JP3372024B2 - Piezoelectric element holding structure - Google Patents

Piezoelectric element holding structure

Info

Publication number
JP3372024B2
JP3372024B2 JP08008698A JP8008698A JP3372024B2 JP 3372024 B2 JP3372024 B2 JP 3372024B2 JP 08008698 A JP08008698 A JP 08008698A JP 8008698 A JP8008698 A JP 8008698A JP 3372024 B2 JP3372024 B2 JP 3372024B2
Authority
JP
Japan
Prior art keywords
piezoelectric element
holding structure
support
piezoelectric elements
piezoelectric
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP08008698A
Other languages
Japanese (ja)
Other versions
JPH11281664A (en
Inventor
淳 関
季美男 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Rion Co Ltd
Original Assignee
Rion Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Rion Co Ltd filed Critical Rion Co Ltd
Priority to JP08008698A priority Critical patent/JP3372024B2/en
Publication of JPH11281664A publication Critical patent/JPH11281664A/en
Application granted granted Critical
Publication of JP3372024B2 publication Critical patent/JP3372024B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Transmission And Conversion Of Sensor Element Output (AREA)

Description

【発明の詳細な説明】 【0001】 【発明の属する技術分野】本発明は、加速度センサなど
に適用する圧電素子の保持構造に関する。 【0002】 【従来の技術】従来、この種の圧電素子保持構造として
は、図5に示すように、剪断形圧電素子100を支持体
101と質量体102で挟むように配置し、夫々の貫通
孔100a,101a,102aにボルト103を挿通
し、このボルト103の端部にナットで締結して、剪断
形圧電素子100を支持体101と質量体102で保持
したものが知られている(例えば、実公昭61−165
28号公報参照)。 【0003】 【発明が解決しようとする課題】しかし、このような圧
電素子保持構造を適用した剪断形加速度ピックアップを
用いて、長期間連続して、例えば地震等の微弱な加速度
を観測する場合、外気温の変動に起因して加速度ピック
アップが発するノイズの発生頻度が無視できないという
問題があった。 【0004】即ち、図5に示すように、ボルト103で
質量体102、圧電素子100及び支持体101を締結
した場合には、支持体101又は質量体102が変形
し、この変形の結果、圧電素子100の貫通孔100a
の開口縁部周辺に応力が集中的に作用する。圧電素子1
00の貫通孔100aの開口縁部周辺に応力が集中的に
作用すると、この部分は局部的に破壊され、微細なクラ
ックが生じる。このようなクラックが生じた場合に、外
気温が変化すると、クラックの状態が変化し、この変化
に伴いノイズが発生することになる。 【0005】また、ボルト103で質量体102、圧電
素子100及び支持体101を締結すると、圧電素子1
00の一方の側面は質量体102と全面で密接し、圧電
素子100の他方の側面は支持体101と全面で密接す
ることになる。このような状態において、外気温が変化
すると、質量体102の線膨張係数は圧電素子100の
線膨張係数より10倍程度大きいので、圧電素子100
には、質量体102により伸長させる力が作用する。伸
長させる力が質量体102と圧電素子100と間の摩擦
力より大きいときには、圧電素子100は自身の破壊限
度を超えて伸び、一部にクラックが生じる。同様に、支
持体101との関係でも圧電素子100にクラックが生
じる。圧電素子100の一部に、一旦、クラックが生じ
ると、クラックの状態は温度によって変化するので、温
度が変われば、ノイズが発生することになる。 【0006】本発明は、従来の技術が有するこのような
問題点に鑑みてなされたものであり、その目的とすると
ころは、ボルトの締め付けによる圧電素子への応力集中
や外気温の変動などにより、圧電素子に発生するクラッ
クを起因とするノイズの発生頻度を低減できる圧電素子
保持構造を提供しようとするものである。 【0007】 【課題を解決するための手段】上記課題を解決すべく請
求項1に係る発明は、圧電素子を第1保持部材と第2保
持部材で挟み、これらの貫通孔にボルトを挿通して固定
する圧電素子保持構造において、前記圧電素子が対向す
る前記第1保持部材と第2保持部材の貫通孔の開口縁部
に、変形逃げ部を設けたものである。 【0008】 【0009】 【発明の実施の形態】以下に本発明の実施の形態を添付
図面に基づいて説明する。ここで、図1は第1の実施の
形態に係る圧電素子保持構造を適用した剪断形加速度セ
ンサの断面図、図2は剪断形圧電素子の斜視図、図3は
第2の実施の形態に係る圧電素子保持構造を適用した剪
断形加速度センサの断面図、図4は第1の実施の形態
係る圧電素子保持構造適用した圧縮形加速度センサの
断面図である。 【0010】第1の実施の形態に係る圧電素子保持構造
を適用した剪断形加速度センサは、図1に示すように、
支持体1、絶縁チューブ2、一対の圧電素子3,3、一
対の質量体4,4、ボルト5、ナット6及び出力端子7
からなる。 【0011】圧電素子3,3は、それぞれ支持体1の側
面に配置され、圧電素子3,3の外側側面には、質量体
4,4が配置されている。ボルト5は、支持体1、圧電
素子3,3、質量体4,4を貫通している。このボルト
5の端部にナット6螺着して締め付けることにより、圧
電素子3,3と質量体4,4が支持体1に固定される。 【0012】支持体1は、金属部材でなり、断面T字状
の形状を備える。直立部分には、絶縁チューブ2及びボ
ルト5を挿通するための貫通孔1aが形成されている。
更に、貫通孔1aの両開口縁部には、外気温の変動によ
って支持体1が膨張し支持体1の開口縁部が圧電素子3
の貫通孔3aの開口縁部を圧迫しないようにするため、
所定の内径と所定の深さの変形逃げ部1b,1bが形成
されている。 【0013】絶縁チューブ2は、ボルト5と質量体4,
4との絶縁を保つためのもので、テフロン等の高分子部
材からなる。圧電素子3は、図2に示すように、四角板
状の形状を有した剪断形圧電素子である。圧電素子3の
中央には、貫通孔3aが形成され、厚み方向の両面に
は、電極3b,3cを備える。ここで、矢印aは分極方
向を示す。 【0014】質量体4,4は、図1に示すように、金属
部材でなり、略円柱形状を有し、中央にボルト5を挿通
するための貫通孔4aが形成されている。また、質量体
4,4が圧電素子3,3と当接する貫通孔4aの開口縁
部には、外気温の変動によって質量体4,4が膨張し質
量体4,4の開口縁部が圧電素子3の貫通孔3aの開口
縁部を圧迫しないようにするため、所定の内径と所定の
深さの変形逃げ部4b,4bが形成されている。 【0015】以上のように構成した第1の実施の形態
係る圧電素子保持構造の作用について説明する。第1の
実施の形態に係る圧電素子保持構造は、支持体1に変形
逃げ部1b,1bを設けると共に、質量体4,4にも変
形逃げ部4b,4bを設けているので、ボルト5を締め
付けることにより支持体1及び質量体4,4の開口縁部
周辺が変形しても、圧電素子3,3の貫通孔3aの開口
縁部近傍を局部的に圧迫することはない。 【0016】従って、支持体1及び質量体4,4の変形
によって圧電素子3,3の貫通孔3aの開口縁部周辺に
応力が集中的に作用するこのがないので、圧電素子3,
3の開口縁部周辺におけるクラックの発生を未然に防止
