JP3367743B2 - Copper and copper alloy surface treatment agent - Google Patents

Copper and copper alloy surface treatment agent

Info

Publication number
JP3367743B2
JP3367743B2 JP06550294A JP6550294A JP3367743B2 JP 3367743 B2 JP3367743 B2 JP 3367743B2 JP 06550294 A JP06550294 A JP 06550294A JP 6550294 A JP6550294 A JP 6550294A JP 3367743 B2 JP3367743 B2 JP 3367743B2
Authority
JP
Japan
Prior art keywords
copper
weight
compound
treatment
solder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP06550294A
Other languages
Japanese (ja)
Other versions
JPH07243053A (en
Inventor
浩彦 平尾
俊宏 岡本
みや 谷岡
理恵 中山
孝行 村井
隆 吉岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shikoku Chemicals Corp
Original Assignee
Shikoku Chemicals Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shikoku Chemicals Corp filed Critical Shikoku Chemicals Corp
Priority to JP06550294A priority Critical patent/JP3367743B2/en
Priority to TW083104080A priority patent/TW270944B/zh
Priority to US08/239,557 priority patent/US5498301A/en
Priority to CA002123183A priority patent/CA2123183C/en
Priority to KR1019940010181A priority patent/KR100298959B1/en
Priority to EP94303360A priority patent/EP0627499B1/en
Priority to MYPI94001165A priority patent/MY116210A/en
Priority to DE69404384T priority patent/DE69404384T2/en
Priority to US08/520,477 priority patent/US5560785A/en
Publication of JPH07243053A publication Critical patent/JPH07243053A/en
Application granted granted Critical
Publication of JP3367743B2 publication Critical patent/JP3367743B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Non-Metallic Protective Coatings For Printed Circuits (AREA)
  • Chemical Treatment Of Metals (AREA)

