JP3370408B2 - Manufacturing method of ceramic coating - Google Patents

Manufacturing method of ceramic coating

Info

Publication number
JP3370408B2
JP3370408B2 JP33852493A JP33852493A JP3370408B2 JP 3370408 B2 JP3370408 B2 JP 3370408B2 JP 33852493 A JP33852493 A JP 33852493A JP 33852493 A JP33852493 A JP 33852493A JP 3370408 B2 JP3370408 B2 JP 3370408B2
Authority
JP
Japan
Prior art keywords
group
polysilazane
coating
weight
firing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP33852493A
Other languages
Japanese (ja)
Other versions
JPH07196986A (en
Inventor
直 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tonen General Sekiyu KK
Original Assignee
Tonen General Sekiyu KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tonen General Sekiyu KK filed Critical Tonen General Sekiyu KK
Priority to JP33852493A priority Critical patent/JP3370408B2/en
Publication of JPH07196986A publication Critical patent/JPH07196986A/en
Application granted granted Critical
Publication of JP3370408B2 publication Critical patent/JP3370408B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、ポリシラザンを必須成
分とし、耐熱性、耐摩耗性、耐食性に優れた被覆膜を形
成できるセラミックコーティングの製造方法に関する。
The present invention relates to a polysilazane as essential components, heat resistance, abrasion resistance, relates to the manufacturing method of the ceramic coating can form a coating film excellent in corrosion resistance.

【0002】[0002]

【従来の技術】高度の耐熱、耐摩耗、耐食性を得るため
には、有機系塗料では不十分であり、セラミックス系コ
ーティングが用いられる。従来、セラミックス系コーテ
ィングの形成方法としては、PVD(スパッタ法等)、
CVD、ゾルーゲル法、ポリチタノカルボシラン系塗
料、ポリ(ジシル)シラザン系塗料、ポリシラザン系塗
料、ポリメタロシラザン系塗料などが知られている。
2. Description of the Related Art Organic paints are not sufficient for obtaining high heat resistance, wear resistance and corrosion resistance, and ceramic coatings are used. Conventionally, as a method of forming a ceramic coating, PVD (sputtering method, etc.),
Known are CVD, sol-gel method, polytitanocarbosilane-based paint, poly (dicyl) silazane-based paint, polysilazane-based paint, polymetallosilazane-based paint, and the like.

【0003】[0003]

【発明が解決しようとする課題】上記の如きセラミック
ス系コーティング法が知られているが、いずれも問題が
ある。すなわち、PVD,CVD法では装置が高価であ
る。ゾルーゲル法では、必要焼成温度が500℃以上と
高い。ポリチタノカルボシラン系塗料では低温焼成(4
00℃以下)における表面強度が不十分である。ポリ
(ジシル)シラザン系重合体を用いたものは、施工に難
があり、クラックが発生する。ポリシラザン、ポリメタ
ロシラザンコーティングでは、200〜500℃で焼成
できるが、300℃未満の焼成では膜質が必ずしも良好
でない。
The above-mentioned ceramics-based coating methods are known, but all have problems. That is, the PVD and CVD methods are expensive. In the sol-gel method, the required firing temperature is as high as 500 ° C or higher. Low-temperature baking (4
The surface strength at 00 ° C. or lower) is insufficient. Those using a poly (disyl) silazane-based polymer are difficult to apply and cracks occur. Polysilazane and polymetallosilazane coatings can be fired at 200 to 500 ° C, but firing at less than 300 ° C does not necessarily give good film quality.

【0004】そこで、本発明は、上記の如き従来技術に
おける問題を解決し、低温(150℃〜350℃)焼成
により、耐熱性、耐摩耗性、耐食性に優れ、クラックの
ない緻密な塗膜を与えるコーティング用組成物とその施
工法を提供すること、特に、低温焼成という特長によ
り、従来不可能であった、電子部品、プラスチック等へ
のコーティングを可能とすることを目的とする。
Therefore, the present invention solves the problems in the prior art as described above, and by baking at a low temperature (150 ° C. to 350 ° C.), a dense coating film having excellent heat resistance, abrasion resistance and corrosion resistance and no cracks is formed. It is an object of the present invention to provide a coating composition to be given and a construction method thereof, and in particular, to make it possible to coat electronic parts, plastics and the like, which has hitherto been impossible due to the feature of low temperature firing.

【0005】[0005]

【課題を解決するための手段】本発明者らは、上記問題
点を解決するために鋭意検討した結果、ポリシラザンを
主成分とするコーティング液に金属の微粒子を添加する
ことにより、塗膜を空気中で焼成する際の硬化反応が促
進され、従来よりも低い焼成温度で良好な被覆が形成さ
れることを見出した。
Means for Solving the Problems As a result of intensive studies for solving the above-mentioned problems, the present inventors have found that a coating liquid containing polysilazane as a main component is added with metal fine particles to form a coating film with air. It has been found that the curing reaction is promoted when firing in a medium, and a good coating is formed at a firing temperature lower than conventional ones.

【0006】こうして、本発明によれば、主として一般
式(I):
Thus, according to the present invention, the general formula (I):

【0007】[0007]

【化2】 [Chemical 2]

【0008】(但し、R1 ,R2 ,R3 はそれぞれ独立
に水素原子、アルキル基、アルケニル基、シクロアルキ
ル基、アリール基、またはこれらの基以外でケイ素に直
結する基が炭素である基、アルキルシリル基、アルキル
アミノ基、アルコキシ基もしくは金属原子を表わす。た
だし、R1 ,R2 ,R3 のうち少なくとも1つは水素原
子である。)で表わされる単位からなる主骨格を有する
数平均分子量が100〜5万のポリシラザンを主成分と
するコーティング溶液に、Au,Ag,Pd,Niのう
ち少なくとも1種の金属の0.5μmより小さい微粒子
ポリシラザン100重量部に対して0.01〜10重
量部の範囲内の量で添加したコーティング用組成物を基
盤に塗布後、空気中、150℃以上350℃以下の温度
で焼成することを特徴とするセラミックコーティングの
製造が提供される。
(However, R 1 , R 2 and R 3 are each independently a hydrogen atom, an alkyl group, an alkenyl group, a cycloalkyl group, an aryl group, or a group other than these groups in which the group directly bonded to silicon is carbon. , An alkylsilyl group, an alkylamino group, an alkoxy group or a metal atom, provided that at least one of R 1 , R 2 and R 3 is a hydrogen atom). In a coating solution containing polysilazane having an average molecular weight of 100 to 50,000 as a main component, fine particles of at least one metal selected from Au, Ag, Pd, and Ni having a particle size of less than 0.5 μm are used in an amount of 0.01 to 100 parts by weight of polysilazane. ~ 10 layers
There is provided the production of a ceramic coating, which comprises applying a coating composition added in an amount within a range of parts by weight to a substrate and then firing the composition in air at a temperature of 150 ° C. or higher and 350 ° C. or lower.