できる。従って、加速度センサのノイズ発生頻度を抑制
できる。 【0017】第2の実施の形態に係る圧電素子保持構造
を適用した加速度センサは、図3に示すように、支持体
11、絶縁チューブ2、4枚のスペーサ12、一対の圧
電素子3,3、一対の質量体14,14、ボルト5、ナ
ット6及び出力端子7からなる。 【0018】圧電素子3,3の外側側面には、質量体1
4,14が配置されている。ボルト5は、支持体11、
圧電素子3,3、質量体14,14を貫通している。こ
のボルト5の端部にナット6を螺着して締め付けること
により、圧電素子3,3と質量体14,14が支持体1
1に固定される。 【0019】支持体11は、金属部材でなり、断面T字
状の形状を備える。直立部分には、絶縁チューブ2及び
ボルト5を挿通するための貫通孔11aを備える。スペ
ーサ12は、圧電素子3,3よりも小さい外形で、中央
に貫通孔を形成した円盤状の金属薄板、例えば燐青銅薄
板である。 【0020】スペーサ12は、支持体11と圧電素子
3,3の間、圧電素子3,3と質量体14,14の間に
配置してある。質量体14,14は、金属部材でなり、
略円柱形状を有し、中央にボルト5を挿通するための貫
通孔14bを有している。 【0021】以上のように構成した第2の実施の形態
係る圧電素子保持構造の作用について説明する。第2の
実施の形態に係る圧電素子保持構造を適用した加速度セ
ンサの場合には、圧電素子3,3の各両側面にスペーサ
12を配置しているので、圧電素子3,3の両側面とも
スペーサ12と密接することになる。 【0022】圧電素子3,3がスペーサ12と密接する
ことにより、スペーサ12を設けないで直接支持体11
及び質量体14,14と接触させて保持する場合と比較
して、圧電素子3,3の接触面積が小さくなり、外気温
が変化した場合においても、圧電素子3,3を伸長させ
る力の絶対値が減少する。従って、圧電素子3,3のク
ラック発生を未然に防止でき、加速度センサのノイズ発
生頻度を抑制できる。 【0023】なお、上述の実施の形態においては、剪断
形圧電素子3,3を使用した剪断形加速度センサに適用
した場合について説明したが、本発明に係る圧電素子保
持構造はこれに限らず、その他の圧電素子に適用でき
る。 【0024】例えば、図4に示すように、圧縮形圧電素
子を用いた圧縮形加速度センサの構成としてもよい。こ
こで、21は支持体で、その中央にねじ穴21aを有し
ている。ねじ穴21aの開口縁部には変形逃げ部21b
を形成している。 【0025】一対の圧縮形圧電素子22,22は、互い
に分極方向が相反する方向を向くように配置している。
また、これら2枚の圧縮形圧電素子22,22の間に
は、共通電極板23を設けている。 【0026】質量体24は、支持体21と共に、2枚の
圧縮形圧電素子22,22を挟むように配置している。
ボルト25は、質量体24に形成した貫通孔24a、一
対の圧縮形圧電素子22,22及び共通電極板23を貫
通して、支持体21のねじ穴21aに螺合している。な
お、26は絶縁チューブである。図4に示す圧電素子保
持構造も、図1に示す剪断形加速度センサと同様の作用
効果を奏する。 【0027】また、上述の実施の形態において、第1の
実施の形態に係る圧電素子保持構造の変形逃げ部1b,
4bの形状として、ザグリ形状としたが、ボルト5の締
め付け力、質量体4,4の寸法、形状に応じてその他の
形状であってもよい。例えば、円錐状にえぐってもよい
し、また、2段になるようにアナ繰りしてもよい。 【0028】更に、上述の第1及び第2の実施の形態に
おいては、圧電素子保持構造を、加速度センサに適用し
た場合について説明した。しかし、本発明に係る圧電素
子保持構造はこれに限らず、圧電素子を2つの保持部材
で挟み、これらにボルトを貫通して固定する構造であれ
ば、その他の圧電素子を備える装置、例えば、インパル
スハンマーに使用する力センサにも適用できる。 【0029】 【発明の効果】以上説明したように請求項1に係る圧電
素子保持構造によれば、第1保持部材及び第2保持部材
に変形逃げ部を設けたことにより、ボルト締め付けに伴
う第1保持部材及び第2保持部材の変形による圧電素子
への応力集中が回避され、圧電素子の開口縁部周辺にお
けるクラックの発生を防止できるので、加速度センサな
どに適用した場合のノイズの発生頻度を抑制できる。 【0030】
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a structure for holding a piezoelectric element applied to an acceleration sensor or the like. 2. Description of the Related Art Conventionally, as a piezoelectric element holding structure of this type, as shown in FIG. 5, a shearing type piezoelectric element 100 is arranged so as to be sandwiched between a support body 101 and a mass body 102, and each of the piezoelectric elements is penetrated. It is known that a bolt 103 is inserted through the holes 100a, 101a, and 102a, fastened to an end of the bolt 103 with a nut, and the shear-type piezoelectric element 100 is held by the support body 101 and the mass body 102 (for example, 61-165
No. 28). [0003] However, when observing a weak acceleration such as an earthquake continuously for a long period of time using a shearing type acceleration pickup to which such a piezoelectric element holding structure is applied, There has been a problem that the frequency of occurrence of noise generated by the acceleration pickup due to fluctuations in outside temperature cannot be ignored. That is, as shown in FIG. 5, when the mass body 102, the piezoelectric element 100, and the support body 101 are fastened with the bolt 103, the support body 101 or the mass body 102 is deformed. Through hole 100a of element 100
Stress acts intensively around the edge of the opening. Piezoelectric element 1
When stress concentrates on the periphery of the opening edge of the through-hole 100a, this portion is locally broken and a fine crack occurs. If the outside air temperature changes when such a crack occurs, the state of the crack changes, and noise is generated in accordance with the change. When the mass body 102, the piezoelectric element 100, and the support 101 are fastened with bolts 103, the piezoelectric element 1