Description

【発明の詳細な説明】 【0001】 【産業上の利用分野】本発明は、銅及び銅合金の表面に
化成被膜を形成する水溶液系表面処理剤に関するもので
あり、特に硬質プリント配線板及びフレキシブルプリン
ト配線板における銅回路部のプレフラックス処理剤とし
て好適なものである。 【0002】 【従来の技術】銅あるいは銅合金の表面に、2位長鎖ア
ルキルイミダゾール化合物の被膜を形成する表面処理方
法としては、特公昭46-17046号、同48-11454号、同48-2
5621号、同49- 1983号、同49-26183号、同58-22545号、
同61-41988号及び特開昭61-90492号公報に記載されてい
る。また銅あるいは銅合金の表面に、2位アリール基置
換イミダゾール化合物の被膜を形成する処理方法として
は、特開平4-202780号及び同4-206681号公報に記載され
ている。 【0003】他に銅あるいは銅合金の表面にベンズイミ
ダゾール系化合物の化成被膜を形成する方法としては、
5−メチルベンズイミダゾールを用いる処理方法が特開
昭58-501281 号公報に、2−アルキルベンズイミダゾー
ル化合物、2−アリールベンズイミダゾール化合物、2
−アラルキルベンズイミダゾール化合物あるいは2−メ
ルカプトアルキルベンズイミダゾール化合物を用いる処
理方法が、特開平3-124395号、同3-236478号、同4-7207
2 号、同4-80375 号、同4-99285 号、同4-157174号、同
4-165083号、同4-173983号、同4-183874号、同4-202780
号、同4-206681号、同4-218679号、同5-25407 号、同5-
93280 号、同5-93281 号、同5-156475号、同5-163585
号、同5-175643号、同5-186880号、同5-186888号、同5-
202492号、同5-230674号、同5-237688号、同5-263275
号、同5-287562号、同5-291729号、同5-287563号及び同
5-291729号公報に記載されている。 【0004】これらの他に、2−メルカプトベンズイミ
ダゾールを用いる銅あるいは銅合金の防錆方法が、特開
昭55-83157号、同62-77600号及び同63-118598 号公報に
開示されている。 【0005】 【発明が解決しようとする課題】近時プリント配線板に
対する電子部品の接合方法として、表面実装法が多く採
用されるようになり、チップ部品の仮止め、部品装置の
両面装着あるいはチップ部品とディスクリート部品の混
載などにより、プリント配線板が高温下に曝されるよう
になった。 【0006】2位に長鎖アルキル基を有するイミダゾー
ル化合物を用いてプリント配線板の表面処理を行なう場
合、プリント配線板が高温に曝されると表面処理された
銅面が変色し、その後のはんだ付けに支障を生じるた
め、表面実装法には不向きであった。特開昭58−501281
号公報に記載の5−メチルベンズイミダゾールを用いる
処理方法では、この化合物が水に比較的溶け易いため、
銅金属の表面に0.08μm 以上の好ましい被膜を形成する
ことができず、高温下において下地銅を充分に保護し難
く、酸化銅が発生しはんだ付け性に支障を生じていた。 【0007】一方、前記2−アルキルベンズイミダゾー
ル化合物、2−アリールベンズイミダゾール化合物、2
−アラルキルベンズイミダゾール化合物あるいは2−メ
ルカプトアルキルベンズイミダゾール化合物を用いた防
錆処理によれば、銅金属の表面に耐熱性に優れた化成被
膜を形成し得るが、その実用化に当たっては以下のとお
り解決すべき課題を有している。 【0008】すなわち、これらのベンズイミダゾール系
化合物は水に対する溶解性が低いため、調整した処理液
のpHの上昇あるいは処理液の蒸発などに起因して、ベ
ンズイミダゾール系化合物が晶出し易く、一旦析出した
固体のベンズイミダゾール系化合物は、酸を追加投入し
て処理液のpHを下げたり、蒸発した溶媒の補充を行っ
ても再溶解させ難いものである。このようなベンズイミ
ダゾール系化合物の析出がプリント基板メーカーの銅の
表面処理工程で発生すると、装置に付着したベンズイミ
ダゾール系化合物の拭き取りあるいは装置の洗浄を余儀
なくされたり、析出したベンズイミダゾール系化合物が
プリント基板の表面に付着してその商品価値を著しく低
下するため、これを除去するのに余計な労力を必要とす
るなどの問題を生じていた。 【0009】特開昭55-83157号及び同62-77600号公報に
記載の2−メルカプトベンズイミダゾールを用いる防錆
方法は、2−メルカプトベンズイミダゾールをメタノー
ル等の有機溶剤に溶かして、基材に塗布し乾燥する方法
であり、有機溶剤を使用するため人体に対する悪影響や
工場の保安面で問題があった。また特開昭63-118598号
公報に記載の方法は、2−メルカプトベンズイミダゾー
ルの薄膜を形成するのに約3時間の浸漬処理を必要とし
ており、高生産性、高速処理を要求されるプリント配線
板業界の実情に適合しないものであった。 【0010】特開平4-206681号公報には、プリント配線
板の表面を2−アリール基置換イミダゾール化合物と高
級脂肪酸、高級脂肪酸類のアンモニウム塩あるいはアミ
ン塩などの高級脂肪酸化合物を含む水性液に接触させ
て、銅表面に化成被膜を形成する方法が開示されてお
り、2−アリール基置換イミダゾール化合物として、2
−フェニルイミダゾール、2−トルイルイミダゾール、
2−フェニル−4−メチルイミダゾール、2−フェニル
−4−ベンジルイミダゾール、2,4,5−トリフェニ
ルイミダゾールなどが例示されている。 【0011】前記特開平4-206681号公報に記載の発明
は、必須成分として2−アリール基置換イミダゾール化
合物と高級脂肪酸、高級脂肪酸類のアンモニウム塩ある
いはアミン塩などの高級脂肪酸化合物を含むものであ
り、本来膜形成能力が乏しい2−アリール基置換イミダ
ゾール化合物に高級脂肪酸を共存させることによって、
耐熱性に優れた化成被膜が得られることを開示してい
る。 【0012】しかしながら、当該発明においては化成被
膜を形成する際に造膜性を発揮し被膜に撥水性を付与す
るために、炭素数12ないし22の高級脂肪酸化合物を使用
しているので、これらの高級脂肪酸化合物を水に溶解さ
せるためには、通常、液性をアルカリ性とすべきである
が、2−アリール基置換イミダゾール化合物を水に溶解
させるためには、液性を酸性にしなければならない。す
なわち、前記発明の実施に当たっては2−アリール基置
換イミダゾール化合物と高級脂肪酸化合物の両者を共存
させて水溶液にすることは困難であり、両成分を溶解さ
せるには、水以外にメタノール、アセトンなどの水溶性
有機溶剤を加えた混合液とすることが開示されている。 【0013 】ところがこのような有機溶剤を使用すると
人体に対する悪影響あるいは工場の保安面で問題があ
り、且つ使用時に有機溶剤が蒸発して処理液の組成が変
化し、有効成分である2−アリール基置換イミダゾール
化合物、高級脂肪酸類化合物等が析出し易いなどの難点
もあった。 【0014 】このような事情から、プリント配線板の銅
回路部分などを化成被膜によって保護するに当たり、表
面実装法に対応できる充分な耐熱性及びはんだ付け性を
有し、且つ使用時において処理液中に固体を析出せず、
あるいは固体を析出してもこれを容易に再溶解するなど
性能の優れたプレフラックスが望まれていた。 【0015】 【課題を解決するための手段】本発明者等は、このよう
な問題を解決するために数多くの試験を繰り返した結
果、必須成分として化2で示される2,4−ジフェニル
イミダゾール化合物0.01〜5重量%と炭素数4以下
の脂肪族カルボン酸1〜20重量%を含有する水溶液か
らなる表面処理剤が、特異的に高級脂肪酸を併用するこ
となく銅金属の表面に化成被膜を形成することを知見
し、この化成被膜に優れた耐熱性、はんだ付け性があっ
て所期の目的を達成しうることを見い出し、本発明を完
遂するに至った。 【0016】 【化2】 (式中、Rは水素原子またはメチル基を表す。) 【0017】本発明の実施に適する2,4−ジフェニル
イミダゾール化合物としては、2,4−ジフェニルイミ
ダゾール及び2,4−ジフェニル−5−メチルイミダゾ
ールであり、2,4−ジフェニルイミダゾールは、化3
として示したようにベンズアミジンとフェナシルハライ
ド化合物をクロロホルムなどの溶媒中、加熱して反応さ
せることによって合成される。 【0018】 【化3】 (式中、Xは塩素原子又は臭素原子を表す。) 【0019】また、2,4−ジフェニル−5−メチルイ
ミダゾールは、化4として示したようにベンズアルデヒ
ド、1−フェニル−1,2−プロパンジオン及び酢酸ア
ンモニウムを酢酸中で加熱反応させて得られる。 【0020】 【化4】 【0021】本発明の実施においては、有効成分として
2,4−ジフェニルイミダゾール化合物を0.01〜5
重量%の割合、好ましくは0.1〜1.0重量%の割合
として使用する。2,4−ジフェニルイミダゾール化合
物の濃度が0.01重量%より少ない場合には、膜形成
速度が極端に低下し、また5重量%より高い場合には水
溶液化が難しくなり多量の酸を必要とするので好ましく
ない。 【0022】本発明者らの知見によれば、前記2,4−
ジフェニルイミダゾール化合物は、炭素数4以下の脂肪
族カルボン酸1〜20重量%を含む水溶液に溶解させる
ことが可能である。なお、この場合低級脂肪族カルボン
酸の濃度が1重量%以下では2,4−ジフェニルイミダ
ゾール化合物を完全に水溶液化することができず、また
20重量%を超えると作業環境を阻害したり、装置を腐
蝕する惧れがある。本発明の実施に適する低級脂肪族カ
ルボン酸は、ギ酸、酢酸、プロピオン酸、酪酸及びイソ
酪酸等であり、特にギ酸及び酢酸が好適である。 【0023】本発明の表面処理剤を銅あるいは銅合金の
表面と接触方法は、浸漬、噴霧、塗布などいずれでも可
能である。本発明表面処理剤の使用に際しては、金属表
面における化成被膜の形成速度を高めるために銅化合物
を添加し、また化成被膜の耐熱性をさらに向上させるた
めに亜鉛化合物を添加しても差し支えがない。 【0024】本発明の実施において使用できる銅化合物
の代表的なものとしては、塩化第一銅、塩化第二銅、水
酸化銅、リン酸銅、酢酸銅、硫酸銅、硝酸銅、臭化銅等
であり、これらは水溶液に対して0.01〜10重量%の
割合、好ましくは0.02〜5重量%の割合で添加すれば
良い。 【0025】また亜鉛化合物の代表的なものとしては、
酸化亜鉛、蟻酸亜鉛、酢酸亜鉛、蓚酸亜鉛、乳酸亜鉛、
クエン酸亜鉛、硫酸亜鉛、硝酸亜鉛、リン酸亜鉛等であ
り、これらは水溶液に対して0.01〜10重量%の割
合、好ましくは0.02〜5重量%の割合で添加すれば良
い。 【0026】銅化合物あるいは亜鉛化合物を用いる場合
には、アンモニアあるいはアミン類等の緩衝作用を有す
る物質を添加して、水溶液のpHを安定にすることが望
ましい。また本発明の実施に際しては、オレイン酸、ラ
ウリン酸などの高級脂肪酸を併用しても差し支えない。
さらに本発明表面処理剤の使用に際しては、銅金属の表
面に形成された化成被膜に熱可塑性樹脂の二重構造を形
成し、耐熱性を更に向上させることも可能である。 【0027】すなわち、銅あるいは銅合金の表面に2,
4−ジフェニルイミダゾール化合物の化成被膜を形成し
たのち、ロジン、ロジンエステル等のロジン誘導体、テ
ルペン樹脂、テルペンフェノール樹脂等のテルペン樹脂
誘導体または芳香族炭化水素樹脂、脂肪族炭化水素樹
脂、脂環族炭化水素樹脂等の炭化水素樹脂またはこれら
の混合物等からなる耐熱性に優れた熱可塑性樹脂をトル
エン、酢酸エチル、イソプロピルアルコール等の溶媒に
溶解し、ロールコーター法等により化成被膜上に膜厚1
〜30μmの厚みとなるように均一に塗布して、化成被膜
と熱可塑性樹脂の二層構造を形成すれば良い。 【0028】 【作用】2−アリール基置換イミダゾール化合物のう
ち、2,4−ジフェニルイミダゾール化合物は炭素数4
以下の脂肪族カルボン酸と共存させた水溶液として、銅
あるいは銅合金の表面に接触させると、2,4−ジフェ
ニルイミダゾール化合物と銅との錯体形成反応及び2,
4−ジフェニルイミダゾール化合物間の水素結合などの
作用により、局部的に銅錯体となった2,4−ジフェニ
ルイミダゾール化合物の化成被膜が、意外に早い速度で
銅あるいは銅合金表面上に形成される。 【0029】前記の化成被膜を放置あるいは加熱するこ
とにより銅表面から銅の移行が起こり、また同時に低級
脂肪族カルボン酸は揮発し、2,4−ジフェニルイミダ
ゾール化合物の大部分は2,4−ジフェニルイミダゾー
ル化合物の銅錯体になる。この銅錯体からなる化成被膜
は、熱的にもまた化学的にも安定であり、下地の銅ある
いは銅合金を高温に曝すことによる酸化、また長期放置
による錆の発生から保護しうるものである。 【0030】また本発明の表面処理剤は、2,4−ジフ
ェニルイミダゾール化合物0.01〜5重量%と炭素数
4以下の脂肪族カルボン酸1〜20重量%を含む水溶液
であり、2,4−ジフェニルイミダゾール化合物の溶解
性が高いので、長期間安定した状態で保存することがで
き、処理に際して液組成に変動が生じても2,4−ジフ
ェニルイミダゾール化合物の結晶が析出する惧れがほと
んどなく、万一析出した場合でも液組成を適正に戻すこ
とにより再溶解するので、安定した連続操業を行うこと
ができる。 【0031】 【実施例】以下、参考例、実施例及び比較例によって、
本発明を具体的に説明する。 〔参考例1〕2,4−ジフェニルイミダゾールの合成 ベンズアミジン塩酸塩25.01g(0.160モル) 及び水
110mlからなる溶液に、水酸化カリウム18.22g
及び水15mlからなる溶液を加えて乳濁液とした。この
液をクロロホルム60mlを用いて3回抽出し、クロロホ
ルム層を無水硫酸ナトリウムを用いて脱水したのち、減
圧下に溶剤を留去してベンズアミジン18.76g(0.1
56モル) を結晶として得た。前記ベンズアミジンをクロ
ロホルム80mlに溶解し、フェナシルクロライド24.
9g(0.161モル) を加え、1時間加熱還流したのち、ト
リエチルアミン16.27g(0.161モル) を加えてさら
に4.5時間加熱還流した。反応終了後、揮発分を減圧
留去し、得られた残渣を4回熱水で洗浄し、さらにベン
ゼンを用いて洗浄することにより、無色微結晶の2,4
−ジフェニルイミダゾール18.02g(0.082モル、ベ
ンズアミジン塩酸塩に対する収率51%、融点160〜1
68℃)を得た。 【0032】〔参考例2〕2,4−ジフェニル−5−メ
チルイミダゾールの合成 1−フェニル−1,2−プロパンジオン13.00g
(0.088モル) 、ベンズアルデヒド10.24g(0.096モ
ル) 、酢酸アンモニウム20.29g(0.263モル) 及び
酢酸50mlからなる溶液を5時間加熱還流した。反応終