【0009】用いるポリシラザンは、分子内に少なくと
もSi−H結合、あるいはN−H結合を有するポリシラ
ザンであればよく、ポリシラザン単独は勿論のこと、ポ
リシラザンと他のポリマーとの共重合体やポリシラザン
と他の化合物との混合物でも利用できる。用いるポリシ
ラザンには、鎖状、環状、あるいは架橋構造を有するも
の、あるいは分子内にこれら複数の構造を同時に有する
ものがあり、これら単独でもあるいは混合物でも利用で
きる。
The polysilazane to be used may be any polysilazane having at least a Si--H bond or an N--H bond in the molecule. Not only polysilazane alone but also a copolymer of polysilazane and another polymer or polysilazane and other It can also be used as a mixture with the compound of. The polysilazanes to be used include those having a chain structure, a cyclic structure, or a crosslinked structure, or those having a plurality of these structures simultaneously in the molecule, and these can be used alone or in a mixture.

【0010】用いるポリシラザンの代表例としては下記
のようなものがあるが、これらに限定されるものではな
い。ペルヒドロポリシラザンが好ましい。一般式(I)
でR1 ,R2 、及びR3 に水素原子を有するものは、ペ
ルヒドロポリシラザンであり、その製造法は例えば特公
昭63−16325号公報、D. Seyferth らCommunicat
ion of Am. Cer. Soc., C-13, January 1983. に報告さ
れている。これらの方法で得られるものは、種々の構造
を有するポリマーの混合物であるが、基本的には分子内
に鎖状部分と環状部分を含み、
Typical examples of the polysilazane to be used are as follows, but the polysilazane is not limited thereto. Perhydropolysilazane is preferred. General formula (I)
Wherein R 1 , R 2 and R 3 have a hydrogen atom is perhydropolysilazane, and the production method thereof is, for example, Japanese Patent Publication No. 63-16325, D. Seyferth et al. Communicat.
ion of Am. Cer. Soc., C-13, January 1983. What is obtained by these methods is a mixture of polymers having various structures, but basically contains a chain portion and a cyclic portion in the molecule,

【0011】[0011]

【化3】 [Chemical 3]

【0012】の化学式で表わすことができる。ペルヒド
ロポリシラザンの構造の一例を示すと下記の如くであ
る。
It can be represented by the chemical formula: An example of the structure of perhydropolysilazane is as follows.

【0013】[0013]

【化4】 [Chemical 4]

【0014】一般式(I)でR1 及びR2 に水素原子、
3 にメチル基を有するポリシラザンの製造方法は、D.
Seyferth らPolym. Prepr., Am. Chem. Soc., Div. Po
lym.Chem., 25, 10 (1984) に報告されている。この方
法により得られるポリシラザンは、繰り返し単位が−
(SiH2 NCH3 )−の鎖状ポリマーと環状ポリマー
であり、いずれも架橋構造をもたない。
In the general formula (I), R 1 and R 2 are hydrogen atoms,
A method for producing polysilazane having a methyl group in R 3 is described in D.
Seyferth et al. Polym. Prepr., Am. Chem. Soc., Div. Po
lym. Chem., 25 , 10 (1984). The polysilazane obtained by this method has a repeating unit of −
(SiH 2 NCH 3) - is a chain polymer and a cyclic polymer, either no cross-linked structure.

【0015】一般式(I)でR1 及びR3 に水素原子、
2 に有機基を有するポリオルガノ(ヒドロ)シラザン
の製造法は、D. Seyferth らPolym. Prepr., Am. Chem.
Soc., Div. Polym. Chem., 25, 10 (1984) 、特開昭6
1−89230号公報、同62−156135号公報に
報告されている。これらの方法により得られるポリシラ
ザンには、−(R2 SiHNH)−を繰り返し単位とし
て、主として重合度が3〜5の環状構造を有するものや
(R3 SiHNH)X 〔(R2 SiH)1.5 N〕
1-X (0.4<x<1)の化学式で示せる分子内に鎖状
構造と環状構造を同時に有するものがある。
In the general formula (I), R 1 and R 3 are hydrogen atoms,
A method for producing a polyorgano (hydro) silazane having an organic group in R 2 is described in D. Seyferth et al., Polym. Prepr., Am. Chem.
Soc., Div. Polym. Chem., 25 , 10 (1984), JP-A-6
1-89230 and 62-156135. The polysilazane obtained by these methods, - (R 2 SiHNH) - as a repeating unit, and which mainly polymerization degree having a cyclic structure 3~5 (R 3 SiHNH) X [(R 2 SiH) 1.5 N ]
Some have the chain structure and the ring structure at the same time in the molecule represented by the chemical formula of 1-X (0.4 <x <1).

【0016】一般式(I)でR1 に水素原子、R2 及び
3 に有機基を有するポリシラザン、またR1 及びR2
に有機基、R3 に水素原子を有するものは−(R1 2
SiNR3 )−を繰り返し単位として、主に重合度が3
〜5の環状構造を有している。用いるポリシラザンは、
上記の如く一般式(I)で表わされる単位からなる主骨
格を有するが、一般式(I)で表わされる単位は、上記
にも明らかな如く環状化することがあり、その場合には
その環状部分が末端基となり、このような環状化がされ
ない場合には、主骨格の末端はR1 ,R2 ,R3 と同様
の基又は水素であることができる。
In the general formula (I), polysilazane having a hydrogen atom at R 1 and an organic group at R 2 and R 3 , and R 1 and R 2
An organic group for R 3 and a hydrogen atom for R 3 is — (R 1 R 2
SiNR 3 ) -is a repeating unit and the degree of polymerization is mainly 3
It has a cyclic structure of ~ 5. The polysilazane used is
As described above, it has a main skeleton composed of the unit represented by the general formula (I), but the unit represented by the general formula (I) may be cyclized as is clear from the above. When the moiety serves as a terminal group and such cyclization does not occur, the terminal of the main skeleton can be a group similar to R 1 , R 2 and R 3 or hydrogen.

【0017】ポリオルガノ(ヒドロ)シラザンの中に
は、D. Seyferth らCommunication ofAm. Cer. Soc., C
-132, July 1984. が報告されている様な分子内に架橋
構造を有するものもある。一例を示すと下記の如くであ
る。
Among the polyorgano (hydro) silazanes are D. Seyferth et al. Communication of Am. Cer. Soc., C.
-132, July 1984. has a crosslinked structure in the molecule. An example is as follows.

【0018】[0018]

【化5】 [Chemical 5]

【0019】また、特開昭49−69717に報告され
ている様なR1 SiX3 (X:ハロゲン)のアンモニア
分解によって得られる架橋構造を有するポリシラザン
(R1Si(NH)X )、あるいはR1 SiX3 及びR2
2SiX2 の共アンモニア分解によって得られる下記の
構造を有するポリシラザンも出発材料として用いること
ができる。
Further, polysilazane (R 1 Si (NH) x ) having a crosslinked structure obtained by ammonia decomposition of R 1 SiX 3 (X: halogen) as reported in JP-A-49-69717, or R 1 SiX 3 and R 2
Polysilazane having the following structure obtained by co-ammonia decomposition of 2 SiX 2 can also be used as a starting material.