One side surface of the piezoelectric element 100 is in close contact with the mass body 102 over the entire surface, and the other side surface of the piezoelectric element 100 is in close contact with the support body 101 over the entire surface. In such a state, when the outside air temperature changes, the linear expansion coefficient of the mass body 102 is about ten times larger than the linear expansion coefficient of the piezoelectric element 100.
Is exerted by the mass body 102. When the stretching force is larger than the frictional force between the mass body 102 and the piezoelectric element 100, the piezoelectric element 100 extends beyond its own breaking limit, and cracks occur partially. Similarly, cracks occur in the piezoelectric element 100 also in relation to the support 101. Once a crack occurs in a part of the piezoelectric element 100, the state of the crack changes depending on the temperature, so that if the temperature changes, noise will occur. SUMMARY OF THE INVENTION The present invention has been made in view of the above-mentioned problems of the prior art, and has as its object to prevent stress concentration on a piezoelectric element due to tightening of bolts and fluctuations in the outside temperature. It is another object of the present invention to provide a piezoelectric element holding structure that can reduce the frequency of occurrence of noise caused by cracks generated in a piezoelectric element. [0007] In order to solve the above-mentioned problems, the invention according to claim 1 is to sandwich a piezoelectric element between a first holding member and a second holding member, and insert a bolt into these through holes. In the piezoelectric element holding structure, the deformation relief portion is provided at an opening edge of a through hole of the first holding member and the second holding member facing the piezoelectric element. [0010] Embodiments of the present invention will be described below with reference to the accompanying drawings. Here, FIG. 1 shows the first embodiment.
FIG. 2 is a cross-sectional view of a shearing type acceleration sensor to which the piezoelectric element holding structure according to the embodiment is applied, FIG. 2 is a perspective view of the shearing type piezoelectric element, and FIG.
FIG. 4 is a cross-sectional view of a shear-type acceleration sensor to which the piezoelectric element holding structure according to the second embodiment is applied, and FIG. 4 is a cross-sectional view of a compression-type acceleration sensor to which the piezoelectric element holding structure according to the first embodiment is applied. . A shearing type acceleration sensor to which the piezoelectric element holding structure according to the first embodiment is applied, as shown in FIG.
Support 1, insulating tube 2, pair of piezoelectric elements 3, 3, pair of masses 4, 4, bolt 5, nut 6, and output terminal 7
Consists of The piezoelectric elements 3 and 3 are respectively disposed on the side surfaces of the support 1, and the mass bodies 4 and 4 are disposed on the outer side surfaces of the piezoelectric elements 3 and 3. The bolt 5 penetrates through the support 1, the piezoelectric elements 3, 3, and the masses 4, 4. The nuts 6 are screwed onto the ends of the bolts 5 and tightened, whereby the piezoelectric elements 3 and 3 and the mass bodies 4 and 4 are fixed to the support 1. The support 1 is made of a metal member and has a T-shaped cross section. In the upright portion, a through hole 1a for inserting the insulating tube 2 and the bolt 5 is formed.
Further, the support 1 expands due to the fluctuation of the outside air temperature at both opening edges of the through hole 1a, and the opening edge of the support 1
In order not to squeeze the opening edge of the through hole 3a,
Deformation relief portions 1b, 1b having a predetermined inner diameter and a predetermined depth are formed. The insulating tube 2 comprises a bolt 5 and a mass body 4,
