approximate hexagonal plate sheet-shaped, or drum-shaped primary particles or alpha-aluminum oxide powder composed of aggregate of approximate hexagonal plate sheet-shaped, or drum-shaped primary particles
JPS6411572B2 (en)
US3112210A (en) Process for the manufacture of ceramic grade titanium dioxide
Chen et al. Synthesis of spherical titanium dioxide particles by homogeneous precipitation in acetone solution
JPWO2008004694A1 (en) Titanium oxide-zinc oxide aggregated powder and method for producing the same
JP2003054949A (en) Sn-CONTAINING In OXIDE AND MANUFACTURING METHOD THEREOF, COATING MATERIAL USING THE SAME AND CONDUCTIVE COATING FILM
JP2000034123A (en) High-purity titanium oxide powder
JPH06500068A (en) Manufacturing method of submicron alumina particles
JPH07242422A (en) Fine particle-shaped acicular titanium oxide and production thereof
JPS63266003A (en) Flaked platinum powder and production thereof
JPH0459609A (en) Production of aluminum nitride powder
JPH11126712A (en) Unidirectional electromagnetic steel with insulating coating having great tention imparting effect and method for forming the insulating coating
JPH0431307A (en) Production of fine-grain metal oxide
JPH02296707A (en) Production of aluminum nitride powder
RU2625388C2 (en) Method of producing fillers for building materials
JPH01176215A (en) Production of alpha-alumina

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081122

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081122

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091122

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101122

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101122

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111122

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111122

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121122

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131122

Year of fee payment: 11

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term