【0020】[0020]

【化6】 [Chemical 6]

【0021】さらに、下記の構造(式中、側鎖の金属原
子であるMは架橋をなしていてもよい)の如く金属原子
を含むポリメタロシラザンも出発材料として用いること
ができる。
Further, a polymetallosilazane containing a metal atom as shown in the following structure (in the formula, M which is a side chain metal atom may be crosslinked) can also be used as a starting material.

【0022】[0022]

【化7】 [Chemical 7]

【0023】また、特開昭62−195024号に報告
されている様なポリシロキサザン、特開平2−8443
7号に報告されている様なボロシラザン、特開昭63−
81122号、特開昭63−191832号、特開平2
−77427号に報告されている様なポリメタロシラザ
ン、特開平1−138108号、特開平1−13810
7号、特開平1−203429号、特開平1−2034
30号、特開平4−63833号、特願平3−3201
67号に報告されている様な改質ポリシラザン、特開平
2−175726号、特開平1−138107号、特開
平5−86200号、特開平5−331293号、特開
平3−31326号に報告されている様な共重合ポリシ
ラザンも好適に使用できる。
Further, polysiloxazane as reported in JP-A-62-195024, JP-A-2-8443.
Borosilazanes as reported in JP-A No. 6-63
81122, JP-A-63-191832, JP-A-2
Polymetallosilazanes as reported in JP-A-77427, JP-A-1-138108 and JP-A-1-13810.
7, JP-A-1-203429, JP-A-1-2034
No. 30, JP-A-4-63833, and Japanese Patent Application No. 3-3201.
No. 67, modified polysilazane, JP-A-2-175726, JP-A-1-138107, JP-A-5-86200, JP-A-5-331293, and JP-A-3-31326. The copolymerized polysilazane as described above can also be preferably used.

【0024】用いるポリシラザンの分子量は数平均分子
量で100〜5万、より好ましくは500〜10,00
0である。分子量が小さすぎると焼成時の収率が低く、
実用的でなく、一方分子量が、大きすぎると溶液の安定
性が低く、健全な膜が得られない。本発明は上記の如き
ポリシラザンを主成分とするコーティング溶液に金属微
粒子を添加することを特徴とする。金属微粒子を添加す
ることによってポリシラザンの硬化、セラミック化温度
を100〜150℃程度も低下させることができる。本
出願人は、ポリシラザンに特定の有機化合物を反応させ
て変性ポリシラザンとすることによってセラミック化温
度を低下させうることを開示してきたが(特願平4−3
9595号、同4−272020号など)、本発明では
金属の微粒子を添加するだけで同様の効果が得られるこ
とを見い出した。
The polysilazane used has a number average molecular weight of from 100 to 50,000, more preferably from 500 to 10,000.
It is 0. If the molecular weight is too small, the yield during firing will be low,
On the other hand, if the molecular weight is too large, the stability of the solution is low and a sound film cannot be obtained. The present invention is characterized by adding fine metal particles to the coating solution containing polysilazane as a main component as described above. By adding fine metal particles, the curing and ceramization temperature of polysilazane can be lowered by about 100 to 150 ° C. The applicant has disclosed that polysilazane can be reacted with a specific organic compound to form a modified polysilazane to lower the ceramization temperature (Japanese Patent Application No. 4-3).
No. 9595, No. 4-272020, etc.), it was found in the present invention that similar effects can be obtained only by adding metal fine particles.

【0025】そして、有機化合物でポリシラザンを変性
する場合と比べて、金属微粒子を添加する場合には、コ
ーティング溶液が安定であり、得られる膜が比較的緻密
であり、かつ比較的安価である利点がある。コーティン
グ溶液が安定な理由は、金属微粒子がポリシラザンと反
応してその構造を変えるものではないからである。但
し、後記の独立分散超微粒子を添加する場合、分散液が
高沸点アルコールであるため、これが安定化剤として作
用し、コーティング液は、末添加品よりも安定となる。
Compared with the case where polysilazane is modified with an organic compound, when the metal fine particles are added, the coating solution is stable, the obtained film is relatively dense, and the cost is relatively low. There is. The reason why the coating solution is stable is that the metal fine particles do not react with polysilazane to change its structure. However, when the independent dispersion ultrafine particles described later are added, since the dispersion liquid is a high boiling point alcohol, this acts as a stabilizer, and the coating liquid becomes more stable than the powdered additive product.

【0026】また、金属微粒子がセラミック化温度を低
下させる理由は、金属の酸化触媒あるいは脱水素触媒と
しての作用と考えられる。特にAgの独立分散超微粒子
の効果が大きく、これは粒子表面のAg2 OあるいはA
gOの下記の如き反応による酸化剤としての作用と考え
られる。 2Ag2 O──→4Ag+O2 (>160℃) 2AgO───→2Ag+O2 (>100℃) 用いる金属微粒子は特に限定されないが、Au,Ag,
Pd,Niが好ましく、特にAgが好ましい。
The reason why the metal fine particles lower the ceramization temperature is considered to be the action as a metal oxidation catalyst or dehydrogenation catalyst. In particular, the effect of independent dispersed ultrafine particles of Ag is great, and this is due to the fact that Ag 2 O or A
It is considered that gO acts as an oxidant by the following reaction. 2Ag 2 O-- → 4Ag + O 2 (> 160 ° C.) 2AgO-- →→ 2Ag + O 2 (> 100 ° C) The fine metal particles to be used are not particularly limited, but Au, Ag,
Pd and Ni are preferable, and Ag is particularly preferable.

【0027】金属微粒子の粒径は0.5μmより小さい
ことが好ましく、0.1μm以下がより好ましく、0.
05μmより小さいことがさらに好ましい。金属微粒子
の粒径が大きいと触媒としての効果が小さく、また溶液
中で沈降するので好ましくない。特に独立分散超微粒子
と呼ばれる粒径50〜100Å(0.005〜0.01
μm)のAu,Ag,Pdなどの超微粒子をα−テルピ
ネオールなどの高沸点アルコールのような分散液に分散
させたものは、分散液(10〜70wt%濃度)のまま、
あるいはキシレンなどコーティング液の溶剤で希釈した
分散液を添加し、スターラーで10〜60分程度撹拌す
るだけでよく、一般の微粒子の場合のように、ボールミ
ルや超音波分散により、さらには分散剤を用いて、均一
に分散させる必要がないので、非常に好適である。
The particle size of the fine metal particles is preferably smaller than 0.5 μm, more preferably 0.1 μm or less, and 0.1.
More preferably, it is smaller than 05 μm. If the particle size of the metal fine particles is large, the effect as a catalyst is small and the particles settle in the solution, which is not preferable. In particular, the particle size is 50-100Å (0.005-0.01)
(μm) ultrafine particles such as Au, Ag, and Pd dispersed in a dispersion liquid such as a high-boiling alcohol such as α-terpineol remains as a dispersion liquid (10 to 70 wt% concentration),
Alternatively, it suffices to add a dispersion liquid diluted with a solvent for the coating liquid such as xylene, and stir with a stirrer for about 10 to 60 minutes. As with general fine particles, a ball mill or ultrasonic dispersion is used to further disperse the dispersant. It is very suitable because it does not need to be uniformly dispersed.