4 for maintaining insulation from the substrate 4 and made of a polymer material such as Teflon. As shown in FIG. 2, the piezoelectric element 3 is a shear-type piezoelectric element having a square plate shape. A through hole 3a is formed in the center of the piezoelectric element 3, and electrodes 3b and 3c are provided on both sides in the thickness direction. Here, the arrow a indicates the polarization direction. As shown in FIG. 1, the mass members 4 and 4 are made of a metal member, have a substantially cylindrical shape, and have a through hole 4a for inserting a bolt 5 at the center. Also, at the opening edge of the through hole 4a where the masses 4 and 4 abut on the piezoelectric elements 3 and 3, the masses 4 and 4 expand due to the fluctuation of the outside air temperature, and the opening edges of the masses 4 and 4 In order to prevent the opening edge of the through hole 3a of the element 3 from being pressed, deformation relief portions 4b, 4b having a predetermined inner diameter and a predetermined depth are formed. The operation of the piezoelectric element holding structure according to the first embodiment configured as described above will be described. First
In the piezoelectric element holding structure according to the embodiment , the deformation relief portions 1b, 1b are provided on the support 1, and the deformation relief portions 4b, 4b are also provided on the mass bodies 4, 4, so that the bolt 5 is tightened. Even when the periphery of the opening of the support 1 and the masses 4 and 4 is deformed, the vicinity of the opening of the through hole 3a of the piezoelectric elements 3 and 3 is not locally compressed. Therefore, stress is not concentrated on the periphery of the opening of the through hole 3a of the piezoelectric elements 3 and 3 due to deformation of the support 1 and the masses 4 and 4.
The generation of cracks around the edge of the opening 3 can be prevented. Therefore, the frequency of occurrence of noise of the acceleration sensor can be suppressed. As shown in FIG. 3, the acceleration sensor to which the piezoelectric element holding structure according to the second embodiment is applied has a support 11, an insulating tube 2, four spacers 12, a pair of piezoelectric elements 3, 3, and , A pair of mass bodies 14, 14, a bolt 5, a nut 6, and an output terminal 7. On the outer side surfaces of the piezoelectric elements 3, 3, a mass body 1 is provided.
4, 14 are arranged. The bolt 5 is attached to the support 11,
The piezoelectric elements 3, 3 penetrate the mass bodies 14, 14. The nuts 6 are screwed onto the ends of the bolts 5 and tightened, so that the piezoelectric elements 3 and 3 and the mass bodies 14 and 14
Fixed to 1. The support 11 is made of a metal member and has a T-shaped cross section. The upright portion is provided with a through hole 11a for inserting the insulating tube 2 and the bolt 5. The spacer 12 is a disk-shaped thin metal plate having a smaller outer diameter than the piezoelectric elements 3 and 3 and a through hole formed in the center, for example, a thin phosphor bronze plate. The spacers 12 are arranged between the support 11 and the piezoelectric elements 3 and between the piezoelectric elements 3 and the masses 14. The mass bodies 14, 14 are made of a metal member,
It has a substantially columnar shape, and has a through hole 14b for inserting the bolt 5 in the center. The operation of the piezoelectric element holding structure according to the second embodiment configured as described above will be described. Second
In the case of the acceleration sensor to which the piezoelectric element holding structure according to the embodiment is applied, the spacers 12 are arranged on both side surfaces of the piezoelectric elements 3 and 3, so that both side surfaces of the piezoelectric elements 3 and 3 I will be close. Since the piezoelectric elements 3 and 3 are in close contact with the spacer 12, the support 11 is directly provided without the spacer 12.