了後、揮発分を減圧留去し、得られた残渣をメタノール
に溶解し、水酸化ナトリウムをアルカリ性になるまで加
えたのち、減圧下メタノールを留去し、得られた残渣を
水で洗浄し、次いでエーテルを用いて洗浄し、無色粉末
状の2,4−ジフェニル−5−メチルイミダゾール1
5.17g(0.065モル、1−フェニル−1,2−プロパ
ンジオンに対する収率74%、融点211〜216℃)を
得た。 【0033】〔実施例及び比較例〕以下に述べる実施例
及び比較例の試験において、金属表面における化成被膜
の厚さは、硬質銅張積層板を所定の大きさに切断した試
験片を用い、所定の浸漬処理を行い銅金属の表面に化成
被膜を形成したのち、0.5%の塩酸水溶液に浸漬して
2,4−ジフェニルイミダゾール化合物を抽出し、紫外
分光光度計を用いて、この抽出液中に含まれる2,4−
ジフェニルイミダゾール化合物の濃度を測定し、化成被
膜の厚さに換算したものである。 【0034】はんだ付け性の試験のうち、はんだ濡れ時
間の測定方法は次のとおりである。まず、試験片として
5mm×50mm×0.3mmの大きさの銅板を用い、この試験片
を脱脂、ソフトエッチング及び水洗を行ったのち、所定
の液温に保持した各実施例あるいは比較例に記載の組成
からなる表面処理剤に夫々所定時間浸漬し、次いで水
洗、乾燥して試験片表面に厚さ約0.10〜0.25μmの化成
被膜を夫々形成させた。 【0035】被膜形成処理がなされた試験片を表1に示
す条件で放置し、200℃の熱風オーブン中で10分間
加熱処理を行った。次いで、この試験片にポストフラッ
クス(商品名:JS−64、(株)弘輝製)を浸漬付着
させ、はんだ濡れ時間を測定した。測定に当たっては、
半田濡れ性試験器(製品名:WET−3000、(株)
レスカ製)を用い、その測定条件ははんだ温度250
℃、浸漬深さ2mm、浸漬スピード16mm/秒とした。 【0036】はんだ付け性試験のうち、はんだ上がり性
の測定は、以下のとおり実施した。試験片として、内径
0.80mmのスルーホールを629穴有する5cm×10cm×1
.2mmのスルーホール基板を用い、この試験片を脱脂、
ソフトエッチング及び水洗を行ったのち、前記のはんだ
濡れ時間の測定の場合と同様に、表面処理剤に夫々所定
時間浸漬し、水洗、乾燥して試験片表面に厚さ約0.10〜
0.25μmの化成被膜を夫々形成させた。 【0037】被膜形成処理がなされた試験片を表1に示
す条件で放置し、赤外線リフロー装置(製品名:MUL
TI−PRO−306、ヴィトロニクス社製)を用い
て、ピーク温度が230℃であるリフロー加熱を3回繰
り返した。次いで、加熱処理後のはんだ上がり性を試験
するため、フローはんだ付け装置を用いてはんだ上がり
性を測定した。その際にポストフラックスとしては、ア
サヒ化研製のAGF−200−J9を用い、はんだ温度
は250℃、ベルトスピードは1.0 m/分とした。測定結
果は、スルーホールの上部ランド部分まではんだが上が
ったスルーホール数の全スルーホール数に対する割合
(%)で表示した。 【0038】クリームはんだ広がり性の試験について
は、次のようにして行った。試験片としては絶縁抵抗試
験に用いられるくし形電極I形〔JIS Z−3197
6.8〕を用い、試験片を脱脂、ソフトエッチング及び水
洗を行ったのち、前記はんだ濡れ性の測定と同様にして
表面処理剤に浸漬し、水洗、乾燥して試験片表面に厚さ
約0.10〜0.25μmの化成被膜を夫々形成させたのち、室
温で10日間放置した。 【0039】被膜形成処理が行われ10日間放置した後
の前記試験片に、クリームはんだ(商品名:AE−53
HGI、四国化成工業(株)製)を印刷幅3mmで一文
字印刷し、赤外線リフロー装置(製品名:MULTI−
PRO−306、ヴィトロニクス社製)を用いてリフロ
ー加熱(ピーク温度230℃)を行い、はんだの広がり
長さを測定した。 【0040】〔実施例1〕はんだ濡れ時間、はんだ上が
り性並びにクリームはんだ広がり性測定用試験片を、そ
れぞれ2,4−ジフェニルイミダゾール0.25重量
%、酢酸9.0重量%、酢酸銅0.09重量%及び臭化
アンモニウム0.04重量%からなり、アンモニア水で
pH4.0に調整した処理水溶液に、液温50℃で60
秒間浸漬したのち、水洗、乾燥した。 【0041】次いで、はんだ濡れ時間及びはんだ上がり
性試験は、試験片を表1に示す条件下に放置し、加熱処
理を行なったのち測定したところ、その結果は表1に示
したとおりであった。またクリームはんだ広がり性は、
測定用試験片を10日間室温で放置したのち、クリーム
はんだ広がり性測定したところ、表1に示したとおりで
あった。 【0042】〔実施例2〕2,4−ジフェニルイミダゾ
ール0.25重量%、酢酸10.0重量%、n−ヘプタ
ン酸0.03重量%、及び臭化第二銅0.05重量%か
らなり、アンモニア水でpH3.8に調整した処理水溶
液に、試験片を液温45℃で60秒間浸漬したのち、取
り出し水洗、乾燥した。実施例1と同様にはんだ濡れ時
間、はんだ上がり性試験及びクリームはんだ広がり性試
験を行ったところ、その測定結果は表1に示すとおりで
あった。 【0043】〔実施例3〕2,4−ジフェニル−5−メ
チルイミダゾール0.20重量%、ギ酸5.0重量%及
び臭化銅0.05重量%からなり、アンモニア水でpH
3.4に調整した処理水溶液に、試験片を液温50℃で
70秒間浸漬したのち、取り出し水洗、乾燥した。実施
例1と同様にしてはんだ濡れ時間、はんだ上がり性試験
及びクリームはんだ広がり性試験を行ったところ、その
測定結果は表1に示すとおりであった。 【0044】〔実施例4〕 2,4−ジフェニル−5−メチルイミダゾール0.20
重量%、酢酸10.0重量%、n−ヘプタン酸0.03
%及び臭化銅0.1重量%からなり、アンモニア水でp
H4.2に調整した処理水溶液に、試験片を液温45℃
で60秒間浸漬したのち、取り出し水洗、乾燥した。実
施例1と同様にしてはんだ濡れ時間、はんだ上がり性試
験及びクリームはんだ広がり性試験を行ったところ、そ
の測定結果は表1に示すとおりであった。 【0045】〔比較例1〕2−ウンデシルイミダゾール
1.0重量%及び酢酸1.6重量%からなり、アンモニ
ア水でpHを4.4に調整した処理水溶液に、試験片を
液温50℃で25秒間浸漬した後、取り出し水洗、乾燥
した。その後実施例1と同様にはんだ濡れ性試験を行っ
たところ、その測定結果は表1に示すとおりであった。 【0046】〔比較例2〕2−フェニルイミダゾール
1.0重量%、酢酸2.0重量%、ラウリン酸0.1重
量%及び臭化第二銅0.05重量%からなり、アンモニ
ア水でpHを6.2に調整した処理水溶液に、試験片を
液温50℃で30秒間浸漬した後、取り出し水洗乾燥し
た。その後実施例1と同様にはんだ濡れ性試験及びクリ
ームはんだ広がり性試験を行ったところ、その測定結果
は表1に示すとおりであった。 【0047】〔比較例3〕ラウリン酸を含まない点を除
き比較例2と同一の組成とした処理水溶液を調整し、こ
れに試験片を液温50℃で120秒間浸漬したが、試験
片に化成被膜は形成されなかった。 【0048】〔比較例4〕2−フェニル−4−メチルイ
ミダゾール1.0重量%、酢酸2.0重量%、ミリスチ
ン酸0.05重量%及び臭化第二銅0.05重量%から
なり、アンモニア水でpH6.0に調整した処理水溶液
に、試験片を液温50℃で40秒間浸漬した後、取り出
し水洗、乾燥した。その後実施例1と同様にはんだ濡れ
性試験及びクリームはんだ広がり性試験を行ったとこ
ろ、その測定結果は表1に示すとおりであった。 【0049】〔比較例5〕ミリスチン酸を含まない点を
除き比較例4と同一の組成とした処理水溶液を調整し、
これに試験片を液温50℃で120秒間浸漬したが、試
験片に化成被膜は形成されなかった。 【0050】〔比較例6〕2−ノニルベンズイミダゾー
ル0.2重量%、酢酸5.0重量%及び塩化第二銅0.
035重量%からなり、アンモニア水でpHを2.9に
調整した処理水溶液に、試験片を液温40℃で30秒間
浸漬した後、取り出し水洗、乾燥した。その後実施例1
と同様にはんだ濡れ性試験及びクリームはんだ広がり性
試験を行ったところ、その測定結果は表1に示すとおり
であった。 【0051】〔比較例7〕2−(4−クロロフェニルメ
チル)ベンズイミダゾール0.5重量%、ギ酸3.0重
量%、ヘプタン酸0.04重量%及び塩化第二銅0.0
9重量%からなり、アンモニア水でpH2.56に調整
した処理水溶液に、試験片を液温50℃で60秒間浸漬
した後、取り出し水洗、乾燥した。その後実施例1と同
様にはんだ濡れ性試験及びクリームはんだ広がり性試験
を行ったところ、その測定結果は表1に示すとおりであ
った。 【0052】 【表1】 【0053】〔実施例5〕処理水溶液の安定性を調べる
ために、以下の試験を行った。前記実施例及び比較例
(比較例3及び5を除く)において使用した処理液につ
いて、それぞれ加温して約30%の水分を蒸発させて有
効成分を析出させ、また有効成分が析出しない場合には
アンモニア水を必要量添加して有効成分を析出さた。次
いでこれら結晶が析出した処理液に水を添加し、酸を加
えて元の処理液の組成に戻し、40℃の温度に加熱して
有効成分が再溶解するか否かを調べた。これらの試験結
果は、表2に示したとおりであった。 【0054】 【表2】【0055】 【発明の効果】2,4−ジフェニルイミダゾール化合物
を含有する処理液は、銅金属の表面に耐熱性に優れた化
成被膜を形成し、表面実装工程におけるリフロー加熱後
の良好なはんだ付け性が確保され、また表面処理工程に
おいても2,4−ジフェニルイミダゾール化合物と低級
脂肪族カルボン酸を共存させた処理水溶液は、処理浴に
有効成分が析出するなどのトラブルが起こらないため、
安定した操業を為し得るなど実践面の効果は顕著であ
る。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an aqueous surface treating agent for forming a chemical conversion film on the surface of copper and a copper alloy, and more particularly to a hard printed wiring board and a flexible printed circuit board. It is suitable as a pre-flux treatment agent for a copper circuit part in a printed wiring board. 2. Description of the Related Art As a surface treatment method for forming a film of a 2-position long-chain alkylimidazole compound on the surface of copper or a copper alloy, Japanese Patent Publication Nos. 46-17046, 48-11454 and 48-454 are known. Two
Nos. 5621, 49-1983, 49-26183, 58-22545,
No. 61-41988 and JP-A-61-90492. Further, a method of forming a coating film of a 2-position aryl group-substituted imidazole compound on the surface of copper or a copper alloy is described in JP-A Nos. 4-202780 and 4-206681. Other methods for forming a chemical conversion coating of a benzimidazole compound on the surface of copper or a copper alloy include:
A treatment method using 5-methylbenzimidazole is disclosed in JP-A-58-501281, which discloses a 2-alkylbenzimidazole compound, a 2-arylbenzimidazole compound,
-Aralkylbenzimidazole compound or a treatment method using a 2-mercaptoalkylbenzimidazole compound is disclosed in JP-A-3-124395, JP-A-3-236478, JP-A-4-7207.
No. 2, No. 4-80375, No. 4-99285, No. 4-157174, No.
4-165083, 4-173983, 4-183874, 4-202780
No. 4-206681, No. 4-218679, No. 5-25407, No. 5-
No. 93280, No. 5-93281, No. 5-156475, No. 5-135585
No. 5-156543, 5-186880, 5-186888, 5-
202492, 5-230674, 5-237688, 5-263275
Nos. 5-287562, 5-91729, 5-87563, and
It is described in JP-A-5-291729. In addition to these, rust prevention methods for copper or copper alloys using 2-mercaptobenzimidazole are disclosed in JP-A-55-83157, JP-A-62-77600 and JP-A-63-118598. . Recently, as a method for joining electronic components to a printed wiring board, a surface mounting method has been widely used, and a temporary fixing of chip components, a double-sided mounting of a component device or a chip. Printed wiring boards have been exposed to high temperatures due to mixed loading of components and discrete components. When a printed wiring board is subjected to surface treatment using an imidazole compound having a long-chain alkyl group at the 2-position, when the printed wiring board is exposed to a high temperature, the surface-treated copper surface is discolored and the subsequent solder However, this method is not suitable for the surface mounting method because it causes trouble in mounting. JP-A-58-501281