【0028】金属微粒子の好ましい添加量は、ポリシラ
ザン100重量部に対して0.01〜10重量部、より
好ましくは0.05〜5重量部である。添加量が少ない
と効果がなく、一方多すぎると金属微粒子の凝集部が膜
の欠陥となるので好ましくない。前記の如く、金属微粒
子はポリシラザンコーティング溶液に均一に分散させる
べきである。均一に分散させる方法としては独立分散超
微粒子の分散液の場合は、スターラーによる攪拌で十分
であるが、一般の金属微粒子の場合には必要に応じ予め
市販の分散剤を添加したシラザン溶液中でボールミル、
振動ミルなどにより混合、分散して均一なコーティング
液とするなどによる。
The amount of the fine metal particles added is preferably 0.01 to 10 parts by weight, more preferably 0.05 to 5 parts by weight, based on 100 parts by weight of polysilazane. If the addition amount is too small, there is no effect. On the other hand, if the addition amount is too large, the agglomerated portion of the metal fine particles becomes a film defect, which is not preferable. As mentioned above, the fine metal particles should be uniformly dispersed in the polysilazane coating solution. As a method for uniformly dispersing, in the case of a dispersion liquid of independently dispersed ultrafine particles, stirring with a stirrer is sufficient, but in the case of general metal fine particles, in a silazane solution to which a commercially available dispersant is added in advance, if necessary. Ball mill,
By mixing and dispersing with a vibration mill etc. to make a uniform coating liquid.

【0029】溶剤としては、脂肪族炭化水素、脂環式炭
化水素、芳香族炭化水素の炭化水素溶媒、ハロゲン化メ
タン、ハロゲン化エタン、ハロゲン化ベンゼン等のハロ
ゲン化炭化水素、脂肪族エーテル、脂環式エーテル等の
エーテル類が使用できる。好ましい溶媒は、塩化メチレ
ン、クロロホルム、四塩化炭素、ブロモホルム、塩化エ
チレン、塩化エチリデン、トリクロロエタン、テトラク
ロロエタン等のハロゲン化炭化水素、エチルエーテル、
イソプロピルエーテル、エチルブチルエーテル、ブチル
エーテル、1,2−ジオキシエタン、ジオキサン、ジメ
チルジオキサン、テトラヒドロフラン、テトラヒドロピ
ラン等のエーテル類、ペンタンヘキサン、イソヘキサ
ン、メチルペンタン、ヘプタン、イソヘプタン、オクタ
ン、イソオクタン、シクロペンタン、メチルシクロペン
タン、シクロヘキサン、メチルシクロヘキサン、ベンゼ
ン、トルエン、キシレン、エチルベンゼン等の炭化水素
等である。
Examples of the solvent include aliphatic hydrocarbons, alicyclic hydrocarbons, hydrocarbon solvents of aromatic hydrocarbons, halogenated hydrocarbons such as halogenated methane, halogenated ethane and halogenated benzene, aliphatic ethers, and fats. Ethers such as cyclic ethers can be used. Preferred solvents are halogenated hydrocarbons such as methylene chloride, chloroform, carbon tetrachloride, bromoform, ethylene chloride, ethylidene chloride, trichloroethane and tetrachloroethane, ethyl ether,
Ethers such as isopropyl ether, ethylbutyl ether, butyl ether, 1,2-dioxyethane, dioxane, dimethyldioxane, tetrahydrofuran, tetrahydropyran, pentanehexane, isohexane, methylpentane, heptane, isoheptane, octane, isooctane, cyclopentane, methylcyclopentane And hydrocarbons such as cyclohexane, methylcyclohexane, benzene, toluene, xylene and ethylbenzene.

【0030】これらの溶剤を使用する場合、ポリシラザ
ンの溶解度や溶剤の蒸発速度を調節するために、2種類
以上の溶剤を混合してもよい。溶剤の使用量(割合)は
採用するコーティング方法により作業性がよくなるよう
に、また必要な膜厚により選択され、またポリシラザン
の平均分子量、分子量分布、その構造によって異なるの
で、コーティング用組成物中溶剤は99重量%程度まで
混合することができ、好ましくは固形分濃度が3〜50
重量%の範囲で混合することができる。
When these solvents are used, two or more kinds of solvents may be mixed in order to adjust the solubility of polysilazane and the evaporation rate of the solvent. The amount (ratio) of the solvent used is selected according to the coating method used so as to improve workability, and is also selected according to the required film thickness, and also depends on the average molecular weight of polysilazane, the molecular weight distribution and its structure. Can be mixed up to about 99% by weight, and preferably has a solid content concentration of 3 to 50.
It is possible to mix in the range of% by weight.

【0031】また、本発明においては、必要に応じて適
当な充填剤を加えてもよい。充填剤の例としてはシリ
カ、アルミナ、ジルコニア、マイカを始めとする酸化物
系無機物あるいは炭化珪素、窒化珪素等の非酸化物系無
機物の微粉等が挙げられる。また用途によってはアルミ
ニウム、亜鉛、銅等の金属粉末の添加も可能である。さ
らに充填剤の例を詳しく述べれば、ケイ砂、石英、ノバ
キュライト、ケイ藻土などのシリカ系:合成無定形シリ
カ:カオリナイト、雲母、滑石、ウオラストナイト、ア
スベスト、ケイ酸カルシウム、ケイ酸アルミニウム等の
ケイ酸塩:ガラス粉末、ガラス球、中空ガラス球、ガラ
スフレーク、泡ガラス球等のガラス体:窒化ホウ素、炭
化ホウ素、窒化アルミニウム、炭化アルミニウム、窒化
ケイ素、炭化ケイ素、ホウ化チタン、窒化チタン、炭化
チタン等の非酸化物系無機物:炭酸カルシウム:酸化亜
鉛、アルミナ、マグネシア、酸化チタン、酸化ベリリウ
ム等の金属酸化物:硫酸バリウム、二硫化モリブデン、
二硫化タングステン、弗化炭素その他無機物:アルミニ
ウム、ブロンズ、鉛、ステンレススチール、亜鉛等の金
属粉末:カーボンブラック、コークス、黒鉛、熱分解炭
素、中空カーボン球等のカーボン体等があげられる。
Further, in the present invention, a suitable filler may be added if necessary. Examples of the filler include fine powders of oxide-based inorganic materials such as silica, alumina, zirconia, and mica, or non-oxide-based inorganic materials such as silicon carbide and silicon nitride. Depending on the application, it is also possible to add metal powders such as aluminum, zinc and copper. More specifically, examples of fillers are silica-based materials such as silica sand, quartz, novaculite and diatomaceous earth: Synthetic amorphous silica: Kaolinite, mica, talc, wollastonite, asbestos, calcium silicate, aluminum silicate Silicates such as: glass powder, glass spheres, hollow glass spheres, glass flakes, glass spheres such as foam glass spheres: boron nitride, boron carbide, aluminum nitride, aluminum carbide, silicon nitride, silicon carbide, titanium boride, nitride Non-oxide inorganic substances such as titanium and titanium carbide: calcium carbonate: zinc oxide, alumina, magnesia, titanium oxide, beryllium oxide and other metal oxides: barium sulfate, molybdenum disulfide,
Tungsten disulfide, carbon fluoride, and other inorganic substances: metal powders such as aluminum, bronze, lead, stainless steel, zinc: carbon black, coke, graphite, pyrolytic carbon, carbon bodies such as hollow carbon spheres, and the like.