And the contact area of the piezoelectric elements 3, 3 is smaller than that in the case where the piezoelectric elements 3, 3 are held in contact with the mass bodies 14, 14, and even when the outside air temperature changes, the absolute force of extending the piezoelectric elements 3, 3 is increased. The value decreases. Therefore, the occurrence of cracks in the piezoelectric elements 3 can be prevented beforehand, and the frequency of occurrence of noise in the acceleration sensor can be suppressed. In the above embodiment, the case where the present invention is applied to the shear type acceleration sensor using the shear type piezoelectric elements 3 and 3 has been described. However, the piezoelectric element holding structure according to the present invention is not limited to this. It can be applied to other piezoelectric elements. For example, as shown in FIG. 4, a compression type acceleration sensor using a compression type piezoelectric element may be used. Here, reference numeral 21 denotes a support having a screw hole 21a at the center thereof. A deformation relief portion 21b is provided at the opening edge of the screw hole 21a.
Is formed. The pair of compression-type piezoelectric elements 22, 22 are arranged so that the polarization directions thereof are opposite to each other.
Further, a common electrode plate 23 is provided between the two compression type piezoelectric elements 22 and 22. The mass body 24 and the support body 21 are arranged so as to sandwich the two compression-type piezoelectric elements 22 and 22 therebetween.
The bolt 25 passes through a through hole 24 a formed in the mass body 24, the pair of compression piezoelectric elements 22, 22 and the common electrode plate 23 and is screwed into the screw hole 21 a of the support 21. 26 is an insulating tube. The piezoelectric element holding structure shown in FIG. 4 also has the same function and effect as the shearing type acceleration sensor shown in FIG. In the above-described embodiment, the first
The deformation relief portion 1b of the piezoelectric element holding structure according to the embodiment ,
Although the shape of the counterbore 4b is a counterbore shape, other shapes may be used according to the tightening force of the bolt 5 and the dimensions and shapes of the mass bodies 4 and 4. For example, it may be hollowed out in a conical shape, or may be rounded in two steps. Further, in the first and second embodiments described above, the case where the piezoelectric element holding structure is applied to an acceleration sensor has been described. However, the piezoelectric element holding structure according to the present invention is not limited to this. If the structure holds the piezoelectric element between two holding members and penetrates and fixes them, a device provided with another piezoelectric element, for example, It can also be applied to a force sensor used for an impulse hammer. As described above, according to the piezoelectric element holding structure according to the first aspect, the first holding member and the second holding member are provided with the deformation relief portions, so that the first holding member and the second holding member have the first and second holding members. Since stress concentration on the piezoelectric element due to deformation of the first holding member and the second holding member can be avoided, and the occurrence of cracks around the opening edge of the piezoelectric element can be prevented, the frequency of occurrence of noise when applied to an acceleration sensor or the like can be reduced. Can be suppressed. [0030]