In the treatment method using 5-methylbenzimidazole described in Japanese Patent Application Laid-Open Publication No. H07-129, since this compound is relatively easily soluble in water,
A preferable coating having a thickness of 0.08 μm or more could not be formed on the surface of the copper metal, and it was difficult to sufficiently protect the underlying copper at a high temperature, and copper oxide was generated to hinder solderability. On the other hand, the 2-alkylbenzimidazole compound, 2-arylbenzimidazole compound,
According to the rust-preventive treatment using an aralkylbenzimidazole compound or a 2-mercaptoalkylbenzimidazole compound, a conversion coating excellent in heat resistance can be formed on the surface of copper metal. Have issues to be addressed. That is, since these benzimidazole compounds have low solubility in water, the benzimidazole compounds are easily crystallized due to an increase in the pH of the adjusted processing solution or evaporation of the processing solution, and once precipitated. The solid benzimidazole-based compound is difficult to be redissolved even if the pH of the treatment liquid is lowered by additionally adding an acid or the evaporated solvent is replenished. When such benzimidazole-based compound precipitates during the copper surface treatment process of a printed circuit board manufacturer, the benzimidazole-based compound adhered to the device must be wiped off or the device must be cleaned, or the precipitated benzimidazole-based compound is printed. Since it adheres to the surface of the substrate and significantly lowers its commercial value, there has been a problem that extra labor is required to remove it. The rust-prevention method using 2-mercaptobenzimidazole described in JP-A-55-83157 and JP-A-62-77600 discloses a method for dissolving 2-mercaptobenzimidazole in an organic solvent such as methanol and applying it to a substrate. This is a method of coating and drying, and has a problem in terms of adverse effects on the human body and in terms of factory security because an organic solvent is used. The method described in Japanese Patent Application Laid-Open No. 63-118598 requires a dipping treatment of about 3 hours to form a thin film of 2-mercaptobenzimidazole, and requires a printed wiring that requires high productivity and high speed processing. It did not fit the situation of the board industry. Japanese Patent Application Laid-Open No. 4-206681 discloses that the surface of a printed wiring board is contacted with an aqueous liquid containing a 2-aryl group-substituted imidazole compound and a higher fatty acid, such as an ammonium salt or an amine salt of a higher fatty acid or a higher fatty acid. A method for forming a chemical conversion film on a copper surface is disclosed, and as a 2-aryl group-substituted imidazole compound, 2 is disclosed.
-Phenylimidazole, 2-toluylimidazole,
Examples include 2-phenyl-4-methylimidazole, 2-phenyl-4-benzylimidazole, and 2,4,5-triphenylimidazole. The invention described in JP-A-4-206681 contains, as essential components, a 2-aryl-substituted imidazole compound and a higher fatty acid such as a higher fatty acid, an ammonium salt or an amine salt of a higher fatty acid. By coexisting a higher fatty acid with a 2-aryl group-substituted imidazole compound which originally has a poor film-forming ability,
It discloses that a chemical conversion film having excellent heat resistance can be obtained. However, in the present invention, a higher fatty acid compound having 12 to 22 carbon atoms is used in order to exhibit a film-forming property when forming a chemical conversion film and to impart water repellency to the film. In general, in order to dissolve the higher fatty acid compound in water, the liquid should be made alkaline, but in order to dissolve the 2-aryl group-substituted imidazole compound in water, the liquid must be made acidic. That is, in the practice of the invention, it is difficult to make both a 2-aryl group-substituted imidazole compound and a higher fatty acid compound into an aqueous solution, and in order to dissolve both components, in addition to water, methanol, acetone or the like is used. It is disclosed that a mixed solution containing a water-soluble organic solvent is added. However, when such an organic solvent is used, there is an adverse effect on the human body or a problem in terms of factory security. In addition, the organic solvent evaporates during use and the composition of the processing solution changes. There were also disadvantages such as that the substituted imidazole compound, higher fatty acid compound and the like were easily precipitated. Under these circumstances, when the copper circuit portion of the printed wiring board is protected by the chemical conversion film, it has sufficient heat resistance and solderability to cope with the surface mounting method, and must be in the processing solution at the time of use. Does not precipitate solids
Alternatively, there has been a demand for a pre-flux having excellent performance such as easy re-dissolution even when a solid is deposited. The present inventors have repeated a number of tests to solve such problems, and as a result, have found that the 2,4-diphenylimidazole compound represented by Chemical Formula 2 as an essential component A surface treatment agent comprising an aqueous solution containing 0.01 to 5% by weight and 1 to 20% by weight of an aliphatic carboxylic acid having 4 or less carbon atoms forms a chemical conversion coating on the surface of copper metal without specifically using a higher fatty acid. It was found that the chemical conversion film had excellent heat resistance and solderability and could achieve the intended purpose, and completed the present invention. Embedded image (In the formula, R represents a hydrogen atom or a methyl group.) The 2,4-diphenylimidazole compounds suitable for the practice of the present invention include 2,4-diphenylimidazole and 2,4-diphenyl-5-methyl. 2,4-diphenylimidazole is an imidazole.