【0032】これら充填剤は、針状(ウィスカーを含
む。)、粒状、鱗片状等種々の形状のものを単独又は2
種以上混合して用いることができる。又、これら充填剤
の粒子の大きさは1回に塗布可能な膜厚よりも小さいこ
とが望ましい。また充填剤の添加量はポリシラザン1重
量部に対し、0.05重量部〜10重量部の範囲であ
り、特に好ましい添加量は0.2重量部〜3重量部の範
囲である。又、充填剤の表面をカップリング剤処理、蒸
着、メッキ等で表面処理して使用してもよい。
These fillers have various shapes such as needle-like shape (including whiskers), granular shape, and scale-like shape, either alone or in 2 pieces.
A mixture of two or more species can be used. Further, it is desirable that the particle size of these fillers is smaller than the film thickness that can be applied at one time. The addition amount of the filler is in the range of 0.05 parts by weight to 10 parts by weight with respect to 1 part by weight of polysilazane, and the particularly preferable addition amount is in the range of 0.2 parts by weight to 3 parts by weight. Further, the surface of the filler may be surface-treated by a coupling agent treatment, vapor deposition, plating or the like for use.

【0033】コーティング用組成物には、必要に応じて
各種顔料、レベリング剤、消泡剤、帯電防止剤、紫外線
吸収剤、pH調整剤、分散剤、表面改質剤、可塑剤、乾燥
促進剤、流れ止め剤を加えてもよい。本発明によれば、
同様にして、上記の如きコーティング用組成物を用いた
コーティング方法は、上記のコーティング用組成物を基
盤に1回又は2回以上繰り返し塗布した後、焼成し珪素
−窒素−酸素−金属元素系又は珪素−窒素−酸素−炭素
−金属元素系セラミックスから成る被覆膜を形成させる
ことを特徴とするものである。
The coating composition may contain various pigments, leveling agents, defoaming agents, antistatic agents, ultraviolet absorbers, pH adjusters, dispersants, surface modifiers, plasticizers, and drying accelerators, if necessary. Alternatively, anti-flow agents may be added. According to the invention,
Similarly, in the coating method using the coating composition as described above, the coating composition is repeatedly applied to the substrate once or twice or more and then fired to obtain a silicon-nitrogen-oxygen-metal element system or The coating film is made of silicon-nitrogen-oxygen-carbon-metal element ceramics.

【0034】コーティング組成物を塗布する基盤は、特
に限定されず、金属、セラミックス、プラスチックス等
のいずれでもよい。コーティングとしての塗布手段とし
ては、通常の塗布方法、つまり浸漬、ロール塗り、バー
塗り、刷毛塗り、スプレー塗り、フロー塗り等が用いら
れる。又、塗布前に基盤をヤスリがけ、脱脂、各種ブラ
スト等で表面処理しておくとコーティング組成物の付着
性能は向上する。
The base on which the coating composition is applied is not particularly limited and may be any of metal, ceramics, plastics and the like. As a coating means for coating, a usual coating method, that is, dipping, roll coating, bar coating, brush coating, spray coating, flow coating or the like is used. Further, if the substrate is sanded, degreased, and surface-treated with various blasts before coating, the adhesion performance of the coating composition is improved.

【0035】このような方法でコーティングし、充分乾
燥させた後、加熱・焼成する。この焼成によって金属微
粒子含有ポリシラザンは架橋、縮合、あるいは、焼成雰
囲気によっては酸化、加水分解して硬化し、強靱な被覆
を形成する。上記焼成条件はポリシラザンの分子量や構
造などによって異なる。昇温速度は特に限定しないが、
0.5〜10℃/分の緩やかな昇温速度が好ましい。好
ましい焼成温度は250℃〜350℃の範囲である。焼
成雰囲気は酸素中、空気中あるいは不活性ガス等のいず
れであってもよいが、空気中がより好ましい。空気中で
の焼成により金属微粒子添加ポリシラザンの酸化、ある
いは空気中に共存する水蒸気による加水分解が進行し、
上記のような低い焼成温度でSi−O結合あるいはSi
−N結合を主体とする強靱な被覆の形成が可能となる。
After coating by such a method and sufficiently dried, it is heated and baked. By this firing, the metal fine particle-containing polysilazane is crosslinked, condensed, or, depending on the firing atmosphere, oxidized and hydrolyzed to be hardened to form a tough coating. The firing conditions differ depending on the molecular weight and structure of polysilazane. The heating rate is not particularly limited,
A slow temperature rising rate of 0.5 to 10 ° C./min is preferable. The preferred firing temperature is in the range of 250 ° C to 350 ° C. The firing atmosphere may be oxygen, air, or an inert gas, but the air is more preferable. Oxidation of polysilazane added with fine metal particles by hydrolysis in air or hydrolysis by water vapor coexisting in the air proceeds,
At the low firing temperature as described above, Si—O bond or Si
It is possible to form a tough coating mainly composed of -N bond.

【0036】コーティングする金属微粒子添加ポリシラ
ザンの種類によっては、限られた焼成条件ではセラミッ
クスへの転化が不完全である場合があり、この場合には
焼成後の被覆膜を150℃未満の条件で長時間保持し、
被覆膜の性質を向上させることが可能である。この場合
の保持雰囲気は空気中が好ましく、また水蒸気圧を高め
た湿潤空気中でも更に好ましい。保持する時間は特に限
定されるものではないが、10分以上30日以内が現実
的に適当である。また保持温度は特に限定されるもので
はないが、0℃以上150℃未満が現実的に適当であ
る。ここで150℃以上で保持することも当然有効であ
るが、本文では150℃以上での加熱操作を「焼成」と
定義している。
Depending on the type of polysilazane containing fine metal particles to be coated, conversion into ceramics may be incomplete under limited firing conditions. In this case, the coating film after firing may be treated at a temperature of less than 150 ° C. Hold for a long time,
It is possible to improve the properties of the coating film. In this case, the holding atmosphere is preferably air, and more preferably wet air having an increased water vapor pressure. The holding time is not particularly limited, but 10 minutes or more and 30 days or less is practically appropriate. The holding temperature is not particularly limited, but 0 ° C or higher and lower than 150 ° C is actually suitable. Although it is naturally effective to keep the temperature at 150 ° C. or higher, the heating operation at 150 ° C. or higher is defined as “baking” in the text.