【図面の簡単な説明】 【図1】第1の実施の形態に係る圧電素子保持構造を適
用した剪断形加速度センサの断面図 【図2】剪断形圧電素子の斜視図 【図3】第2の実施の形態に係る圧電素子保持構造を適
用した剪断形加速度センサの断面図 【図4】第1の実施の形態に係る圧電素子保持構造を適
用した圧縮形加速度センサの断面図 【図5】従来の圧電素子保持構造の要部断面図 【符号の説明】 1,11,21…支持体(第1保持部材)、1a,3
a,4a,11a,14a,24a…貫通孔、1b,4
b,21b…変形逃げ部、2,26…絶縁チューブ、3
…剪断形圧電素子、3b,3c…電極、4,14,24
…質量体(第2保持部材)、5,25…ボルト、6…ナ
ット、7…出力端子、12…スペーサ、22…圧縮形圧
電素子、23…電極板。
Perspective view of BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a cross-sectional view of a shear-type acceleration sensor according to the piezoelectric element holding structure according to the first embodiment [FIG. 2] Shear shaped piezoelectric element 3] second FIG. 4 is a cross-sectional view of a shear type acceleration sensor to which the piezoelectric element holding structure according to the first embodiment is applied. FIG. 4 is a cross-sectional view of a compression type acceleration sensor to which the piezoelectric element holding structure according to the first embodiment is applied. Cross-sectional view of main parts of conventional piezoelectric element holding structure [Description of References] 1,11,21 ... Support (first holding member), 1a, 3
a, 4a, 11a, 14a, 24a ... through-hole, 1b, 4
b, 21b: deformation escape portion, 2, 26: insulating tube, 3
... Shear type piezoelectric element, 3b, 3c ... Electrodes, 4, 14, 24
... Mass (second holding member), 5, 25 bolt, 6 nut, 7 output terminal, 12 spacer, 22 compression piezoelectric element, 23 electrode plate.