The compound is synthesized by heating and reacting a benzamidine and a phenacyl halide compound in a solvent such as chloroform. Embedded image (In the formula, X represents a chlorine atom or a bromine atom.) Further, 2,4-diphenyl-5-methylimidazole is, as shown in Chemical formula 4, benzaldehyde, 1-phenyl-1,2-propane. It is obtained by heating and reacting dione and ammonium acetate in acetic acid. Embedded image In the practice of the present invention, a 2,4-diphenylimidazole compound is used as an active ingredient in an amount of 0.01 to 5%.
%, Preferably 0.1 to 1.0% by weight. When the concentration of the 2,4-diphenylimidazole compound is less than 0.01% by weight, the film formation rate is extremely reduced, and when the concentration is more than 5% by weight, it is difficult to form an aqueous solution and a large amount of acid is required. Is not preferred. According to the findings of the present inventors, the 2,4-
The diphenylimidazole compound can be dissolved in an aqueous solution containing 1 to 20% by weight of an aliphatic carboxylic acid having 4 or less carbon atoms. In this case, if the concentration of the lower aliphatic carboxylic acid is 1% by weight or less, the 2,4-diphenylimidazole compound cannot be completely converted into an aqueous solution. If the concentration exceeds 20% by weight, the working environment is hindered, May corrode. Lower aliphatic carboxylic acids suitable for the practice of the present invention include formic acid, acetic acid, propionic acid, butyric acid and isobutyric acid, with formic acid and acetic acid being particularly preferred. The method of contacting the surface treating agent of the present invention with the surface of copper or a copper alloy may be any of dipping, spraying, and coating. When using the surface treatment agent of the present invention, a copper compound may be added to increase the formation rate of the conversion coating on the metal surface, and a zinc compound may be added to further improve the heat resistance of the conversion coating. . Representative copper compounds that can be used in the practice of the present invention include cuprous chloride, cupric chloride, copper hydroxide, copper phosphate, copper acetate, copper sulfate, copper nitrate, and copper bromide. These may be added at a rate of 0.01 to 10% by weight, preferably at a rate of 0.02 to 5% by weight, based on the aqueous solution. Typical zinc compounds include:
Zinc oxide, zinc formate, zinc acetate, zinc oxalate, zinc lactate,
Zinc citrate, zinc sulfate, zinc nitrate, zinc phosphate, etc., which may be added at a rate of 0.01 to 10% by weight, preferably 0.02 to 5% by weight, based on the aqueous solution. When a copper compound or a zinc compound is used, it is desirable to add a substance having a buffering action such as ammonia or amines to stabilize the pH of the aqueous solution. In the practice of the present invention, higher fatty acids such as oleic acid and lauric acid may be used in combination.
Further, when the surface treating agent of the present invention is used, it is possible to further improve the heat resistance by forming a double structure of a thermoplastic resin in the chemical conversion film formed on the surface of the copper metal. That is, 2,
After forming a conversion coating of a 4-diphenylimidazole compound, a rosin derivative such as rosin or rosin ester, a terpene resin derivative such as a terpene resin or a terpene phenol resin, or an aromatic hydrocarbon resin, an aliphatic hydrocarbon resin, or an alicyclic hydrocarbon is used. Hydrocarbon resin such as hydrogen resin or a thermoplastic resin having excellent heat resistance comprising a mixture thereof is dissolved in a solvent such as toluene, ethyl acetate, isopropyl alcohol and the like.
What is necessary is just to apply | coat uniformly so that it may become about 30 micrometers in thickness, and just to form a two-layer structure of a chemical conversion film and a thermoplastic resin. The 2,4-diphenylimidazole compound among the 2-aryl group-substituted imidazole compounds has 4 carbon atoms.
When an aqueous solution coexisting with the following aliphatic carboxylic acid is brought into contact with the surface of copper or a copper alloy, a complex formation reaction between 2,4-diphenylimidazole compound and copper and 2,2
Due to the action of hydrogen bonding between the 4-diphenylimidazole compounds and the like, a chemical conversion film of the 2,4-diphenylimidazole compound which locally becomes a copper complex is formed on the surface of copper or copper alloy at an unexpectedly high rate. When the above-mentioned chemical conversion coating is left or heated, the transfer of copper from the copper surface occurs, and at the same time, the lower aliphatic carboxylic acid volatilizes, and most of the 2,4-diphenylimidazole compound contains 2,4-diphenyl. It becomes a copper complex of an imidazole compound. The conversion coating composed of this copper complex is thermally and chemically stable, and can protect against oxidation caused by exposing the underlying copper or copper alloy to high temperatures and rusting caused by long-term storage. . The surface treating agent of the present invention is an aqueous solution containing 0.01 to 5% by weight of a 2,4-diphenylimidazole compound and 1 to 20% by weight of an aliphatic carboxylic acid having 4 or less carbon atoms. -Since the solubility of the diphenylimidazole compound is high, it can be stored in a stable state for a long period of time, and even if the composition of the solution fluctuates during the treatment, there is almost no fear that crystals of the 2,4-diphenylimidazole compound are precipitated. Even in the event of precipitation, the liquid composition is redissolved by properly returning the liquid composition, so that stable continuous operation can be performed. EXAMPLES Hereinafter, reference examples, examples and comparative examples will be described.
The present invention will be specifically described. Reference Example 1 Synthesis of 2,4-diphenylimidazole In a solution consisting of 25.01 g (0.160 mol) of benzamidine hydrochloride and 110 ml of water, 18.22 g of potassium hydroxide was added.
And a solution consisting of 15 ml of water was added to give an emulsion. The solution was extracted three times with 60 ml of chloroform, the chloroform layer was dehydrated with anhydrous sodium sulfate, and then the solvent was distilled off under reduced pressure to obtain 18.76 g of benzamidine (0.1%).
(56 mol) was obtained as crystals. The above benzamidine was dissolved in 80 ml of chloroform, and phenacyl chloride was added.
After 9 g (0.161 mol) was added and the mixture was heated under reflux for 1 hour, 16.27 g (0.161 mol) of triethylamine was added and the mixture was further heated under reflux for 4.5 hours. After completion of the reaction, volatiles were distilled off under reduced pressure, and the obtained residue was washed four times with hot water and further washed with benzene to obtain colorless fine crystals of 2,4.
18.02 g of diphenylimidazole (0.082 mol, 51% yield based on benzamidine hydrochloride, melting point 160-1)
68 ° C). Reference Example 2 Synthesis of 2,4-diphenyl-5-methylimidazole 1-phenyl-1,2-propanedione 13.00 g
(0.088 mol), 10.24 g (0.096 mol) of benzaldehyde, 20.29 g (0.263 mol) of ammonium acetate and 50 ml of acetic acid were heated under reflux for 5 hours. After completion of the reaction, volatiles were distilled off under reduced pressure, the obtained residue was dissolved in methanol, and sodium hydroxide was added until the solution became alkaline.Then, methanol was distilled off under reduced pressure, and the obtained residue was washed with water. And then washed with ether to give colorless powdered 2,4-diphenyl-5-methylimidazole 1
5.17 g (0.065 mol, yield based on 1-phenyl-1,2-propanedione, 74%, melting point: 211 to 216 ° C.) were obtained. [Examples and Comparative Examples] In the tests of the following Examples and Comparative Examples, the thickness of the chemical conversion coating on the metal surface was determined using a test piece obtained by cutting a hard copper-clad laminate into a predetermined size. After performing a predetermined immersion treatment to form a chemical conversion film on the surface of the copper metal, it is immersed in a 0.5% hydrochloric acid aqueous solution to extract a 2,4-diphenylimidazole compound, and the extraction is performed using an ultraviolet spectrophotometer. 2,4-contained in the liquid
The concentration of the diphenylimidazole compound was measured and converted to the thickness of a chemical conversion film. In the solderability test, the method for measuring the solder wetting time is as follows. First, a copper plate having a size of 5 mm x 50 mm x 0.3 mm was used as a test piece, and the test piece was degreased, soft-etched, washed with water, and then maintained at a predetermined liquid temperature. Each was immersed in a surface treating agent having the following composition for a predetermined time, then washed with water and dried to form a chemical conversion film having a thickness of about 0.10 to 0.25 μm on the surface of the test piece. The test piece subjected to the film formation treatment was left under the conditions shown in Table 1, and was subjected to a heat treatment in a hot air oven at 200 ° C. for 10 minutes. Next, a post flux (trade name: JS-64, manufactured by Hiroki Co., Ltd.) was immersed and attached to the test piece, and the solder wetting time was measured. When measuring,
Solder wettability tester (Product name: WET-3000, Inc.)
(Manufactured by Resca), and the measurement condition was a solder temperature of 250.
° C, immersion depth 2 mm, immersion speed 16 mm / sec. In the solderability test, the measurement of the solder wicking property was carried out as follows. As test piece, inner diameter
5cm x 10cm x 1 with 629 0.80mm through holes
Using a .2mm through-hole board, degrease this test piece,
After performing soft etching and washing with water, similarly to the case of the measurement of the solder wetting time described above, each is immersed in a surface treating agent for a predetermined time, washed with water, and dried to a thickness of about 0.10 to
A conversion coating of 0.25 μm was formed. The test piece subjected to the film formation treatment was allowed to stand under the conditions shown in Table 1 and was subjected to an infrared reflow device (product name: MUL).
Using TI-PRO-306 (manufactured by Vitronix), reflow heating with a peak temperature of 230 ° C. was repeated three times. Next, in order to test the solder wicking property after the heat treatment, the solder wicking property was measured using a flow soldering apparatus. At that time, AGF-200-J9 manufactured by Asahi Kaken was used as the post flux, the solder temperature was 250 ° C., and the belt speed was 1.0 m / min. The measurement results are shown as a ratio (%) of the number of through holes in which the solder has risen to the upper land portion of the through holes to the total number of through holes. The spreadability of the cream solder was tested as follows. As a test piece, a comb-shaped electrode I type used in an insulation resistance test [JIS Z-3197]
6.8], the test piece was degreased, soft-etched and washed with water, then immersed in a surface treatment agent in the same manner as in the measurement of the solder wettability, washed with water and dried to a thickness of about 0.10 to After forming a chemical conversion film of 0.25 μm each, it was left at room temperature for 10 days. A cream solder (trade name: AE-53) was added to the test piece after the film formation treatment was performed and the test piece was left for 10 days.
HGI, manufactured by Shikoku Kasei Kogyo Co., Ltd.), printing one character with a printing width of 3 mm, and using an infrared reflow device (product name: MULTI-
Using PRO-306 (manufactured by Vitronics), reflow heating (peak temperature of 230 ° C.) was performed to measure the spread length of the solder. Example 1 The test pieces for measuring the solder wetting time, solder wicking property and cream solder spreadability were 0.25% by weight of 2,4-diphenylimidazole, 9.0% by weight of acetic acid, and 0.1% by weight of copper acetate. At a liquid temperature of 50 ° C. to a treatment aqueous solution comprising 0.09% by weight of ammonia and 0.04% by weight of ammonium bromide and adjusted to pH 4.0 with aqueous ammonia.
After dipping for 2 seconds, it was washed with water and dried. Next, the test for the solder wetting time and the solder wettability was performed after the test pieces were left under the conditions shown in Table 1 and subjected to a heat treatment, and the results were as shown in Table 1. . In addition, cream solder spreadability
After the test piece for measurement was left at room temperature for 10 days, the spreadability of the cream solder was measured, and the results were as shown in Table 1. Example 2 Consisting of 0.25% by weight of 2,4-diphenylimidazole, 10.0% by weight of acetic acid, 0.03% by weight of n-heptanoic acid, and 0.05% by weight of cupric bromide. The test piece was immersed in a treatment aqueous solution adjusted to pH 3.8 with ammonia water at a liquid temperature of 45 ° C. for 60 seconds, taken out, washed with water, and dried. When the solder wetting time, the solder wicking test and the cream solder spreading test were performed in the same manner as in Example 1, the measurement results were as shown in Table 1. [Example 3] 0.20% by weight of 2,4-diphenyl-5-methylimidazole, 5.0% by weight of formic acid and 0.05% by weight of copper bromide.
The test piece was immersed in a treatment aqueous solution adjusted to 3.4 at a liquid temperature of 50 ° C. for 70 seconds, taken out, washed with water, and dried. When the solder wetting time, the solder wicking test and the cream solder spreading test were performed in the same manner as in Example 1, the measurement results were as shown in Table 1. Example 4 2,4-diphenyl-5-methylimidazole 0.20
Wt%, acetic acid 10.0 wt%, n-heptanoic acid 0.03
% And 0.1% by weight of copper bromide.
A test piece was placed in a treatment aqueous solution adjusted to H4.2 at a liquid temperature of 45 ° C.
For 60 seconds, taken out, washed with water and dried. When the solder wetting time, the solder wicking test and the cream solder spreading test were performed in the same manner as in Example 1, the measurement results were as shown in Table 1. [Comparative Example 1] A test piece was placed in a treatment aqueous solution consisting of 1.0% by weight of 2-undecylimidazole and 1.6% by weight of acetic acid and adjusted to pH 4.4 with aqueous ammonia, at a liquid temperature of 50 ° C. For 25 seconds, then taken out, washed with water and dried. Thereafter, a solder wettability test was performed in the same manner as in Example 1, and the measurement results were as shown in Table 1. Comparative Example 2 1.0% by weight of 2-phenylimidazole, 2.0% by weight of acetic acid, 0.1% by weight of lauric acid and 0.05% by weight of cupric bromide. The test piece was immersed in a treatment aqueous solution adjusted to 6.2 at a liquid temperature of 50 ° C. for 30 seconds, taken out, washed and dried. Thereafter, a solder wettability test and a cream solder spreadability test were performed in the same manner as in Example 1. The measurement results were as shown in Table 1. Comparative Example 3 A treatment aqueous solution having the same composition as that of Comparative Example 2 except that lauric acid was not contained was prepared, and a test piece was immersed in the solution at a liquid temperature of 50 ° C. for 120 seconds. No conversion coating was formed. Comparative Example 4 1.0% by weight of 2-phenyl-4-methylimidazole, 2.0% by weight of acetic acid, 0.05% by weight of myristic acid and 0.05% by weight of cupric bromide, The test piece was immersed in a treatment aqueous solution adjusted to pH 6.0 with aqueous ammonia at a liquid temperature of 50 ° C. for 40 seconds, taken out, washed and dried. Thereafter, a solder wettability test and a cream solder spreadability test were performed in the same manner as in Example 1. The measurement results were as shown in Table 1. Comparative Example 5 A treatment aqueous solution having the same composition as Comparative Example 4 except that myristic acid was not contained was prepared.
The test piece was immersed in the solution at a liquid temperature of 50 ° C. for 120 seconds, but no chemical conversion film was formed on the test piece. Comparative Example 6 0.2% by weight of 2-nonylbenzimidazole, 5.0% by weight of acetic acid and 0.1% by weight of cupric chloride.
The test piece was immersed in a treatment aqueous solution containing 035% by weight and adjusted to pH 2.9 with ammonia water at a liquid temperature of 40 ° C. for 30 seconds, taken out, washed with water, and dried. Then Example 1
When the solder wettability test and the cream solder spreadability test were performed in the same manner as in Example 1, the measurement results were as shown in Table 1. Comparative Example 7 0.5% by weight of 2- (4-chlorophenylmethyl) benzimidazole, 3.0% by weight of formic acid, 0.04% by weight of heptanoic acid and 0.0% of cupric chloride
The test piece was immersed in a treatment aqueous solution consisting of 9% by weight and adjusted to pH 2.56 with ammonia water at a liquid temperature of 50 ° C. for 60 seconds, taken out, washed with water, and dried. Thereafter, a solder wettability test and a cream solder spreadability test were performed in the same manner as in Example 1. The measurement results were as shown in Table 1. [Table 1] Example 5 The following test was conducted to examine the stability of the treatment aqueous solution. The treatment liquids used in the above Examples and Comparative Examples (excluding Comparative Examples 3 and 5) were each heated to evaporate about 30% of water to precipitate an active ingredient. The required amount of aqueous ammonia was added to precipitate the active ingredient. Then, water was added to the treatment liquid in which these crystals were precipitated, and an acid was added to return to the original composition of the treatment liquid, and the mixture was heated to a temperature of 40 ° C. to examine whether or not the active ingredient was redissolved. These test results were as shown in Table 2. [Table 2] The treatment solution containing the 2,4-diphenylimidazole compound forms a chemical conversion film having excellent heat resistance on the surface of copper metal, and provides good soldering after reflow heating in the surface mounting step. In the surface treatment step, the treatment aqueous solution in which the 2,4-diphenylimidazole compound and the lower aliphatic carboxylic acid coexist does not cause troubles such as precipitation of the active ingredient in the treatment bath.
The practical effects are remarkable, such as stable operation.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 吉岡 隆 香川県丸亀市津森町382番地15 (56)参考文献 特開 平4−206681(JP,A) 特開 昭62−32113(JP,A) 特開 昭62−238383(JP,A) 特開 昭56−62966(JP,A) 特公 昭49−21228(JP,B1) 特公 昭48−29982(JP,B1) (58)調査した分野(Int.Cl.7,DB名) C23C 22/00 - 22/86 H05K 3/28 ──────────────────────────────────────────────────続 き Continuation of the front page (72) Inventor Takashi Yoshioka 382-15 Tsumoricho, Marugame-shi, Kagawa Prefecture (56) References JP-A-4-206681 (JP, A) JP-A-62-32113 (JP, A) JP-A-62-238383 (JP, A) JP-A-56-62966 (JP, A) JP-B-49-21228 (JP, B1) JP-B-48-29982 (JP, B1) (58) (Int.Cl. 7 , DB name) C23C 22/00-22/86 H05K 3/28

Claims (1)

(57)【特許請求の範囲】 【請求項1】 必須成分として、化1で示される2,4
−ジフェニルイミダゾール化合物0.01〜5重量%と
炭素数4以下の脂肪族カルボン酸1〜20重量%を含有
する水溶液からなる銅及び銅合金の表面処理剤。 【化1】 (式中、Rは水素原子またはメチル基を表す。)
(57) [Claims] [Claim 1] 2,4 represented by Chemical Formula 1 as an essential component
A copper and copper alloy surface treating agent comprising an aqueous solution containing 0.01 to 5% by weight of a diphenylimidazole compound and 1 to 20% by weight of an aliphatic carboxylic acid having 4 or less carbon atoms; Embedded image (In the formula, R represents a hydrogen atom or a methyl group.)
JP06550294A 1993-05-10 1994-03-08 Copper and copper alloy surface treatment agent Expired - Lifetime JP3367743B2 (en)

Priority Applications (9)

Application Number Priority Date Filing Date Title
JP06550294A JP3367743B2 (en) 1994-03-08 1994-03-08 Copper and copper alloy surface treatment agent
TW083104080A TW270944B (en) 1993-05-10 1994-05-05
CA002123183A CA2123183C (en) 1993-05-10 1994-05-09 Agent for treating surfaces of copper and copper alloys
US08/239,557 US5498301A (en) 1993-05-10 1994-05-09 Agent for treating surfaces of copper and copper alloys
KR1019940010181A KR100298959B1 (en) 1993-05-10 1994-05-10 Surface Treatment Agents for Copper and Copper Alloys
EP94303360A EP0627499B1 (en) 1993-05-10 1994-05-10 Agent for treating surfaces of copper and copper alloys
MYPI94001165A MY116210A (en) 1993-05-10 1994-05-10 Agent for treating surfaces of copper and copper alloys
DE69404384T DE69404384T2 (en) 1993-05-10 1994-05-10 Surface treatment products for copper and copper alloys
US08/520,477 US5560785A (en) 1993-05-10 1995-08-29 Method for forming a protective chemical layer on copper and copper alloy surfaces

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP06550294A JP3367743B2 (en) 1994-03-08 1994-03-08 Copper and copper alloy surface treatment agent

Publications (2)

Publication Number Publication Date
JPH07243053A JPH07243053A (en) 1995-09-19
JP3367743B2 true JP3367743B2 (en) 2003-01-20

Family

ID=13288924

Family Applications (1)

Application Number Title Priority Date Filing Date
JP06550294A Expired - Lifetime JP3367743B2 (en) 1993-05-10 1994-03-08 Copper and copper alloy surface treatment agent

Country Status (1)

Country Link
JP (1) JP3367743B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100817973B1 (en) 2004-02-05 2008-03-31 닛코킨조쿠 가부시키가이샤 Surface-treating agent for metal
JP4546163B2 (en) * 2004-06-10 2010-09-15 四国化成工業株式会社 Copper or copper alloy surface treatment agent and soldering method
US20070221503A1 (en) * 2006-03-22 2007-09-27 Brian Larson Precoat composition for organic solderability preservative
JP5260357B2 (en) * 2008-09-17 2013-08-14 四国化成工業株式会社 2- (2,4-dichlorobenzyl) -4-phenyl-5-alkylimidazole compound
JP5361316B2 (en) * 2008-10-02 2013-12-04 株式会社タムラ製作所 Surface treatment agent, printed circuit board, and manufacturing method thereof
DE102009047043A1 (en) * 2009-10-19 2011-04-21 Robert Bosch Gmbh Solderless electrical connection
CN104060260B (en) * 2014-05-29 2016-09-21 合肥奥福表面处理科技有限公司 A kind of method strengthening copper faucet wearability

Also Published As

Publication number Publication date
JPH07243053A (en) 1995-09-19

Similar Documents

Publication Publication Date Title
EP0627499B1 (en) Agent for treating surfaces of copper and copper alloys
US5173130A (en) Process for surface treatment of copper and copper alloy
JP3311858B2 (en) Copper and copper alloy surface treatment agent
JP3277025B2 (en) Copper and copper alloy surface treatment agent
JP2006022400A (en) Surface treating agent for copper or copper alloy and its utilization
JP3952410B2 (en) Metal surface treatment agent, printed circuit board, and metal surface treatment method for printed circuit board
JP3367743B2 (en) Copper and copper alloy surface treatment agent
JP4647073B2 (en) Method of soldering copper and copper alloy
JP2005068530A (en) Surface-treating agent, printed circuit board, and method for surface-treating metal on printed circuit board
JP2575242B2 (en) Surface protective agent for printed wiring boards
JP2834885B2 (en) Copper and copper alloy surface treatment method
JP2686168B2 (en) Surface treatment method for copper and copper alloy and surface treatment agent for soldering
TWI464299B (en) Surface treating agent for copper or copper alloy and use thereof
TWI448581B (en) Surface treating agent for copper or copper alloy and use thereof
JP3205927B2 (en) A method for forming a surface protective agent and a surface protective film for a copper-gold coexisting substrate.
JP3398296B2 (en) Copper and copper alloy surface treatment agent
JP2834884B2 (en) Copper and copper alloy surface treatment method
JP2972295B2 (en) Copper and copper alloy surface treatment method
JPH10251867A (en) Surface treating agent for copper and copper alloy
JPH06264258A (en) Surface treating agent for copper and copper alloy
JPH05163585A (en) Surface treatment of copper and copper alloy
JPH10245684A (en) Surface treating agent for copper and copper alloy
JPH0480375A (en) Surface treatment of copper and alloy thereof
JPH04202780A (en) Surface treatment of copper and copper alloy and printed circuit board
JPH04183874A (en) Surface treatment of copper and copper alloy

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081108

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091108

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091108

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101108

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101108

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111108

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111108

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121108

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131108

Year of fee payment: 11

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term