【0037】この空気中での保持により金属微粒子添加
ポリシラザンの酸化、あるいは空気中に共存する水蒸気
による加水分解が更に進行し、セラミックスへの転化が
完了して、性質のより向上した、より強靱な被覆膜の形
成が可能となる。以上の方法によれば焼成温度が低下で
き、高い焼成温度に起因する種々の問題を軽減すること
ができる。
By this holding in air, the oxidation of the polysilazane containing the fine metal particles or the hydrolysis by the water vapor coexisting in the air further progresses, the conversion to ceramics is completed, and the properties are further improved and the toughness is improved. It becomes possible to form a coating film. According to the above method, the firing temperature can be lowered and various problems caused by the high firing temperature can be alleviated.

【0038】[0038]

〔原料ペルヒドロポリシラザンの製造〕[Production of raw material perhydropolysilazane]

内容積1リットルの四つ口フラスコにガス吹きこみ管、
メカニカルスターラー、ジュワーコンデンサーを装置し
た。反応器内部を脱酸素した乾燥窒素で置換した後、四
つ口フラスコに脱気した乾燥ピリジン490mlを入れ、
これを氷冷した。次にジクロロシラン51.6gを加え
ると白色固体状のアダクト(SiH2 Cl・2C5 5
N)が生成した。反応混合物を氷冷し、攪拌しながら、
水酸化ナトリウム管及び活性炭管を通して精製したアン
モニア51.0gを吹き込んで加熱した。
Gas injection tube into a four-necked flask with an internal volume of 1 liter,
A mechanical stirrer and dewar condenser were installed. After replacing the inside of the reactor with deoxygenated dry nitrogen, put 490 ml of degassed dry pyridine in a four-necked flask,
This was ice-cooled. Next, 51.6 g of dichlorosilane was added to produce a white solid adduct (SiH 2 Cl · 2C 5 H 5
N) was produced. The reaction mixture is ice-cooled and, with stirring,
51.0 g of purified ammonia was bubbled through the sodium hydroxide tube and the activated carbon tube to heat.

【0039】反応終了後、反応混合物を遠心分離し、乾
燥ピリジンを用いて洗浄した後、更に窒素雰囲気下でろ
過してろ液850mlを得た。ろ液5mlから溶媒を減去留
去すると樹脂状固体ペルヒドロポリシラザン0.1gが
得られた。得られたポリマーの数平均分子量は、凝固点
降下法(溶媒:乾燥ベンゼン)により測定したところ、
893であった。IR(赤外吸収)スペクトル(溶媒:
乾燥o−キシレン;ペルヒドロポリシラザンの濃度:1
0.2g/l)は、波数(cm-1)3340(見かけの吸
光係数ε=0.5571g-1cm-1)、及び1175のN
Hに基づく吸収;2160(ε=3.14)のSiHに
基づく吸収;1020〜820のSiH及びSiNSi
に基づく吸収を示した。 1HNMR(プロトン核磁気共
鳴)スペクトル(60MHz 、溶媒CDCl3 /基準物質
TMS)は、いずれも幅広い吸収を示している。即ち、
δ4.8及び4.4(br.,SiH);1.5(b
r.,NH)の吸収が観測された。
After the reaction was completed, the reaction mixture was centrifuged, washed with dry pyridine, and then filtered under a nitrogen atmosphere to obtain 850 ml of a filtrate. The solvent was removed from the filtrate (5 ml) by distillation, and 0.1 g of a resinous solid perhydropolysilazane was obtained. The number average molecular weight of the obtained polymer was measured by the freezing point depression method (solvent: dry benzene),
It was 893. IR (infrared absorption) spectrum (solvent:
Concentration of dry o-xylene; perhydropolysilazane: 1
0.2 g / l) is the wave number (cm −1 ) 3340 (apparent extinction coefficient ε = 0.5571 g −1 cm −1 ), and N of 1175.
H-based absorption; SiH-based absorption of 2160 (ε = 3.14); SiH and SiNSi of 1024-820
Showed absorption based on. The 1 H NMR (proton nuclear magnetic resonance) spectra (60 MHz, solvent CDCl 3 / reference material TMS) all show broad absorption. That is,
δ 4.8 and 4.4 (br., SiH); 1.5 (b
r. , NH) absorption was observed.

【0040】実施例 東燃製ペルヒドロポリシラザン(Type−1,PHP
S−1;数平均分子量Mn≒800)の15wt%キシレ
ン溶液100gに0.75gの超微粒子Ag分散液(真
空冶金株式会社製、10wt%α−テルピネオール溶液、
粒径;50〜100Å)を添加し室温で60分撹拌し
た。
Example Perhydropolysilazane (Type-1, PHP) manufactured by Tonen
S-1: 0.75 g of ultrafine Ag dispersion liquid (manufactured by Vacuum Metallurgical Co., Ltd., 10 wt% α-terpineol solution, in 100 g of a 15 wt% xylene solution having a number average molecular weight Mn≈800)
Particle size; 50 to 100Å) was added and stirred at room temperature for 60 minutes.

【0041】この溶液をコーティング液とし、直径4イ
ンチ、厚さ0.5mmのシリコンウエハ上にスピンコータ
ーを用いて塗付(1500rpm ,20秒)した。この塗
膜を大気雰囲気下350℃で1時間加熱し(10℃/分
で昇温)、膜厚5600Åのセラミックコーティングと
した。セラミック化の進行度をIRで評価したところS
iH残存率=0(%)、SiO/SiN比=40であっ
た。
Using this solution as a coating solution, a silicon wafer having a diameter of 4 inches and a thickness of 0.5 mm was coated with a spin coater (1500 rpm, 20 seconds). This coating film was heated at 350 ° C. for 1 hour in the air (heated at 10 ° C./minute) to obtain a ceramic coating having a film thickness of 5600 Å. When the degree of progress of ceramization was evaluated by IR, S
The iH residual rate was 0 (%), and the SiO / SiN ratio was 40.

【0042】比較例 一方、超微粒子Ag分散液を添加しないペルヒドロポリ
シラザンのコーティング液を同様のプロセスで施工、評
価したところ、SiH残存率=10(%)、SiO/S
iN比=2.3であった。次にこれらの焼成塗膜を49
%フッ酸(ダイキン工業株式会社製)18ml、61%硝
酸(小宗化学株式会社製)1763mlの混合溶液で処理
したところ、エッチングレートは実施例1、比較例1で
それぞれ1057Å/分、2013Å/分であった。
Comparative Example On the other hand, a coating solution of perhydropolysilazane to which the ultrafine Ag dispersion liquid was not added was applied and evaluated by the same process. SiH residual ratio = 10 (%), SiO / S
The iN ratio was 2.3. Next, these baked coatings are
% Hydrofluoric acid (manufactured by Daikin Industries, Ltd.) and 1763 ml of 61% nitric acid (manufactured by Kosou Chemical Co., Ltd.), the etching rates were 1057 Å / min and 2013 Å / in Example 1 and Comparative Example 1, respectively. It was a minute.

【0043】なお、実施例1のコーティング液をポリプ
ロピレン製キャップ付きのガラスビンに入れ、室温で放
置したところ、3ヶ月経過してもゲル化しなかった(比
較例1のコーティング液はゲル化した)。
When the coating liquid of Example 1 was placed in a glass bottle with a polypropylene cap and allowed to stand at room temperature, it did not gel even after 3 months (the coating liquid of Comparative Example 1 gelled).

【0044】[0044]

【発明の効果】本発明によれば、耐熱性、耐摩耗性、耐
食性に優れ、基材との密着性の良い被覆が、従来にない
低温での焼成で得られる。しかも、コーティング溶液が
安定、安価、かつ得られるセラミックス膜が緻密であ
る。本発明の組成物は、金属、セラミックス等はもちろ
ん、高温処理に不適なプラスチック材料、電子部品等の
表面保護剤として好適である。特にプラスチックのハー
ドコーティング剤、合成樹脂フィルムや容器のガス透過
抑制用コーティング剤、半導体の保護膜や絶縁膜、即ち
パシベーション膜、層間絶縁膜、チップコート膜など、
また半導体の封止剤、液晶表示体のアンダーコート膜や
配向膜としても利用することができる。
EFFECTS OF THE INVENTION According to the present invention, a coating having excellent heat resistance, abrasion resistance, corrosion resistance and good adhesion to a substrate can be obtained by firing at a low temperature which has never been seen before. Moreover, the coating solution is stable and inexpensive, and the obtained ceramic film is dense. The composition of the present invention is suitable as a surface protective agent for not only metals and ceramics but also plastic materials unsuitable for high temperature treatment and electronic parts. In particular, hard coating agents for plastics, coating agents for suppressing gas permeation of synthetic resin films and containers, protective films and insulating films for semiconductors, that is, passivation films, interlayer insulating films, chip coat films, etc.
It can also be used as a semiconductor sealant, an undercoat film or an alignment film of a liquid crystal display.

【図面の簡単な説明】[Brief description of drawings]

【図1】実施例のセラミックスを評価したIRスペクト
ル図である。
FIG. 1 is an IR spectrum diagram for evaluating ceramics of Examples.

【図2】比較例1のセラミックスを評価したIRスペク
トル図である。
FIG. 2 is an IR spectrum diagram for evaluating the ceramic of Comparative Example 1.

───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.7,DB名) C09D 183/16 C08L 83/16 C08G 77/62 C04B 35/589 ─────────────────────────────────────────────────── ─── Continuation of front page (58) Fields surveyed (Int.Cl. 7 , DB name) C09D 183/16 C08L 83/16 C08G 77/62 C04B 35/589

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 主として一般式(I): 【化1】 (但し、R1 ,R2 ,R3 はそれぞれ独立に水素原子、
アルキル基、アルケニル基、シクロアルキル基、アリー
ル基、またはこれらの基以外でケイ素に直結する基が炭
素である基、アルキルシリル基、アルキルアミノ基、ア
ルコキシ基を表わす。ただし、R1 ,R2 ,R3 のうち
少なくとも1つは水素原子である。)で表わされる単位
からなる主骨格を有する数平均分子量が100〜5万の
ポリシラザンを主成分とするコーティング溶液に、A
u,Ag,Pd,Niのうち少なくとも1種の金属の
0.5μmより小さい微粒子をポリシラザン100重量
部に対して0.01〜10重量部の範囲内の量で添加し
たコーティング用組成物を基盤に塗布後、空気中、15
0℃以上350℃以下の温度で焼成することを特徴とす
るセラミックコーティングの製造方法。
1. Mainly represented by the general formula (I): (However, R 1 , R 2 and R 3 are each independently a hydrogen atom,
An alkyl group, an alkenyl group, a cycloalkyl group, an aryl group, or a group other than these groups in which the group directly bonded to silicon is carbon, an alkylsilyl group, an alkylamino group, and an alkoxy group. However, at least one of R 1 , R 2 and R 3 is a hydrogen atom. In a coating solution containing polysilazane having a main skeleton composed of units represented by the formula (1) and a number average molecular weight of 100 to 50,000 as a main component,
u, Ag, Pd, Ni at least one metal
Fine particles smaller than 0.5 μm 100 weight of polysilazane
15 parts by weight of the coating composition added in an amount within the range of 0.01 to 10 parts by weight to 15 parts by weight in air.
A method for producing a ceramic coating, which comprises firing at a temperature of 0 ° C. or higher and 350 ° C. or lower.
【請求項2】 前記焼成後、さらに空気中、150℃未
満の温度で保持することを特徴とする請求項1記載のセ
ラミックコーティングの製造方法。
2. The method for producing a ceramic coating according to claim 1, further comprising holding at a temperature of less than 150 ° C. in air after the firing.
JP33852493A 1993-12-28 1993-12-28 Manufacturing method of ceramic coating Expired - Fee Related JP3370408B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP33852493A JP3370408B2 (en) 1993-12-28 1993-12-28 Manufacturing method of ceramic coating

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP33852493A JP3370408B2 (en) 1993-12-28 1993-12-28 Manufacturing method of ceramic coating

Publications (2)

Publication Number Publication Date
JPH07196986A JPH07196986A (en) 1995-08-01
JP3370408B2 true JP3370408B2 (en) 2003-01-27

Family

ID=18318979

Family Applications (1)

Application Number Title Priority Date Filing Date
JP33852493A Expired - Fee Related JP3370408B2 (en) 1993-12-28 1993-12-28 Manufacturing method of ceramic coating

Country Status (1)

Country Link
JP (1) JP3370408B2 (en)

Families Citing this family (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5747623A (en) * 1994-10-14 1998-05-05 Tonen Corporation Method and composition for forming ceramics and article coated with the ceramics
US5952421A (en) * 1995-12-27 1999-09-14 Exxon Research And Engineering Co. Synthesis of preceramic polymer-stabilized metal colloids and their conversion to microporous ceramics
JPH09183949A (en) * 1995-12-28 1997-07-15 Tonen Corp Article coated with hard coat and method for coating with hard coat
JP2961230B1 (en) * 1998-07-13 1999-10-12 工業技術院長 Ultrafine metal particle dispersion and method for producing the same
JP5291275B2 (en) * 2000-07-27 2013-09-18 有限会社コンタミネーション・コントロール・サービス Member provided with coating film and method for producing coating film
DE10055082A1 (en) * 2000-11-07 2002-05-16 Bosch Gmbh Robert Ceramic composite
JP3479648B2 (en) 2001-12-27 2003-12-15 クラリアント インターナショナル リミテッド Polysilazane treatment solvent and method for treating polysilazane using this solvent
KR101052434B1 (en) * 2002-11-01 2011-07-29 에이제토 엘렉토로닉 마티리알즈 가부시키가이샤 Polysilazane-containing coating solution
JP2006054353A (en) * 2004-08-13 2006-02-23 Az Electronic Materials Kk Siliceous film having little flat-band shift and its manufacturing method
US7785948B2 (en) 2004-08-20 2010-08-31 National Institute Of Advanced Industrial Science And Technology Semiconductor element and process for producing the same
JP5344361B2 (en) * 2007-08-20 2013-11-20 Toto株式会社 Method for producing composite material and coating liquid
WO2011074363A1 (en) * 2009-12-14 2011-06-23 コニカミノルタホールディングス株式会社 Barrier film, process for production thereof, and organic photoelectric conversion element
US20130122217A1 (en) 2010-07-22 2013-05-16 Konica Minolta Holdings, Inc. Method of manufacturing gas barrier film
US9359505B2 (en) 2010-07-27 2016-06-07 Konica Minolta Holdings, Inc. Gas barrier film, process for production of gas barrier film, and electronic device
US20130146860A1 (en) 2010-08-25 2013-06-13 Konica Minolta Holdings, Inc. Method of manufacturing gas barrier film and organic photoelectric conversion element
JP5880442B2 (en) 2010-11-19 2016-03-09 コニカミノルタ株式会社 GAS BARRIER FILM, METHOD FOR PRODUCING GAS BARRIER FILM, AND ELECTRONIC DEVICE
US9362524B2 (en) 2010-12-27 2016-06-07 Konica Minolta, Inc. Method for producing gas barrier film, gas barrier film, and electronic device
US9646940B2 (en) 2010-12-27 2017-05-09 Konica Minolta, Inc. Gas barrier film and electronic device
CN103648764B (en) 2011-07-15 2016-05-04 柯尼卡美能达株式会社 Gas barrier film and manufacture method thereof
WO2013089046A1 (en) 2011-12-16 2013-06-20 コニカミノルタ株式会社 Gas barrier film
EP2815880A4 (en) 2012-02-15 2015-10-21 Konica Minolta Inc Functional film, method for producing the same, and electronic device including comprising functional film
EP2842737A4 (en) 2012-04-25 2015-12-16 Konica Minolta Inc Gas barrier film, substrate for electronic device, and electronic device
WO2013172359A1 (en) 2012-05-14 2013-11-21 コニカミノルタ株式会社 Gas barrier film, manufacturing method for gas barrier film, and electronic device
WO2014109356A1 (en) * 2013-01-11 2014-07-17 コニカミノルタ株式会社 Gas-barrier film
CA2901335A1 (en) 2013-03-06 2014-09-12 Jx Nippon Oil & Energy Corporation Method of manufacturing member having relief structure, and member having relief structure manufactured thereby
KR101797633B1 (en) 2013-04-26 2017-11-15 제이엑스티지 에네루기 가부시키가이샤 Substrate having rugged structure obtained from hydrophobic sol/gel material
KR20160032218A (en) 2013-07-26 2016-03-23 제이엑스 닛코닛세키 에네루기 가부시키가이샤 Method for manufacturing substrate having textured structure
EP3035774A1 (en) 2013-08-14 2016-06-22 JX Nippon Oil & Energy Corporation Light emitting element and method for manufacturing light emitting element
WO2015098401A1 (en) 2013-12-27 2015-07-02 Jx日鉱日石エネルギー株式会社 Light-emitting element
EP3094160A4 (en) 2014-01-10 2017-08-30 JX Nippon Oil & Energy Corporation Optical substrate, mold to be used in optical substrate manufacture, and light emitting element including optical substrate
JP6438678B2 (en) 2014-05-14 2018-12-19 Jxtgエネルギー株式会社 Film member having an uneven structure
JP6295864B2 (en) * 2014-07-16 2018-03-20 コニカミノルタ株式会社 Gas barrier film, method for producing the same, and electronic device using the same
JP6402518B2 (en) * 2014-07-16 2018-10-10 コニカミノルタ株式会社 Gas barrier film, method for producing the same, and electronic device using the same
CN106796317B (en) 2014-10-10 2019-12-03 捷客斯能源株式会社 The manufacturing method of optical phase difference component, the composite optical member for having optical phase difference component and optical phase difference component
JP2016172829A (en) 2015-03-17 2016-09-29 コニカミノルタ株式会社 Coated semiconductor nanoparticle and method for producing the same
SG10201701978UA (en) * 2017-03-10 2018-10-30 Merck Patent Gmbh Coating composition containing metal particles

Also Published As

Publication number Publication date
JPH07196986A (en) 1995-08-01

Similar Documents

Publication Publication Date Title
JP3370408B2 (en) Manufacturing method of ceramic coating
JP3307471B2 (en) Composition for ceramic coating and coating method
JP3385060B2 (en) Method for forming silicon-nitrogen-oxygen- (carbon) -metal ceramic coating film
JP3212400B2 (en) Composition for ceramic coating and coating method
JPH05238827A (en) Coating composition and coating process
JPH06122852A (en) Coating composition and method for coating using the same
JP4070828B2 (en) Composition for forming siliceous ceramic, method for forming the same, and ceramic film
US6083860A (en) Method and composition for forming ceramics and article coated with the ceramics
JPH01138108A (en) Inorganic silazane high-polymer, its production and use thereof
JP3904691B2 (en) Polysilazane-containing composition and method for forming siliceous film
JPH01138107A (en) Modified polysilazane, its production and use thereof
JPH06140657A (en) Solar cell
JP3696311B2 (en) Polysilazane composition, method for preparing polysilazane solution, coating composition using the composition, and plastic with ceramic coating obtained by using the coating composition
JPH0827425A (en) Composition for coating, ceramic film and production of film
JPH07292321A (en) Composition for coating
JPH10194719A (en) Formation of silica-based film having low dielectric constant and silica-based film
EP0890599B1 (en) Polyorganosiloxazanes and process for the preparation thereof
JPH01221466A (en) Coating composition and coating method
JP2670501B2 (en) Coating composition and coating method
JP4101322B2 (en) Low dielectric constant ceramic material and manufacturing method thereof
JP3442160B2 (en) Method of forming SiO2 ceramic coating
JP4302782B2 (en) Method for manufacturing UV-preventing transparent plate
JP3916272B2 (en) Intermolecularly crosslinked polysilazane and method for producing the same
JP3916278B2 (en) Phenylsilyl group-crosslinked polysilazane and method for producing the same
JP2007039694A (en) Polycarbonate article coated with hard coating film and its manufacturing method

Legal Events

Date Code Title Description
S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071115

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081115

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081115

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091115

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101115

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101115

Year of fee payment: 8

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101115

Year of fee payment: 8

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101115

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111115

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121115

Year of fee payment: 10

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121115

Year of fee payment: 10

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121115

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131115

Year of fee payment: 11

LAPS Cancellation because of no payment of annual fees