───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.7,DB名) G01P 15/09 G01D 5/12 G01L 1/16 ──────────────────────────────────────────────────続 き Continued on the front page (58) Field surveyed (Int.Cl. 7 , DB name) G01P 15/09 G01D 5/12 G01L 1/16

Claims (1)

(57)【特許請求の範囲】 【請求項1】 圧電素子を第1保持部材と第2保持部材
で挟み、これらの貫通孔にボルトを挿通して固定する圧
電素子保持構造において、前記圧電素子が対向する前記
第1保持部材と第2保持部材の貫通孔の開口縁部に、変
形逃げ部を設けたことを特徴する圧電素子保持構造。
(1) A piezoelectric element holding structure in which a piezoelectric element is sandwiched between a first holding member and a second holding member, and bolts are inserted through these through holes and fixed. A deformation relief portion is provided at an opening edge of a through hole of the first holding member and the second holding member facing each other.
JP08008698A 1998-03-27 1998-03-27 Piezoelectric element holding structure Expired - Fee Related JP3372024B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP08008698A JP3372024B2 (en) 1998-03-27 1998-03-27 Piezoelectric element holding structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP08008698A JP3372024B2 (en) 1998-03-27 1998-03-27 Piezoelectric element holding structure

Publications (2)

Publication Number Publication Date
JPH11281664A JPH11281664A (en) 1999-10-15
JP3372024B2 true JP3372024B2 (en) 2003-01-27

Family

ID=13708403

Family Applications (1)

Application Number Title Priority Date Filing Date
JP08008698A Expired - Fee Related JP3372024B2 (en) 1998-03-27 1998-03-27 Piezoelectric element holding structure

Country Status (1)

Country Link
JP (1) JP3372024B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102039557A (en) * 2010-08-02 2011-05-04 大连理工大学 On-machine calibration method for grinding dynamometer and horizontal force loader

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100912400B1 (en) 2007-12-13 2009-08-14 한국표준과학연구원 Multi-Purpose Accelerometer
JP5866907B2 (en) * 2011-09-16 2016-02-24 セイコーエプソン株式会社 Force sensor, force detection device, robot hand, robot, and method of manufacturing force sensor
CN107101753B (en) * 2017-06-29 2023-08-11 四川西交路安科技有限公司 Quartz sensor for horizontal force detection and horizontal force detection device
CN107621332B (en) * 2017-07-28 2019-07-12 大连理工大学 A kind of scaling method of more fulcrum piezoelectric force instrument

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102039557A (en) * 2010-08-02 2011-05-04 大连理工大学 On-machine calibration method for grinding dynamometer and horizontal force loader
CN102039557B (en) * 2010-08-02 2012-11-07 大连理工大学 On-machine calibration method for grinding dynamometer and horizontal force loader

Also Published As

Publication number Publication date
JPH11281664A (en) 1999-10-15

Similar Documents

Publication Publication Date Title
US4460842A (en) Piezoelectric device with high, constant preload force
JP3251289B2 (en) Silicon chip used in pressure sensor
US20180196081A1 (en) Shear-type piezoelectric sensor
JP3372024B2 (en) Piezoelectric element holding structure
US4658175A (en) Vibrating beam force transducer with A-frame beam root and frequency adjusting means
CN111463101B (en) Square microchannel plate assembly
JP2007024259A (en) Friction damper device and its installation method
JP7181552B2 (en) Fastening force detector
CN115792276A (en) Piezoelectric acceleration sensor with near-constant pretightening force in full temperature region
JP2598485B2 (en) Load cell
WO2003031926A1 (en) Micromechanical component (on pressure sensor membrane) comprising a bellows-type structure for temperature shifts
JPH11215804A (en) Stack for flat type semiconductor device
EP0669169A2 (en) Wave-receiving piezoelectric device
JP3209255B2 (en) Snow stopper mounting bracket
JPH0125488Y2 (en)
JPS5868510A (en) Flange joint device
JPH0587110A (en) Connector
JPH0526515Y2 (en)
JPH07936Y2 (en) Acceleration sensor
JPH1129986A (en) Laminated rubber bearing body and its manufacture
JP3364423B2 (en) Semiconductor stack
JPH099396A (en) Acoustic transducer
JPH08121455A (en) Nut with loosening locking and manufacture thereof
CN219016353U (en) Piezoelectric acceleration sensor with near constant pretightening force in full temperature zone
JP3348902B2 (en) Wave receiving piezoelectric element

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071122

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091122

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101122

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101122

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111122

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121122

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131122

Year of fee payment: 11

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees